EP0056554A2 - Dispositif de contrôle en service de l'intégrité des soudures des structures off-shore - Google Patents
Dispositif de contrôle en service de l'intégrité des soudures des structures off-shore Download PDFInfo
- Publication number
- EP0056554A2 EP0056554A2 EP81402083A EP81402083A EP0056554A2 EP 0056554 A2 EP0056554 A2 EP 0056554A2 EP 81402083 A EP81402083 A EP 81402083A EP 81402083 A EP81402083 A EP 81402083A EP 0056554 A2 EP0056554 A2 EP 0056554A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- arm
- probes
- weld
- members
- head
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000523 sample Substances 0.000 claims abstract description 29
- 210000000707 wrist Anatomy 0.000 claims abstract description 11
- 241000555745 Sciuridae Species 0.000 claims abstract description 6
- 239000011324 bead Substances 0.000 claims description 11
- 238000003466 welding Methods 0.000 claims description 5
- 238000006073 displacement reaction Methods 0.000 claims description 3
- 230000000712 assembly Effects 0.000 claims 1
- 238000000429 assembly Methods 0.000 claims 1
- 238000004140 cleaning Methods 0.000 claims 1
- 230000001419 dependent effect Effects 0.000 claims 1
- 230000000694 effects Effects 0.000 claims 1
- 210000004247 hand Anatomy 0.000 abstract description 6
- 238000007689 inspection Methods 0.000 abstract description 6
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 238000013461 design Methods 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 10
- 238000005259 measurement Methods 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 6
- 230000007547 defect Effects 0.000 description 4
- 238000002604 ultrasonography Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000010183 spectrum analysis Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 241000195493 Cryptophyta Species 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000003032 molecular docking Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000009659 non-destructive testing Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000035479 physiological effects, processes and functions Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
- G01N29/26—Arrangements for orientation or scanning by relative movement of the head and the sensor
- G01N29/265—Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material
Definitions
- the subject of the present invention is in particular but not exclusively, the in-service control of offshore structures used for prospecting and for the exploitation of oil deposits; and more particularly certain mechanical devices adapted to tubular lattices of often gigantic dimensions which constitute the submerged mechanically welded structure. These devices will allow the use of particularly sensitive and efficient control methods for the systematic and automatic examination of all the welds of these structures, in a hostile environment.
- these structures are formed in a mechanically welded intertwined tubular trellis comprising main members (drums or piers) and secondary members (or bracings).
- the diameters of these members vary from a few tens of centimeters to several meters.
- the nodes, where several bracings converge on the same barrel, include up to eight bracings, with or without stiffening gussets.
- the welds number in the hundreds, and they coincide with particularly stressed areas, susceptible to their nature and their situation of being the seat of fissura-. manufacturing defects and defects.
- a platform is provided with a series of measurement gauges intended either to control the set-up operations, or to measure the stresses to which the platform is subjected and to process these measurements with mathematical models.
- this instrumentation has a limited lifespan, and it will be the same for all control probes intended to detect cracks. By their quantity and their location, the maintenance of these instrumentations fixed on the members quickly becomes impossible. Current methods therefore do not allow in-service inspection, which requires reproducibility of the measurements as well as the transcription of the experimental data: precise identification of the position of the defect, of its dimensions, of its orientation, etc.
- the mechanical devices which are the subject of the invention are intended to allow the implementation of direct, complete, remote, precise, reproducible, rapid control methods, without resorting to the intervention of divers. They are particularly intended for the examination of the welds of the nodes. They have the function of firmly positioning and orienting the measurement probes precisely within a few millimeters with respect to the weld bead (welding sweep), they also have the function of ensuring rapid installation and fixing rigid control system on the members.
- the control is carried out by the work of one or more probes (ultrasound, induced currents, etc.) which are mechanically (and not manually) placed in the immediate vicinity of the weld. and whose orientation is a function of the position of the point explored.
- probes ultrasound, induced currents, etc.
- the probes will be in contact with the frame and arranged so that the transverse waves emitted are parallel or perpen perpendicular to the plane of cross section of the weld at the point considered so as to detect either cracks transverse to the weld or cracks along the weld.
- the location of the probes relative to the weld is defined to the nearest millimeter and known at all times, which is essential for the transcription and analysis of the signals.
- the scanning device or orbital scanner, comprises a fixed open U-shaped frame which, by transverse displacement, comes astride the frame, and which is equipped with clamping jaws; and a movable part formed by U-shaped rotary plates also centered on an open bearing carried by the fixed part. This arrangement allows a regular orbital movement of the mobile part despite the U-shaped opening.
- the fixed part is centered on the member by a set of cylinders which, after centering, define the theoretical axis of the member.
- the mobile platform rotates around this theoretical axis which is also that of the scanner.
- This tray carries a column or arm which slides parallel to the frame.
- the inspection mechanism having one or more probe holder heads.
- This arm and the head or the inspection heads have several degrees of freedom in the mechanical sense of the term, thanks to which will be taken into account the geometric tolerances of ovalization of the member (s) and the manufacturing tolerances (docking of the members between them ).
- the function of the probe head is to maintain the probes in the immediate vicinity of the weld bead, in a precise orientation relative to the latter, and in immediate contact with the corresponding member.
- the conventional fatigue cracks (A) which are perpendicular to the surface of the member 122 and (8) parallel to the bead 121 will be easily detected and measured; those which result from a defect in lamination or bonding (C) on the main member 122 of a bonding (D) on the secondary member t23 and which will be detected by angle feelers on the secondary member; and all those that move away from the cord in any direction (E.F).
- the scanner with the scanning device is shown in Figures 2, 3, 4, 5.
- the fixed beam comprises three U-shaped plates (or flanges).
- FIG. 2 is a plan view of the scanner which has come to grip a member horizontally.
- FIG. 3 represents the front face of the rear flange 34.
- the rear face of the intermediate flange 1 is similar, and contributes to ensuring a firm grip on the frame.
- Figure 3 we see how the scanner is placed on the frame and how it will be clamped there by the clamping jaws 51.
- the jacks 38 located on the fork 35 are in the retracted position when the scanner is going to be engaged on the frame 123. These jacks pivot about an axis 39; this dodging movement is controlled by the jack 40 linked by the articulation 42 to the jack 38, pivoting around 41. When the scanner is fully engaged on the frame 123, these jacks 38 pivot at 43 by the outlet of the rod 45 , the cylinder then closes at 44 on the frame. At the bottom of the U-shaped flange, the jacks 49 fixed by the yokes 50 complete the tightening by their jaws 51.
- the openings 21 located at the base of U, in the front and rear flanges, are intended to allow the attachment and handling of the scan by a lifting system.
- the rear face of the flange 20 and the front face of the intermediate flange 1 p have bearings on which the movable part will rotate. This is illustrated in Figures 2, 4, 5.
- Figure 4 corresponds to the view along IV-IV of Figure 2.
- the intermediate flange 1 crossed by the tie rods .2, carries at the ends of its fork elements 12 eclipsable bearing on their end of the rollers 13; the jack 9 pivots 12 around the axis 11.
- the mobile part of the scanner is a U-shaped "squirrel cage". It comprises two circular U-shaped plates, 15 and 18, which rotate respectively on the rollers 14 of the flanges 20 and 1; and which are connected by tie rods 8; They roll by their cylindrical face 6 on the rollers 14.
- a second drive 28 coupled to the first ensures the continuity of the rota tion of the movable part despite the U-shaped opening; by the drive pinion 29 which also attacks the rack 30.
- This squirrel cage carries an eclipsable sheath 16, parallel to the tie rods 8. This sheath is held by the rods 51 fixed on the axis 54. The eclipsing is controlled by a motor not shown, fixed on 18. In this sheath is placed the control arm which will be described later.
- a drum 7, cable support is integral with 18.
- the measurement cables, those of electric power, hydraulic power etc ... which go from the fixed part to the mobile part, are carried by a reel 3 which turns at the same time as 7 so as to tension the cables.
- a circular connector ensures the connection of the fluid, electricity supply cables as well as the connection of the instrumentation cables, etc., between the fixed part and the mobile part.
- this arm Inside the sheath 55 is the control arm.
- the orientation of this arm is controlled by a motor 56 so that this arm is always directly opposite the member despite the rotation of the sleeve on the axis 54.
- this arm lengthens outside the sheath in harbor to the angular position of the movable part.
- a stepping motor and a transmission located inside the sheath ensure this movement.
- Two devices are intended to move the probes in the immediate vicinity of the bead, on the members.
- the probes ultrasound are moved exclusively on the surface of the frame on which the scanner is placed.
- Figure 6 shows in elevation, the end of the arm and the intersection of the members.
- Figure 7 is a plan view.
- the end 101 of the arm is supported by a steerable wheel 102 mounted on a spring or damper at 103.
- the various cables 105 for instrumentation and electrical supply, or even for supplying fluids arrive at the connection socket 104.
- This arm is parallel to the secondary member 123 (secondary because it is completely intercepted by the primary member 122) whose welding 121 is to be checked.
- a slide table 107 which makes the connection with the wrist 108.
- This slide table has a plate 106 fixed on the arm and another 106 fixed on the wrist 108.
- the movements are directed towards the scan axis (radially) and they are controlled and programmed by the stepping motor 114 and its transmission 115.
- the power cables are fixed at 117 on the plate 106a.
- the "hand” 109 is attached to the end of the wrist 108. It rotates around an axis directed radially. This rotation is controlled and programmed by the stepping motor 113 with its transmission 111 and 112 which comes to attack a crown not shown carried by the axis of rotation. Power and ins cables. umentation 116 carried by the wrist come on a cylindrical reader 110, carried by the axis.
- the hand has a slide table parallel to frame 123 (parallel to the axis of the scanner). She is in permanence oriented perpendicularly to the weld bead by rotation of the upper plate 127 controlled by 113. It carries a motor 134 with its electrical connection socket 133, which, by a transmission 130, attacks an endless screw 126; which ensures the displacement of the lower plate 125 or measuring head. Under this sliding plate 125 and at its end are located the ultrasonic transducers 124. The instrumentation cables of these transducers are taken up by terminal 128 and the wired connector 129. These cables 129 are stretched permanently by the fixed drum 132 by clevis 135 on the upper plate. The rotary electrical collector 137 is connected to the upper plate by the socket 131.
- a joint follower 119 permanently presses its follower finger 120 along the weld bead. It is fixed by 136 on the lower plate. During the orbital rotation of the arm, the finger 120 deviates from its axial position on 119. The information is immediately retransmitted by the cables 118 at the level of the motors 114 and 134 which respectively control the radial position of the hand (c 'that is to say who controls the support of the probes on the frame) and the advance of the probes to the immediate vicinity of the cord by extension or withdrawal of the hand. This feedback which replaces the finger 120 in the equilibrium position in the axis of the joint follower 119, ensures the monitoring of the joint by the feelers.
- the second device described below allows the simultaneous control of the two sides of the cord from the surface of each of the members (main and secondary). It is shown in Figures 8, 9, 10, 11.
- Figure 8 is shown schematically the scanner.
- the fixed part 80 of the scanner is fixed by the jacks 49 on the secondary frame 123.
- the U-shaped rotor 82 has a retractable sheath 55 from which the arm 83 emerges.
- At the end of the arm is an articulation from which a lever 150 of adjustable length.
- point ⁇ describes in space a curve programmed in advance from the theoretical geometries of the node. This lever is normal to the tangent to the weld bead at the point subject to control; it is the bisector of the tangents to the members.
- FIG. 11 At the end 160 of the arm (FIG. 11) is fixed a cardan joint defined by the two orthogonal axes of rotation Xx, Yy.
- the Xx axis is perpendicular to the secondary member.
- Sure this gimbal is fixed with a telescopic lever 150.
- the set of controls is shown in Figure 11.
- the armature 161 of the gimbal pivots on the axis Xx, this movement by the motor 162 whose motor pinion 163 rolls on a circular toothing 164 of 160.
- the inclination of the lever 150 is controlled by the motor 165 integral with 161.
- the electrical supplies are symbolized by 166.
- the position of the lever is defined by two parameters: its elongation and its orientation relative to its axis. This is accomplished as follows.
- the inclination is defined by the shirt 167 which pivots around Yy. Inside this jacket is fixed a column 168 with a flange 169 carrying motors 170 for orientation and 171 for extending the lever.
- the power supplies as well as the instrumentation cables are symbolized by 172 linked to 169.
- the gearmotor 170 has a motor pinion which attacks a rack located on 167.
- the gearmotor 171 controls a worm screw 173 which drives the lever 150 out.
- a telescopic lever 150 goes up to the wrist 151.
- an axis 152 ( Figures 8, 9, 10) around which the two pivot at an equal angle and in opposite directions probing hands (on each frame).
- the pivoting of the hands is controlled by the motor 153 driving a crown 154 coaxial with 151, and which by the return of the pinions 155 and 156 rotates the masses 146 and 157 in opposite directions (FIG. 10).
- the hands include an upper plate 140, plane, which is positioned parallel to the controlled member; this plate is extended by a perpendicular arm 141 which slides inside the pivot mass 146.
- This translation is controlled by the motor 142, by the axis 143 and the transmission 144 which rotates an endless screw 145 secured to 141; inside 146 is found, prisoner, a nut 158 crossed by the screw 145.
- Out of 140 are located a motor 134 and a drum 132 having a role identical to that which was described in the previous example.
- the hand also has a sliding lower plate 125, with probes 124 at its end intended for ultrasonic testing, and a joint follower 119 with its contact finger 120.
- the translation of 125 controlled by the motor 134 and by the transmissions 129 and 130; a drum 132 tensioning the measurement cables 129 connected to 125 by the socket 128.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Description
- La présente invention a pour objet en particulier mais non exclusivement, le contrôle en service des structures offshore utilisées pour la prospection et pour l'exploitation des gisements pétroliers ; et plus spécialement certains dispositifs mécaniques adaptés aux treillis tubulaires de dimensions souvent gigantesques qui constituent la structure mécanosoudée immergée. Ces dispositifs permettront l'utilisation de méthodes de contrôle particulièrement sensibles et performantes pour l'examen systématique et automatique de l'ensemble des soudures de ces structures, dans un environnement hostile.
- Les besoins énergétiques croissants, suscitent la mise en valeur des gisements pétroliers sous-marins, et donc l'apparition d'une multitude de plateformes de forage et d'ex- .ploitation qui peuvent être de dimensions colossales. Ces "usines" sont prévues pour durer une quinzaine d'années ou plus et représentent des investissements considérables. Leur dégradation en mer, progressive ou accidentelle, en- traine des risques en vies humaines et peut être irrémédiable pour le matériel.Il est donc indispensable de surveiller en permanence la santé de ces structures.
- Pour la plupart, ces structures sont constituées dans un treillis tubulaire entrecroisé mécanosoudé comportant des membrures principales (fûts ou piles) et des membrures secondaires (ou bracings).
- Les diamètres de ces membrures varient de quelques dizaines de centimètres à plusieurs mètres. Les noeuds, où plusieurs bracings convergent sur un même fût, comprennent jusqu'à huit bracings, avec ou sans goussets raidisseurs. Les soudures se comptent par centaines, et elles coincident avec des zones particulièrement sollicitées, susceptibles par leur nature et leur situation d'être le siège de fissura-. tions et de défauts de fabrication.
- La détection des fissures qui vont apparaître et se développer au cours du temps, par fatigue, par corrosion etc... est actuellement faite par plongeurs. Il s'agit d'un contrôle visuel non exhaustif,.assisté d'outils de mesure portés par le plongeur (magnétoscopie, ultrasons,...) Par ailleurs des tentatives se font jour d'utiliser des engins submersibles habités ou non qui se substituent à l'action du plongeur. Les bras ou manipulateurs équipant ces véhicules reproduisent les gestes du plongeur. Ces procédés sont loin d'être efficaces et ils ne sont pas satisfaisants pour l'application de méthodes précises et reproductibles. de contrôle, lesquelles réclament un positionnement ferme et précis à quelques millimètres près, des sondes de mesure.
- De plus les plongeurs comme les véhicules se perdent dans la multitude des membrures, des noeuds et des soudures et les confusions sont fréquentes.
- Lors de son installation une plateforme est pourvue d'une série de jauges de mesures destinées soit à contrôler les opérations de mise en place, soit à mesurer les contraintes auxquelles est soumise la plateforme et à traiter ces mesures avec des modèles mathématiques. Mais cette instrumentation a une durée de vie limitée, et il en sera de même pour toutes sondes de contrôle destinées à déceler les fissures. Par leur quantité et leur localisation, la maintenance de ces instrumentations fixées sur les membrures devient rapidement impossible. Les méthodes actuelles ne permettent donc pas l'inspection en service,laquelle exige une reproductibilité des mesures ainsi que la transcription des données expérimentales : identification précise de la position du défaut, de ses dimensions, de son orientation etc...
- Pour diminuer les difficultés technologiques associées à un contrôle non destructif par sondes ponctuelles (venant à proximité immédiate du défaut), on s'efforce actuellement d'utiliser des méthodes de contrôle indirectes, tel qu'un diagnostic par émission acoustique (basé sur l'écoute du bruit émis par l'évolution d'une fissure), ou une analyse spectrale des vibrations de la tructure en des points précis (excitation forcée ou vibrations naturelles). En effet, il est plus rapide et plus simple de placer une sonde et un excitateur sur une membrure que de faire un examen par balayage mécanique précis de la soudure par une sonde. Evi- demment les sensibilités des méthodes n'ont rien de comparable. L'émission acoustique, comme l'analyse spectrale des vibrations, sont des procédés de contrôle, qui ne s'appliquent qu'à des géométries simples et à des opérations ponctuelles.
- Les dispositifs mécaniques objets de l'invention ont pour but de permettre la mise en oeuvre de méthodes de contrôle direct, complet,à distance, précises, reproductibles, rapides, sans recourir à l'intervention de plongeurs. Ils sont particulièrement destinés à l'examen des soudures des noeuds. Ils ont pour fonction de positionner fermement et d'orienter les sondes de mesure de façon précise à quelques millimètres près par rapport au cordon de soudure (balayage de la soudure), ils ont également pour fonction d'assurer l'installation rapide et la fixation rigide du système de contrôle sur les membrures.
- Selon l'invention, le contrôle est réalisé par le travail d'une ou de plusieurs sondes (ultrasons, courants induits...) qui sont mécaniquement (et non manuellement) placées à proximité immédiate de la soudure. et dont l'orientation est fonction de la position du point exploré. Par exemple, dans le cas d'un contrôle par ultrasons, là ou les sondes seront au contact de la membrure et disposées de façon à ce que les ondes transversales émises soient parallèles ou perpendiculaires au plan de section droite de la soudure au point considéré de façon à détecter soit les fissures transversales à la soudure soit les fissures longeant la soudure.
- L'emplacement des sondes relativement à la soudure est défini à quelques millimètres près et connu à tout instant, ce qui est indispensable à la retranscription et à l'analyse des signaux.
- Le dispositif de balayage, ou scanner orbital, comporte un bâti fixe ouvert en U qui, par déplacement transversal, vient à cheval sur la membrure, et qui est équipé de mors de serrage ; et une partie mobile formée de plateaux rotatifs en U également centrés sur un roulement ouvert porté par la partie fixe. Cet agencement permet un mouvement orbital régulier de la partie mobile malgré l'ouverture en U.
- La partie fixe est centrée sur la membrure par un jeu de vérins qui, après centrage, définissent l'axe théorique de la membrure. Le plateau mobile tourne autour de cet axe théorique qui est également celui du scanner. Ce plateau porte une colonne ou bras qui coulisse parallèlement à la membrure. A l'extrémité de cette colonne est fixé le mécanisme d'inspection possédant une ou plusieurs têtes porte-sondes. Ce bras et la tête ou les têtes d'inspection possèdent plusieurs degrés de liberté au sens mécanique du terme, grâce auxquels seront prises en compte les tolérances géométriques d'ovalisation de la ou des membrures et les tolérances de fabrication (accostage des membrures entre elles).
- La tête porte-sondes a pour fonction de maintenir les sondes au voisinage immédiat du cordon de soudure, dans une orientation précise par rapport à celui-ci, et au contact immédiat de la membrure correspondante.
- La détection des fissures, leur repérage, leur orienta- . tion et leur dimensionnement sont faits par des sondes portant une série de transducteurs à ultrasons (palpeurs droits et palpeurs d'angle) selon des méthodes bien connues dans des contrôles automatiques effectués sur les circuits des centrales nucléaires.
- Les figures 1a et 1b, représentent très schématiquement respectivement en vue de côté et en vue par dessus le procédé de contrôle des soudures ;
- les figures 2 et 3 représentent en vue par dessus et en vue de côté les moyens de montage du scanner sur les membrures ;
- les figures 4, 4a, et 4b représentent respectivement en coupe selon la ligne IV-IV de la figure 2, une coupe selon la ligne I-I de la figure 4, et une coupe selon la ligne II-II de la figure 4;
- la figure 5 représente une vue du même montage après rotation de 90 degrés de la partie mobile ;
- les figures 6 et 7 représentent respectivement en élévation et en vue par dessus le bras portant les capteurs dans un premier mode de réalisation ;
- la figure 8 représente schématiquement le scanner et ses moyens de support ;
- les figures 9 et 9a représentent la main d'un palpeur dans un second mode de réalisation ;
- les figures 9 et 9a, une vue de la tête de contrôle respectivement en élévation et en bout selon la direction IX de la figure 9 ;
- les figures 10 et 10a représentent les moyens de déplacement des sondes à ultrasons ;
- les figures 11 et 11a représentent l'extrémité du bras dans le second mode de réalisation.
- Les fissures qui seront détectées sont représentées dans la figure 1.
- Seront aisément détectées et mesurées les fissures classiques de fatigue (A) qui sont perpendiculaires à la surface de la membrure 122 et (8) parallèles au cordon 121 ;celles qui résultent d'un défaut de lamination ou d'un collage (C) sur la membrure principale 122 d'un collage (D) sur la membrure secondaire t23 et qui seront détectées par des palpeurs d'angle sur la membrure secondaire ; et toutes celles qui séloignent du cordon dans n'importe quelle direction (E.F).
- Le scanner au dispositif à balayage est représenté sur les figures 2, 3, 4, 5.
- La poutre fixe comprend trois plaques (ou flasques) en U. Un flasque avant 20, un flasque intermédiaire 1 et un flasque arrière 34 ; ils sont reliés entre eux par des tirants 2 qui confèrent à l'ensemble fixe sa rigidité. Sur la face arrière du flasque intermédiaire et sur la face avant du flasque arrière sont fixés des vérins (mors de serrage), escamotés lors de la mise en place ou du retrait du scanner, qui sont actionnés pour saisir la membrure lors du contrôle. La figure 2 est une vue en plan du scanner qui est venu saisir horizontalement une membrure..
- La figure 3 représente la face avant du flasque arrière 34. La face arrière du flasque intermédiaire 1 est similaire, et contribue à assurer une prise ferme sur la membrure. Sur la figure 3 on voit comment le scanner est placé sur la membrure et comment il va y être serré par les mors de serrage 51.
- Les vérins 38 situés sur la fourche 35 sont en position escamotée lorsque le scanner va être engagé sur la membrure 123. Ces vérins pivotent autour d'un axe 39 ; ce mouvement d'esquive est commandé par le vérin 40 lié par l'articulation 42 au vérin 38, pivotant autour de 41. Lorsque le scanner est complètement engagé sur la membrure 123, ces vérins 38 pivotent en 43 par la sortie de la tige 45, le vérin se ferme alors en 44 sur la membrure. Au fond du flasque en U les vérins 49 fixés par les chapes 50 complètent le serrage par leurs mors 51. Les ouvertures 21 situées à la base de U, dans les flasques avant et arrière, sont destinées à permettre l'accrochage et la manutention du scanner par un système de levage. La face arrière du flasque 20 et la face avant du flasque intermédiaire 1 pos- sèdent des roulements sur lesquels va tourner la partie mobile. Ceci est illustré sur les figures 2, 4, 5.
- La figure 4 correspond à la vue selon IV-IV de la figure 2. Lé flasque intermédiaire 1, traversé par les tirants .2, porte aux extrémités de sa fourche des éléments 12 éclipsables portant sur leur extrémité des rouleaux 13 ; le vérin 9 fait pivoter 12 autour de l'axe 11.
- Après mise en place du scanner, ces éléments pivotent en 32 et les rouleaux viennent en 33 compléter le chemin de guidage constitué par les rouleaux 14.
- La partie mobile du scanner est une "cage d'écureuil" en U. Elle comporte deux plateaux circulaires en U, 15 et 18, qui tournent respectivement sur les rouleaux 14 des flasques 20 et 1 ; et qui sont reliés par des tirants 8 ; Ils roulent par leur face cylindrique 6 sur les rouleaux 14.
- Ils sont entrainés simultanément en rotation par un moteur 5 fixé sur I commandant un arbre 4 qui attaque une crémaillère 30 par le pignon 19 (figure 4a). Un second entraine- ment 28 couplé au premier assure la continuité de la rotation de la partie mobile en dépit de l'ouverture en U ; par le pignon d'entraînement 29 qui attaque également la crémaillère 30. Cette cage d'écureuil porte un fourreau 16 éclipsable, parallèle aux tirants 8. Ce fourreau est tenu par les tiges 51 fixées sur l'axe 54. L'éclipsage est commandé par un moteur non représenté, fixé sur 18. Dans ce fourreau est placé le bras de contrôle qui sera décrit plus loin.
- Un tambour 7, support de cables est solidaire de 18. Les câbles de mesure, ceux d'alimentation électrique , d'alimentation hydraulique etc... qui vont de la partie fixe à la partie mobile, sont portés par un enrouleur 3 qui tourne en même temps que 7 de façon à tendre les câbles. Un connecteur circulaire assure la liaison des câbles d'alimentation en fluide, en électricité ainsi que la connexion des câbles d'instrumentation etc..., entre la partie fixe et la partie mobile.
- Sur la figure 5 on a indiqué la position en 23 des plateaux après une rotation de 90 degrés, alors que l'on est en train de contrôler la membrure 123. Le plateau en U est engagé sur les rouleaux 33 de 32.
- A l'intérieur du fourreau 55 se trouve le bras de contrôle. L'orientation de ce bras est commandée par un moteur 56 de telle sorte que ce bras soit toujours directement en regard de la membrure en dépit de la rotation du fourreau sur l'axe 54. Lors de l'inspection, ce bras s'allonge en dehors du fourreau en asservissement à la position angulaire de la partie mobile. Un moteur pas à pas et une transmission situés à l'intérieur du fourreau assurent ce mouvement.
- Deux dispositifs sont destinés à déplacer les sondes au voisinage immédiat du cordon, sur les membrures. Selon le premier, représenté sur les figures 6 et 7, les sondes à ultrasons sont déplacées exclusivement sur la surface de la membrure sur laquelle est placé le scanner. La figure 6 représente en élévation, l'extrémité du bras et l'intersection des membrures. La figure 7 est une vue en plan.
- L'extrémité 101 du bras est soutenue par une roue 102, orientable montée sur ressort ou amortisseur en 103. Les divers câbles 105 d'instrumentation et d'alimentation électrique, voire d'alimentation en fluides arrivent à la prise de raccordement 104. Ce bras est parallèle à la membrure secondaire 123 (secondaire parce que totalement interceptée par la membrure primaire 122) dont il s'agit de contrôler la soudure 121.
- A l'extrémité 102 du bras est fixée une table à glissière 107 qui fait la liaison avec le poignet 108. Cette table à glissière possède un plateau 106 fixé sur le bras et un autre 106afixé sur le poignet 108. Les mouvements sont dirigés vers l'axe duscanner (radialement) et ils sont commandés et programmés par le moteur pas à pas 114 et sa transmission 115. Les câbles d'alimentation sont fixés en 117 sur le plateau 106a.Par analogie avec la physiologie humaine, les organes placés au bout du bras seront appelés respectivement poignet 108 et main 109.
- La "main" 109 est rattachée à l'extrémité du poignet 108. Elle tourne autour d'un axe dirigé radialement. Cette rotation est commandée et programmée par le moteur pas à pas 113 avec sa transmission 111 et 112 qui vient attaquer une couronne non représentée portée par l'axe de rotation. Les câbles d'alimentation et d'ins. umenta- tion 116 portés par le poignet viennent sur un llecteur 110 cylindrique, porté par l'axe.
- La main comporte une table à glissière parallèle à la membrure 123 (parallèle à l'axe du scanner). Elle est en permanence orientée perpendiculairement au cordon de soudure par rotation du plateau supérieur 127 commandée par 113. Elle porte un moteur 134 avec sa prise de raccordement électrique 133, qui, par une transmission 130, attaque une vis sans fin 126 ; ce qui assure le déplacement du plateau inférieur 125 ou tête de mesure. Sous ce plateau coulissant 125 et en son extrémité sont situés les transducteurs à ultrasons 124. Les câbles d'instrumentation de ces transducteurs sont repris par la borne 128 et le raccord câblé 129. Ces câbles 129 sont tendus en permanence par le tambour enrouleur 132 fixé par la chape 135 sur le plateau supérieur. Le collecteur électrique tournant 137 est raccordé au plateau supérieur par la prise 131. Un suiveur de joint 119 appuie en permanence son doigt suiveur 120 le long du cordon de soudure. Il est fixé par 136 sur le plateau inférieur. Lors de la rotation orbitale du bras, le doigt 120 s'écarte de sa position axiale sur 119. Les informations sont immédiatement retransmises par les câbles 118 au niveau des moteurs 114 et 134 qui commandent respec.tivement la position radiale de la main (c'est-à-dire qui contrôle l'appui des palpeurs sur la membrure) et l'avancée des palpeurs jusqu'au voisinage immédiat du cordon par allongement ou retrait de la main. Ce feed-back qui replace le doigt 120 en position d'équilibre dans l'axe du suiveur de joint 119, assure le suivi du joint par les palpeurs. Par contre sont asservies à la position angulaire du bras, d'une partie poignet (par programmation de l'allongement du bras télescopique) ; d'autre part l'orientation de la main par rapport au bras (par programmation du moteur 113). Cet asservissement résulte d'un calcul théorique fait en commande numérique du scanner à partir de l'intersection théorique des deux cylindres représentant les membrures. En effet, en chaque point de cette intersection correspondant un seul point sur le cylindre (ou membrure secondaire) situé à une distance constante (longueur de la "main") prédéterminée dans le plan perpendiculaire à la tangente à l'intersection. Autrement dit, dans le cas d'un assemblage mécanique parfait, les programmations de l'allongement du bras et de l'orientation de la main suffiraient à assurer un positionnement mécaniquement correct des palpeurs. Les mouvements le long des deux tables à glissière sont essentiellement destinés à absorber les irrégularités de fabrication, et la connaissance de ces irrégularités est fournie par le suiveur de joint 119 qui commande les corrections nécessaires.
- Le second dispositif décrit ci-dessous permet le contrôle simultané des deux côtés du cordon à partir de la surface de chacune des membrures (principale et secondaire). Il est représenté sur les figures 8, 9, 10, 11. Sur la figure 8 est schématisé le scanner. La partie fixe 80 du scanner est fixée par les vérins 49 sur la membrure secondaire 123. Le rotor en U 82, possède un fourreau escamotable 55 d'où émerge le bras 83. A l'extrémitéJldu bras est placée une articulation d'où part un levier 150 de longueur réglable. Sur ce levier.le point Γ décrit dans l'espace une courbe programmée à l'avance à partir des géométries théoriques du noeud. Ce levier est normal à la tangente au cordon de soudure au point soumis au contrôle ; c'est la bissectrice des tangentes aux membrures. Du point Γ partent deux têtes d'exploration appliquées sur chacune des membrures. Le point Ω décrit une courbe (Ω), calculée, sur un cylindre coaxial à 123 ; il est en Ω' lorsque le plan sécant est de front sur la figure. La longueurû Γ du levier est également programmée pour que les têtes d'exploration soient plaquées sur la position théorique des membrures, il en est de même de l'angle formé entre les deux têtes d'inspection.
- A l'extrémité 160 du bras (figure 11) est fixé un cardan défini par les deux axes orthogonaux de rotation Xx, Yy. L'axe Xx est perpendiculaire à la membrure secondaire. Sur ce cardan est fixé un levier 150 téléscopique. L'ensemble des commandes est représenté sur la figure 11. L'armature 161 du cardan pivote sur l'axe Xx, ce mouvement par le moteur 162 dont le pignon moteur 163 roule sur une denture circulaire 164 de 160. L'inclinaison du levier 150 est commandée par le moteur 165 solidaire de 161. Les alimentations électriques sont symbolisées par 166.
- Pour une inclinaison donnée ; la position du levier est définie par deux paramètres : son allongement et son orientation par rapport à son axe. Ceci est réalisé de la façon suivante. L'inclinaison est définie par la chemise 167 qui pivote autour de Yy. A l'intérieur de cette chemise est fixée une colonne 168 avec un flasque 169 portant des moteurs 170 d'orientation et 171 d'allongement du levier. Les alimentations électriques ainsi que les câbles d'instrumentation sont symbolisés par 172 lié à 169. Le motoréducteur 170 possède un pignon moteur qui attaque une crémaillère située sur 167. Le motoréducteur 171 commande une vis sans fin 173 qui entraîne la sortie du levier 150.
- Du coude, part un levier téléscopique 150 allant jusqu'au poignet 151. A l'extrémité de celui-ci est fixé un axe 152 (figures 8, 9, 10) autour duquel pivotent d'un angle égal et en sens contraire les deux mains de palpage (sur chaque membrure). Le pivotement des mains est commandé par le moteur 153 attaquant une couronne 154 coaxiale à 151, et qui par le renvoi des pignons 155 et 156 fait tourner en sens contraire les masses 146 et 157 (figure 10). Les mains comportent un plateau supérieur 140, plan, qui est positionné parallèlement à la membrure contrôlée ; ce plateau est prolongé d'un bras 141 perpendiculaire qui coulisse à l'intérieur de la masse pivot 146. Cette translation est commandée par le moteur 142, par l'axe 143 et la transmission 144 qui fait tourner une vis sans fin 145 solidaire de 141 ; à l'intérieur de 146 se trouve, prisonnier, un écrou 158 traversé par la vis 145. Sur 140 sont situés un moteur 134 et un tambour 132 ayant un rôle identique à ce qui a été décrit dans l'exemple précédent. La main comporte également un plateau inférieur 125 coulissant, avec en son extrémité des palpeurs 124 destinés au contrôle par ultrasons, et un suiveur de joint 119 avec son doigt de contact 120. La translation de 125 commandée par le moteur 134 et par les transmissions 129 et 130 ; un tambour 132 met en tension les câbles de mesure 129 reliés à 125 par la prise 128.
- Par ailleurs, préalablement au contrôle, il est nécessaire de débarrassée les surfaces de toutes leurs concrétions, algues, calamine etc... Pour ce faire on utilisera un dispositif similaire à ceux qui viennent d'être décrits, en adaptant au poignet un outil.portatif classique tel que brosse métallique rotative, buses de jets d'eau sous haute pression etc...
- L'ensemble de ces dispositifs permet le contrôle automatique des soudures des noeuds des plate-formes off-shore. Les systèmes de mise en place du scanner sur les membrures dépendent essentiellement du dessin des plate-formes et de leur complexité : ils ne font pas l'objet du présent brevet.
Claims (8)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8027714A FR2497351B1 (fr) | 1980-12-29 | 1980-12-29 | Methode et moyens de controle en service de l'integrite des soudures des structures offshore |
FR8027714 | 1980-12-29 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0056554A2 true EP0056554A2 (fr) | 1982-07-28 |
EP0056554A3 EP0056554A3 (en) | 1984-02-08 |
EP0056554B1 EP0056554B1 (fr) | 1986-11-20 |
Family
ID=9249580
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP81402083A Expired EP0056554B1 (fr) | 1980-12-29 | 1981-12-28 | Dispositif de contrôle en service de l'intégrité des soudures des structures off-shore |
Country Status (4)
Country | Link |
---|---|
US (1) | US4463609A (fr) |
EP (1) | EP0056554B1 (fr) |
DE (1) | DE3175633D1 (fr) |
FR (1) | FR2497351B1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2145819A (en) * | 1983-08-24 | 1985-04-03 | Atomic Energy Authority Uk | Probe holder |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6137853A (en) * | 1994-10-13 | 2000-10-24 | General Electric Company | Method and apparatus for remote ultrasonic inspection of nozzles in vessel bottom head |
CN109668964B (zh) * | 2019-01-29 | 2023-09-01 | 洋浦海科石化工程检测有限公司 | 一种管道扫查架 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2344015A1 (fr) * | 1976-03-08 | 1977-10-07 | Kraftwerk Union Ag | Dispositif destine aux examens par ultrasons des tuyauteries, notamment de la conduite de fluide refrigerant principal des reacteurs nucleaires |
DE2634158A1 (de) * | 1976-07-29 | 1978-02-02 | Kraftwerk Union Ag | Pruefsystemtraeger zum ultraschall- pruefen der aeusseren partien von stutzennaehten, rohranschlussnaehten und stutzenkanten bei druckgefaessen, insbesondere bei reaktordruckbehaeltern von kernkraftwerken |
DE2831395A1 (de) * | 1978-07-17 | 1980-01-31 | Kraftwerk Union Ag | Pruefeinrichtung zur zerstoerungsfreien pruefung |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3327206A (en) * | 1964-04-29 | 1967-06-20 | American Mach & Foundry | Device for inspecting upset area of tubular members |
SU456204A1 (ru) * | 1972-02-28 | 1975-01-05 | Всесоюзный Научно-Исследовательский Институт По Разработке Неразрушающих Методов И Средств Контроля Качества Материалов | Устройство дл центрировани изделий цилиндрической формы при неразрушающем контроле |
DE2537613C3 (de) * | 1975-08-23 | 1979-03-01 | Maschinenfabrik Augsburg-Nuernberg Ag, 8500 Nuernberg | Prufkopfhalterung zum selbsttätigen Fuhren von Ultraschallprüfköpfen entlang räumlich gekrümmter Flächen, insbesondere von Reaktordruckbehältern |
GB2012047A (en) * | 1978-01-05 | 1979-07-18 | Boc Subocean Services Ltd | Non-destructive testing of welds |
JPS5542022A (en) * | 1978-09-21 | 1980-03-25 | Central Res Inst Of Electric Power Ind | Remote drive system for supersonic probe |
JPS56106150A (en) * | 1980-01-30 | 1981-08-24 | Hitachi Ltd | Annular guide rail |
-
1980
- 1980-12-29 FR FR8027714A patent/FR2497351B1/fr not_active Expired
-
1981
- 1981-12-28 US US06/335,321 patent/US4463609A/en not_active Expired - Fee Related
- 1981-12-28 EP EP81402083A patent/EP0056554B1/fr not_active Expired
- 1981-12-28 DE DE8181402083T patent/DE3175633D1/de not_active Expired
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2344015A1 (fr) * | 1976-03-08 | 1977-10-07 | Kraftwerk Union Ag | Dispositif destine aux examens par ultrasons des tuyauteries, notamment de la conduite de fluide refrigerant principal des reacteurs nucleaires |
DE2634158A1 (de) * | 1976-07-29 | 1978-02-02 | Kraftwerk Union Ag | Pruefsystemtraeger zum ultraschall- pruefen der aeusseren partien von stutzennaehten, rohranschlussnaehten und stutzenkanten bei druckgefaessen, insbesondere bei reaktordruckbehaeltern von kernkraftwerken |
DE2831395A1 (de) * | 1978-07-17 | 1980-01-31 | Kraftwerk Union Ag | Pruefeinrichtung zur zerstoerungsfreien pruefung |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2145819A (en) * | 1983-08-24 | 1985-04-03 | Atomic Energy Authority Uk | Probe holder |
Also Published As
Publication number | Publication date |
---|---|
EP0056554A3 (en) | 1984-02-08 |
FR2497351B1 (fr) | 1985-08-09 |
FR2497351A1 (fr) | 1982-07-02 |
DE3175633D1 (en) | 1987-01-08 |
US4463609A (en) | 1984-08-07 |
EP0056554B1 (fr) | 1986-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2002513C (fr) | Methode et dispositif de detection automatique du profil d'une surface et en vue d'effectuer un travail | |
EP0213028B2 (fr) | Procédé et dispositif de contrôle des crayons de grappe pour assemblage de combustible nucléaire | |
FR2642527A1 (fr) | Engin pour inspecter l'interieur des canalisations | |
FR2631731A1 (fr) | Ensemble d'entrainement de support de sonde pour la detection de defauts dans des tubes, notamment des tubes de generateurs de vapeur | |
EP3044579B1 (fr) | Dispositif de controle de soudure metallique, systeme et procede associes | |
WO2018091734A1 (fr) | Dispositif mobile d'inspection d'une ligne de production immergée partiellement dans une étendue d'eau, apte à franchir une courbure de la ligne de production, installation et procédé associé | |
FR2897158A1 (fr) | Dispositif et procede manuel de positionnement d'une source de radiographie par rayons gamma d'au moins une soudure d'une tubulure. | |
FR2730058A1 (fr) | Procede de controle non destructif d'une surface, en particulier en milieu hostile | |
EP0593357B1 (fr) | Dispositif support d'une sonde de détection et de localisation de défauts éventuels à l'intérieur d'un alésage | |
FR2966637A1 (fr) | Robot d'inspection de type a serrage de doigts pour les tubes d'un generateur de vapeur | |
FR2696834A1 (fr) | Dispositif de détection non destructrice de défauts d'un essieu. | |
EP0056554B1 (fr) | Dispositif de contrôle en service de l'intégrité des soudures des structures off-shore | |
EP0194926A1 (fr) | Robot multitâches pour le traitement des parois internes de cuves ou de capacités | |
EP0186554B1 (fr) | Procédé et dispositif de détection d'éléments combustibles non étanches dans un assemblage | |
FR2556265A1 (fr) | Dispositif de support pour supporter et mettre en place selectivement un outil par rapport a une piece, notamment pour modifier des reacteurs nucleaires | |
FR3059035A1 (fr) | Dispositif mobile d'inspection d'une ligne de production, apte a franchir une zone d'eclaboussement dans une etendue d'eau, installation et procede associe | |
EP0077730B1 (fr) | Procédé et dispositif de détermination de la forme de la paroi interne d'un tube | |
WO2015097166A1 (fr) | Repérage du centre outil et de l'orientation d'une sonde acoustique dans un repère de référence, par méthode ultrasonore | |
EP3542072A1 (fr) | Pince d'accrochage d'un dispositif sur une ligne de production au moins partiellement immergée dans une étendue d'eau, dispositif mobile et procédé associé | |
EP0593346A1 (fr) | Procédé et dispositif pour ausculter par voie vibratoire un tronçon de canalisation | |
JPH08320221A (ja) | 検査装置 | |
FR3123441A1 (fr) | Robot piloté dedié à l'inspection de soudures par ultrasons | |
WO2023170125A1 (fr) | Equipement de contrôle non destructif de la structure d'un élément automobile soudé | |
FR2520509A1 (fr) | Dispositif d'analyse automatique par ultrasons des defauts des soudures | |
FR2565693A1 (fr) | Appareil de controle d'une piece par ultra-sons |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): DE GB IT SE |
|
17P | Request for examination filed |
Effective date: 19830124 |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Designated state(s): DE GB IT SE |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE GB IT SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 19861120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19861130 |
|
REF | Corresponds to: |
Ref document number: 3175633 Country of ref document: DE Date of ref document: 19870108 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19880901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19881121 |