EP0054784B1 - Câble aérien comprenant des éléments de traction - Google Patents

Câble aérien comprenant des éléments de traction Download PDF

Info

Publication number
EP0054784B1
EP0054784B1 EP81110134A EP81110134A EP0054784B1 EP 0054784 B1 EP0054784 B1 EP 0054784B1 EP 81110134 A EP81110134 A EP 81110134A EP 81110134 A EP81110134 A EP 81110134A EP 0054784 B1 EP0054784 B1 EP 0054784B1
Authority
EP
European Patent Office
Prior art keywords
core
cable
cable according
overhead cable
metal wires
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81110134A
Other languages
German (de)
English (en)
Other versions
EP0054784A3 (en
EP0054784A2 (fr
Inventor
Othmar Voser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kupferdraht-Isolierwerk AG Wildegg
Original Assignee
Kupferdraht-Isolierwerk AG Wildegg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kupferdraht-Isolierwerk AG Wildegg filed Critical Kupferdraht-Isolierwerk AG Wildegg
Priority to AT81110134T priority Critical patent/ATE12713T1/de
Publication of EP0054784A2 publication Critical patent/EP0054784A2/fr
Publication of EP0054784A3 publication Critical patent/EP0054784A3/de
Application granted granted Critical
Publication of EP0054784B1 publication Critical patent/EP0054784B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/08Flat or ribbon cables
    • H01B7/0823Parallel wires, incorporated in a flat insulating profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • H01B7/182Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring comprising synthetic filaments
    • H01B7/1825Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring comprising synthetic filaments forming part of a high tensile strength core

Definitions

  • the invention relates to an overhead line cable with a plurality of individually sheathed, stranded wires, each of which comprises a plurality of metal wires provided for signal transmission and essentially at least approximately strain-resistant strain relief means extending in the longitudinal direction of the cable, the sheath covering each wire with a bridge the sheath of each other core of the cable is connected in one piece.
  • Overhead line cables of this type have become known in particular in the form of two-core cables as telephone lines. Such telephone lines have been used for some time primarily in areas in which individual telephone subscribers are relatively far away from a central switching station or an end point of an underground telephone cable network and underground routing of the telephone lines leading to the subscribers concerned because of the relatively large distance and the Insufficient use of a cable tunnel with only one or a few lines routed through the same would result in excessive costs.
  • steel wires were used as strain relief means, which together with the metal wires provided for signal transmission, which mostly consist of tinned copper wire, formed the individual wires of the cable.
  • strain relief means not steel wires arranged inside the wires but within the cable sheath fibers or fiber bundles made of high-strength non-metallic materials such as e.g. Using glass fibers, and when using such non-metallic materials for the strain relief means, of course, the problem of increased susceptibility to corrosion that occurs when using steel wires is eliminated.
  • the unshaded circles are either steel wires or synthetic fiber bundles consisting of individual fibers running parallel to one another and the hatched circles are copper wires: in the case of steel wires, the copper and steel wires fix themselves in theirs Mutual position, and a change in this position due to tensile loading of the cable is therefore not possible; in the case of fiber bundles consisting of individual fibers, on the other hand, the individual fibers of the three outer fiber bundles can easily be shifted towards the center, the six cavities grouped around the central fiber bundle being filled in first and the copper wires then being pressed outwards until the Fibers of the outer fiber bundle would have been regrouped into a kind of jacket around the central fiber bundle.
  • the cable would lengthen in accordance with the now smaller mean diameter of the helical course of the three outer fiber bundles, the fibers of the central fiber bundle which would not withstand the tensile load alone, and which would only tear one relative low tensile strength, but stretchable copper wires would be stretched accordingly.
  • the cable would thus be able to be extended to the aforementioned extension due to the regrouping and would therefore no longer be resistant to expansion.
  • the invention was based on the object of creating an overhead line cable of the type mentioned, in which, on the one hand, corrosion problems such as the known overhead line cables provided with steel wires as strain relief means do not occur, and on the other hand properties comparable to those known with regard to the tensile strength and flexibility with Has steel wires provided as strain relief overhead cables.
  • the strain relief means are formed from one or more fiber bundles running parallel to the metal wires and stranded with the same from essentially stretch-resistant synthetic fibers and the individual fiber bundle (s) in their consistency and cross-sectional shape are formed and arranged within the cores in such a way that the metal wires and fiber bundles enclosed by the assigned sheath fix each other in their position in the individual cores and thus caused by tensile loads on the cable, transverse displacements leading to the elongation of the cable under tensile loads due to the stranding being helical running synthetic fibers or fiber bundles in the direction of the core center are excluded, so that each individual core and thus also the cable is essentially stretch-resistant despite the helical shape of the synthetic fibers or fiber bundles .
  • the advantage of the present overhead line cable compared to the known overhead line cables of the type mentioned at the outset lies in its substantially lower susceptibility to corrosion. This can even be significantly reduced, for example, by completely impregnating the cores with resin, which is susceptible to corrosion in the known overhead line cable under the prerequisite (made practically not possible due to insufficient tensile strength) that it is made exclusively from tinned copper existing metal wires would be achievable.
  • a further advantage of the present overhead line cable compared to the known overhead line cables mentioned can be seen in the fact that the weight of the fiber bundles which act as strain relief means instead of the steel wires is substantially less than that of the steel wires with the same strength properties as when using steel wires, and thus the weight of the present overhead line cable per unit length is 20-40% below that of the known overhead line cables mentioned.
  • This weight advantage is essential for overhead line cables because the tensile load on the cable is mainly caused by the weight of the cable itself.
  • each fiber bundle is essentially circular.
  • each fiber bundle is preferably stranded in order to achieve a sufficient consistency and a circular cross-sectional shape that is essentially unchangeable even when the cable is subjected to tensile loads.
  • the fiber bundles can expediently consist of simply stranded synthetic fibers. With regard to the consistency and the invariability of the cross-sectional shape, it is more advantageous if the fiber bundles consist of multi-stranded, preferably double-stranded or twisted synthetic fibers.
  • each fiber bundle is designed in such a way that in each core the part of the interior space that is not occupied by the metal wires is completely filled by the entire fiber bundle.
  • each fiber bundle and / or each wire in its entirety can be particularly advantageously resin-impregnated to achieve a sufficient consistency and thus a cross-sectional shape of the fiber bundles or wires that is essentially unchangeable even when the cable is subjected to tensile loads or to increase this consistency.
  • the resin used for impregnation can expediently be a resin which disintegrates into powder when subjected to pressure and / or bending stress beyond its breaking limit. This has the advantage that if the overhead line cable is overstressed to bend at the relevant points, the bending stiffness of the cable is reduced by the decomposition of the resin into powder to such an extent that breakage of the cable or individual wires of the cable caused by excessive bending stiffness is avoided.
  • Impregnation with such a resin which disintegrates into powder when overstressed, comes into consideration in particular if the veins as a whole are impregnated with resin or fiber bundles of relatively large cross-section are provided.
  • the resin used for the impregnation can expediently consist entirely or at least predominantly of natural resin, the natural resin advantageously being rosin.
  • the synthetic fibers forming the fiber bundles expediently consist of a plastic, preferably of an organic polymer.
  • This plastic can be an aromatic polyamide with particular advantage.
  • the synthetic fibers can expediently have a tensile strength of at least 250 kg / mm 2 , an elastic modulus of at least 10,000 kg / mm2 and an elongation at break of less than 3%.
  • the synthetic fibers can also consist entirely or partially of glass fibers, so-called high-strength glass fibers primarily being considered.
  • each wire can advantageously be arranged in a centrally symmetrical manner with respect to the axis of the respective wire.
  • each wire can be provided with a central metal wire, the axis of which coincides with the axis of the wire concerned, and with three outer metal wires of the same diameter as that of the central metal wire, which are arranged at an angle of 120 ° around the central metal wire are and are concerned with this.
  • each wire can expediently either with three fiber bundles of circular cross-section and at least approximately the same diameter as that of the metal wires, which are arranged between the three outer metal wires and also rest on the central metal wire, or with three fiber bundles of approximately trapezoidal shape Be provided in cross-section, each of which completely fills one of the three cavities, each surrounded by two outer metal wires and the central metal wire, and in this case cylindrical jacket inner wall.
  • the fiber bundles having a circular cross section expediently stranded in themselves
  • the fiber bundles having a trapezoidal cross section expediently consist of synthetic fibers arranged parallel to one another in strand-like fashion and are impregnated with resin.
  • each wire is provided with three metal wires of the same diameter, the axes of which are at a distance from the axis of the wire concerned from the simple diameter of the metal wires and which are at an angular distance of 120 ° around the Axis of the relevant wire are arranged around.
  • Each core can advantageously be provided with a central fiber bundle of circular cross-section and the same diameter as that of the metal wires, the axis of which coincides with the axis of the relevant core, as well as with three outer fiber bundles of likewise circular cross-section and the same diameter as that of the metal wires are arranged between the three metal wires and bear against the central fiber bundle; the individual fiber bundles are also expediently stranded in themselves.
  • each core with a central fiber bundle, the axis of which coincides with the axis of the relevant core, as well as with a plurality of arranged around the central fiber bundle, adjacent to it and preferably also mutually adjacent metal wires is provided.
  • the metal wires in the present overhead line cable expediently consist of copper wire, preferably of tinned copper wire.
  • the use of tinned copper wire allows the cable to be extremely susceptible to corrosion.
  • other corrosion protection coatings such as e.g. multiple paint coats may be provided.
  • each wire should expediently engage with its inside in depressions on the outside of the wire and essentially fill these completely.
  • a waterproof and preferably also water-repellent polyamide suitably serves as the material for the cable sheath.
  • the sheaths of the individual wires of the cable are expediently connected to one another by bridges between them. These bridges can be formed in the extrusion of the cable sheath by suitable design of the extruder and suitable guidance of the individual wires of the cable through the extruder.
  • the invention further relates to the use of the present overhead line cable as a telephone line for lines to be laid outdoors.
  • Two-wire overhead line cables according to the present invention are primarily considered.
  • the two wires 2 and 3 each consist of four tinned copper wires 4 and 5 of the same diameter and three fiber bundles 6 each of circular cross-section and the same diameter as that of the copper wires 4 and 5, wherein a copper wire 4 is arranged centrally and the three remaining copper wires 5 and the fiber bundles 6 are arranged in an alternating sequence around the central copper wire 4.
  • Each of the fiber bundles 6 consists of a plurality of strands, each of which is stranded and subsequently stranded together, each of a plurality of synthetic fibers or, in short, twisted synthetic fibers.
  • the synthetic fibers consist of aromatic polyamide with a tensile strength of 300 kg / mm 2 , a modulus of elasticity of 13400kg / mm 2 , an elongation at break of 2.6% and a specific weight of 1.45 g / cm 3 .
  • Synthetic fibers of this type are known, for example, from the information booklet "Keviar 49, Technical Information, Bulletin No. K-1, June 1974" of the Dupont de Nemours Company, page 3, section A and Table I, and in practice they are all commonly referred to as aramid fibers.
  • the wires 2 and 3 are saponified with a lay length of 10 to 15 times the wire diameter or 30 to 45 times the diameter of the copper wires 4 and 5.
  • Each of the two wires 2 and 3 is provided with a sheath 7 and 8 which serves at the same time for electrical insulation and for mechanical protection against weather influences and corrosion, and the two sheaths 7 and 8 together with a bridge 9 integrally connecting them form the cable sheath of the overhead line cable 1.
  • This cable sheath consists of a waterproof and preferably also water-repellent polyamide and is applied to the previously stranded wires 2 and 3 by extrusion under pressure. Because of this type of application, the sheaths 7 and 8 engage with their inside in depressions 10 on the outside of the wires 2 and 3 and essentially fill them completely.
  • the flexural rigidity of the cable shown in FIG. 1 was significantly lower than that of the known telephone line cable, which considerably reduced the risk of a cable break or wire break in the vicinity of the suspension points of the cable, and only in terms of the tensile strength were those with the in Fig. 1 shown cables taking into account a temperature fluctuation range from -30 ° C to + 40 ° C values slightly below the values achievable with the known telephone cable.
  • this is not due to the material of the synthetic fibers, the tensile strength of which is even better than that of steel, but rather to the fact that the fiber bundles 6 in the cable shown in FIG. 1 consist of twisted synthetic fibers and the tensile strength of such a “thread”.
  • the tensile strength of the thread material can only be reached with very high pretension.
  • correspondingly high pretensions of the fiber bundles 6 could be achieved without great difficulty, but such high pretensions are not desirable because this would have an unfavorable effect on the bending stiffness properties of the cable and the substantially better bending stiffness properties of the cable compared to the known one Telephone line cables are much more important than the slight increase in tensile strength that can be achieved by increasing the pretension of the fiber bundles.
  • the construction of the overhead line cable shown in cross section in FIG. 2 corresponds essentially to the cable shown in FIG. there are also two wires 12 and 13 and four tinned copper wires 14 and 15, three fiber bundles 16 and a sheath 17 and 18 per wire and also a bridge 19 between the two sheaths 17 and 18, and also the arrangement of the copper wires 14 1, 15 and fiber bundle 16 relative to one another essentially corresponds to that in FIG.
  • the fiber bundles 16 do not consist of twisted fibers but rather of strands arranged parallel to one another and are resin-impregnated with rosin, and in addition the fiber bundles 16 here do not have a circular but an approximate one trapezoidal cross-section, and the inner walls 20 of the jackets 17 and 18 are not structured as in FIG. 1, but rather cylindrical.
  • the cable shown in FIG. 2 differs significantly in its technical properties from the cable in FIG. 1. The tensile strength of the cable in FIG.
  • the flexural stiffness of the cable in FIG. 1 is significantly greater than that of the cable in FIG. 1, but this greater flexural stiffness does not lead to an increased risk of cable or wire breaks because the rosin used for the resin impregnation has the property of disintegrating into powder in the event of overstressing in the relevant stressing areas and, with this disintegration into powder, the bending stiffness in these stressing areas is also greatly reduced.
  • the tensile strength of the cable in FIG. 2 is much greater than that of the cable in FIG. 1, mainly because of the strand-like parallel arrangement of the fibers in the fiber bundles 16, and even exceeds the tensile strength in connection with the explanation of FIG.
  • the overhead line cable 21 shown in cross section in FIG. 3 corresponds almost completely to the cable shown in FIG. 1 and differs from it only in that the central copper wire 4 in FIG. 1 in the cable in FIG. 3 has a complete structure the central fiber bundle 24 corresponding to the fiber bundles 6 in FIG. 1 is replaced. Otherwise, the two wires 22 and 23 with the outer tinned copper wires 25 and the outer fiber bundles 26 as well as the sheaths 27 and 28 together with the bridge 29 completely correspond in structure and dimensioning to the corresponding parts of the cable shown in FIG. 1.
  • the cable in FIG. 1 has a 23.7% higher DC resistance than the known telephone line cable mentioned in connection with the explanation of FIG. 1, like the cable in FIG.
  • the cable in FIG. 3 is therefore particularly suitable when the line to be laid is subjected to high mechanical stresses, while the cable in FIG. 1 is preferable when the total length of the Cable is relatively large and therefore the lowest possible cable loss per unit length of the cable is important.
  • the overhead line cable 30 shown in cross section in FIG. 4 essentially corresponds in its construction to the cable shown in FIG. 1 and differs from it only in that instead of the four separate fiber bundles 24 and 26, a cross-sectional shape essentially corresponds to the cross-sectional shape of all of these four Fiber bundle together corresponding common fiber bundle 31 is provided and the fibers of this fiber bundle are not twisted like the fibers of the fiber bundles 24 and 26 in the cable in Fig. 3 but arranged parallel to each other like a strand.
  • the fiber bundle 31 in the cable in FIG. 4 is resin-impregnated with rosin, while the fiber bundles 24 and 26 in the cable in FIG. 3 are not provided with such resin impregnation.
  • the cable in Fig. 4 differs from the cable in FIG. 3 in that they have a 20 to 30% higher tensile strength, a somewhat higher tensile strength and a substantially higher bending stiffness. Due to this high bending stiffness, the cable in Fig. 4 is more suitable for use in areas where high tensile strength is less important than bending and resilience, because of course the rosin in the case of the cable in Fig. 4 is also subject to overstressing disintegrates into powder in the stress areas, this cable results in much less favorable strength properties in such areas than, for example, in a corresponding area in the cable in FIG. 2.
  • the overhead line cables 32 and 40 shown in cross section in FIGS. 5 and 6 have, in principle, a different structure of the wires 33 and 34 compared to the cables in FIGS. 1 to 4, but are correct in the design and dimensioning of their cable sheaths with the cables in 1 to 4 essentially correspond.
  • 1 to 3 is a single, essentially circular, centrally arranged fiber bundle 36 or 41 of approximately the same cross section as the total cross section of these individual fiber bundles, and this one central fiber bundle 36 or 41 is of a layer of tinned copper wires of smaller diameter than the diameter of the copper wires 4, 5 or 14, 15 or 25 for the cables 1 to 4, the total copper cross section of which corresponds to the total copper cross section of the copper wires in the cables in FIGS. 1 and 2.
  • the diameter of the copper wires 35 is approximately half the size and the number of the same four times the diameter or number of copper wires in the cables in FIGS. 1 and 2.
  • the lay length of the stranding of the wires 33 and 34 corresponds approximately to the lay length in the 1 to 4.
  • the wires 33 and 34 are provided with sheaths 37 and 38 which are connected to one another by a bridge 39.
  • the central fiber bundle 36 in the cable 32 shown in FIG. 5 consists of twisted fibers
  • the fiber bundle 41 in the cable 40 shown in FIG. 6 consists of strands arranged parallel to one another and is resin-impregnated with rosin.
  • the fiber material is the same as for the cables in FIGS. 1 to 4.
  • the cable 32 in FIG. 1 corresponds to the properties of the cable in FIG. 1 except for its bending stiffness.
  • the bending stiffness of the cable 32 in FIG. 5 is because the combination of the three fiber bundles 6 provided for the cable in FIG.
  • the cable 40 in FIG. 6 because of the larger effective fiber cross-section of its fiber bundle 41, which results from the strand-like parallel arrangement of the fibers, about 25 to 35% higher tensile strength and because of the resin impregnation a somewhat greater tensile strength and also a much greater bending stiffness which, however, as well in the case of the cable in FIG. 2 there is no increased risk of breakage of the cable or individual wires thereof.
  • the cable 40 in FIG. 6 essentially corresponds to the cable 32 in FIG. 5.

Landscapes

  • Insulated Conductors (AREA)
  • Ropes Or Cables (AREA)
  • Suspension Of Electric Lines Or Cables (AREA)
  • Cable Accessories (AREA)
  • Non-Insulated Conductors (AREA)
  • Communication Cables (AREA)
  • Organic Insulating Materials (AREA)
  • Details Of Indoor Wiring (AREA)
  • Pyridine Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pyrrole Compounds (AREA)

Claims (22)

1. Câble de ligne aérienne à plusieurs conducteurs isolés, gainés individuellement et câblés en soi, dont chacun comprend une pluralité de fils métalliques prévus pour la transmission de signaux ainsi que des moyens de décharge de traction au moins approximativement inextensibles s'étendant sensiblement en direction longitudinale du câble, auquel cas le gainage de chaque conducteur isolé est relié en une seule pièce par un pont au gainage d'un autre conducteur isolé du câble, caractérisé en ce que les moyens de décharge de traction sont constitués par un ou plusieurs faisceaux de fibres (6; 16; 24; 26; 31; 36; 41) en fibres synthétiques sensiblement inextensibles, s'étendant parallèlement aux fils métalliques (4, 5; 14, 15; 25, 35) et câblés avec ceux-ci et le ou les divers faisceaux de fibres sont réalisés de telle façon, dans leurs consistance et forme de section transversale et disposés de telle manière à l'intérieur des conducteurs isolés (2, 3; 12, 13; 22, 23; 33, 34), que, dans les divers conducteurs isolés, les fils métalliques et faisceaux de fibres, enveloppés par le gainage associé (7, 8; 17, 18; 27, 28; 37, 38), se fixent mutuellement dans leur position et, ainsi, des déplacements transversaux, en direction du centre des conducteurs isolés, des fibres synthétiques et faisceaux de fibres s'étendant hélicoïdalement en raison du câblage, causés par des charges de traction du câble (1; 11; 21; 30; 32; 40) et conduisant à l'allongement du câble sous charge de traction, sont exclus, de sorte que chaque conducteur isolé individuel et, par suite aussi, le câble sont sensiblement inextensibles malgré l'allure hélicoïdale des fibres synthétiques et faisceaux de fibres.
2. Câble de ligne aérienne selon la revendication 1, caractérisé en ce que la forme de section transversale de chaque faisceau de fibres (6; 26; 36) est sensiblement circulaire.
3. Câble de ligne aérienne selon la revendication 1, caractérisé en ce que la forme de section transversale de chaque faisceau de fibres (16; 31; 41) est réalisée de telle façon que, dans chaque conducteur isolé (12, 13), la partie de la cavité entourée par le gainage (17, 18) du conducteur isolé, qui n'est pas occupée par les fils métalliques (14, 15), est complètement remplie par la totalité des faisceaux de fibres.
4. Câble de ligne aérienne selon la revendication 2, caractérisé en ce que chaque faisceau de fibres (6; 24, 26; 36) est câblé en soi pour l'obtention de la consistance mentionnée et d'une forme de section transversale circulaire.
5. Câble de ligne aérienne selon la revendication 4, caractérisé en ce que les faisceaux de fibres consistent en des fibres synthétiques simplement toronnées.
6. Câble de ligne aérienne selon la revendication 4, caractérisé en ce que les faisceaux de fibres (6; 24, 26) consistent en des fibres synthétiques plusieurs fois toronnées, de préférence doublement toronnées ou retordues.
7. Câble de ligne aérienne selon l'une des revendications 1 à 6, caractérisé en ce que chaque faisceau de fibres (16; 31; 41) et/ou chaque conducteur isolé est imprégné à la résine dans sa totalité pour l'obtention de la consistance mentionnée et d'une forme de section transversale invariable du faisceau de fibres ou du conducteur isolé.
8. Câble de ligne aérienne selon l'une des revendications 1 à 3 et la revendication 7, caractérisé en ce que chaque faisceau de fibres (16; 31; 41) consiste en des fibres synthétiques disposées en écheveau parallèlement les unes aux autres.
9. Câble de ligne aérienne selon la revendication 7 ou 8, caractérisé en ce que la résine, employée pour l'imprégnation, est une résine se désagrégeant en poudre lors d'une sollicitation en pression et/ou en flexion au-delà de sa limite de rupture.
10. Câble de ligne aérienne selon l'une des revendications 7 à 9, caractérisé en ce que la résine, utilisée pour l'imprégnation, consiste, entièrement ou au moins pour une partie prépondérante, en colophane.
11. Câble de ligne aérienne selon l'une des revendications 1 à 10, caractérisé en ce que les fibres synthétiques sensiblement inextensibles consistent en une matière synthétique, de préférence en un polymère organique.
12. Câble de ligne aérienne selon la revendication 11, caractérisé en ce que la matière synthétique est un polyamide aromatique et les fibres ont de préférence une résistance à la traction d'au moins 250 kg/mm2, un module d'élasticité d'au moins 10 000 kg/mm2 et un allongement à la rupture inférieur à 3%.
13. Câble de ligne aérienne selon l'une des revendications 1 à 12, caractérisé en ce que les fils métalliques (4, 5; 14, 15; 25; 33) de chaque conducteur isolé (2, 3; 12, 13; 22, 23; 33, 34) sont disposés de façon centralement symétrique par rapport à l'axe du conducteur isolé concerné.
14. Câble de ligne aérienne selon la revendication 13, caractérisé en ce que chaque conducteur isolé (2, 3; 12, 13) est pourvu d'un fil métallique (4; 14) dont l'axe coïncide avec l'axe du conducteur isolé concerné ainsi que de trois fils métalliques extérieurs (5; 15) de même diamètre que celui du fil métallique central, lesquels sont disposés suivant un espacement angulaire de 120° autour du fil métallique central et s'appliquent contre celui-ci.
15. Câble de ligne aérienne selon les revendications 2 et 14, caractérisé en ce que chaque conducteur isolé (2, 3) est pourvu de trois faisceaux de fibres (6) d'au moins approximativement le même diamètre que celui des fils métalliques (4, 5), lesquels sont disposés entre les trois fils métalliques externes (5) et s'appliquent également contre le fil métallique central (4).
16. Câble de ligne aérienne selon les revendications 3, 8 et 14, caractérisé en ce que le gainage (17, 18) de chaque conducteur isolé (12, 13) est cylindrique intérieurement et a un diamètre intérieur triple du diamètre des fils métalliques (14, 15) et chaque conducteur isolé est pourvu de trois faisceaux de fibres (16) dont chacun remplit complètement l'une des trois cavités entourées respectivement par les deux fils métalliques extérieurs (5) et par le fil métallique central (4) ainsi que par la paroi intérieure de gaine (20).
17. Câble de ligne aérienne selon la revendication 13, caractérisé en ce que chaque conducteur isolé (22, 23) est pourvu de trois fils métalliques (25) de même diamètre, dont les axes sont à une distance, de l'axe du conducteur isolé concerné, égale au diamètre des fils métalliques et sont disposés selon un espacement angulaire de 120° autour de l'axe du conducteur isolé concerné.
18. Câble de ligne aérienne selon les revendications 2 et 17, caractérisé en ce que chaque conducteur isolé (22, 23) est pourvu d'un faisceau de fibres central (24) de même diamètre que celui des fils métalliques (25) et dont l'axe coïncide avec l'axe du conducteur isolé concerné, ainsi que de trois faisceaux de fibres extérieurs (26) de même diamètre que celui des fils métalliques, lesquels sont disposés entre les trois fils métalliques et s'appliquent contre le faisceau de fibres central.
19. Câble de ligne aérienne selon la revendication 13, caractérisé en ce que chaque conducteur isolé (33, 34) est pourvu d'un faisceau de fibres central (36; 41) dont l'axe coïncide avec l'axe du conducteur isolé concerné ainsi que d'une pluralité de fils métalliques (35) disposés autour du faisceau de fibres central et s'appliquant contre celui-ci et de préférence s'appliquant aussi mutuellement les uns contre les autres.
20. Câble de ligne aérienne selon l'une des revendications 1 à 19, caractérisé en ce que les fils métalliques (4, 5; 14, 15; 25; 35) consistent en fil de cuivre, de préférence en fil de cuivre étamé.
21. Câble de ligne aérienne selon l'une des revendications 1 à 20, caractérisé en ce que le gainage (7, 8; 27, 28; 37, 38) de chaque conducteur isolé (2, 3; 22, 23; 33, 34) pénètre, par sa face interne, dans des creux (10) sur la face externe des conducteurs isolés et remplit ceux-ci sensiblement complètement.
22. Utilisation d'un câble de ligne aérienne selon l'une des revendications 1 à 21 comme ligne téléphonique.
EP81110134A 1980-12-19 1981-12-04 Câble aérien comprenant des éléments de traction Expired EP0054784B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT81110134T ATE12713T1 (de) 1980-12-19 1981-12-04 Freileitungskabel mit zugentlastungsmitteln.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH9374/80 1980-12-19
CH937480 1980-12-19

Publications (3)

Publication Number Publication Date
EP0054784A2 EP0054784A2 (fr) 1982-06-30
EP0054784A3 EP0054784A3 (en) 1983-03-16
EP0054784B1 true EP0054784B1 (fr) 1985-04-10

Family

ID=4351327

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81110134A Expired EP0054784B1 (fr) 1980-12-19 1981-12-04 Câble aérien comprenant des éléments de traction

Country Status (9)

Country Link
US (1) US4449012A (fr)
EP (1) EP0054784B1 (fr)
JP (1) JPS57124809A (fr)
AT (1) ATE12713T1 (fr)
CA (1) CA1177923A (fr)
DE (1) DE3169897D1 (fr)
ES (1) ES508146A0 (fr)
FI (1) FI814065L (fr)
NO (1) NO814227L (fr)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60147024U (ja) * 1984-03-07 1985-09-30 日本電気株式会社 ソノブイ用ケ−ブル
GB2162362B (en) * 1984-07-26 1988-01-27 Gen Electric Co Plc Flexible electrical connectors
US4734544A (en) * 1986-10-29 1988-03-29 Noel Lee Signal cable having an internal dielectric core
DE3867682D1 (de) * 1987-04-13 1992-02-27 Schweizerische Isolawerke Nachrichten-oder steuerkabel mit tragelement.
US5045830A (en) * 1988-01-18 1991-09-03 Toyo Denso Kabushiki Kaisha Hydraulic actuating apparatus
FR2634312B1 (fr) * 1988-07-18 1994-03-18 Cousin Ets Cousin Freres A M Cable electroporteur
US4937401A (en) * 1989-01-05 1990-06-26 Noel Lee Signal cable assembly including bundles of wire strands of different gauges
US4910360A (en) * 1989-01-05 1990-03-20 Noel Lee Cable assembly having an internal dielectric core surrounded by a conductor
US4900266A (en) * 1989-03-08 1990-02-13 Gsi Corporation Strain relief system for connecting cables
CA2016130A1 (fr) * 1989-05-04 1990-11-04 Larry W. Oden Cordon souple a ame monofilament de fibre organique a module eleve
US4933513A (en) * 1989-05-08 1990-06-12 Noel Lee Electrical signal conductor assembly
EP0430867A1 (fr) * 1989-11-20 1991-06-05 Kupferdraht-Isolierwerk AG Wildegg Câble courant faible pour ligne aérienne avec âmes parallèles
US5039195A (en) * 1990-05-29 1991-08-13 At&T Bell Laboratories Composite cable including portions having controlled flexural rigidities
US5180890A (en) * 1991-03-03 1993-01-19 Independent Cable, Inc. Communications transmission cable
US6222129B1 (en) 1993-03-17 2001-04-24 Belden Wire & Cable Company Twisted pair cable
US5606151A (en) * 1993-03-17 1997-02-25 Belden Wire & Cable Company Twisted parallel cable
FR2776120B1 (fr) * 1998-03-12 2000-04-07 Alsthom Cge Alcatel Cable souple a faible diaphonie
US6249629B1 (en) 1998-12-10 2001-06-19 Siecor Operations, Llc Robust fiber optic cables
US6363192B1 (en) 1998-12-23 2002-03-26 Corning Cable Systems Llc Composite cable units
JP2001101929A (ja) * 1999-09-30 2001-04-13 Yazaki Corp フレキシブル高強度軽量導体
US6356690B1 (en) 1999-10-20 2002-03-12 Corning Cable Systems Llc Self-supporting fiber optic cable
EP1930914A3 (fr) * 2000-02-08 2009-07-22 Gift Technologies, LLC Conducteur de transmission électrique renforcé composite
US20020136510A1 (en) * 2001-03-23 2002-09-26 Edgar Heinz Hybrid cable with optical and electrical cores and hybrid cable arrangement
DE20118713U1 (de) * 2001-11-16 2002-01-17 Gebauer & Griller Kabelwerke Ges.M.B.H., Poysdorf Flexible elektrische Leitung
EP1649610B1 (fr) 2003-07-11 2014-02-19 Panduit Corp. Suppression de la diaphonie au moyen d'une fiche de connexion perfectionnee
US6982385B2 (en) * 2003-12-04 2006-01-03 Jeng-Shyong Wu Wire cable of electrical conductor forming of multiple metals or alloys
CN101006527A (zh) * 2004-03-17 2007-07-25 Gift技术有限合伙公司 电导体缆线及其形成方法
US7238885B2 (en) * 2004-12-16 2007-07-03 Panduit Corp. Reduced alien crosstalk electrical cable with filler element
US7157644B2 (en) * 2004-12-16 2007-01-02 General Cable Technology Corporation Reduced alien crosstalk electrical cable with filler element
US7317163B2 (en) * 2004-12-16 2008-01-08 General Cable Technology Corp. Reduced alien crosstalk electrical cable with filler element
US7064277B1 (en) 2004-12-16 2006-06-20 General Cable Technology Corporation Reduced alien crosstalk electrical cable
US7298957B2 (en) * 2005-07-11 2007-11-20 Gift Technologies, Lp Method for controlling sagging of a power transmission cable
SE0602038L (sv) * 2006-10-02 2008-01-15 Atlas Copco Tools Ab Flerpartskabel för ett portabelt elektriskt verktyg
FR2908922B1 (fr) * 2006-11-22 2011-04-08 Nexans Cable de controle electrique
FR2919105B1 (fr) * 2007-07-20 2009-10-02 Nexans Sa Cable de controle electrique.
JP5322755B2 (ja) * 2009-04-23 2013-10-23 日立電線株式会社 ケーブル
EP2668654A1 (fr) 2011-01-24 2013-12-04 Gift Technologies, LLC Conducteurs à âme composite et leur procédé de fabrication
CN102354567A (zh) * 2011-09-19 2012-02-15 沈阳电业局电缆厂 软弹性复合型架空绝缘电缆
CN203325542U (zh) * 2013-04-11 2013-12-04 富士康(昆山)电脑接插件有限公司 线缆
US10267464B2 (en) 2015-10-26 2019-04-23 Willis Electric Co., Ltd. Tangle-resistant decorative lighting assembly
US11306881B2 (en) 2013-09-13 2022-04-19 Willis Electric Co., Ltd. Tangle-resistant decorative lighting assembly
US9140438B2 (en) 2013-09-13 2015-09-22 Willis Electric Co., Ltd. Decorative lighting with reinforced wiring
US20150136443A1 (en) * 2013-11-19 2015-05-21 Paige Electric Company, Lp Cable with multiple conductors each having a concentric insulation layer
CN104008796A (zh) * 2014-04-23 2014-08-27 晶锋集团股份有限公司 加强型扁电缆
US10522270B2 (en) 2015-12-30 2019-12-31 Polygroup Macau Limited (Bvi) Reinforced electric wire and methods of making the same
JP2018190646A (ja) * 2017-05-10 2018-11-29 株式会社オートネットワーク技術研究所 導電線及び導電線の製造方法
JP7025391B2 (ja) * 2018-10-11 2022-02-24 アプティブ・テクノロジーズ・リミテッド 自動車用通信ケーブル
CN109390084A (zh) * 2018-12-03 2019-02-26 宝胜科技创新股份有限公司 大长度飞行器用系留电缆
CN110890183B (zh) * 2019-12-17 2021-01-05 东莞市骏豪电线科技有限公司 一种抗拉撕脚踩电线的制作方法及其电线

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2119393A (en) * 1934-07-18 1938-05-31 Gen Electric Electric cable and method of manufacturing the same
FR834955A (fr) * 1937-03-09 1938-12-08 Comp Generale Electricite Câble électrique à plusieurs conducteurs
US2463590A (en) * 1946-10-25 1949-03-08 Arutunoff Armais Weight-carrying cable
US2675420A (en) * 1950-03-28 1954-04-13 Owens Corning Fiberglass Corp Insulated electrical conductor
US2819988A (en) * 1955-06-02 1958-01-14 American Viscose Corp Regenerated cellulose cordage
FR1366343A (fr) * 1963-08-07 1964-07-10 Thomson Houston Comp Francaise Câble portatif plat à conducteurs multiples
NO117374B (fr) * 1965-04-27 1969-08-04 Standard Tel Kabelfab As
CH519226A (fr) * 1969-04-22 1972-02-15 British Aircraft Corp Ltd Câble électrique de commande et utilisation de ce câble
US3717720A (en) * 1971-03-22 1973-02-20 Norfin Electrical transmission cable system
US3857996A (en) * 1973-06-18 1974-12-31 Anaconda Co Flexible power cable
US4097686A (en) * 1973-08-04 1978-06-27 Felten & Guilleaume Carlswerk Aktiengesellschaft Open-air or overhead transmission cable of high tensile strength
CA996645A (en) * 1974-05-03 1976-09-07 Canada Wire And Cable Limited Power cable having an extensible ground check conductor
NL176505C (nl) * 1974-06-27 1985-04-16 Philips Nv Dunne, soepele, elektrische verbindingsdraad alsmede werkwijze voor het vervaardigen van een dergelijke draad.
CA1024228A (fr) * 1975-07-11 1978-01-10 Friedrich K. Levacher Cables electriques avec gaine resistant a la tension mecanique
US4084065A (en) * 1976-12-02 1978-04-11 The United States Of America As Represented By The Secretary Of The Navy Antistrumming cable
DE2715585A1 (de) * 1977-04-07 1978-10-12 Standard Elektrik Lorenz Ag Mantelfreies kunststoffkabel
DE7817735U1 (de) * 1978-06-09 1979-02-22 Siemens Ag, 1000 Berlin Und 8000 Muenchen Zweiadrige, mantellose Leitung für Femmeldezwecke
US4319074A (en) * 1978-08-15 1982-03-09 Trw Inc. Void-free electrical conductor for power cables and process for making same
US4202164A (en) * 1978-11-06 1980-05-13 Amsted Industries Incorporated Lubricated plastic impregnated aramid fiber rope
EP0012100A1 (fr) * 1978-11-29 1980-06-11 Siemens Aktiengesellschaft Câble plat à plusieurs âmes constituées de conducteurs ronds
FR2447081A2 (fr) * 1979-01-18 1980-08-14 Cables De Lyon Geoffroy Delore Cable electrique a element porteur longitudinal

Also Published As

Publication number Publication date
ES8303800A1 (es) 1983-02-01
EP0054784A3 (en) 1983-03-16
NO814227L (no) 1982-06-21
US4449012A (en) 1984-05-15
CA1177923A (fr) 1984-11-13
ATE12713T1 (de) 1985-04-15
DE3169897D1 (en) 1985-05-15
JPS57124809A (en) 1982-08-03
FI814065L (fi) 1982-06-20
ES508146A0 (es) 1983-02-01
EP0054784A2 (fr) 1982-06-30

Similar Documents

Publication Publication Date Title
EP0054784B1 (fr) Câble aérien comprenant des éléments de traction
EP0126509B1 (fr) Elément de câble ou câble optique et procédé de sa fabrication
DE3513859C2 (de) Unterwasser-Nachrichtenkabel mit mehreren optischen Fasern
CH656970A5 (de) Hochflexibles isoliertes elektrisches kabel, verfahren zu seiner herstellung und verwendung des kabels.
EP0476438A2 (fr) Ligne électro-optique aérienne ayant 24 guides d'ondes lumineuses et plus
DE3118172A1 (de) Laengswasserdichtes optisches nachrichtenkabel
DE2824521A1 (de) Elektrisches fernmeldekabel
DE2815563A1 (de) Optisches kabel
DE10059918A1 (de) Kabel, insbesondere Seekabel, und Verfahren zur Herstellung desselben
EP0042996B1 (fr) Câble d'information optique autoportant
DE7438507U (de) Elektrisches Kabel mit Zugentlastung
DE2801231C2 (de) Mit Isoliermaterial ummanteltes Starkstromkabel
EP0072594A2 (fr) Câble de télécommunication optique
DE2260095A1 (de) Ein- oder mehradriges strangfoermiges gut, wie elektrische kabel, rohrbuendelkabel oder dergleichen
DE3734020C2 (fr)
EP3485498B1 (fr) Câble de travail sous-marin
DE2512830A1 (de) Fernsehkamerakabel mit lichtleitfasern
DE2433099A1 (de) Elektrisches kabel mit zugaufnehmenden elementen aus hochfesten kunststoffaeden
DE69125891T2 (de) Elektrisches Koaxialkabel mit optischen Fasern
DE2709106A1 (de) Optisches kabel
DE3446766A1 (de) Leitungsseil fuer hochspannungsfreileitungen
DE19910653A1 (de) Metallfreies optisches Kabel
EP0477416B1 (fr) Câble optique
DE1964744A1 (de) Kabel mit innendruck- und/oder zugbeanspruchtem Mantel
EP0456899A2 (fr) Câble aérien à fibres optiques grande portée

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19830127

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 12713

Country of ref document: AT

Date of ref document: 19850415

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3169897

Country of ref document: DE

Date of ref document: 19850515

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19851231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19901105

Year of fee payment: 10

Ref country code: GB

Payment date: 19901105

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19901114

Year of fee payment: 10

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19901231

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19911204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19911205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19911231

BERE Be: lapsed

Owner name: KUPFERDRAHT-ISOLIERWERK A.G. WILDEGG

Effective date: 19911231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19920701

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19921102

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 81110134.4

Effective date: 19920704

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19951121

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19951229

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19951231

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19961204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19961231

Ref country code: CH

Effective date: 19961231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970902