EP0056150B1 - Radiateur électrique - Google Patents

Radiateur électrique Download PDF

Info

Publication number
EP0056150B1
EP0056150B1 EP81110787A EP81110787A EP0056150B1 EP 0056150 B1 EP0056150 B1 EP 0056150B1 EP 81110787 A EP81110787 A EP 81110787A EP 81110787 A EP81110787 A EP 81110787A EP 0056150 B1 EP0056150 B1 EP 0056150B1
Authority
EP
European Patent Office
Prior art keywords
insulator
insulating layer
plate
heater according
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81110787A
Other languages
German (de)
English (en)
Other versions
EP0056150A3 (en
EP0056150A2 (fr
Inventor
Karl(Verstorben) Fischer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EGO Austria Elektrogerate GmbH
Original Assignee
EGO AUSTRIA ELEKTRO-GERAETE
EGO Austria Elektrogerate GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EGO AUSTRIA ELEKTRO-GERAETE, EGO Austria Elektrogerate GmbH filed Critical EGO AUSTRIA ELEKTRO-GERAETE
Priority to AT81110787T priority Critical patent/ATE24814T1/de
Publication of EP0056150A2 publication Critical patent/EP0056150A2/fr
Publication of EP0056150A3 publication Critical patent/EP0056150A3/de
Application granted granted Critical
Publication of EP0056150B1 publication Critical patent/EP0056150B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/68Heating arrangements specially adapted for cooking plates or analogous hot-plates
    • H05B3/74Non-metallic plates, e.g. vitroceramic, ceramic or glassceramic hobs, also including power or control circuits
    • H05B3/748Resistive heating elements, i.e. heating elements exposed to the air, e.g. coil wire heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C7/00Stoves or ranges heated by electric energy
    • F24C7/06Arrangement or mounting of electric heating elements
    • F24C7/067Arrangement or mounting of electric heating elements on ranges
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/68Heating arrangements specially adapted for cooking plates or analogous hot-plates
    • H05B3/70Plates of cast metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2213/00Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
    • H05B2213/04Heating plates with overheat protection means

Definitions

  • DE-OS 2820 139 describes such a heater, which consists of an insulating body carrying the electrical heating resistors, the outside of which is reinforced by a metal grid, for example a wire mesh or an expanded metal grid, is surrounded.
  • the present invention aims to further improve the properties of the radiator mentioned in the introduction, in particular with regard to the good handling and strength as well as the insulating properties of the insulating body.
  • an upper, relatively thin insulating layer can consist of a mechanically stronger insulating material that supports the heating resistors, while the layer underneath is selected primarily with regard to good insulating properties.
  • Everything is held together by the metal grille, so that a manageable body is created, which can advantageously be used both as a unit that can be used directly in this form for heating the underside of a glass ceramic plate, or in conjunction with a plate made of metal with side flanges as a single hot plate can be used.
  • the metal grid not only ensures sufficient strength, but can also be grounded.
  • the invention can be used in connection with exposed heating coils as radiant heating or in connection with tubular heaters in which the heating resistors are insulated in a mostly triangular metal jacket.
  • the top insulating layer carries the heating coils or the tubular heating elements, preferably on protruding ribs.
  • contact radiators tubular radiators
  • sufficient pressure is ensured against the metal or glass ceramic plate by placing springs on the underside of the insulating body, i.e. the lower part of the metal grille.
  • peripheral ribs By means of ribbing between the individual insulating layers, air spaces which are preferably enclosed by peripheral ribs can be formed, which further contribute to improving the insulating properties without increasing the thermal inertia in the slightest.
  • the ribs should, if possible, be designed in such a way that they ensure the distance under all circumstances, for example by a combination of circular and radial ribs.
  • the switch head can be arranged outside the insulating body and only the rod-shaped sensor can protrude transversely through the insulating body, preferably lying in a recess in one of the lower insulating layers, while the upper insulating layer has openings in the area of the temperature sensor to ensure a good and, if possible, instantaneous temperature coupling between the temperature sensor and the heating resistors.
  • additional coupling elements can be provided, such as a channel-like reflector part, which lies below the temperature sensor and couples it in terms of radiation in the manner of a parabolic mirror, or a heat-conducting bridge between a tubular heater and the temperature sensor, which projects through one of the openings.
  • FIG. 1 to 3 show an electric radiator 11, which is used to heat a plate 12d, which is an essentially flat and relatively thin-walled plate made of steel or cast material.
  • the tubular heaters consist in a known manner of inner, usually helical heating resistors 33, which are located in an electrically insulating investment material and are surrounded by a thin-walled jacket 34 made of stainless steel tube, which is pressed in a triangular shape, so that an upper contact surface results the bottom 51 rests.
  • the tubular heater can be made with relatively large distances that are larger than the width dimensions of the tubular heater itself, be arranged and still generate a sufficient power density.
  • a downwardly directed, essentially cylindrical outer edge 13 is formed on the outer circumference of the plate 12d and has an oblique groove in its upper area adjacent to the cooking surface 32 for receiving an outer hold-up ring 19 made of stainless sheet metal material.
  • the plate thus has the shape of an inverted flat box, which receives the heater 52, which is designed as a coherent unit, in its interior. It has an insulating body 28d, which in the example shown consists of two insulating layers 29, 30, which are held together by a metal grid 49d.
  • the upper insulating layer 30 is in the form of a relatively thin disk made of a mechanically stronger, temperature-resistant heat insulating material, which is pressed, for example, from mineral fibers, as are known under the trade name “Fiberfrax”. It has radially extending ribs 53 on the top, on which the tubular heating elements 31 rest. On the underside, the insulating layer 30 also has a ribbing 54, which, however, is arranged in the form of concentric circles in the example shown.
  • Radially arranged ribs 55 of the lower insulating layer 29 in turn work together with the ribbing 54, so that an air gap 56 is created between the insulating layers 29, 30, which is largely closed to the outside by the outer annular rib 54 on an annular rib 57 encircling the outer circumference lower insulating layer 29 rests.
  • the insulating layers 29, 30 are held together by the metal grid 49d, which is a relatively fine-mesh steel wire mesh with mesh sizes on the order of 2 mm.
  • the metal grid 49d is a relatively fine-mesh steel wire mesh with mesh sizes on the order of 2 mm.
  • the metal grid 49d is deformed into the shape of a flat circular shell and takes in the two insulating layers.
  • the upper edge 58 is bent inwards over the edge of the upper insulating layer, so that the two insulating layers are held firmly together.
  • the radiator 52 is produced in such a way that a shell is first formed from the metal grid, which shell does not yet have cylindrical, but rather somewhat conical, side walls.
  • the material for the lower insulating layer 29 which consists of a mechanically not so strong material, but which has very good insulating properties with good temperature resistance, for example an inorganic molding compound made of short fibers or powdery material, this mixture, if necessary with a binder can be offset, is pressed into the metal grid shell, the ribs 55 also being produced.
  • the second layer, to which the tubular heating elements 31 are possibly already attached, is placed on top and the metal grid is deformed into its final shape with cylindrical side walls and an inwardly bent edge.
  • the bottom 58 of the metal grid 49d is profiled, so that radial or star-shaped recesses 59 are preferably formed (FIG. 3), which not only provide stiffening of the underside, but also, in cooperation with a pressure spring 25d, a security against rotation of the radiator 28d prevented relative to the plate 12d.
  • the pressure spring 25d has the shape of a three-pointed star made of spring plate, the arms of which are bent in such a way that their central region press against the metal grid 49d, while the arm ends lie on projections 60 of tab-like fastening elements 44d which are welded on the outside at the edge 13 of the plate 12d three and protrude essentially vertically downwards. At their lower end they have barbs 45 which reach through a lower cover 43 of a hob or a corresponding support bracket and thereby hold the entire radiator 11 in place. This attachment is preferably carried out resiliently by an underlying leaf spring 48.
  • the insulating body 28d is thus pressed upwards by the pressure springs 25d, so that the relatively thin flexible, spirally wound tubular heating elements are pressed resiliently onto the underside 51 of the plate 12d.
  • the metal grid 49d forms the lower surface of the insulating body and thus also of the entire radiator 11. There is therefore no need for a separate cover plate. Electrical safety is also ensured because the metal grid can be grounded.
  • a temperature protection switch 37 is used, which is held by the fact that its lower Shoulder 61 is supported on the edge of a recess in the metal grid 49d. As a result, its connection ends with the insulation surrounding them are freely accessible from the outside.
  • the switch body of the temperature protection switch 37 is located in a recess in the lower insulating layer 29, during which the temperature sensor, for example a bimetal element, protrudes through a narrower recess in the upper insulating layer 30 and rests on the underside of a tubular heating element 31 in order to sense its temperature as quickly as possible .
  • the upper insulating layer 30 thus protects the more temperature-sensitive switch part of the temperature protection switch against excessive heating.
  • the insulating body 28e thus obtained is attached to the underside of a plate 12d which, like the one according to FIGS. 1 to 3, represents a hotplate to be installed in a hob.
  • the insulating body is installed in such a way that the heating resistors 33e are at a distance from the underside 51 of the plate 12d, but this is due to the good fixing of the heating resistors 33e to the upper insulating layer 30e, which has no tendency to bulge, and because of the possibility of the plate 12d and to ground the metal grid 49d can be very low, so that not only the overall height becomes low, but also the radiation heat transfer to the plate 12d is very good.
  • the insulating body 28e is fixed to the plate in that projections 60e in the form of lateral, upright tabs of the fastening elements 44e, which are otherwise the same as in FIG. 1, engage in depressions 62 on the outer circumference of the metal grid shell 49d (see detail in FIG dash-dotted circle in Fig. 4).
  • a temperature protection switch 37e lies flat in a recess in the lower insulating layer 29 and is completely covered by the upper insulating layer 30e in order not to be directly exposed to the high temperatures of the heating resistors 33e.
  • FIG. 4 also shows the hotplate connection 64, which consists of a conventional connection block 65, into which the internal connection lines 66 lead and can be connected there to the outer connection lines.
  • the connecting block 65 is fastened to a connecting plate 67 which projects beyond the edge of the hotplate and is attached to the bottom section 58 of the metal grid 49d by spot welding or other fastening means. It should be noted here that the attachment of parts to the metal grille is particularly simple, since this can be easily accomplished with wood or self-tapping screws.
  • the embodiment according to FIG. 5 differs from that according to FIG. 4 in that instead of the lower insulating layer 29, a plurality of thin plate-shaped insulating layers 29f are provided, which are each provided with mismatched profiles on their top and bottom sides, so that they are between them Create insulating air gaps 56.
  • the insulating layers could consist of a mechanically stronger, possibly also ceramic material.
  • Fig. 6 shows an electric heater 11g, which is pressed below a glass ceramic plate 12g, the top of which forms the cooking surface 32g, by means of spring elements, not shown. It lies with an upwardly projecting peripheral edge 67 of the upper insulating layer 30g on the underside of the plate 12g.
  • the upper insulating layer 30g has on its top in a shallow recess radially extending grooves which, as in FIGS. 4 and 5, define helical heating resistors 33e.
  • the circular disk-shaped central part of the insulating layer 30g is crossed somewhat eccentrically by the rod-shaped temperature sensor 68 of a temperature switch 69 which runs in a groove 70 of the lower insulating layer 29g which can be seen in FIG. 8. Openings 71 in the sensor area are provided in the upper, thinner insulating layer 30g between the ribs 53e, which ensure sufficient heat coupling between the heating and the temperature sensor.
  • the switch head of the temperature switch 69 is arranged outside the radiator.
  • FIG. 9 shows other embodiments of the arrangement of the temperature sensor 68.
  • the embodiment according to FIG. 9 corresponds to that according to FIG. 8, except for the fact that the recess 70h in the lower insulating layer 29h is larger.
  • FIG. 10 shows a sensor arrangement in which the recess 68i corresponds in size to that according to FIG. 9. Under the temperature sensor there is inserted a reflector part 74, which consists of a sheet of metal running approximately below the temperature sensor 68 and having an approximately semicircular cross section, which reflects the radiation coming in through the openings 71i back onto the temperature sensor 68.
  • a reflector part 74 which consists of a sheet of metal running approximately below the temperature sensor 68 and having an approximately semicircular cross section, which reflects the radiation coming in through the openings 71i back onto the temperature sensor 68.
  • the heating element 11k is also provided for heating a glass ceramic plate 12g, but by means of contact heating elements designed as tubular heating elements 31, which are pressed against the underside of the plate 12g by ribs of the upper insulating layer 30k.
  • An outer upright edge 67k of the upper insulating layer 30k largely closes off the space 27 formed between the plate and the insulation, but does not lie firmly against the plate.
  • the pressure is also applied here via spring elements, not shown, from a support structure of the cooker or the built-in hob.
  • the temperature sensor 68 of the temperature switch 69 runs in a recess 70k (FIG. 12) of the lower insulating layer 29k.
  • the recess 70k is connected to the space 27 via openings 71k in the upper insulating layer 30k.
  • a heat-conducting coupling part 76 extends through the openings 70k. It consists of a sheet metal clamp which extends around the temperature sensor 68 and rests on the underside of the tubular heater 31 with two flange-like bends. This ensures a secure coupling between the temperature sensor and the tubular heater.
  • the invention creates an electric radiator that has numerous advantages. It is very light, so that it can follow a glass ceramic plate even when subjected to impact stresses and does not form an anvil on which the glass ceramic plate could be destroyed. Its low thermal inertia leads to good efficiency and safe and energy-saving parboiling. Efficiency is also increased by the good insulation, which at the same time results in a low floor temperature for the radiator, which can therefore also be used in lower built-in hobs without a cover plate. Nevertheless, the mechanical strength is excellent.
  • the thin and relatively strong upper carrier plate provides for the mounting and storage of the heating resistors (coils or tubular heating elements) and is preferably pressed from a firmer long-fiber inorganic fiber, while the lower insulating layer only needs to have enough mechanical strength to cover its entire surface the total contact pressure, if there is one, must take up.
  • the metal grid takes care of all other wearing properties. In any case, a manageable unit is created, which contains the heating elements and any temperature limiters and can be easily installed and replaced.
  • the outer surfaces of the insulating body with a coating 77 on its surfaces surrounded by the metal grid and possibly also on its upper side, for example by spraying with a heat-resistant lacquer or an organic binder layer, in order to also use insulating materials with low abrasion resistance can without fear of dust.
  • This coating is preferably carried out only after the insulating body, which is pressed in the moist state, has dried out.
  • the result is a radiator with a floor temperature that is approx. 80 to 100 ° lower than that of conventional radiators. This not only improves efficiency, but also protects the environment against high temperatures, so that less effort is required even when routing cables and arranging controllers and switches.
  • a radiator is shown, the heating coil of which is arranged in the form of a catchy spiral.
  • Two heating coils can advantageously be essentially par as a two-start spiral allel to each other, which can also be switched on separately to improve controllability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Resistance Heating (AREA)
  • Saccharide Compounds (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Baking, Grill, Roasting (AREA)
  • Electric Stoves And Ranges (AREA)
  • Cookers (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Claims (12)

1. Radiateur électrique (11) pour chauffer une plaque (12d; 12g), comprenant un corps isolant (28d; 28e), sur lequel sont montés des éléments chauffants électriques (31, 33), le corps isolant (28d; 28e) étant relié à une structure en treillis métallique en forme de corbeille (49d; 49g) qui l'entoure dans la région de sa surface extérieure, caractérisé en ce que le corps isolant (28d; 28e) est constitué par plusieurs couches isolantes (29; 29f; 29g; 29k; 30; 30e; 30g; 30k) qui sont maintenues assemblées par la structure en treillis métallique (49d; 49e), ladite structure en treillis métallique (49d; 49e) se terminant par son bord supérieur à distance de la plaque (12d; 12g) et étant recourbée dans la région du bord supérieur en direction du corps isolant, les extrémités des éléments en forme de fils ou de bandes qui forment le treillis métallique étant rassemblées dans la région de son bord pour constituer une limite de bord continue et/ou étant noyées dans le corps isolant.
2. Radiateur selon la revendication 1, caractérisé en ce que la limite de bord est constituée par un anneau en tôle (72) de section angulaire, qui s'appuie sur un épaulement (53) de la couche isolante supérieure (39g).
3. Radiateur selon la revendication 1 ou 2, caractérisé en ce que le treillis métallique (49) présente dans sa surface formant le côté inférieur du corps isolant (28d) des enfoncements (59) orientés de préférence radialement.
4. Radiateur selon l'une quelconque des revendications précédentes, caractérisé en ce que les surfaces extérieures du corps isolant (28d; 28e) sont munies au moins partiellement d'une couche (77) résistant à la température.
5. Radiateur selon l'une quelconque des revendications précédentes, caractérisé en ce que la couche isolante supérieure (30) présente des nervures (53) qui supportent les résistantes chauffantes (33) noyées dans les corps tubulaires chauffants (31).
6. Radiateur selon l'une quelconque des revendications 1 à 4, caractérisé en ce que la couche isolante supérieure (30e) comprend des nervures (53e) dans lesquelles sont noyées les résistances chauffantes de forme hélicoïdale (33e), pendant l'opération de compression de la couche isolante, avec une partie de la périphérie de leurs spires, deux filaments hélicoïdaux chauffants qui peuvent être mis en circuit de préférence séparément étant éventuellement disposés parallèlement l'une à l'autre en formant des spirales.
7. Radiateur selon l'une quelconque des revendications précédentes, caractérisé en ce que les couches isolantes (29, 30; 29f) qui sont constituées de préférence en une matière granuleuse ou filamenteuse comprennent sur leurs surfaces supérieure et/ou inférieure des nervures en vue de la formation de cavités à air (56) et en ce que de préférence la couche supérieure plus mince (30) est constituée en une matière mécaniquement plus résistante que l'isolation (29) située au-dessous.
8. Radiateur selon l'une quelconque des revendications précédentes, caractérisé en ce que la plaque (12d) chauffée par lui est constituée par une plaque métallique de forme circulaire et sensiblement plane sur le côté supérieur et inférieur, comprenant un bord (13) de forme sensiblement cylindrique et circulaire, dirigé vers le bas sur sa périphérie extérieure, et en ce qu'entre le côté inférieur (51) de la plaque, le bord (13) et le corps isolant (28d) est constitué un espace (27) recevant le dispositif de chauffage (31; 33e).
9. Radiateur selon la revendication 8, caractérisé en ce que des éléments de fixation (44) se présentant de préférence sous la forme de pattes comportant des parties courbes en forme de crochets (45) sont montés sur le bord (13), parties courbes qui coopèrent avec des éléments encastrés (43) ayant la forme de cuvettes pour plaques de cuisson, d'étriers de support etc., et fixent éventuellement le corps isolant (28d, e) à la plaque (12d), au moins un élément de compression (25d) du type à ressort à lame et pressant le corps isolant (28d) vers le haut s'appuyant de préférence sur les éléments de fixation (44d) et des saillies (60e) étant éventuellement constituées sur les éléments de fixation (44e), qui pénètrent dans des évidements (62) formés dans le treillis métallique (49d).
10. Radiateur selon l'une quelconque des revendications 9 à 12, caractérisé en ce qu'un gradin (63) s'appuyant sur le bord (13) de la plaque (12d) est prévu sur la périphérie du corps isolant (28e).
11. Radiateur selon l'une quelconque des revendications précédentes, caractérisé en ce qu'un interrupteur de protection thermostatique (37; 37e) est prévu dans le corps isolant (28d; 28e), dont la partie de commutation est disposée dans un évidement d'une couche isolante inférieure (29) et est de préférence protégée thermiquement, au moins partiellement, par la couche isolante supérieure (30; 30e), le capteur de température de l'interrupteur de protection thermostatique (37) traversant en particulier la couche isolante supérieure (30) et reposant sur le côté inférieur d'un corps tubulaire chauffant (31).
12. Radiateur selon l'une quelconque des revendications précédentes, caractérisé en ce que le corps isolant est traversé par un capteur de température en forme de barre (68) d'un interrupteur thermostatique (69), qui passe dans un évidement d'une couche isolante inférieure (29g), en ce que la couche isolante supérieure (30g; 30k) présente dans la région du capteur de température (68) des passages (71; 71k) conduisant aux résistances chauffantes (33) ou aux corps tubulaires chauffants (31), en ce qu'un élément réflecteur (74) en forme de rigole, disposé au-dessous du capteur de température (68) est prévu, de préférence dans l'évidement (70i), pour ce capteur de température et en ce qu'un élément de couplage (76) thermiquement conducteur qui est en contact avec l'enveloppe (34) du corps tubulaire chauffant et le capteur de température (68) est prévu éventuellement entre le corps tubulaire chauffant (31) et le capteur de température (68).
EP81110787A 1980-12-30 1981-12-25 Radiateur électrique Expired EP0056150B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT81110787T ATE24814T1 (de) 1980-12-30 1981-12-25 Elektrischer heizkoerper.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3049521 1980-12-30
DE19803049521 DE3049521A1 (de) 1980-12-30 1980-12-30 Elektrischer heizkoerper

Publications (3)

Publication Number Publication Date
EP0056150A2 EP0056150A2 (fr) 1982-07-21
EP0056150A3 EP0056150A3 (en) 1983-01-12
EP0056150B1 true EP0056150B1 (fr) 1987-01-07

Family

ID=6120563

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81110787A Expired EP0056150B1 (fr) 1980-12-30 1981-12-25 Radiateur électrique

Country Status (11)

Country Link
US (1) US4447711A (fr)
EP (1) EP0056150B1 (fr)
JP (1) JPS57134886A (fr)
AT (1) ATE24814T1 (fr)
AU (1) AU548785B2 (fr)
DE (2) DE3049521A1 (fr)
ES (1) ES508395A0 (fr)
FI (1) FI814160L (fr)
GR (1) GR76103B (fr)
YU (1) YU310481A (fr)
ZA (1) ZA818992B (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010063454B4 (de) 2010-12-17 2022-02-03 BSH Hausgeräte GmbH Strahlungsheizkörper für ein Kochfeld sowie Kochfeld

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3113414A1 (de) * 1981-04-03 1982-11-04 Karl 7519 Oberderdingen Fischer Elektrokochplatte
DE3223417A1 (de) * 1982-06-23 1983-12-29 Karl 7519 Oberderdingen Fischer Elektrokochplatte
GB2132060B (en) * 1982-12-24 1985-12-18 Thorn Emi Domestic Appliances Heating apparatus
DE3703768A1 (de) * 1987-02-07 1988-08-18 Fissler Gmbh Vorrichtung zum erfassen der temperatur einer mittels heizwicklungen oder halogenlampen aufgeheizten glaskeramikplatte
KR970008839B1 (en) * 1994-04-27 1997-05-29 Korea Inst Sci & Tech Heater for chemical deposition
FR2760957B1 (fr) * 1997-03-21 1999-10-01 Moulinex Sa Appareil de cuisson electrique
US6614007B1 (en) 1999-02-17 2003-09-02 The Garland Group Griddle plate with infrared heating element
GB2361160B (en) * 2000-04-03 2004-11-03 Ceramaspeed Ltd Radiant electric heater
DE10127223A1 (de) * 2001-05-22 2003-01-23 Ego Elektro Geraetebau Gmbh Heizungseinrichtung für Filterelemente eines Partikelfilters und Partikelfilter
JP4453984B2 (ja) * 2004-10-19 2010-04-21 キヤノンアネルバ株式会社 基板支持・搬送用トレイ
DE102005005520A1 (de) * 2005-02-01 2006-08-10 E.G.O. Elektro-Gerätebau GmbH Heizeinrichtung mit Temperatursensor und Kochfeld mit Heizeinrichtungen
DE102005042799A1 (de) 2005-09-08 2007-03-22 BSH Bosch und Siemens Hausgeräte GmbH Universalhalter für Kochfelder
US8049143B2 (en) * 2007-10-29 2011-11-01 Smiths Medical Asd, Inc. Hot plate heater for a respiratory system
US9296154B1 (en) * 2008-08-07 2016-03-29 Mcelroy Manufacturing, Inc. Tapered wattage radial heater
CN201365481Y (zh) * 2009-02-13 2009-12-23 东莞市前锋电子有限公司 电磁式烧烤炉
US20130192584A1 (en) * 2012-01-26 2013-08-01 General Electric Company Heating element mounting features for a cook top appliance
USD787041S1 (en) 2015-09-17 2017-05-16 Whirlpool Corporation Gas burner
US10837651B2 (en) 2015-09-24 2020-11-17 Whirlpool Corporation Oven cavity connector for operating power accessory trays for cooking appliance
US11777190B2 (en) 2015-12-29 2023-10-03 Whirlpool Corporation Appliance including an antenna using a portion of appliance as a ground plane
US10757761B2 (en) * 2016-01-14 2020-08-25 Techyidco Llc Apparatus and method for safely warming food
US10145568B2 (en) 2016-06-27 2018-12-04 Whirlpool Corporation High efficiency high power inner flame burner
GB2560154A (en) * 2017-02-05 2018-09-05 Stuart Morris Gary Single sided food warming hotplate
US10551056B2 (en) 2017-02-23 2020-02-04 Whirlpool Corporation Burner base
US10451290B2 (en) 2017-03-07 2019-10-22 Whirlpool Corporation Forced convection steam assembly
US10660162B2 (en) 2017-03-16 2020-05-19 Whirlpool Corporation Power delivery system for an induction cooktop with multi-output inverters
US10627116B2 (en) 2018-06-26 2020-04-21 Whirlpool Corporation Ventilation system for cooking appliance
US10619862B2 (en) 2018-06-28 2020-04-14 Whirlpool Corporation Frontal cooling towers for a ventilation system of a cooking appliance
US10837652B2 (en) 2018-07-18 2020-11-17 Whirlpool Corporation Appliance secondary door

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2163036A (en) * 1934-06-21 1939-06-20 Herman A Sperlich Electric heater
US2261496A (en) * 1938-11-23 1941-11-04 Arthur H Happe Electric heating unit
US3384737A (en) * 1965-04-14 1968-05-21 Doutre Adelard Electric stove with heating metallic plates
DE1301404C2 (de) * 1967-01-05 1974-06-06 Gustav Dipl Ing Massekochplatte mit einem Temperaturregler
BR6896943D0 (pt) * 1967-03-25 1973-12-26 Ag Siemens Pirometro de resistencia eletrica
US3646321A (en) * 1970-06-22 1972-02-29 Gen Motors Corp Infrared surface heating unit
US3612826A (en) * 1970-07-17 1971-10-12 Gen Motors Corp Surface temperature indicator light for ceramic top infrared radiant range
US3612829A (en) * 1970-07-17 1971-10-12 Gen Motors Corp Ceramic top infrared cooking assembly
US3632983A (en) * 1970-10-13 1972-01-04 Gen Electric Smooth surfaced, heated cooktop
GB1433478A (en) * 1972-08-05 1976-04-28 Mcwilliams J A Electrical heating apparatus
DE2729930A1 (de) * 1977-07-02 1979-01-11 Karl Fischer Strahlungs-heizeinheit fuer glaskeramik-elektrokochgeraete
US4032750A (en) * 1976-03-26 1977-06-28 General Electric Company Flat plate heating unit with foil heating means
US4166878A (en) * 1976-10-01 1979-09-04 Caterpillar Tractor Co. Gas turbine engine internal insulation comprising metallic mesh--restrained ceramic fiber layer
ZA774922B (en) * 1977-03-09 1978-06-28 Emerson Electric Co Open coil heater
DE2729929C3 (de) * 1977-07-02 1981-10-08 Karl 7519 Oberderdingen Fischer Strahlungs-Heizeinheit für Glaskeramik-Elektrokochgeräte
SE7806238L (sv) * 1977-07-02 1979-01-03 Fischer Karl Elektriskt stralningsvermeelement, serskilt for glaskeramikkokhell
DE2820139A1 (de) * 1978-05-09 1979-11-15 Karl Fischer Elektrischer heizkoerper

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010063454B4 (de) 2010-12-17 2022-02-03 BSH Hausgeräte GmbH Strahlungsheizkörper für ein Kochfeld sowie Kochfeld

Also Published As

Publication number Publication date
EP0056150A3 (en) 1983-01-12
DE3049521A1 (de) 1982-07-29
FI814160L (fi) 1982-07-01
GR76103B (fr) 1984-08-03
ZA818992B (en) 1982-11-24
YU310481A (en) 1984-12-31
AU7880481A (en) 1982-07-08
DE3175825D1 (en) 1987-02-12
US4447711A (en) 1984-05-08
JPS57134886A (en) 1982-08-20
ES8302993A1 (es) 1982-12-01
EP0056150A2 (fr) 1982-07-21
ES508395A0 (es) 1982-12-01
AU548785B2 (en) 1986-01-02
ATE24814T1 (de) 1987-01-15

Similar Documents

Publication Publication Date Title
EP0056150B1 (fr) Radiateur électrique
DE2205132C3 (de) Elektrokochgerät
EP0047490B1 (fr) Réchaud électrique
EP0024621B1 (fr) Plaque de cuisson électrique
AT398874B (de) Elektrische strahlungsheizeinrichtung für kochgeräte mit ebener kochfläche
CH634451A5 (de) Strahlungs-heizeinheit.
DE2165569C3 (de) Elektrokochgerät mit einer oberen Platte aus hochwärmebeständigem glasartigem bzw. keramischem Material
EP0021107B1 (fr) Elément chauffant par rayonnement pour une unité de cuisson, muni d'un détecteur de température
DE2339768B2 (de) Elektrische kochplatte
EP0288915B1 (fr) Radiateur à rayonnement électrique pour chauffer une plaque, en particulier une plaque vitrocéramique
DE2518949A1 (de) Glaskeramik-kochfeld mit filmheizelement
EP0490289B1 (fr) Radiateur électrique notamment radiateur à rayonnement
DE2729929C3 (de) Strahlungs-Heizeinheit für Glaskeramik-Elektrokochgeräte
EP0757210A1 (fr) Unité d'une table de suisson à rayonnement
DE2729930A1 (de) Strahlungs-heizeinheit fuer glaskeramik-elektrokochgeraete
CH672831A5 (fr)
DE2820138C2 (fr)
DE2751991A1 (de) Kocheinheit mit einer von abgeflachten rohrheizkoerpern gebildeten kochflaeche
DE3810586A1 (de) Beheizung fuer elektrische kochgeraete
DE19540004A1 (de) Strahlungs-Heizer
DE2933350A1 (de) Elektrokochplatte
DE2760339C3 (de) Elektrischer Strahlungsheizkörper für Glaskeramikkochplatten
DE3116771A1 (de) Elektrische heizeinheit fuer kochgeraete mit einer glaskeramikplatte
DE2901801A1 (de) Temperaturmelder zur anzeige des temperaturzustandes einer glaskeramikkochflaeche
DE102010063454A1 (de) Strahlungsheizkörper

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT CH DE FR GB IT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT CH DE FR GB IT LI SE

17P Request for examination filed

Effective date: 19830616

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: E.G.O. AUSTRIA ELEKTRO-GERAETE GESELLSCHAFT M.B.H.

RIN1 Information on inventor provided before grant (corrected)

Inventor name: FISCHER, KARL(VERSTORBEN)

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI SE

REF Corresponds to:

Ref document number: 24814

Country of ref document: AT

Date of ref document: 19870115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3175825

Country of ref document: DE

Date of ref document: 19870212

ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R.L.

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19881226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19881231

Ref country code: CH

Effective date: 19881231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19890831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19891220

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19891231

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19900221

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19901225

Ref country code: AT

Effective date: 19901225

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19910903

EUG Se: european patent has lapsed

Ref document number: 81110787.9

Effective date: 19891215