EP0057959B1 - Alliage d'aluminium forgeable - Google Patents

Alliage d'aluminium forgeable Download PDF

Info

Publication number
EP0057959B1
EP0057959B1 EP82200114A EP82200114A EP0057959B1 EP 0057959 B1 EP0057959 B1 EP 0057959B1 EP 82200114 A EP82200114 A EP 82200114A EP 82200114 A EP82200114 A EP 82200114A EP 0057959 B1 EP0057959 B1 EP 0057959B1
Authority
EP
European Patent Office
Prior art keywords
rolled
alloy according
strip
final
tensile strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82200114A
Other languages
German (de)
English (en)
Other versions
EP0057959A1 (fr
Inventor
Heinz Jürgen Dr. Althoff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vereinigte Deutsche Metallwerke AG
Original Assignee
Vereinigte Deutsche Metallwerke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19813104079 external-priority patent/DE3104079A1/de
Priority claimed from DE19813110227 external-priority patent/DE3110227A1/de
Application filed by Vereinigte Deutsche Metallwerke AG filed Critical Vereinigte Deutsche Metallwerke AG
Priority to AT82200114T priority Critical patent/ATE8666T1/de
Publication of EP0057959A1 publication Critical patent/EP0057959A1/fr
Application granted granted Critical
Publication of EP0057959B1 publication Critical patent/EP0057959B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium

Definitions

  • the invention relates to a wrought aluminum alloy, to its use for semi-finished and finished parts and to methods for achieving improved properties, in particular improved strength values for semi-finished and finished parts made of this alloy.
  • Aluminum can be modified in a variety of ways by alloying other metals with its physical and chemical properties and can be improved to certain goals by means of process measures.
  • a method for producing a can body in which an aluminum alloy is rolled out into a thin strip and then formed by deep drawing and ironing the can body. It is proposed not to start from a soft annealed strip section, as usual, but to use at least 75% strain-hardened aluminum alloy strip with at least 96.5% aluminum, 0.75 to 2.5% iron and 0.1 to for deep drawing and ironing Use 2.5% magnesium and / or 1.1 to 1.5% manganese with silicon and other random additions of at most 1%.
  • fine-grained strips can be made from manganese-containing aluminum alloys by holding the strip in the temperature range from 160 ° C to just below the temperature of the complete recrystallization for at least 5 hours before soft annealing is reached .
  • the tensile strength values of a 0.1 mm thick strip of an Al-Mn alloy with 1.2% Mn, 0.6% Fe, 0.3% Si, 0.1% Cu, treated in this way, are in the recrystallized state from 110 to 130 N / mm 2 , which is too low for many applications.
  • the elongation at break of high strength aluminum alloys can be improved by a multi-stage annealing and forming process.
  • This method is intended for alloys with 0.05 to 1% iron, 0.05 to 1% silicon and at least one of the alloy additives from the group up to 5% magnesium, less than 3% manganese, less than 1% copper, less than 0 , 5% chromium, less than 0.5% zinc, less than 0.5% zirconium, less than 0.5% titanium and / or less than 0.1% boron, balance aluminum with the usual manufacturing-related impurities of less than 1.5% individually but less than 0.5% may be suitable.
  • the tensile strength values are in the range of 450 N / mm 2 and higher or the elongation values are at least 5%, only for an alloy with 0.08% silicon, 0.44% copper, 0 , 77% manganese, 0.10% chromium, 2.9% magnesium, 0.02% zinc, 0.17% iron, 0.01% titanium, balance aluminum, which is due to the high magnesium content for items caused by Deep drawing and ironing or shaped or which must be solderable and enamelable are not suitable.
  • the invention has for its object to provide a wrought aluminum alloy that can be used in a variety of ways - with different processing, if applicable Alloying elements. This task is explained in more detail using two special problem areas.
  • Aluminum cans have been used increasingly for years as disposable containers for beverages, in particular for beer and carbonated soft drinks. They consist of a one-piece can body produced by deep drawing and ironing and a lid with a pull tab flanged after filling. The starting material for the manufacture of the can body and lid are rolled strips made of different aluminum alloys.
  • An AIMg 4.5 Mn alloy (US designation 5182) in a highly work hardened state (H 19) is usually used for the lids, which after partial softening when baked enamelling has a tensile strength of at least 350 N / mm 2 and an elongation of at least 6%. These values must be adhered to so that the lid, which is weakened by embossing along the tear line, can withstand the bursting pressure required for cans filled with CO 2 -containing beverages and, on the other hand, crack-free flanging is possible. As many years of tests have shown, the alloy mentioned is not suitable for the production of the can bodies, even with less work hardening.
  • the cans are produced by deep drawing and ironing. It has been found that alloys with a Mg content of more than 1% during ironing for abrasion and adhesion on the tool, which leads to undesirable drawing marks and frequent downtimes. An economical production of the can body is not possible with such alloys.
  • An AIMn 1 Mg 1 alloy (US designation 3004) is therefore predominantly used for the production of the can body. After stoving, it has the required tensile strength of at least 270 N / mm 2 and an elongation of 1% and can be easily ironed off.
  • the alloy should contain 0.5 to 2% Mn and 0.4 to 2% Mg, the balance essentially Al. After homogenization annealing for 2 to 24 hours at about 455 to 655 ° C (850 to 1 150 ° F), the material is rolled hot and cold in several steps while observing certain starting temperatures and rolling degrees, and then subjected to heat treatment to stabilize the structural condition. In the most favorable case, a tensile strength of 316 N / mm 2 (45 psi) is achieved with an elongation of 4%. It can be seen that despite a comparatively complex manufacturing process, the requirements mentioned at the outset are not met. These could be achieved if the upper part of the specified Mg range, ie over 1 to 2%, were used. Then the alloy is certainly not suitable for the production of can bodies by ironing. The method proposed in the US patent can therefore not be regarded as a satisfactory compromise.
  • an alloy with 0.4 to 1% Mn and 1.3 to 2.5% Mg is assumed, which is to be cast continuously into a strip using a strip casting machine.
  • the cast strip should be rolled and coiled warm, preferably between 490 and 280 ° C, at least 70%, then cooled in still air and finally cold rolled to its final thickness.
  • the tensile strength values achieved in the work hardened state are below 350 N / mm 2 and fall to 330 to 310 N / mm 2 depending on the annealing temperature used to simulate the lacquer baking.
  • the desired elongation of at least 6% is only achieved if the annealing temperature is at least 200 ° C, but the tensile strength is only about 325 N / mm 2 . It also applies to this proposal that the desired values for the cover material could not be achieved. With regard to the difficulties in ironing, it is only mentioned that the alloy used has a lower tendency to stick to the tool than conventional can band alloys. Overall, therefore, the subject of DE-OS 29 01 020 does not bring a satisfactory solution to the problem described.
  • solderable and enamelable aluminum alloys are required, which must also have certain minimum strength values in the fully recrystallized state.
  • Semi-finished products and finished parts are designated as solderable and enamelable, which - apart from a possibly necessary degreasing - do not require extensive pretreatment by chromating, anodizing, plating, galvanizing or the like. Completely recrystallized is the thermodynamically stable state of the structure, which is also referred to as “soft” in the case of semi-finished or finished parts.
  • Al-Mn alloy material no. 3.0515
  • DIN 1725 in conjunction with DIN 1745, part 1 (edition December 1976), which has a minimum tensile strength of 90 N / mm2 and a 0.2- Has a yield strength of 35 N / mm 2 .
  • Cu material no. 3.0517
  • Mg material no. 3.026
  • the minimum tensile strength can be increased to 155 N / mm 2 and the 0.2 yield strength to 60 N / mm 2 in the soft state.
  • Parts made from such alloys can be exposed to higher temperatures than conventional Al-Mn alloys during manufacture (soldering and enamelling processes) or when used as intended, because the Zr and / or Cr addition significantly reduces the cold-forming results Structural hardening prevented when exposed to temperature.
  • the recrystallization inhibition only remains up to a certain temperature or exposure time. If certain limit values are exceeded during the manufacture of the parts or during their intended use, the structure of these alloys often changes into the thermodynamically stable, i.e. H. soft state, which means that the strength values are no longer sufficient for many applications.
  • a wrought aluminum alloy which is characterized by 1.15 to 2% manganese, more than 1.0 and up to 2.0% silicon, 0.25 to 0.65% magnesium, 0.2 to 1.0% iron, at most 0.3% copper, at most 0.2% zinc, at most 0.1% zirconium, at most 0.1% titanium, balance aluminum, including a total of at most 0.2% other impurities.
  • the silicon content of the wrought aluminum alloy is preferably 1.2 to 1.8% or even better 1.38 to 1.57%.
  • the wrought aluminum alloy can also have a silicon content of 0.85 to 2% if the alloy contents are also coordinated with one another as follows:
  • the alloy contains 0.1 to 0.3% Cu, preferably 0.15 to 0.25%.
  • Another aspect of the inventive concept relates to semi-finished products, in particular rolled strips, which consist of an alloy according to the above-mentioned compositions.
  • the idea of the invention also relates to semi-finished products or finished parts made of this alloy, which in the work-hardened state have a tensile strength of at least 350 N / mm 2 and an elongation of at least 6%.
  • the semi-finished or finished parts made of this alloy in the fully recrystallized state should have a tensile strength of at least 150 N / mm 2 and a yield strength of at least 80 N / mm 2 .
  • semi-finished or finished parts can be produced from the alloy, which have a tensile strength of at least 350 N / mm 2 and an elongation of at least 6% in the work hardened state and which have a tensile strength of at least 150 N / mm2 and a yield strength of in the fully recrystallized state have at least 80 N / mm2.
  • the procedure is expediently such that a casting block is rolled hot and / or cold to an intermediate thickness D z , that the intermediate strip is then subjected to a recrystallization annealing at 450 to 580 ° C. and that the intermediate strip is finally cooled at a minimum speed V (° K / s) and rolled to the final thickness D a with a minimum rolling degree ⁇ (%).
  • V ° K / s
  • minimum rolling degree
  • the procedure is such that the semi-finished products or finished parts are finally subjected to a recrystallizing heat treatment of at least 3 minutes at 450 to 600 ° C.
  • This final heat treatment can expediently take place simultaneously with the enamel baking process or with the soldering process.
  • the invention it is possible to start from a single aluminum alloy for the manufacture of the can body and can lid. This eliminates all the difficulties that arise from the usual use of two different alloys.
  • the return of the can material has become much more interesting economically and for everyone involved, i. H. the can manufacturers, the bottlers and the end users, there is a higher incentive to recycle the material of the empty beverage cans.
  • a very important advantage of the invention is that the magnesium content can be significantly reduced compared to the aluminum alloys previously used for beverage cans.
  • approximately 1 million tons of rolled strips were used for beverage cans in the USA.
  • With a high recycling rate of 40% there remains a need for new metal of 600,000 t.
  • FIG. 1 shows the tensile strength values achieved as a function of the magnesium content of the alloy for different cooling rates and degrees of rolling after recrystallization annealing at 520 ° C.
  • the magnesium content is below 0.25% and only comparatively low tensile strength values are achieved under all cooling and rolling conditions (see table 2).
  • Sample 7 lies in the Mg content outside the claimed Mg range and is therefore not included in Table 2.
  • a tensile strength of more than 370 N / mm 2 results from cooling at 90 ° K / s and a rolling degree of 75% (upper curve).
  • the two lower curves show that the same can be achieved with a high cooling rate and low rolling rate as with a low cooling rate and high rolling rate. If no continuous, annealing and quenching system is available for the production of the strips, the same can be achieved by a higher degree of rolling. Conversely, the final rolling can be carried out with a smaller rolling degree and thus more economically if correspondingly high cooling speeds can be achieved.
  • the strength range above 275 N / mm 2 will mainly matter, but also for the range below it, process conditions can be specified for the alloy which lead to a predetermined final strength.
  • Figure 2 shows the required degree of rolling depending on the required strength for a strip annealed at 520 ° C, which was cooled in still air at about 2 ° K / s.
  • a strip has a strength of approximately 220 N / mm 2 , which can be increased to approximately 290 N / mm 2 with a degree of rolling of 60%.
  • Figure shows the required cooling rate depending on a predetermined final strength for a strip rolled to final thickness and then annealed at 520 ° C.
  • the strip material thus provided can be used for the manufacture of can lids for which a strength of at least 350 N / mm 2 is required; but it can also be used for the manufacture of the can body by deep drawing and ironing, because it does not pose any difficulties in these forming operations because of the low magnesium content. This means that a way has been found for the manufacture of beverage cans that simplifies production considerably, makes recycling of the old material more economically interesting and brings considerable savings.
  • the final heat treatment is advantageously carried out at 450 to 600 ° C. It is particularly advantageous if the final heat treatment for enamelled semi-finished or finished parts is carried out simultaneously with the enamel baking process. In the case of soldered semi-finished products or finished parts, the final heat treatment is advantageously carried out simultaneously with the soldering process. To further increase the tensile strength and 0.2-stretch limit values, the semi-finished or finished parts can be subjected to forced cooling after the final heat treatment. If the final heat treatment is to be carried out at a temperature close to the upper limit, the magnesium content of the alloy must be limited to 0.25 to 0.50%.
  • the desired tensile strength values of at least 150 N / mm 2 , but not the required 0.2, are achieved with a comparable alloy, which however can contain a maximum of 0.2% Mg -Stretch limit values of at least 80 N / mm 2 reached.
  • the latter are 50 N / mm 2 or less above, regardless of the temperature of the final heat treatment used. They are not sufficient for a number of use cases.
  • the 0.2 yield strength can still be improved considerably if the Mg content is increased to 0.25 to 0.65% without disadvantages in terms of solderability and enamelling.
  • Samples with the composition according to Table 1 were examined. Samples 1 and 2 correspond to DE-PS 27 54 673, while the others have an increasing Mg content within the range claimed.
  • the strength values achieved after 30 minutes of annealing at a conventional enamel baking temperature of 560 ° C are shown in Table 2.
  • Tensile strength values of over 200 N / mm 2 and 0.2 yield strength values of 85 to 98 N / mm 2 were achieved with constant elongation values of around 20%. All samples passed the enamel adhesion test according to DEZ F 17 of the German enamel center after 96 hours in an antimony trichloride solution.

Claims (21)

1. Alliage d'aluminium forgeable, caractérisé en ce qu'il contient 1,15 à 2,0 % de manganèse, plus de 1,0 à 2,0 % de silicium, 0,25 à 0,65 % de magnésium, 0,2 à 1,0 % de fer, tout au plus 0,3 % de cuivre, tout au plus 0,2 % de zinc, tout au plus 0,1 % de zirconium, tout au plus 0,1 % de titane, le reste étant de l'aluminium y compris, au total, tout au plus 0,2 % d'autres impuretés.
2. Alliage d'aluminium forgeable suivant la revendication 1, caractérisé par une teneur en silicium de 1,2 à 1,8 %.
3. Alliage d'aluminium forgeable suivant la revendication 1, caractérisé par une teneur en silicium de 1,38 à 1,57 %.
4. Alliage d'aluminium forgeable suivant l'une des revendications 1 à 3, avec la condition que la teneur en silicium est de 0,85 à 2,0 % et que les teneurs de l'alliage sont accordées l'une à l'autre comme suit :
0,3(2 Mg+Fe+Mn+1)≤Si
Mn≥1,5 Fe
Mn+Fe≥1,5
Mn + Si 2,3.
5. Alliage d'aluminium forgeable selon la revendication 4 avec la condition que la teneur en silicium correspond aux domaines des revendications 1 à 3.
6. Alliage d'aluminium forgeable selon l'une des revendications 1 à 5, caractérisé en ce qu'il contient 0,1 à 0,3 %, de préférence 0,15 à 0,25 % de cuivre.
7. Produits semi-finis constitués par un alliage selon l'une des revendications 1 à 6.
8. Bandes laminées constituées par un alliage selon l'une des revendications 1 à 6.
9. Produits semi-finis ou finis constitués par un alliage selon l'une des revendications 1 à 6, caractérisés en ce qu'ils présentent, à l'état ecroui, une résistance à la traction d'au moins 350 N/mm2 et un allongement d'au moins 6 %.
10. Produits semi-finis ou finis constitués par un alliage selon l'une des revendications 1 à 6, caractérisés en ce qu'ils présentent, à l'état complètement recristallisé, une résistance à la traction d'au moins 150 N/mm2 et une limite d'étirage d'au moins 80 N/mm2.
11. Produits semi-finis ou finis constitués par un alliage selon l'une des revendications 1 à 6, caractérisés en ce qu'ils présentent, à l'état écroui, une résistance à la traction d'au moins 350 N/mm2 et un allongement d'au moins 6 % et en ce qu'ils présentent, à l'état complètement recristallisé, une résistance à la traction d'au moins 150 N/mm2 et une limite d'étirage d'au moins 80 N/mm2.
12. Procédé de fabrication de bandes laminées en un alliage selon l'une des revendications 1 à 6, caractérisé en ce qu'on réduit un bloc coulé par laminage à chaud et/ou à froid à une épaisseur intermédiaire D,, en ce qu'on soumet ensuite la bande intermédiaire à un recuit de recristallisation, entre 450 et 580 °C, et en ce qu'on refroidit finalement la bande intermédiaire à une vitesse minimum V (°K/s) et en ce qu'on la réduit par laminage à une épaisseur finale De avec un degré de laminage minimum ϕ (%).
13. Procédé selon la revendication 12, caractérisé en ce qu'on doit respecter la condition suivante :
Figure imgb0012
selon la résistance finale Rm (N/mm2) requise.
14. Procédé selon la revendication 12 ou 13, caractérisé en ce que, pour une résistance finale requise dans le domaine de 220 à 275 N/mm2, on recuit la bande intermédiaire entre 450 et 580 °C, en ce qu'on la refroidit à l'air calme et en ce qu'on la réduit à épaisseur finale par laminage à froid, avec un dearé de laminage final ϕ = f(Rm), selon le diagramme de la figure 2.
15. Procédé selon la revendication 12 ou 13, caractérisé en ce que, pour une résistance finale requise dans le domaine de 220 à 275 N/mm2, on réduit, de manière classique, directement à épaisseur finale par laminage, en ce qu'on recuit ensuite la bande à recristallisation, entre 450 et 580 °C et en ce qu'on la refroidit à moins de 250 °C avec une vitesse V = f(Rm), selon le diagramme de la figure 3.
16. Procédé selon la revendication 12 ou 13, caractérisé en ce qu'on part d'une bande coulée refroidie à raison d'au moins 10 °K/s et en ce qu'on la réduit directement à l'épaisseur finale par laminage à chaud et/ou à froid, sous recuit de recristallisation.
17. Procédé selon l'une des revendications 12 à 14, caractérisé en ce qu'on réduit par laminage à une épaisseur intermédiaire Dz comprise entre 1 et 4 mm.
18. Procédé selon l'une des revendications 12 à 17, caractérisé en ce qu'on réduit par laminage à une épaisseur finale De comprise entre 0,20 et 0,50 mm.
19. Utilisation de l'alliage selon l'une des revendications 1 à 6 ou des bandes laminées fabriquées selon l'une des revendications 11 à 17, pour l'obtention de produits finis, particulièrement des boîtes, mais également des corps de boîte et des couvercles.
20. Procédé de fabrication de produits semi-finis ou finis brasables ou émaillables, à partir d'un alliage selon l'une des revendications 1 à 6, caractérisé en ce qu'on soumet finalement les produits semi-finis ou finis à un traitement thermique de recristallisation d'au moins 3 minutes, entre 450 et 600 °C.
21. Procédé selon la revendication 20, caractérisé en ce qu'on effectue le traitement thermique final en même temps que l'étape de cuisson de l'émail ou que l'étape de brasage.
EP82200114A 1981-02-06 1982-01-30 Alliage d'aluminium forgeable Expired EP0057959B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT82200114T ATE8666T1 (de) 1981-02-06 1982-01-30 Aluminium-knetlegierung.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19813104079 DE3104079A1 (de) 1981-02-06 1981-02-06 Verfahren zur herstellung gewalzter baender aus einer aluminiumlegierung fuer die fertigung zweiteiliger dosen
DE3104079 1981-02-06
DE3110227 1981-03-17
DE19813110227 DE3110227A1 (de) 1981-03-17 1981-03-17 Herstellungsverfahren fuer halbzeuge aus einer al-mn-legierung

Publications (2)

Publication Number Publication Date
EP0057959A1 EP0057959A1 (fr) 1982-08-18
EP0057959B1 true EP0057959B1 (fr) 1984-07-25

Family

ID=25790981

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82200114A Expired EP0057959B1 (fr) 1981-02-06 1982-01-30 Alliage d'aluminium forgeable

Country Status (12)

Country Link
US (1) US4431463A (fr)
EP (1) EP0057959B1 (fr)
JP (1) JPS57149444A (fr)
KR (1) KR830009244A (fr)
AU (1) AU546926B2 (fr)
BR (1) BR8200641A (fr)
CA (1) CA1193889A (fr)
DE (1) DE3260416D1 (fr)
EG (1) EG15472A (fr)
ES (1) ES8308592A1 (fr)
NO (1) NO820259L (fr)
PH (2) PH19086A (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1287013C (fr) * 1985-07-25 1991-07-30 Yasuhisa Nishikawa Support en alliage d'aluminium pour cliches de lighographie
FR2617188B1 (fr) * 1987-06-23 1989-10-20 Cegedur Alliage a base d'al pour boitage et procede d'obtention
DE3913324A1 (de) * 1989-04-22 1990-10-31 Vaw Ver Aluminium Werke Ag Aluminiumwalzhalbzeug und verfahren zu seiner herstellung
US5104459A (en) * 1989-11-28 1992-04-14 Atlantic Richfield Company Method of forming aluminum alloy sheet
EP1386975A1 (fr) * 2002-08-01 2004-02-04 Hydro Aluminium Deutschland GmbH Alliage en aluminium pour produits laminés
US9440272B1 (en) 2011-02-07 2016-09-13 Southwire Company, Llc Method for producing aluminum rod and aluminum wire
WO2016000937A1 (fr) 2014-07-04 2016-01-07 Aleris Rolled Products Germany Gmbh Alliage d'aluminium destiné à être utilisé dans l'industrie du bâtiment

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3397044A (en) * 1967-08-11 1968-08-13 Reynolds Metals Co Aluminum-iron articles and alloys
CH493642A (de) * 1967-12-29 1970-07-15 Alusuisse Verfahren zur Herstellung von feinkörnigen Bändern aus manganhaltigen Aluminium-Legierungen
US3945860A (en) * 1971-05-05 1976-03-23 Swiss Aluminium Limited Process for obtaining high ductility high strength aluminum base alloys
CA962172A (en) * 1971-05-05 1975-02-04 Olin Corporation High ductility high strength aluminum base alloys and process for obtaining same
US3787248A (en) * 1972-09-25 1974-01-22 H Cheskis Process for preparing aluminum alloys
US3960607A (en) * 1974-03-08 1976-06-01 National Steel Corporation Novel aluminum alloy, continuously cast aluminum alloy shapes, method of preparing semirigid container stock therefrom, and container stock thus prepared
DE2452164A1 (de) * 1974-11-02 1976-05-06 Ritter Aluminium Gmbh Verwendung einer leichtmetalllegierung fuer kuechengeraete
US3966506A (en) * 1975-05-21 1976-06-29 Swiss Aluminium Ltd. Aluminum alloy sheet and process therefor
DE2529064B2 (de) * 1975-06-30 1977-08-04 VDM Aluminium GmbH, 6O00 Frankfurt Verwendung einer aluminiumlegierung
DE2754673C2 (de) * 1977-12-08 1980-07-03 Metallgesellschaft Ag, 6000 Frankfurt Verfahren zur Herstellung von Halbzeug aus einer Al-Mn-Legierung mit verbesserten Festigkeitseigenschaften

Also Published As

Publication number Publication date
BR8200641A (pt) 1982-12-14
KR830009244A (ko) 1983-12-19
CA1193889A (fr) 1985-09-24
PH20678A (en) 1987-03-28
AU8022882A (en) 1982-08-12
AU546926B2 (en) 1985-09-26
JPS57149444A (en) 1982-09-16
ES509393A0 (es) 1983-09-01
DE3260416D1 (en) 1984-08-30
EP0057959A1 (fr) 1982-08-18
ES8308592A1 (es) 1983-09-01
PH19086A (en) 1985-12-19
EG15472A (en) 1986-09-30
US4431463A (en) 1984-02-14
NO820259L (no) 1982-08-09

Similar Documents

Publication Publication Date Title
DE2714395C2 (de) Verfahren zum Herstellen von Blechen, Bändern und Dünnbändern
DE3247698C2 (de) Verfahren zum Herstellen eines zur Fertigung von Dosendeckeln geeigneten Bandes
DE2901020C2 (fr)
EP2770071B9 (fr) Alliage en aluminium pour la fabrication de demi-produits ou de composants pour véhicules automobiles, procédé de fabrication d'une bande d'alliage en aluminium à partir de cet alliage en aluminium ainsi que la bande d'alliage en aluminium et utilisations de celui-ci
DE69937481T2 (de) Stahlblech für eine dose und herstellungsverfahren dafür
DE1817243C3 (de) Verfahren zur Herstellung von feinkörnigen Bändern aus manganhaltigen Aluminium-Legierungen
EP0352597B1 (fr) Procédé de fabrication de feuillard laminé à chaud ou tôles fortes
DE2929724C2 (de) Verfahren zum Herstellen eines Bandes aus einer Aluminiumlegierung für Dosen und Deckel
CH641496A5 (de) Verfahren zur herstellung eines zipfelarmen bandes aus einem warmgewalzten band aus aluminium oder einer aluminiumlegierung.
WO2002083967A1 (fr) Procede de realisation de feuillards ou de toles al-mn
DE2726763A1 (de) Verfahren zur herstellung von blechmaterial unter staerkenverringerung
DE1813192B2 (de) Verwendung von kaltverfestigten Blechen aus einer Aluminium Magnesium Mangan Legierung fur leicht zu öffnende Dosendeckel
EP1253209A2 (fr) Feuillard d'acier présentant de bonnes propriétés et son procédé de production
EP1918405B1 (fr) Procédé pour la fabrication de produits plats à partir d'un acier à plusieurs phases allié en silice
EP0057959B1 (fr) Alliage d'aluminium forgeable
EP1918404B1 (fr) Procédé pour la fabrication de produits plats à partir d'un acier à plusieurs phases allié en aluminium
EP0035055B1 (fr) Utilisation d'un mélange de déchets d'aluminium provenant d'alliages d'aluminium de coulée et d'alliages d'aluminium de corroyage pour la fabrication de demi-produits laminés et demi-produits laminés fabriqués à partir de déchets
DE10055338C1 (de) Verfahren zum Herstellen eines bei niedrigen Verformungsgraden kaltverformten Kaltbandes
WO2002048410A1 (fr) Procede de production de feuillards ou de toles a chaud en acier microallie
DE102020112485B3 (de) Stahlblech und Verfahren zur Herstellung eines Stahlblechs für Verpackungen
EP1466992A1 (fr) Demi-produit laminé d'un alliage d'aluminium
DE2810188A1 (de) Verfahren zur weiterbehandlung von aus einer aluminium-mangan-legierung hergestellten blechen und baendern
DE1955026C2 (de) Verfahren zur Herstellung von kaltgewalzten Bändern aus einer rostbeständigen, ferritischen Stahllegierung mit 15 bis 20% Chrom und 0,5 bis 1,5% Molybdän und einem den austenitischen Stählen ähnlichen Tiefziehverhalten
DE60310381T2 (de) Blech oder band aus al-mg-legierung zur herstellung von gebogenen teilen mit kleinem biegeradius
DE2364602A1 (de) Verfahren zum herstellen von kaltverformtem tiefziehblech und -band

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19820925

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 8666

Country of ref document: AT

Date of ref document: 19840815

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3260416

Country of ref document: DE

Date of ref document: 19840830

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19841226

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19841231

Year of fee payment: 4

Ref country code: BE

Payment date: 19841231

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19850220

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19861217

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19870131

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19871001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19880130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19880131

Ref country code: LI

Effective date: 19880131

Ref country code: CH

Effective date: 19880131

BERE Be: lapsed

Owner name: VEREINIGTE DEUTSCHE METALLWERKE A.G.

Effective date: 19880131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19880801

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19880930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19881121

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19890131

EUG Se: european patent has lapsed

Ref document number: 82200114.5

Effective date: 19880913