EP0059171B1 - Boulon et canon pour la prise et la transmission d'une force transversale - Google Patents

Boulon et canon pour la prise et la transmission d'une force transversale Download PDF

Info

Publication number
EP0059171B1
EP0059171B1 EP82810082A EP82810082A EP0059171B1 EP 0059171 B1 EP0059171 B1 EP 0059171B1 EP 82810082 A EP82810082 A EP 82810082A EP 82810082 A EP82810082 A EP 82810082A EP 0059171 B1 EP0059171 B1 EP 0059171B1
Authority
EP
European Patent Office
Prior art keywords
mandrel
sleeve
reinforcement
transverse force
following application
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82810082A
Other languages
German (de)
English (en)
Other versions
EP0059171A1 (fr
Inventor
Ulisse C. Aschwanden
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AT82810082T priority Critical patent/ATE23589T1/de
Publication of EP0059171A1 publication Critical patent/EP0059171A1/fr
Application granted granted Critical
Publication of EP0059171B1 publication Critical patent/EP0059171B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C11/00Details of pavings
    • E01C11/02Arrangement or construction of joints; Methods of making joints; Packing for joints
    • E01C11/04Arrangement or construction of joints; Methods of making joints; Packing for joints for cement concrete paving
    • E01C11/14Dowel assembly ; Design or construction of reinforcements in the area of joints
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/38Connections for building structures in general
    • E04B1/48Dowels, i.e. members adapted to penetrate the surfaces of two parts and to take the shear stresses
    • E04B1/483Shear dowels to be embedded in concrete

Definitions

  • the invention relates to a mandrel and a sleeve for receiving and transmitting a transverse force only in one direction and its opposite direction and for the compensation of thrust in the transverse direction perpendicular thereto and in the longitudinal direction, for connecting structural and civil engineering components such as roof panels, Floor slabs, ceilings, walls, supports, retaining walls or parts thereof with each other or with other components, for which the sleeve in one of the components to be connected, the mandrel in the other is to be inserted and fastened in such a way that the mandrel and / or the sleeve from the projecting component and the mandrel penetrates the sleeve.
  • the application primarily concerns components made of concrete, but is also possible for other components.
  • the mandrel and sleeve serve to fix components to one another in their plane, for which the mandrel and sleeve must be able to absorb considerable transverse forces in the direction perpendicular to this plane, while on the other hand the mandrel in the sleeve must be freely displaceable and remain longitudinally so that the components can expand and contract in their plane under the influence of changing temperatures. Therefore, the mandrel and sleeve must be corrosion-resistant and remain so for the long service life required by buildings, which is why they mostly consist of stainless steel.
  • the invention provides that the mandrel groove in the transverse direction perpendicular to the transverse force to be received or transmitted in the sleeve has a mutual freedom of movement which is at least as large as the mutual occurrence due to different expansion and contraction between the two components to be connected Displacements transversely to the axis of the mandrel and the sleeve, that the mandrel and / or the sleeve is provided on the outside in the region of the part to be let in and at least over a section adjacent to its outer end with a reinforcement which is at least in the plane perpendicular to the absorbed or transmitted transverse force has a larger surface than the section of the mandrel or sleeve covered by the reinforcement, and that the reinforcement is at least partially elastically more flexible than the mandrel or sleeve itself under the action of the transverse force.
  • the elements previously referred to as “reinforcement” in the subject matter of the invention are inserted between the mandrel or sleeve and the component, and they should expediently not be given such a degree in view of the completely different task of fixing the components in their plane and reducing the specific concrete load be flexible; otherwise they would transmit almost no forces to the component in their area and concentrate them on the remaining installation length of mandrel and sleeve.
  • the lateral freedom of movement of the mandrel in the sleeve which therefore extends after its installation in the component plane in the direction of the adjacent component edges to be connected, in the direction in which mutual displacements can occur due to different expansion of the components, can be on each side, for . B. 10 to 15 mm to take into account most practical conditions.
  • correspondingly large mutual displacements can be avoided by fixing them against each other in the middle, e.g. B. by known mandrels and sleeves without such freedom of movement, while from there towards the ends mandrels and sleeves of the new type with mutual freedom of movement in this direction.
  • the range of motion preferably extends over the entire length of the mandrel section immersed in the sleeve: in addition, a variant of this would still be considered, in which the mandrel has the freedom of movement in the outer part of the sleeve but not at its end in the sleeve and in its direction - at least near its end in the sleeve - has a considerably smaller section modulus than perpendicular to it, ie when the components are mutually displaced, it is bent there, the bend expediently remaining in the elastic range.
  • the realization could a. consist in that the mandrel carries at its end a leaf spring with which it is hung at the end of the sleeve.
  • the reinforcement is only parallel to the component plane, i. H. extends perpendicular to the direction in which the mandrel and the sleeve can absorb or transmit transverse forces; but it does not mean a disadvantage if the gain z. B. has a certain extent in other directions for manufacturing reasons.
  • the reinforcement need not be made of the same expensive material as the mandrel and sleeve; it is protected against corrosion by concreting in, and there is no requirement for permanent lubricity as with the mandrel and sleeve in the reinforcement.
  • the reinforcement is at least partially elastically more flexible than the mandrel or the sleeve itself. This is the only way to significantly reduce the maximum specific load on the concrete in the critical area adjacent to the component edge, even far more than the increase in surface area, and in particular to completely reduce the load peak directly at the component edge, while also reducing the difference between reinforcement and Mandrel or sleeve occurring load is substantially evened out and reduced, so that the strength properties of the material to be used for the reinforcement do not have to be particularly high requirements and even some plastics are sufficient, which are already in some selection with different ones for the present Valuable properties are available for the purpose and can be easily attached to or cast around the mandrel or sleeve.
  • Suitable shaping can also make reinforcements made of a metallic material sufficiently flexible.
  • the invention also includes the possibility of providing the reinforcement only on the mandrel or only on the sleeve. This is considered when the two components in question consist of substances with very different strength properties; the reinforcement will then be arranged in the component with a lower specific load capacity of its material.
  • the freedom of movement of the mandrel in the sleeve transverse to the direction of force means that the bore of the sleeve in this direction must be limited on both sides by flat surfaces. If this is also provided for the mandrel, there is a minimum of the specific load (surface pressure) between the mandrel and the sleeve. It is therefore advantageous if the interior of the sleeve has a rectangular cross-section that is constant over its length and the mandrel has a rectangular or a cross-section inscribed at least where it protrudes into the sleeve, and it should be noted that a square is also used Is rectangle.
  • a cross-section inscribed in a rectangle is found e.g. B. in the double-T profile.
  • the mandrel thus has a greater section modulus in the direction in which it has to absorb or transmit the transverse force than perpendicular to it.
  • Such a shape for the mandrel is of course also considered if there is no lateral freedom of movement in the sleeve, but transverse forces which are far predominant in one direction are provided.
  • the mandrel has only a small amount of play in the sleeve in the direction of force, so that it can only tilt slightly in it, the slightest tilt was sufficient during installation so that the force is no longer distributed over the entire surface. but only acts on the adjacent edge.
  • the mandrel - if it is installed in a second position, otherwise this applies to the sleeve - thanks to its weight will fit snugly with the force-transmitting surface in the sleeve bore, but this only applies if this Surface is horizontal instead of vertical; furthermore, influences from the mortar during hardening may not be completely excluded because it does not represent a homogeneous mass.
  • the mandrel If you want to address concerns of this kind, you can surround the mandrel as far as it can be inserted with a housing in which it is rotatably mounted; the reinforcement is then attached to the housing. The mandrel then rotates later, after installation, under the action of the transverse force without further ado in the position corresponding to the tight contact in the sleeve.
  • the reinforcement which only has to extend transversely to the direction of force given here with regard to the direction of force clearly specified here, so that the advantage of only minimal weakening of the component is given, in the simplest case consists of a wing on either side of the mandrel or on the sleeve or from a plate above or below. In the latter case, the attachment is easier to accomplish if the reinforcement consists of a metallic material, e.g. B. by spot welding. Two wings on each side or one plate above and below are also possible and distribute the power over the same area with the same projection.
  • the reinforcement can also be cubic, cylindrical, frustoconical, truncated pyramid or provided with ribs on the outside and completely or partially surround the mandrel or sleeve section covered by it. Truncated cone and truncated pyramid-shaped reinforcements are arranged with regard to the maximum load at the component edge in such a way that their greatest projection is there, provided that the material is used optimally.
  • the reinforcement can be made of metal or an elastic material such. B. in the form of plastic with or without filler or cement-based mortar with or without plastic or made of various such materials, for. B. by the mandrel or the sleeve carries a metallic reinforcement, which is covered with the elastic material, or by having a thickening under a reinforcement made of elastic material, which then does not need to be particularly flexible.
  • various known technologies including gluing, and plastics such as epoxy resin with hardener and filler can also be cast around the mandrel or sleeve.
  • the transverse load is generally greatest at the outer end of the recessed part of the mandrel and sleeve and then decreases sharply further to the rear, there would be no purpose in inserting the mandrel and sleeve disproportionately deep and making them correspondingly long; the load would then no longer be distributed over a greater length, and there would be unnecessary expenditure of expensive material.
  • the length of the part of the mandrel and sleeve to be let in is optimally dimensioned when it is approximately equal to seven times the mandrel diameter.
  • the optimal length of the reinforcement cannot simply be stated in relation to the mandrel diameter, because the other dimensions, the shape and the material properties of the reinforcement itself play a role in this; with conventional mandrel diameters and various suitable reinforcements, tests have shown an optimal length of 5 to 11 cm, which, moreover, the less critical the better the feature of compliance is fulfilled.
  • the smaller values relate to the sleeves and their reinforcements, which should be connected with the fact that the sleeves according to the invention are themselves considerably wider than the mandrels transverse to the direction of force.
  • a fastening flange can be attached to the outer end of the part to be let in, which is called "nail plate" in construction.
  • nail plate the outer end of the part to be let in
  • the formwork of the first component is produced, the sleeves are nailed to the intended positions with their fastening flanges from the inside against the formwork, if necessary the reinforcement and then the concrete mortar are inserted and the formwork is removed after it has set. Then you insert the associated mandrels into the concreted-in sleeves, create joint insulation and formwork for the second component, if necessary bring in the reinforcement and then the concrete mortar and remove the formwork after it has set. If a further component to be connected with mandrels and sleeves is connected to the second component, the sleeves provided are attached to the adjacent formwork side of the second component as described above, and the installation process continues accordingly.
  • the rule can be given here that the concrete layer thickness around the mandrel or sleeve should be at least four times as large as the mandrel diameter. If this value has to be fallen short of, it is advisable to install a support reinforcement to distribute the concrete stress over a larger section, as a precaution against splitting and breaking out of the component on its edge.
  • the outer opening of the sleeve or of the fastening flange has a cover which can be easily removed after installation, for. B. a glued film, and when the sleeve bore is closed at the other end.
  • the possibility of fixing the mandrel at its end in the sleeve is also within the scope of the inventive concept.
  • the mandrel is then elastically flexible within its range of motion and counteracts mutual displacements of the components in this direction with a force proportional to the displacements.
  • FIGS. 1 to 30 Some exemplary embodiments of the subject matter of the invention will now be described with reference to the accompanying drawings, FIGS. 1 to 30.
  • a first embodiment is shown in Fig. 1 to 6, with Fig. 1, 2 and 5 for the sleeve in side, front and perspective view, and with Fig. 3, 4 and 6 accordingly for the mandrel.
  • a sleeve 21, closed at the rear with a cover 21 ' carries a plate-shaped reinforcement 61 and 61', which are identical to one another, at the top and bottom, and a two-part fastening flange 17, 17 '; K indicates the position of the component edge for installation, and 19 denotes foam inserts for centering the mandrel during installation.
  • An associated mandrel 1 of square cross section carries a plate-shaped reinforcement 41 and 41 'at the top and bottom, which are identical to one another.
  • edges of the reinforcements 41, 41 ', 61, 61' could also be rounded or chamfered so that the transition from loaded to unloaded cross-section takes place more gently in the concrete and that at on the other hand, concrete that has penetrated between the plate-shaped reinforcements is exposed to less stress due to shearing.
  • 6a and 6b illustrate alternatives to the mandrel shown in Fig. With regard to the formation of its reinforcements.
  • the reinforcements 41b, 41b ' are wider at the component edge where the maximum load occurs.
  • the widening of the reinforcements 41a, 41a 'at the opposite end may theoretically be less good; after all, this widening also contributes somewhat to the relief of concrete on the edge of the component.
  • Parts embedded in concrete do not always have to be anchored so that they cannot be pulled out. However, due to the hardening shrinkage of the concrete, embedded parts are clamped very tight all around.
  • Fig. 7 differs from Fig. 5 only in that reinforcements and fastening flange parts are combined to form units 62, 62 'and each consist of a piece of angular profile on a sleeve 22; 8 shows the corresponding with angle profiles 42, 42 'on an associated mandrel 2.
  • mandrels 3 to 10 and associated sleeves 23 to 30 are shown one above the other in a front view for further embodiments, the primary concern being differently designed reinforcements.
  • reinforcements 43, 43 ', 63, 63' are beveled inward too much, which offers the concrete located therebetween a larger transition cross-section and thus less stress on shearing.
  • reinforcements 44, 44 ', 64, 64' consist of angled metal sheets and are therefore somewhat more flexible, and from FIGS. 13 and 14, where reinforcements 45, 45 ', 65, 65 'are corrugated on the outside.
  • the reinforcements consist of less flexible plates 47, 47 ', 67, 67', surrounded by flexible pads 47a, 47a '. 67, 67a 'z. B. made of plastic.
  • 21 and 22 show a particularly simple embodiment with a wing 49, 49 ', 69, 69' on both sides as reinforcement; 23 and 24 illustrate the corresponding with wings 50, 50 ', 70, 70' as reinforcement with greater flexibility.
  • mandrels 6 and 10 in FIGS. 15 and 23 require special mention. Both mandrels have a greater section modulus in the load direction, which is assumed in the vertical direction in all the figures, than transversely thereto; this can be used to save material by reducing the section modulus in the other direction, where it is not required to the extent, or to increase the section modulus in the load direction without too much material consumption z. B. in the event that one has to bridge larger distances between the components.
  • a cubic reinforcement 51, 71 which is held transversely to the load direction, is applied to a sleeve 31 and to a mandrel 11, for. B. by casting with a synthetic resin, which holds fastening flange parts 18, 18 'at the same time in the sleeve.
  • a synthetic resin which holds fastening flange parts 18, 18 'at the same time in the sleeve.
  • the mandrel 11 it is shown in section in FIG. 27 that it can carry a thickening 16 which, in the vicinity of the component edge K, reduces the specific load on the inner surface of the reinforcement 51.
  • the sleeve 31 could also be provided with a corresponding thickening, but since the sleeve is anyway wider and thus larger across the load direction, this will usually not be necessary for it.
  • a mandrel 13 is cylindrical in its part to be let in and rotatably supported in a housing 14, which is closed at the end with a cover 14 '.
  • the protruding part 13 'of the mandrel has a square cross section. So that the mandrel does not slip out of the housing, it is provided with a recess in which a bolt 15 attached to the housing engages.
  • a gain 53 z. B. of the type shown in Fig. 26 is attached to the housing 14.
  • Figs. 29 and 30 tie in with Figs. 7 and 8; Reinforcements 52, 52 ', 72, 72', multi-ribbed and at the same time forming fastening flanges, are mounted on a sleeve 32 or on a mandrel 12 and consist simply of U-profile sections.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Forms Removed On Construction Sites Or Auxiliary Members Thereof (AREA)
  • Dowels (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Roof Covering Using Slabs Or Stiff Sheets (AREA)
  • Joining Of Building Structures In Genera (AREA)

Claims (10)

1. Mandrin (1-13) et douille (21-32) destinés à recevoir et à transmettre une force transversale seulement dans une direction et dans son sens contraire, et à la compensation d'une poussée dans un sens transversal orienté à la verticale par rapport à la poussée ainsi que dans le sens longitudinal, destinés à relier des éléments de construction du bâtiment et du génie civil tels que plaques de toitures, plaques de planchers, plafonds, murs, colonnes d'appui, murs de soutènement ou des parties de ceux-ci, entre eux et avec d'autres éléments de construction, la douille (21-32) devant être encastrée et fixée à cet effet dans un des éléments de construction, le mandrin (1-13) dans l'autre, et cela de telle façon que le mandrin (1-13) et/ou la douille (21-32) fasse saillie hors de l'élément de construction en question et que le mandrin (1-13) passe à travers la douille (21-32), le mandrin (1-13) n'ayant un jeu de mobilité bilatéral dans la douille (21-32) que dans le sens transversal orienté à la verticale par rapport à la force transversale à recevoir ou à transmettre, le jeu étant au moins aussi grand que les translations réciproques qui se manifestent du fait des dilatations et des retraits variables entre les éléments de construction à relier entre eux et cela transversalement à l'axe du mandrin et de la douille, et que le mandrin (1-13) et/ou la douille (21-32) soient dotés d'un renforcement (41-53, 61-72) placé à l'extérieur dans la zone de la pièce à encastrer et au moins par-dessus une section voisine de son extrémité extérieure, le renforcement ayant au moins une surface plus grande dans le plan vertical par rapport à la force transversale à recevoir ou à transmettre, surface plus grande que la section du mandrin resp. de la douille recouverte par le renforcement, et que le renforcement (41-53, 61-72) ait au moins en partie une déformabilité élastique plus grande sous l'effet de la force transversale que le mandrin resp. la douille même.
2. Mandrin et douille conformes à la revendication 1, caractérisés en ce que le volume intérieur de la douille (21-32) ait une section rectangulaire dont la section soit constante sur sa longueur et que le mandrin (1-12) ait une section rectangulaire ou carrée, ou une section inscrite dans un rectangle ou un carré, au moins à l'endroit où il pénètre à l'intérieur de la douille.
3. Mandrin et douille conformes à la revendication 1 ou 2, caractérisés en ce que le mandrin (6, 10) ait un couple de résistance plus grand dans le sens dans lequel il doit recevoir ou transmettre la force transversale que dans celui du sens transversal orienté à la verticale par rapport à la force transversale.
4. Mandrin et douille conformes à la revendication 1, caractérisés en ce que le jeu de mobilité bilatéral du mandrin (1-12) dans la douille (21-32) est rempli d'inserts en produit alvéolaire (19).
5. Mandrin et douille conformes à la revendication 1 ou 2, caractérisés en ce que le mandrin (13) est entouré d'un boîtier sur une distance égale à celle de l'encastrement et de la fixation, boîtier dans lequel il loge de manière permettant la rotation et que le renforcement (53) soit monté sur le boîtier.
6. Mandrin et douille conformes à la revendication 1, caractérisés en ce que le renforcement ait la forme d'au moins une aile (49, 50, 69, 70) des deux côtés ou d'au moins une plaque de forme plane ou autre (41-48, 61-68) dans le sens trans- ' versai par rapport à la force transversale à recevoir ou à transmettre.
7. Mandrin et douille conformes à la revendication 1, caractérisés en ce que le renforcement (51, 52, 71, 72) ait une .forme cubique, cylindrique, tronconique, pyramidal tronqué ou soit doté de nervures et que ce renforcement entoure la section recouverte en totalité ou en partie.
8. Mandrin et douille conformes à la revendication 1, 6 ou 7, caractérisés en ce que le renforcement (41-46. 48-53, 61-66, 68-72) soit uniformément en un seul métal, ou en matériau élastique sous forme de résine synthétique avec ou sans matière de charge, ou soit composé de mortier à base de ciment avec ou sans matière plastique, ou que le renforcement (47, 47a, 67, 67a) soit constitué de différents de ces matériaux.
9. Mandrin et douille conformes à la revendication 8, caractérisés en ce que le mandrin (7) et/ou la douille (27) portent un renforcement métallique (47, 67) qui est revêtu d'une couche (47a, 67a) de matériau élastique, ou qu'ils présentent un épaississement (16) en matériau élastique sous un renforcement (51).
10. Mandrin et douille conformes à la revendication 1, caractérisés en ce que leur partie à encastrer ait une longueur qui soit approximativement le septuple du diamètre du mandrin et que le renforcement (41-53, 61-72) ait une longueur de 5 à 11 cm dans le sens qui est parallèle à l'axe du mandrin resp. de la douille.
EP82810082A 1981-02-23 1982-02-22 Boulon et canon pour la prise et la transmission d'une force transversale Expired EP0059171B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT82810082T ATE23589T1 (de) 1981-02-23 1982-02-22 Dorn und huelse fuer die aufnahme und ubertragung einer querkraft.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1169/81 1981-02-23
CH116981 1981-02-23

Publications (2)

Publication Number Publication Date
EP0059171A1 EP0059171A1 (fr) 1982-09-01
EP0059171B1 true EP0059171B1 (fr) 1986-11-12

Family

ID=4204091

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82810082A Expired EP0059171B1 (fr) 1981-02-23 1982-02-22 Boulon et canon pour la prise et la transmission d'une force transversale

Country Status (3)

Country Link
EP (1) EP0059171B1 (fr)
AT (1) ATE23589T1 (fr)
DE (1) DE3274271D1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2743415A1 (fr) 2012-12-12 2014-06-18 SPAETER Zug AG Elément de construction de joints de dilatation

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0119652B1 (fr) * 1983-03-16 1986-07-16 Heinz Witschi Elément de liaison et de répartition de pression pour éléments en béton
US4733513A (en) * 1986-10-21 1988-03-29 Schrader Ernest K Tying bar for concrete joints
EP0328484A1 (fr) * 1988-02-11 1989-08-16 Egco Ag Manchon de glissement pour la prise d'un boulon de force transversal
GB2285641A (en) * 1994-01-14 1995-07-19 Permaban Projects Limited Dowel bar sleeve
US5618125A (en) * 1994-01-18 1997-04-08 Permaban North America, Inc. Dowell alignment apparatus
AUPN333095A0 (en) * 1995-06-05 1995-06-29 Durack, Michael James Concrete slab sockets
DK0773324T4 (da) * 1995-11-07 2006-08-14 Nivo Ag Indretning til forbindelse og til optagelse af tværkræfter fra to af en fuge adskilte byggeelementer
US6354760B1 (en) 1997-11-26 2002-03-12 Russell Boxall System for transferring loads between cast-in-place slabs
US6145262A (en) * 1998-11-12 2000-11-14 Expando-Lok, Inc. Dowel bar sleeve system and method
NZ531726A (en) 2001-09-13 2006-06-30 Russell Boxall Load transfer plate for in situ concrete slabs
CA2555860A1 (fr) 2005-08-11 2007-02-11 Russell Boxall Plaques sur le sol servant de joints entre dalles de beton sur le sol
US7736088B2 (en) 2006-07-13 2010-06-15 Russell Boxall Rectangular load plate
US10077551B2 (en) 2015-10-05 2018-09-18 Illinois Tool Works Inc. Joint edge assembly and method for forming joint in offset position
US10119281B2 (en) 2016-05-09 2018-11-06 Illinois Tool Works Inc. Joint edge assembly and formwork for forming a joint, and method for forming a joint
CH713190A2 (de) * 2016-12-01 2018-06-15 Ikona Ag Vorrichtung und Verfahren zur Verbindung von zwei Bauteilen in einer bestimmten relativen Ausrichtung sowie damit erstelltes Betonbauwerk.
CN113818713A (zh) * 2021-09-17 2021-12-21 南昌大学 一种适用于传统房屋木檩的减震加固装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2196727A (en) * 1936-10-19 1940-04-09 Fremont Wynne Oscar Joint construction
US2194718A (en) * 1938-06-25 1940-03-26 Older Clifford Concrete road joint
US3045565A (en) * 1957-06-25 1962-07-24 Felix L Nettleton Expansion joint kit
CH596397A5 (en) * 1976-09-24 1978-03-15 Traugott Schoop Car park building slabs shearing force absorption
CH651090A5 (de) * 1980-01-04 1985-08-30 Ulisse Claudio Aschwanden Dorn und huelse zur verbindung von bauteilen des hoch- und tiefbaues.
DD152821A1 (de) * 1980-09-11 1981-12-09 Adolf Barsch Verfahren zur verduebelung monolithischer beton-und stahlbetonkonstruktionen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2743415A1 (fr) 2012-12-12 2014-06-18 SPAETER Zug AG Elément de construction de joints de dilatation

Also Published As

Publication number Publication date
ATE23589T1 (de) 1986-11-15
DE3274271D1 (en) 1987-01-02
EP0059171A1 (fr) 1982-09-01

Similar Documents

Publication Publication Date Title
EP0059171B1 (fr) Boulon et canon pour la prise et la transmission d'une force transversale
EP0032105B1 (fr) Broche et douille pour la liaison d'éléments de construction en génie civil
EP1745182A1 (fr) Element de connexion de dalle en console
CH672519A5 (fr)
AT511220A1 (de) Deckenelement zur ausbildung von gebäudedecken
DE4037438A1 (de) Transportables stahlbetonfundament fuer eine stuetze
EP1482101A1 (fr) Elément de construction, procédé pour fabriquer des éléments de construction et moyens de liaison pour élément de construction
EP0250612A1 (fr) Planche pour un échafaudage à érection rapide
EP3225758B1 (fr) Élément de raccordement d'isolement thermique entre un élément de bâtiment vertical et un élément de bâtiment horizontal
DE202022105282U1 (de) Wand-, Decken- oder Dachelement mit Knaggen
EP2516761B1 (fr) Dispositif permettant de raccorder deux éléments de construction séparés par un joint et d'absorber des efforts de cisaillement apparaissant entre les éléments de construction
EP1972734A1 (fr) Corps de fixation pour un panneau isolant
EP0086751A2 (fr) Ancre pouvant être soumise à la traction
EP1101883B1 (fr) Procédé pour la réalisation d'un raccordement d'armatures entre un élément de construction en béton et un élément de construction connecté
EP0627531A1 (fr) Elément de support pour éléments de construction
EP3546666A1 (fr) Module de raccordement bois-béton
EP3663474A1 (fr) Dispositif d'isolement thermique entre un mur de bâtiment bétonné et un plancher, ainsi que procédé de fabrication
DE102007004573A1 (de) Wandbauelement, Verfahren zur Herstellung eines Wandbauelements und ein Ankerbauteil für ein Wandbauelement
EP4086401B1 (fr) Composant denté thermoisolant et procédé de construction d'une section de bâtiment
EP3754125B1 (fr) Élément de construction pour le montage dans des joints de dilatation de bâtiments
EP3591130B1 (fr) Structure de plafond
EP3788210B1 (fr) Système d'ancrage à force transversale
DE102004003366B4 (de) Verfahren zum Herstellen eines Einfamilien-oder Mehrfamilienhauses, Betonfertigteil-Trogplatte für eine Gebäudedecke sowie Fertighaus
DE102005036881B4 (de) Vorrichtung zum Erstellen einer Dehnfuge
AT408362B (de) Abstandhalter für gitterträger

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LU NL SE

17P Request for examination filed

Effective date: 19830425

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 23589

Country of ref document: AT

Date of ref document: 19861115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3274271

Country of ref document: DE

Date of ref document: 19870102

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EPTA Lu: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 82810082.6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19960201

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970222

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990111

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19990113

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19990118

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990119

Year of fee payment: 18

Ref country code: BE

Payment date: 19990119

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990125

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19990126

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20000209

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000222

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20000223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000228

BERE Be: lapsed

Owner name: ASCHWANDEN ULISSE C.

Effective date: 20000228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000901

EUG Se: european patent has lapsed

Ref document number: 82810082.6

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001031

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20000901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL