EP0053563B1 - Method and apparatus for feeding caps to closing machines - Google Patents

Method and apparatus for feeding caps to closing machines Download PDF

Info

Publication number
EP0053563B1
EP0053563B1 EP81420169A EP81420169A EP0053563B1 EP 0053563 B1 EP0053563 B1 EP 0053563B1 EP 81420169 A EP81420169 A EP 81420169A EP 81420169 A EP81420169 A EP 81420169A EP 0053563 B1 EP0053563 B1 EP 0053563B1
Authority
EP
European Patent Office
Prior art keywords
conveyor
cells
rate
cell
caps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81420169A
Other languages
German (de)
French (fr)
Other versions
EP0053563A1 (en
Inventor
Albert Scheidegger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Albea Tubes France SAS
Original Assignee
Cebal SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cebal SAS filed Critical Cebal SAS
Publication of EP0053563A1 publication Critical patent/EP0053563A1/en
Application granted granted Critical
Publication of EP0053563B1 publication Critical patent/EP0053563B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67BAPPLYING CLOSURE MEMBERS TO BOTTLES JARS, OR SIMILAR CONTAINERS; OPENING CLOSED CONTAINERS
    • B67B3/00Closing bottles, jars or similar containers by applying caps
    • B67B3/02Closing bottles, jars or similar containers by applying caps by applying flanged caps, e.g. crown caps, and securing by deformation of flanges
    • B67B3/06Feeding caps to capping heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67BAPPLYING CLOSURE MEMBERS TO BOTTLES JARS, OR SIMILAR CONTAINERS; OPENING CLOSED CONTAINERS
    • B67B3/00Closing bottles, jars or similar containers by applying caps
    • B67B3/02Closing bottles, jars or similar containers by applying caps by applying flanged caps, e.g. crown caps, and securing by deformation of flanges
    • B67B3/04Cutting caps from strip material in capping machines

Definitions

  • the invention relates to a method and an installation for supplying fragile capsules to a stoppering machine operating at high speed from several cells for manufacturing said capsules, the capsules being collected at the outlet of the cells and transferred to the capping machine by an endless chain conveyor, according to the preambles of claims 1 and 3, respectively, as they are known from patent application FR-A-2 375 136.
  • the capsule manufacturing cells are machines with precise and delicate mechanical parts. They cannot be installed in the immediate vicinity of the capping machine, the stopping or starting of which may result in the breaking of containers containing aggressive or foaming products. Bottlers request that, near the capping machine, space be left free for the carousel for bringing in and taking out containers, to allow cleaning often with plenty of water from these machines. It is therefore practically impossible to set up, in the immediate vicinity of the capping machine, a capsule manufacturing cell and, a fortiori, two or more cells.
  • the solution to the problem is characterized in that one puts in parallel (N + 1) manufacturing cells, N being the number of cells necessary to respond to the requested blocking rate (C ), in that the connection between the conveyor and the machine is ensured by an inclined main corridor, provided with at least two detectors detecting minimum and maximum levels, in that the conveyor is a two-speed honeycomb conveyor, of which the maximum flow rate is at least equal to the production rate of the (N + 1) cells and can be reduced to a lower flow rate corresponding as much as possible to the nominal capping rate (C), the transition from the first speed to the second being controlled by the main corridor detectors, in that the connection between each cel lule and the conveyor is ensured by an individual inclined corridor, each being provided with at least two detectors detecting minimum and maximum levels, each cell being able to operate at two flow rates: a maximum flow rate a little more than the amount needed , and a lower flow lower than the required flow C N + 1, the passage from one flow to the other being controlled by the level detectors
  • N + 1 each of capacity C N capsules / hour.
  • the additional cell of rank (N + 1) acts as a reserve.
  • this reserve is constituted by any one of the N + 1 cells.
  • the (N + 1) cells operate permanently at a reduced rate, each supplying C N + 1 capsules / hour.
  • the N cells in activity accelerate their production at the theoretical rate of c each.
  • main corridor constitutes an intermediate storage of capsules blocked in line.
  • This storage has a minimal capacity, but sufficient however to control the operation of the conveyor and, consequently, of the cells downstream, it makes it possible to adjust at any time the manufacture of capsules according to demand.
  • the conveyor is fed from each cell by gravity via an individual inclined corridor also constituting minimal intermediate storage.
  • Each individual corridor is equipped with two detectors defining two levels, an upper level or "maximum” and a lower level or “minimum”. If each of the cells provides a number of N + e capsules greater than the number necessary, the corridor is filled. When the level of the capsules reaches the "maximum” detector, this stops the cell, or better, makes it operate at a slower speed. The hallway empties. The level of the capsules reaches the "mini” level. The second detector again controls the operation of the cell at its nominal flow rate E + ⁇ .
  • each cell When all the cells (N + 1) are in service, the level of capsules waiting in each individual lane must be able, in this case also, to oscillate between the levels of the minimum and maximum detectors. To fill each lane to the maximum level, the corresponding cell is operated at its maximum flow CN + e. To empty the corridor to the minimum level, the cubicle must operate at a speed lower than the required flow , or a debit So each cell is set to operate at two rates Whether with N or N + 1 cells in operation, cell production meets demand, the level of the individual lanes varies constantly between the minimum and maximum levels.
  • the conveyor is a cell conveyor, each cell of which has dimensions corresponding to those of a capsule, this in order to preserve the orientation of the capsules originating from the cells via the corridors.
  • the conveyor is supplied by the N + 1 individual lanes arranged successively along its route. All the alveoli of the conveyor must be supplied with capsules, without two capsules being able to enter the same alveolus and risk being trapped and deforming therein. This is the reason for the selectors placed at the exit of each individual corridor. Each distributes the capsules of its lane one by one in the successive cells by circular permutation. Each selector feeds the cells in a step (N + 1) leaving the N intermediate cells available to be supplied from the N other individual lanes.
  • the main corridor is equipped with two detectors defining minimum and maximum levels. These detectors control a slow speed and a fast speed respectively. Fast speed is set for cell flow slow speed for
  • the slow speed of the conveyor controlled by the upper detector gives a flow of capsules C - e l lowers the level slowly in the main corridor.
  • the rapid speed of the conveyor allows the level of capsules to rise when the minimum level is reached in the main corridor located downstream.
  • all the inclined corridors both the main corridor and the individual corridors, are fitted with two additional detectors.
  • a high detector above the maximum detector a low detector below the minimum detector.
  • the high detector detects an anomaly downstream and stops the conveyor.
  • the low detector detects an anomaly upstream. It sets off an alarm and stops the capping machine.
  • the high detector stops the corresponding cell
  • the low detector restarts the cell if it is stopped, or stops it by signaling an anomaly if it is operating.
  • the integrated packaging chains are not suddenly put into operation at their maximum capacity, but gradually, or, more often, in stages.
  • the nominal blocking rate gradually varies from a minimum C m to a maximum C M.
  • the motors of the various machines, including those of the conveyor cells, are powered by variable speed motors.
  • the entire installation operates according to a program based on the instantaneous nominal rate C ; .
  • the installation shown corresponds to the case where the number (N + 1) of cells installed is 5. This installation can operate with only four cells in service. Each element of the installation is defined by a numerical reference. Identical elements such as the five cells are differentiated by alphabetical indices.
  • FIG. 1 there are five cells (1 a-1 b-1 c-1 d-1 e) for making capsules schematized here by simple parallelepipeds. These five cells (1 a-1 b-1 c-1 d-1 e) can feed by gravity, via five individual inclined corridors (2a-2b-2c-2d-2e) a single conveyor (3) which combines the production of the five cells.
  • a dotted position P 3 is indicated for reloading.
  • the conveyor is formed of an endless chain of wagons each comprising a vertical cylindrical cell (4) without bottom which opens at the upper and lower part.
  • the horizontal section of these plastic cells closely corresponds to the cross section of a capsule (5), as shown in Figure 5, so that the tab capsules inserted vertically are forced to keep the orientation they had in the individual corridors (2a-2b-2c-2d-2e).
  • the conveyor (3) shown in Figures 1,2 or 3 is straight horizontal. It rests on a table (6) on which slide the capsules (5) driven in their vertical cells (4). But the conveyor (3) may as well have curves, rising or falling portions, which gives maximum flexibility to the installation. Instead of sitting on a table (6), it can also be accompanied by a simple lower slide which supports the capsules in the alveoli.
  • the conveyor (3) feeds the capping machine via an inclined main corridor (8) and a dispensing container (9) as specified below.
  • the capping machine (7) comprises several crimping heads (10) which make it possible to cork at the rate of 60,000 operations per hour for the bottles (1) brought by a carousel (12).
  • the five cells (1 a-1 b-1 c-1 d-1 e) are each suspended on two slides (13a ⁇ 14a, 1 3b-14b, 13c-14c, 13d ⁇ 14d, 13e ⁇ 14e) arranged at the upper part of a frame defining the volume of the capsule manufacturing unit offset in height relative to one another. These slides allow easy movement of the five cells (1 a-1 b-1 c-1 d-1 e) transversely in front of or behind the conveyor (3) for reloading with raw material (aluminum strip or plastic seal) or for maintenance.
  • the three positions (P 1 -P 2 -P 3 ) are shown in Figure 3. Suspending the cells from elevated slides makes them particularly easy to access while protecting them from most liquid splashes.
  • each cell is associated with a hopper (15a-15b-15c-15d-15e) and with a mechanism for supplying seals produced according to a known technique.
  • the cells are in fact placed on the slides by means of pads (16). They can thus be easily lifted by a hoist or forklift, and very easily replaced.
  • the movement of each cell in the three positions P l -P 2 -P 3 is controlled by an easily disconnectable cylinder.
  • FIG. 3 there is a strip of aluminum wound on a reel (17).
  • the skeleton (18) of this strip after cutting blanks corresponding to the dimensions of the capsules (5) is driven by a wheel (19) to be recovered.
  • the cut capsules, formed and provided with their seal by the mechanisms (20a-20b-20c-20d-20e) of each cell are immediately distributed in the corresponding individual corridor (2a-2b-2c-2d-2e). They are in vertical position with their tabs at the rear, that is to say, here, at the top, as shown in FIG. 4 in the main corridor (8).
  • Each individual corridor (2a-2b-2c-2d-2e) is split into two rigid elements, an upper element secured to the corresponding cell, a lower element secured to the conveyor table (3). These two elements are connected by a snap-in device (21 a-21 b-21 c-21 d-21 e) which fixes, precisely, when it is in service, the position of each cell relative to the conveyor ( 3). Only the latching (21) of the corridor (2a) is indicated in FIG. 3, but the same device is used on the five individual corridors.
  • Each individual lane (2a-2b-2c-2d-2e) is provided with four detectors respectively (22a-23a-24a-25a, 22b-23b-24b-25b, 22c-23c-24c-25c, 22d-23d-24d -25d, 22e-23e-24e-25e) distributed successively along its length and a distribution selector (26a-26b-26c-26d-26e) at its end, that is to say at its connection with the conveyor (3) as shown diagrammatically in FIG. 3.
  • These selectors are in the form of a star wheel whose branches are spaced apart by a capsule diameter. They control the exit of the capsules in synchronization with the passage of the alveoli (4) of the transporter.
  • the cells (4) are filled by circular permutation, the selectors assigning each of the successive cells to one of the five lanes (2a-2b-2c-2d-2e). If one selector stops, one in five cells will not be filled.
  • the main corridor (8) is also provided with 4 detectors (27-28-29-30). It opens inside the crown, divided into compartments, of a distributor disc (9) as shown in FIG. 4.
  • This disc has an axis of rotation parallel to that of the capping machine (7). It rotates with a circumferential speed substantially half that of the heads (10).
  • the disc compartments are arranged to each face a head (10) when the installation is in operation and the disc and the heads are in rapid rotation.
  • the capsules (5) first pass by gravity from the corridor (8) into the compartments where they are retained by a peripheral belt. They are then projected one by one by centrifugal force through a lumen from the compartments in each of the heads (10).
  • a compressed air nozzle (31) facilitates the passage of the capsules (5) in the heads (10).
  • the relatively low speed of rotation of the disc (9) allows loading without difficulty of the compartments from the corridor (8) static. This same speed of rotation of the disc (9) then allows the loading of the heads (10) without too much variation in speed.
  • This disc (9) also prevents wastage of capsules (5).
  • an unused capsule (5) remains from a previous passage in a head (10), it drives back the one which occurs in a disc compartment (9) which in turn drives back the one which will appear at the bottom of the corridor ( 8).
  • Each of the lanes (2a-2b-2c-2d-2e-8) has a cross section closely corresponding to that of the capsules (5). It is the same for the cross section of the cells (4) of the conveyor, as well as the disc compartments (9). Thus, the orientation initially given to the capsules at the exit of the cells (1 a-1 b-1 c-1 d-1 e) is preserved up to the heads (10).
  • Each corridor thus constitutes a small intermediate storage loaded on the downstream device, that is to say the conveyor (3) for the individual corridors (2a-2b-2c-2d-2e) or the distributor disc (9) for the main corridor (8).
  • the detector (30) immediately stops the capping machine (7) and the carousel (12) for supplying bottles (11).
  • the capsules are engorged due to an incident on the capping machine (7) or to the supply of bottles (11).
  • the detector (27) immediately stops the conveyor (3), and consequently, the cells (1 a-1 b-1 c-1 d-1 e) downstream.
  • the detectors (28) and (29) define “maximum” and “minimum” levels in the corridor (8).
  • the presence of a capsule at the maximum level (28) causes the conveyor (3) to slow down to its slow speed.
  • the absence of a capsule at the minimum level (29) causes the accelerator (3) to accelerate at its rapid speed.
  • the capping rate (C) of the machine (7) is 60,000 bottles per hour.
  • the fast speed of the conveyor (3) corresponds to a maximum flow of cells or 75,500 cells / hour, its slow speed Ce ; at 59,500 cells / hour.
  • the main corridor feeds the main corridor at the flow rates of 4/5 x 59,500 or 4/5 x 75,500 capsules / hour, or respectively 47,600 or 60,400 capsules / hour depending on whether it operates at low or high speed. Since the consumption of capsules is 60,000 capsules / hour, the level in the main corridor can vary between the minimum and the maximum (29-28).
  • the conveyor feeds the main corridor (8 ) at the rate of 59,500 or 75,500 capsules / hour.
  • the level of capsules in the main corridor can still fluctuate between the mini (29) and the maxi (28).
  • the two production rates for each cell (1 a-1 b-1 c-1 d-1 e) or are here 15,200 and 11,800.
  • production In operation with five cells, production varies between 76,000 and 59,000 capsules / hour. In both cases, the production capacities frame the possibilities of racking by the conveyor (3) at the bottom of the individual lanes.
  • the level of capsules in each of the individual lanes (2a-2b-2c-2d-2e) varies between the mini (24a-24b-24c-24d-24e) and the maxi (23a-23b-23c-23d-23e) with always a few capsules waiting between the selector (26a-26b-26c-26d-26e) and the corresponding minimum level (25a-25b-25c-25d-25e).
  • the motors of the entire capsule manufacturing facility are variable speed motors. Their speed varies according to the nominal rate C.
  • the small reserve of capsules, which exists in the main corridor (8) between the distributor disc (9) and the lower detector (30) which controls the general stop as well as the few capsules which are stored in the disc (9) and the heads (10) are very useful in making it possible to somewhat dampen the stoppage of the installation.
  • the small reserve of capsules between each of the individual selectors (26a-26b-26c-26d-26e) and the lower detector (25a-25b-25c-25d-25e) of each individual lane (2a-2b-2c-2d-2e ) is also highly appreciated by the person responsible for the bottling plant.
  • the wagons are assembled by cardan hooks which allow the conveyor to follow an uneven path, to move away the mechanical part where the five cells are gathered (1a-1b -1c-1d-1e) of the bottling and capping area of the bottles (11).
  • the cells (4) of the wagons are vertical cells without bottom. They are only blocked at the bottom by the table (6) of the conveyor (3). They therefore easily receive, by simple gravity, the capsules (5) coming from the individual lanes (2a-2b-2c-2d-2e). An orifice (32) of suitable section above the passage (8) is sufficient for the filled cells (4) to discharge into this passage, by gravity.

Description

L'invention est relative à un procédé et à une installation d'alimentation en capsules fragiles d'une machine de bouchage fonctionnant à cadence élevée à partir de plusieurs cellules de fabrication desdites capsules, les capsules étant collectées à la sortie des cellules et transférées vers la machine de bouchage par un convoyeur à chaîne sans fin, selon les préambules des revendications 1 et 3, respectivement, ainsi qu'ils sont connus par la demande de brevet FR-A-2 375 136.The invention relates to a method and an installation for supplying fragile capsules to a stoppering machine operating at high speed from several cells for manufacturing said capsules, the capsules being collected at the outlet of the cells and transferred to the capping machine by an endless chain conveyor, according to the preambles of claims 1 and 3, respectively, as they are known from patent application FR-A-2 375 136.

L'alimentation d'une machine de bouchage fonctionnant à cadence élevée, c'est-à-dire assurant de l'ordre de 60.000 bouchages/heure, pose de nombreux problèmes.The feeding of a capping machine operating at a high rate, that is to say ensuring the order of 60,000 plugs / hour, poses many problems.

Ces machines sont elles-mêmes intégrées dans des chaînes de conditionnement qui comportent des installations d'amenées de récipients et de remplissage à l'amont, d'étiquetage et d'emballage à l'aval. Un arrêt, même de courte durée de telles chaînes complexes, représente une perte de production importante. Ces chaînes fonctionnant à cadences élevées mettent en mouvement des flux de produits, de récipients, ou de capsules considérables de sorte que des stockages intermédiaires correspondant à des arrêts même de courte durée représentent des volumes et des investissements importants. Les récipients le plus souvent élancés et déplacés à grande vitesse ne peuvent être arrêtés instantanément sans risquer de se renverser, entraîner à la fois une perte de produit et une perturbation considérable tout au long du circuit de conditionnement. Ceci est encore plus grave si les récipients sont fragiles, comme les bouteilles en verre allégé. Pour certaines boissons gazeuses, un arrêt trop brutal entraîne un débordement du contenu sous forme de mousse. Pour la bière, on pratique même le »bouchage sur mousse« où la formation de mousse est amorcée volontairement. Le bouchage doit se faire au moment précis où la mousse atteint le niveau supérieur du goulot. Enfin, la remise en route de chaînes complexes de conditionnement est une opération délicate et longue. Il importe que tous les éléments de la chaîne de conditionnement, depuis l'alimentation en produit, en récipients ou en capsules jusqu'à l'emballage, fonctionnent de façon absolument sûre sans à coup ni interruption.These machines are themselves integrated into packaging lines which include facilities for supplying containers and filling upstream, labeling and packaging downstream. Even a short shutdown of such complex chains represents a significant loss of production. These chains operating at high rates set in motion considerable product, container or capsule flows so that intermediate storage corresponding to even short stops represents significant volumes and investments. The containers, most often slender and moved at high speed, cannot be stopped instantaneously without risking overturning, causing both loss of product and considerable disturbance throughout the packaging circuit. This is even more serious if the containers are fragile, such as light glass bottles. For certain carbonated drinks, a too abrupt stop results in an overflow of the foam content. For beer, we even practice "foam capping" where foaming is initiated voluntarily. The capping must be done at the precise moment when the foam reaches the upper level of the neck. Finally, restarting complex packaging chains is a delicate and time-consuming operation. It is important that all the elements of the packaging chain, from the supply of product, containers or capsules to the packaging, function absolutely safely without sudden or interruption.

Si, pour des raisons économiques et écologiques, on veut utiliser des capsules fragiles, en particulier des capsules en aluminium mince comportant des languettes de préhension faisant saillie comme celles décrites dans le brevet français 2 375 136 ou son addition FR 2 445 295, le problème de l'alimentation en capsules devient particulièrement difficile. On doit proscrire tout transport et stockage en vrac dans des cartons ou trémies ainsi que tout dispositif d'orientation de telles capsules. Elles se déforment facilement et occasionneraient trop fréquemment des bourrages et arrêts dans la chaîne de conditionnement.If, for economic and ecological reasons, it is desired to use fragile capsules, in particular thin aluminum capsules comprising protruding gripping tabs such as those described in French patent 2,375,136 or its addition FR 2,445,295, the problem feeding capsules becomes particularly difficult. Any transport and storage in bulk in cartons or hoppers as well as any device for orienting such capsules should be prohibited. They are easily deformed and too often cause jams and stops in the packaging line.

Pour utiliser des capsules fragiles, surtout si elles sont dissymétriques, il s'est avéré que la seule solution était de les fabriquer sur place dans une unité de production intégrée à la chaîne d'embouteillage ou à proximité immédiate, et de les amener directement à la machine de bouchage en conservant leur orientation initiale à la sortie de fabrication.To use fragile capsules, especially if they are asymmetrical, it turned out that the only solution was to manufacture them on site in a production unit integrated into the bottling line or in the immediate vicinity, and to bring them directly to the capping machine while retaining their initial orientation at the end of manufacturing.

Cette solution est, d'ailleurs, doublement économique. Si elle permet d'utiliser des capsules minces, elle réduit également les frais de transport et de stockage. I suffit d'approvisionner l'unité de fabrication en bandes d'aluminium enroulées en bobines compactes au lieu de capsules préformées, donc volumineuses et fragiles.This solution is, moreover, doubly economical. If it allows the use of thin capsules, it also reduces transport and storage costs. It suffices to supply the manufacturing unit with aluminum strips wound in compact coils instead of preformed capsules, therefore bulky and fragile.

En utilisant des machines à plusieurs têtes de sertissage que défilent successivement au poste de bouchage, on arrive à atteindre des cadences de bouchage supérieures à 60 000 opérations à l'heure. A ces cadences, on doit, plus que jamais, éviter tout arrêt. Or, la fabrication de capsules comporte plusieurs opérations successives : découpage d'un flan dans une bande, emboutissage, mise en place d'un joint. Il s'avère que l'on ne peut réaliser actuellement une cellule de fabrication compacte délivrant des capsules à des cadences suffisantes, ceci avec une entière fiabilité.By using machines with several crimping heads which pass successively through the capping station, we can achieve capping rates higher than 60,000 operations per hour. At these rates, we must, more than ever, avoid stopping. However, the manufacture of capsules comprises several successive operations: cutting a blank in a strip, stamping, fitting a seal. It turns out that one cannot currently produce a compact manufacturing cell delivering capsules at sufficient rates, this with complete reliability.

Il s'avère que la solution au problème posé est de constituer l'unité de production de plusieurs cellules de fabrication travaillant à des cadences plus raisonnables, mais dont les capacités, mais dont les capacités s'additionnent.It turns out that the solution to the problem posed is to constitute the production unit of several manufacturing cells working at more reasonable rates, but whose capacities, but whose capacities add up.

Par ailleurs, les cellules de fabrication de capsules sont des machines comportant des pièces mécaniques précises et délicates. Elles ne peuvent être installées à proximité immédiate de la machine de bouchage dont l'arrêt ou la mise en route peut entraîner le bris de récipients contenant des produits agressifs ou moussants. Les embouteilleurs demandent que, à proximité de la machine de bouchage, de la place soit laissée libre pour le carrousel d'amenée et de sortie des récipients, pour permettre un nettoyage souvent à grande eau de ces machines. Il est donc pratiquement impossible d'implanter, à proximité immédiate de la machine de bouchage, une cellule de fabrication de capsules et, a fortiori, deux ou plusieurs cellules.In addition, the capsule manufacturing cells are machines with precise and delicate mechanical parts. They cannot be installed in the immediate vicinity of the capping machine, the stopping or starting of which may result in the breaking of containers containing aggressive or foaming products. Bottlers request that, near the capping machine, space be left free for the carousel for bringing in and taking out containers, to allow cleaning often with plenty of water from these machines. It is therefore practically impossible to set up, in the immediate vicinity of the capping machine, a capsule manufacturing cell and, a fortiori, two or more cells.

Ainsi, selon le procédé de l'invention, la solution au problème est caractérisée en ce qu'on met en parallèle (N + 1 ) cellules de fabrication, N étant le nombre des cellules nécessaires pour répondre à la cadence de bouchage demandée (C), en ce que la liaison entre le convoyeur et la machine est assurée par un couloir principal incliné, muni d'au moins deux détecteurs décelant des niveaux mini et maxi, en ce que le convoyeur est un convoyeur à alvéoles à deux vitesses, dont le débit maximal est au minimum égal à la cadence de fabrication des (N + 1 ) cellules et peut être réduit à un débit inférieur correspondant au maximum à la cadence nominale de bouchage (C), le passage de la première vitesse à la deuxième étant commandé par les détecteurs du couloir principal, en ce que la liaison entre chaque cellule et le convoyeur est assurée par un couloir incliné individuel, chacun étant muni d'au moins deux détecteurs décelant des niveaux mini et maxi, chaque cellule pouvant fonctionner à deux débits : un débit maximal

Figure imgb0001
un peu supérieur à la quantité nécessaire
Figure imgb0002
, et un débit inférieur
Figure imgb0003
inférieur au débit nécessaire C N+1, le passage d'un débit à l'autre étant commandé par les détecteurs de niveau du couloir correspondant, chaque couloir individuel étant pourvu d'un sélecteur de distritution alimentant par permutation circulaire les capsules dans les alvéoles successives du transporteur, chaque alvéole étant ainsi affectée à l'un des couloirs individuels successifs. Selon l'installation de l'invention, la solution au problème est indiquée dans la partie caractérisante de la revendication 3.Thus, according to the method of the invention, the solution to the problem is characterized in that one puts in parallel (N + 1) manufacturing cells, N being the number of cells necessary to respond to the requested blocking rate (C ), in that the connection between the conveyor and the machine is ensured by an inclined main corridor, provided with at least two detectors detecting minimum and maximum levels, in that the conveyor is a two-speed honeycomb conveyor, of which the maximum flow rate is at least equal to the production rate of the (N + 1) cells and can be reduced to a lower flow rate corresponding as much as possible to the nominal capping rate (C), the transition from the first speed to the second being controlled by the main corridor detectors, in that the connection between each cel lule and the conveyor is ensured by an individual inclined corridor, each being provided with at least two detectors detecting minimum and maximum levels, each cell being able to operate at two flow rates: a maximum flow rate
Figure imgb0001
a little more than the amount needed
Figure imgb0002
, and a lower flow
Figure imgb0003
lower than the required flow C N + 1, the passage from one flow to the other being controlled by the level detectors of the corresponding lane, each individual lane being provided with a distribution selector supplying the capsules in the alveoli by circular permutation of the conveyor, each cell thus being assigned to one of the successive individual lanes. According to the installation of the invention, the solution to the problem is indicated in the characterizing part of claim 3.

Plus exactement, on met en parallèle (N + 1 ) cellules, chacune de capacité C N capsules/heure. La cel- lule supplémentaire de rang (N + 1 ) joue le rôle de réserve. Pour une plus grande souplesse et pour éviter tout à-coup en cas d'arrêt d'une cellule en fonctionnement, cette réserve est constituée par l'une quelconque des N + 1 cellules. En marche normale, les (N + 1) cellules fonctionnent en permanence à cadence réduite en fournissant chacune C N+1 capsules/heure.More precisely, we put in parallel (N + 1) cells, each of capacity C N capsules / hour. The additional cell of rank (N + 1) acts as a reserve. For greater flexibility and to avoid suddenly in the event of a cell stopping in operation, this reserve is constituted by any one of the N + 1 cells. In normal operation, the (N + 1) cells operate permanently at a reduced rate, each supplying C N + 1 capsules / hour.

A tout instant, une cellule peut s'arrêter, les N cellules en activité accélèrent leur production à la cadence théorique de c chacune.At any time, a cell can stop, the N cells in activity accelerate their production at the theoretical rate of c each.

Comme il est connu, la production de toutes les cellules fonctionnant en parallèle est regroupée sur un convoyeur unique qui alimente seul la machine de bouchage tout en maintenant l'orientation des capsules. Ce convoyeur en plus de sa fonction de regroupement des capsules perment d'éloigner les cellules de la machine de bouchage, ou même de les implanter dans une enceinte isolée, à l'abri de toute projection de liquide.As is known, the production of all cells operating in parallel is grouped on a single conveyor which alone feeds the capping machine while maintaining the orientation of the capsules. This conveyor, in addition to its function of grouping the capsules, keeps the cells away from the capping machine, or even places them in an isolated enclosure, protected from any projection of liquid.

Selon la présente invention, pour augmenter encore la sécurité et la régulation de l'alimentation en capsules de la machine de bouchage, celle-ci est alimentée par gravité à partir d'un couloir incliné interposé entre la machine et le convoyeur. Ce couloir appelé ci-après »couloir principal« constitue un stockage intermédiaire de capsules bloquées en file. Ce stockage a une capacité minime, mais suffisante cependant pour commander le fonctionnement du convoyeur et, par suite, des cellules à l'aval, il permet d'ajuster à tout instant la fabrication de capsules selon la demande.According to the present invention, to further increase the safety and regulation of the supply of capsules to the capping machine, the latter is fed by gravity from an inclined passage interposed between the machine and the conveyor. This corridor called hereinafter "main corridor" constitutes an intermediate storage of capsules blocked in line. This storage has a minimal capacity, but sufficient however to control the operation of the conveyor and, consequently, of the cells downstream, it makes it possible to adjust at any time the manufacture of capsules according to demand.

De même, le convoyeur est alimenté à partir de chaque cellule par gravité par l'intermédiaire d'un couloir incliné individuel constituant également un minime stockage intermédiaire.Likewise, the conveyor is fed from each cell by gravity via an individual inclined corridor also constituting minimal intermediate storage.

Ces couloirs inclinés ont une section correspondant à celle des capsules et conservent ainsi leur orientation. Ils ont, de plus, l'avantage que si l'on veut une installation compacte avec un convoyeur horizontal, celui-ci se trouve surélevé au-dessus de la machine de bouchage et les cellules au-dessus du convoyeur. Ainsi, le convoyeur et, a fortiori, les cellules sont à l'abri de toute projection de produits liquides ou pâteux provenant du poste d'embouteillage.These inclined corridors have a section corresponding to that of the capsules and thus retain their orientation. They also have the advantage that if you want a compact installation with a horizontal conveyor, it is raised above the capping machine and the cells above the conveyor. Thus, the conveyor and, a fortiori, the cells are protected from any projection of liquid or pasty products coming from the bottling station.

Lorsqu'une cellule est arrêtée et les N cellules restantes fonctionnent simultanément, elles sont, en pratique, réglées pour fournir chacune un nombre de capsules un peu supérieur à la quantité nécessaire C N, soit C N + c. Elles alimentent chacune leur couloir individuel qui est pourvu, à la partie inférieure, d'un sélecteur commandant la sortie des capsules vers le convoyeur. Un certain nombre de capsules sont ainsi retenues dans le couloir. Elles sont bloquées dans le couloir en rangée linéaire sans pouvoir se chevaucher, en attente de pouvoir alimenter une à une le convoyeur par simple gravité.When a cell is stopped and the N remaining cells operate simultaneously, they are, in practice, adjusted to each supply a number of capsules slightly greater than the necessary quantity C N, ie C N + c. They each feed their individual corridor which is provided, at the bottom, with a selector controlling the outlet of the capsules towards the conveyor. A certain number of capsules are thus retained in the corridor. They are blocked in the corridor in a linear row without being able to overlap, waiting to be able to feed the conveyor one by one by simple gravity.

Chaque couloir individuel est muni de deux détecteurs définissant deux niveaux, un niveau supérieur ou »maxi« et un niveau inférieur ou »mini«. Si chacune des cellules fournit un nombre de capsules N + e supérieur au nombre nécessaire, le couloir se remplit. Lorsque le niveau des capsules atteint le détecteur »maxi«, celui-ci arrête la cellule, ou mieux, la fait fonctionner à une vitesse ralentie. Le couloir se vide. Le niveau des capsules atteint le niveau »mini«. Le deuxième détecteur commande à nouveau le fonctionnement de la cellule à son débit nominal E + ε.Each individual corridor is equipped with two detectors defining two levels, an upper level or "maximum" and a lower level or "minimum". If each of the cells provides a number of N + e capsules greater than the number necessary, the corridor is filled. When the level of the capsules reaches the "maximum" detector, this stops the cell, or better, makes it operate at a slower speed. The hallway empties. The level of the capsules reaches the "mini" level. The second detector again controls the operation of the cell at its nominal flow rate E + ε.

Lorsque toutes les cellules soit (N + 1 ) sont en service, le niveau des capsules en attente dans chaque couloir individuel doit pouvoir, dans ce cas également, osciller entre les niveaux des détecteurs mini et maxi. Pour remplir chaque couloir jusqu'au niveau maxi, on fait fonctionner la cellule correspondante à son débit maximal C N + e. Pour vider le couloir jusqu'au niveau mini, il faut que la cellule fonctionne à une vitesse inférieure au débit nécessaire

Figure imgb0004
, soit un débit
Figure imgb0005
Ainsi chaque cellule est réglée pour fonctionner à deux débits
Figure imgb0006
Que ce soit avec N ou N + 1 cellules en fonctionnement, la production des cellules répond à la demande, le niveau des couloirs individuels varie constamment entre les niveaux mini et maxi.When all the cells (N + 1) are in service, the level of capsules waiting in each individual lane must be able, in this case also, to oscillate between the levels of the minimum and maximum detectors. To fill each lane to the maximum level, the corresponding cell is operated at its maximum flow CN + e. To empty the corridor to the minimum level, the cubicle must operate at a speed lower than the required flow
Figure imgb0004
, or a debit
Figure imgb0005
So each cell is set to operate at two rates
Figure imgb0006
Whether with N or N + 1 cells in operation, cell production meets demand, the level of the individual lanes varies constantly between the minimum and maximum levels.

Le convoyeur est un convoyeur à alvéoles, dont chaque alvéole a des dimensions correspondant à celles d'une capsule, ceci afin de conserver l'orientation des capsules provenant des cellules par l'intermédiaire des couloirs.The conveyor is a cell conveyor, each cell of which has dimensions corresponding to those of a capsule, this in order to preserve the orientation of the capsules originating from the cells via the corridors.

Lorsque la totalité des cellules, soit N + 1, sont en service, le convoyeur est alimenté par les N + 1 couloirs individuels disposés successivement le long de son parcours. Toutes les alvéoles du convoyeur doivent être alimentées en capsules, sans que deux capsules ne puissent pénétrer dans la même alvéole et risquer de s'y coincer et déformer. C'est la raison d'être des sélecteurs disposés à la sortie de chaque couloir individuel. Chacun distribue unre à une les capsules de son couloir dans les alvéoles successives par permutation circulaire. Chaque sélecteur alimente les alvéoles selon un pas (N + 1) laissant les N alvéoles intermédiaires disponibles pour être alimentées à partir des N autres couloirs individuels.When all the cells, ie N + 1, are in service, the conveyor is supplied by the N + 1 individual lanes arranged successively along its route. All the alveoli of the conveyor must be supplied with capsules, without two capsules being able to enter the same alveolus and risk being trapped and deforming therein. This is the reason for the selectors placed at the exit of each individual corridor. Each distributes the capsules of its lane one by one in the successive cells by circular permutation. Each selector feeds the cells in a step (N + 1) leaving the N intermediate cells available to be supplied from the N other individual lanes.

Ainsi, lorsque les N + 1 cellules fonctionnent simultanément, toutes les alvéoles du convoyeur sont alimentées à leur tour à partir des N + 1 couloirs faisant suite aux N + 1 cellules. Lorsqu'une cellule s'est arrêtée pour une raison quelconque, le couloir correspondant se viderait rapidement si le sélecteur de sortie n'arrêtait immédiatement la distribution de capsules dans les alvéoles. Le sélecteur maintient en permanence quelques capsules en charge dans le couloir et évite des phénomènes transitoires lors de la remise en service de la cellule. Par suite une alvéole se trouve chaque fois vide à la suite de N alvéoles pleines. Le convoyeur doit cependant alimenter dans tous les cas la machine de bouchage à la cadence moyenne de C capsules/heure. Pour cela, on fait varier la vitesse du convoyeur en fonction du niveau de capsules dans le couloir principal, de la même façon que le débit de chaque cellule en fonction du niveau de son couloir individuel.Thus, when the N + 1 cells operate simultaneously, all the alveoli of the conveyor are in turn supplied from the N + 1 lanes following the N + 1 cells. When a cell has stopped for any reason, the corresponding lane would empty quickly if the exit selector did not immediately stop dispensing capsules in the alveoli. The selector permanently keeps a few capsules loaded in the corridor and avoids transient phenomena when the cell is put back into service. As a result, a cell is empty each time following N full cells. The conveyor must however supply the capping machine in all cases at the average rate of C capsules / hour. To do this, the speed of the conveyor is varied as a function of the level of capsules in the main corridor, in the same way as the flow rate of each cell as a function of the level of its individual corridor.

De même que les couloirs individuels, le couloir principal est muni de deux détecteurs définissant des niveaux mini et maxi. Ces détecteurs commandent respectivement une vitesse lente et une vitesse rapide. La vitesse rapide est réglée pour un débit d'alvéoles

Figure imgb0007
la vitesse lente pour
Figure imgb0008
Like the individual corridors, the main corridor is equipped with two detectors defining minimum and maximum levels. These detectors control a slow speed and a fast speed respectively. Fast speed is set for cell flow
Figure imgb0007
slow speed for
Figure imgb0008

Ainsi, lorsque toutes les N + 1 cellules fonctionnent et toutes les alvéoles sont chargées, la vitesse lente du convoyeur commandée par le détecteur supérieur, donne un débit de capsules C - el fait descendre lentement le niveau dans le couloir principal. Inversement, lorsque l'une des N + 1 cellules est arrêtée et qu'une alvéole sur chaque série de N + 1 n'est pas remplie, la vitesse rapide du convoyeur

Figure imgb0009
permet au niveau de capsules de remonter lorsque le niveau mini est atteint dans le couloir principal situé à l'aval.Thus, when all the N + 1 cells are operating and all the cells are loaded, the slow speed of the conveyor controlled by the upper detector, gives a flow of capsules C - e l lowers the level slowly in the main corridor. Conversely, when one of the N + 1 cells is stopped and one cell on each series of N + 1 is not filled, the rapid speed of the conveyor
Figure imgb0009
allows the level of capsules to rise when the minimum level is reached in the main corridor located downstream.

Enfin, tous les couloirs inclinés, aussi bien le couloir principal que les couloirs individuels, sont munis de deux détecteurs supplémentaires. Un détecteur haut au-dessus du détecteur maxi, un détecteur bas au-dessous du détecteur mini. Pour le couloir principal, le détecteur haut décèle une anomalie à l'aval et arrête le convoyeur. Le détecteur bas décèle une anomalie à l'amont. Il met en route une alarme et arrête la machine de bouchage.Finally, all the inclined corridors, both the main corridor and the individual corridors, are fitted with two additional detectors. A high detector above the maximum detector, a low detector below the minimum detector. For the main corridor, the high detector detects an anomaly downstream and stops the conveyor. The low detector detects an anomaly upstream. It sets off an alarm and stops the capping machine.

Pour chaque couloir individuel, le détecteur haut arrête la cellule correspondante, le détecteur bas remet la cellule en route si elle est arrêtée, ou l'arrête en signalant une anomalie si elle fonctionne.For each individual lane, the high detector stops the corresponding cell, the low detector restarts the cell if it is stopped, or stops it by signaling an anomaly if it is operating.

On voit qu'en cas d'incident à l'amont ou à l'aval, l'ensemble de l'installation s'arrête en cascade sans qu'il soit nécessaire de précoir d'autre asservissement.It can be seen that in the event of an upstream or downstream incident, the entire installation stops in a cascade without the need for any other control.

En pratique, étant donné la complexité de l'installation, l'inertie du matériel et des récipients à mettre en mouvement, les chaînes de conditionnement intégrées ne sont pas mises brutalement en fonctionnement à leur capacité maximale, mais progressivement, ou, plus souvent, par paliers. Ainsi, la cadence nominale de bouchage varie progressivement d'un minimum Cm à un maximum CM. Les moteurs des diverses machines, y compris ceux des cellules du convoyeur, sont actionnés par des moteurs à vitesse variable. L'ensemble de l'installation fonctionne selon un programme fonction de la cadence nominale instantanée C;.In practice, given the complexity of the installation, the inertia of the equipment and the containers to be put in motion, the integrated packaging chains are not suddenly put into operation at their maximum capacity, but gradually, or, more often, in stages. Thus, the nominal blocking rate gradually varies from a minimum C m to a maximum C M. The motors of the various machines, including those of the conveyor cells, are powered by variable speed motors. The entire installation operates according to a program based on the instantaneous nominal rate C ; .

L'invention sera mieux comprise par la description ci-après d'un exemple concret illustré par les figures jointes.

  • La figure 1 représente en vue cavalière une installation de fabrication de capsules, un convoyeur et une machine de bouchage.
  • La figure 2 représente schématiquement une vue en plan de la même installation.
  • La figure 3 représente schématiquement en élévation, la même installation.
  • La figure 4 représente en coupe verticale le convoyeur et son raccordement par un couloir incliné à la machine de bouchage.
  • La figure 5 représente en vue en plan l'un des wagonnets du convoyeur.
The invention will be better understood from the description below of a concrete example illustrated by the attached figures.
  • FIG. 1 shows a view in perspective of an installation for manufacturing capsules, a conveyor and a capping machine.
  • FIG. 2 schematically represents a plan view of the same installation.
  • Figure 3 shows schematically in elevation, the same installation.
  • Figure 4 shows in vertical section the conveyor and its connection by an inclined corridor to the capping machine.
  • Figure 5 shows in plan view one of the conveyor wagons.

L'installation représentée correspond au cas où le nombre (N + 1 ) de cellules installées est de 5. Cette installation peut fonctionner avec quatre cellules en service seulement. Chaque élément de l'installation est défini par un repère numérique. Les éléments identiques tels que les cinq cellules sont différenciés par des indices alphabétiques.The installation shown corresponds to the case where the number (N + 1) of cells installed is 5. This installation can operate with only four cells in service. Each element of the installation is defined by a numerical reference. Identical elements such as the five cells are differentiated by alphabetical indices.

En figure 1, on distingue cinq cellules (1 a-1 b-1 c-1 d-1 e) de fabrication de capsules schématisées ici par de simples parallélépipèdes. Ces cinq cellules (1 a-1 b-1 c-1 d-1 e) peuvent alimenter par gravité, par l'intermédiaire de cinq couloirs individuels inclinés (2a-2b-2c-2d-2e) un convoyeur unique (3) qui regroupe la production des cinq cellules.In FIG. 1, there are five cells (1 a-1 b-1 c-1 d-1 e) for making capsules schematized here by simple parallelepipeds. These five cells (1 a-1 b-1 c-1 d-1 e) can feed by gravity, via five individual inclined corridors (2a-2b-2c-2d-2e) a single conveyor (3) which combines the production of the five cells.

Dans les figures 1,2,3, les cellules 1 a-1 c-1 d-1 e sont en position de fonctionnement Pl. La cellule 1 b est en retrait, en position pour entretien P2.In Figures 1,2,3, cells 1 a-1 c-1 d-1 e are in operating position P l . Cell 1b is set back, in position for maintenance P 2 .

En figure 3, est indiquée en pointillés une position en avant P3 pour rechargement.In FIG. 3, a dotted position P 3 is indicated for reloading.

Le convoyeur est formé d'une chaîne sans fin de wagonnets comportant chacun une alvéole cylindrique verticale (4) sans fond qui débouche à la partie supérieure et inférieure. La section horizontale de ces alvéoles en matière plastique correspond étroitement à la section transversale d'une capsule (5), comme représenté en figure 5, en sorte que les capsules à languettes introduites verticalement sont contraintes de conserver l'orientation qu'elles avaient dans les couloirs individuels (2a-2b-2c-2d-2e). Le convoyeur (3) représenté en figures 1,2 ou 3 est rectiligne horizontal. Il repose sur une table (6) sur laquelle glissent les capsules (5) entraînées dans leurs alvéoles verticales (4). Mais le convoyeur (3) peut aussi bien comporter des courbes, des portions montantes ou descendantes, ce qui donne une souplesse maximale à l'installation. Au lieu de reposer sur une table (6), il peut aussi bien être accompagné par une simple glissière inférieure qui soutient les capsules dans les alvéoles.The conveyor is formed of an endless chain of wagons each comprising a vertical cylindrical cell (4) without bottom which opens at the upper and lower part. The horizontal section of these plastic cells closely corresponds to the cross section of a capsule (5), as shown in Figure 5, so that the tab capsules inserted vertically are forced to keep the orientation they had in the individual corridors (2a-2b-2c-2d-2e). The conveyor (3) shown in Figures 1,2 or 3 is straight horizontal. It rests on a table (6) on which slide the capsules (5) driven in their vertical cells (4). But the conveyor (3) may as well have curves, rising or falling portions, which gives maximum flexibility to the installation. Instead of sitting on a table (6), it can also be accompanied by a simple lower slide which supports the capsules in the alveoli.

Le convoyeur (3) alimente la machine de bouchage par l'intermédiaire d'un couloir principal incliné (8) et d'un dique distributeur (9) comme précisé plus loin. La machine de bouchage (7) comporte plusieurs têtes de sertissage (10) qui permettent de boucher à la cadence de 60 000 opérations à l'heure des bouteilles (1) amenées par un carrousel (12).The conveyor (3) feeds the capping machine via an inclined main corridor (8) and a dispensing container (9) as specified below. The capping machine (7) comprises several crimping heads (10) which make it possible to cork at the rate of 60,000 operations per hour for the bottles (1) brought by a carousel (12).

Les cinq cellules (1 a-1 b-1 c-1 d-1 e) sont suspendues chacune sur deux glissières (13a―14a, 1 3b-14b, 13c-14c, 13d―14d, 13e―14e) disposées à la partie supérieure d'un bâti définissant levolume de l'unité de fabrication de capsules décalées en hauteur l'une par rapport à l'autre. Ces glissières permettent de déplacer facilement les cinq cellules (1 a-1 b-1 c-1 d-1 e) transversalement en avant ou en arrière du convoyeur (3) pour rechargement en matière première (bande d'aluminium ou joint plastique) ou pour entretien. Les trois positions (P1-P2-P3) sont représentées sur la figure 3. La suspension des cellules à des glissières en élévation rend leur accès particulièrement facile tout en les protégeant de la plupart des projections de liquide.The five cells (1 a-1 b-1 c-1 d-1 e) are each suspended on two slides (13a ― 14a, 1 3b-14b, 13c-14c, 13d ― 14d, 13e ― 14e) arranged at the upper part of a frame defining the volume of the capsule manufacturing unit offset in height relative to one another. These slides allow easy movement of the five cells (1 a-1 b-1 c-1 d-1 e) transversely in front of or behind the conveyor (3) for reloading with raw material (aluminum strip or plastic seal) or for maintenance. The three positions (P 1 -P 2 -P 3 ) are shown in Figure 3. Suspending the cells from elevated slides makes them particularly easy to access while protecting them from most liquid splashes.

Comme représenté en figure 3, chaque cellule est associée à une trémie (15a-15b-15c-15d-15e) et à un mécanisme d'alimentation en joints d'étanchéité réalisés selon une technique connue. Les cellules sont en fait posées sur les glissières par l'intermédiaire de patins (16). Elles peuvent ainsi être facilement soulevées par un palan ou chariot élévateur, et très facilement remplacées. Le déplacement de chaque cellule dans les trois positions Pl-P2-P3 est commandé par un vérin facilement débranchable.As shown in FIG. 3, each cell is associated with a hopper (15a-15b-15c-15d-15e) and with a mechanism for supplying seals produced according to a known technique. The cells are in fact placed on the slides by means of pads (16). They can thus be easily lifted by a hoist or forklift, and very easily replaced. The movement of each cell in the three positions P l -P 2 -P 3 is controlled by an easily disconnectable cylinder.

On distingue en figure 3, une bande d'aluminium enroulée en bobine (17). Le squelette (18) de cette bande après découpe de flans correspondant aux dimensions des capsules (5) est entraîné par une roue (19) pour être récupéré. Les capsules découpées, formées et pourvues de leur joint par les mécanismes (20a-20b-20c-20d-20e) de chaque cellule sont immédiatement distribuées dans le couloir individuel correspondant (2a-2b-2c-2d-2e). Elles sont en position verticale avec leurs languettes à l'arrière, c'est-à-dire, ici, en haut, comme représenté en figure 4 dans le couloir principal (8).In FIG. 3, there is a strip of aluminum wound on a reel (17). The skeleton (18) of this strip after cutting blanks corresponding to the dimensions of the capsules (5) is driven by a wheel (19) to be recovered. The cut capsules, formed and provided with their seal by the mechanisms (20a-20b-20c-20d-20e) of each cell are immediately distributed in the corresponding individual corridor (2a-2b-2c-2d-2e). They are in vertical position with their tabs at the rear, that is to say, here, at the top, as shown in FIG. 4 in the main corridor (8).

Chaque couloir individuel (2a-2b-2c-2d-2e) est scindé en deux éléments rigides, un élément supérieur solidaire de la cellule correspondante, un élément inférieur solidaire de la table du convoyeur (3). Ces deux éléments se raccordent par un dispositif à encliquetage (21 a-21 b-21 c-21 d-21 e) qui fixe, de façon précise, lorsqu'elle est en service, la position de chaque cellule par rapport au convoyeur (3). Seul, l'encliquetage (21 ) du couloir (2a) est indiqué sur la figure 3, mais le même dispositif est utilisé sur les cinq couloirs individuels.Each individual corridor (2a-2b-2c-2d-2e) is split into two rigid elements, an upper element secured to the corresponding cell, a lower element secured to the conveyor table (3). These two elements are connected by a snap-in device (21 a-21 b-21 c-21 d-21 e) which fixes, precisely, when it is in service, the position of each cell relative to the conveyor ( 3). Only the latching (21) of the corridor (2a) is indicated in FIG. 3, but the same device is used on the five individual corridors.

Chaque couloir individuel (2a-2b-2c-2d-2e) est pourvu de quatre détecteurs respectivement (22a-23a-24a-25a, 22b-23b-24b-25b, 22c-23c-24c-25c, 22d-23d-24d-25d, 22e-23e-24e-25e) répartis successivement sur sa longueur et d'un sélecteur de distribution (26a-26b-26c-26d-26e) à son extrémité, c'est-à-dire à son raccordement avec le convoyeur (3) comme représenté schématiquement en figure 3. Ces sélecteurs sont en forme de roue en étoile dont les branches sont espacées d'un diamètre de capsule. Ils commandent la sortie des capsules en synchronisation avec le passage des alvéoles (4) du transporteur. Les alvéoles (4) sont remplies par permutation circulaire les sélecteurs affectant chacune des alvéoles successives à l'un des cinq couloirs (2a-2b-2c-2d-2e). Si un sélecteur s'arrête, une alvéole sur cinq ne sera pas remplie.Each individual lane (2a-2b-2c-2d-2e) is provided with four detectors respectively (22a-23a-24a-25a, 22b-23b-24b-25b, 22c-23c-24c-25c, 22d-23d-24d -25d, 22e-23e-24e-25e) distributed successively along its length and a distribution selector (26a-26b-26c-26d-26e) at its end, that is to say at its connection with the conveyor (3) as shown diagrammatically in FIG. 3. These selectors are in the form of a star wheel whose branches are spaced apart by a capsule diameter. They control the exit of the capsules in synchronization with the passage of the alveoli (4) of the transporter. The cells (4) are filled by circular permutation, the selectors assigning each of the successive cells to one of the five lanes (2a-2b-2c-2d-2e). If one selector stops, one in five cells will not be filled.

Le couloir principal (8) est également pourvu de 4 détecteurs (27-28-29-30). Il débouche à l'intérieur de la couronne, divisée en compartiments, d'un disque distributeur (9) comme représenté en figure 4. Ce disque a un axe de rotation parallèle à celui de la machine de bouchage (7). Il tourne avec une vitesse circonférentielle sensiblement moitié de celle des têtes (10). Les compartiments du disque sont disposés pour se présenter chacun en vis-à-vis d'une tête (10) lorsque l'installation est en fonctionnement et que le disque comme les têtes sont en rotation rapide. Ainsi les capsules (5) passent d'abord par gravité du couloir (8) dans les compartiments où elles sont retenues par une ceinture périphérique. Elles sont ensuite projetées une à une par la force centrifuge à travers une lumière depuis les compartiments dans chacune des têtes (10). Si besoin est une buse d'air comprimé (31) facilite le passage des capsules (5) dans les têtes (10). La vitesse de rotation relativement faible du disque (9) permet un chargement sans difficulté des compartiments à partir du couloir (8) statique. Cette même vitesse de rotation du disque (9) permet ensuite le chargement des têtes (10) sans trop grande variation de vitesse. Ce disque (9) évite par ailleurs un gaspillage de capsules (5). Lorsqu'une capsule (5) non utilisée subsiste d'un passage précédent dans une tête (10), elle refoule celle qui se présente dans un compartiment du disque (9) qui à son tour refoule celle qui se présentera au bas du couloir (8).The main corridor (8) is also provided with 4 detectors (27-28-29-30). It opens inside the crown, divided into compartments, of a distributor disc (9) as shown in FIG. 4. This disc has an axis of rotation parallel to that of the capping machine (7). It rotates with a circumferential speed substantially half that of the heads (10). The disc compartments are arranged to each face a head (10) when the installation is in operation and the disc and the heads are in rapid rotation. Thus the capsules (5) first pass by gravity from the corridor (8) into the compartments where they are retained by a peripheral belt. They are then projected one by one by centrifugal force through a lumen from the compartments in each of the heads (10). If necessary, a compressed air nozzle (31) facilitates the passage of the capsules (5) in the heads (10). The relatively low speed of rotation of the disc (9) allows loading without difficulty of the compartments from the corridor (8) static. This same speed of rotation of the disc (9) then allows the loading of the heads (10) without too much variation in speed. This disc (9) also prevents wastage of capsules (5). When an unused capsule (5) remains from a previous passage in a head (10), it drives back the one which occurs in a disc compartment (9) which in turn drives back the one which will appear at the bottom of the corridor ( 8).

Chacun des couloirs (2a-2b-2c-2d-2e-8) a une section transversale correspondant étroitement à celle des capsules (5). Il en est de même pour la section transversale des alvéoles (4) du convoyeur, ainsi que des compartiments du disque (9). Ainsi, l'orientation donnée initialement aux capsules à la sortie des cellules (1 a-1 b-1 c-1 d-1 e) est conservée jusqu'aux têtes (10).Each of the lanes (2a-2b-2c-2d-2e-8) has a cross section closely corresponding to that of the capsules (5). It is the same for the cross section of the cells (4) of the conveyor, as well as the disc compartments (9). Thus, the orientation initially given to the capsules at the exit of the cells (1 a-1 b-1 c-1 d-1 e) is preserved up to the heads (10).

En fonctionnement normal, une petite quantité de capsules (5) est bloquée en file dans chacun des couloirs respectifs (2a-2b-2c-2d-2e et 8) comme représenté en figure 4.In normal operation, a small quantity of capsules (5) is blocked in line in each of the respective lanes (2a-2b-2c-2d-2e and 8) as shown in Figure 4.

Si l'on utilise des capsules à deux languettes en V selon le brevet FR-A-2 445 295 la jupe de chaque capsule (5) s'engage entre les deux languettes en V de la précédente, les capsules ne pouvant ni se chevaucher ni se coincer mutuellement comme exposé dans le brevet FR-A-2 445 295.If capsules with two V-shaped tabs according to patent FR-A-2 445 295 are used, the skirt of each capsule (5) engages between the two V-shaped tabs of the previous one, the capsules being able to neither overlap nor get stuck mutually as explained in patent FR-A-2 445 295.

Chaque couloir constitue ainsi un petit stockage intermédiaire en charge sur le dispositif aval, c'est-à-dire le convoyeur (3) pour les couloirs individuels (2a-2b-2c-2d-2e) ou le disque distributeur (9) pour le couloir principal (8).Each corridor thus constitutes a small intermediate storage loaded on the downstream device, that is to say the conveyor (3) for the individual corridors (2a-2b-2c-2d-2e) or the distributor disc (9) for the main corridor (8).

Lors d'un arrêt quelques capsules sont maintenues dans les couloirs par les sélecteurs ou le disque ce qui évite tout incident au redémarrage. Les couloirs verticaux permettent une alimentation sûre et régulière de la machine de bouchage, ceci avec un système d'asservissement très simple, et tout en conservant l'orientation des capsules à leur sortie des cellules de fabrication.During a stop a few capsules are kept in the corridors by the selectors or the disc which avoids any incident on restarting. The vertical corridors allow a safe and regular feeding of the capping machine, this with a very simple servo system, and while maintaining the orientation of the capsules as they exit the manufacturing cells.

Dans le couloir principal (8), si le niveau des capsules (5) descend en dessous du détecteur inférieur (30) du couloir principal (8), il y a défaut d'alimentation en capsules. Le détecteur (30) arrête aussitôt la machine de bouchage (7) et le carrousel (12) d'alimentation en bouteilles (11).In the main corridor (8), if the level of the capsules (5) drops below the lower detector (30) of the main corridor (8), there is a lack of supply of capsules. The detector (30) immediately stops the capping machine (7) and the carousel (12) for supplying bottles (11).

Si le niveau des capsules (5) monte au-dessus du détecteur supérieur (27) il y a engorgement en capsules dû à un incident sur la machine de bouchage (7) ou à l'alimentation en bouteilles (11). Le détecteur (27) arrête aussitôt le convoyeur (3), et par suite, les cellules (1 a-1 b-1 c-1 d-1 e) à l'aval.If the level of the capsules (5) rises above the upper detector (27), the capsules are engorged due to an incident on the capping machine (7) or to the supply of bottles (11). The detector (27) immediately stops the conveyor (3), and consequently, the cells (1 a-1 b-1 c-1 d-1 e) downstream.

Entre ces deux niveaux extrêmes (27-30), les détecteurs (28) et (29) définissent des niveaux »maxi« et »mini« dans le couloir (8). La présence d'une capsule au niveau maxi (28) entraîne le ralentissement du convoyeur (3) à sa vitesse lente. L'absence de capsule au niveau mini (29) entraîne l'accélération du concoyeur (3) à sa vitesse rapide.Between these two extreme levels (27-30), the detectors (28) and (29) define "maximum" and "minimum" levels in the corridor (8). The presence of a capsule at the maximum level (28) causes the conveyor (3) to slow down to its slow speed. The absence of a capsule at the minimum level (29) causes the accelerator (3) to accelerate at its rapid speed.

Ici, la cadence de bouchage (C) de la machine (7) est de 60 000 bouteilles à l'heure. La vitesse rapide du convoyeur (3) correspond à un débit maximal d'alvéoles

Figure imgb0010
soit 75 500 alvéoles/heure, sa vitesse lente C-e; à 59 500 alvéoles/heure.Here, the capping rate (C) of the machine (7) is 60,000 bottles per hour. The fast speed of the conveyor (3) corresponds to a maximum flow of cells
Figure imgb0010
or 75,500 cells / hour, its slow speed Ce ; at 59,500 cells / hour.

Ainsi, lorsque quatre cellules de fabrication seulement sont en service et que seulement quatre alvéoles sur cinq du convoyeur (3) sont remplies, celui-ci alimente le couloir principal aux débits de 4/5 x 59 500 ou 4/5 x 75 500 capsules/heure, soit respectivement 47 600 ou 60 400 capsules/ heure selon qu'il fonctionne à la petite ou à la grande vitesse. La consommation de capsules étant de 60 000 capsules/heure, le niveau dans le couloir principal peut varier entre le mini et le maxi (29-28).Thus, when only four manufacturing cells are in service and only four out of five cells of the conveyor (3) are filled, the latter feeds the main corridor at the flow rates of 4/5 x 59,500 or 4/5 x 75,500 capsules / hour, or respectively 47,600 or 60,400 capsules / hour depending on whether it operates at low or high speed. Since the consumption of capsules is 60,000 capsules / hour, the level in the main corridor can vary between the minimum and the maximum (29-28).

Par contre, lorsque les cinq cellules (1 1 a-1 b-1 c-1 d-1 e) sont en service et toutes les alvéoles (4) du convoyeur (3) sont remplies, le convoyeur alimente le couloir principal (8) à raison de 59 500 ou 75 500 capsules/heure. Le niveau de capsules dans le couloir principal peut encore osciller entre le mini (29) et le maxi (28).On the other hand, when the five cells (1 1 a-1 b-1 c-1 d-1 e) are in service and all the cells (4) of the conveyor (3) are filled, the conveyor feeds the main corridor (8 ) at the rate of 59,500 or 75,500 capsules / hour. The level of capsules in the main corridor can still fluctuate between the mini (29) and the maxi (28).

Parallèlement, les deux cadences de production de chacune des cellules (1 a-1 b-1 c-1 d-1 e) soit

Figure imgb0011
sont ici 15 200 et 11 800.In parallel, the two production rates for each cell (1 a-1 b-1 c-1 d-1 e) or
Figure imgb0011
are here 15,200 and 11,800.

En fonctionnement à cinq cellules, la production varie entre 76 000 et 59 000 capsules/heure. Dans les deux cas, les capacités de production encadrent les possibilités de soutirage par le convoyeur (3) en pied des couloirs individuels. Le niveau de capsules dans chacun des couloirs individuels (2a-2b-2c-2d-2e) varie entre les mini (24a-24b-24c-24d-24e) et les maxi (23a-23b-23c-23d-23e) avec toujours quelques capsules en attente entre le sélecteur (26a-26b-26c-26d-26e) et le niveau mini correspondant (25a-25b-25c-25d-25e).In operation with five cells, production varies between 76,000 and 59,000 capsules / hour. In both cases, the production capacities frame the possibilities of racking by the conveyor (3) at the bottom of the individual lanes. The level of capsules in each of the individual lanes (2a-2b-2c-2d-2e) varies between the mini (24a-24b-24c-24d-24e) and the maxi (23a-23b-23c-23d-23e) with always a few capsules waiting between the selector (26a-26b-26c-26d-26e) and the corresponding minimum level (25a-25b-25c-25d-25e).

Enfin, on sait que pour des installations d'embouteillage à des cadences à partir de 20 000, et a fortiori, de 60 000, les installations ne sont pas mises en service ou arrêtées brutalement, mais progressivement, ou au moins par paliers. Ainsi, pour une cadence nominale (C) de 60 000, on prévoit des cadences intermédiaires Ci, C2, C3, C4 de 5000, 10 000, 20 000, 40 000.Finally, it is known that for bottling plants at rates starting from 20,000, and a fortiori, from 60,000, the plants are not put into service or stopped suddenly, but gradually, or at least in stages. Thus, for a nominal rate (C) of 60,000, intermediate rates Ci, C 2 , C 3 , C 4 of 5,000, 10,000, 20,000, 40,000 are provided.

Les moteurs de toute l'installation de fabrication de capsules sont des moteurs à vitesse variable. Leur vitesse varie en fonction de la cadence nominale C. La petite réserve de capsules, qui existe dans le couloir principal (8) entre le disque distributeur (9) et le détecteur inférieur (30) qui commande l'arrêt général ainsi que les quelques capsules qui sont emmagasinées dans le disque (9) et les têtes (10) sont très utiles en permettant d'amortir quelque peu l'arrêt de l'installation. La petite réserve de capsules entre chacun des sélecteurs individuels (26a-26b-26c-26d-26e) et le détecteur inférieur (25a-25b-25c-25d-25e) de chaque couloir individuel (2a-2b-2c-2d-2e) est également fort appréciée par le responsable de l'installation d'embouteillage.The motors of the entire capsule manufacturing facility are variable speed motors. Their speed varies according to the nominal rate C. The small reserve of capsules, which exists in the main corridor (8) between the distributor disc (9) and the lower detector (30) which controls the general stop as well as the few capsules which are stored in the disc (9) and the heads (10) are very useful in making it possible to somewhat dampen the stoppage of the installation. The small reserve of capsules between each of the individual selectors (26a-26b-26c-26d-26e) and the lower detector (25a-25b-25c-25d-25e) of each individual lane (2a-2b-2c-2d-2e ) is also highly appreciated by the person responsible for the bottling plant.

En ce qui concerne le convoyeur (3), on doit noter que les wagonnets sont assemblés par des crochets à cardan qui permettent de faire suivre au convoyeur un parcours accidenté, d'éloigner la partie mécanique où sont rassemblées les cinq cellules (1a-1b-1c-1d-1e) de la zone d'embouteillage et de capsulage des bouteilles (11).Regarding the conveyor (3), it should be noted that the wagons are assembled by cardan hooks which allow the conveyor to follow an uneven path, to move away the mechanical part where the five cells are gathered (1a-1b -1c-1d-1e) of the bottling and capping area of the bottles (11).

Comme représenté en figures 4 et 5, les alvéoles (4) des wagonnets, sont des alvéoles verticales sans fond. Elles ne sont bouchées à la partie inférieure que par la table (6) du convoyeur (3). Elles reçoivent donc sans difficulté, par simple gravité, les capsules (5) provenant des couloirs individuels (2a-2b-2c-2d-2e). Il suffit d'un orifice (32) de section appropriée au-dessus du couloir (8) pour que les alvéoles (4) pleines se déchargent dans ce couloir, par gravité.As shown in Figures 4 and 5, the cells (4) of the wagons, are vertical cells without bottom. They are only blocked at the bottom by the table (6) of the conveyor (3). They therefore easily receive, by simple gravity, the capsules (5) coming from the individual lanes (2a-2b-2c-2d-2e). An orifice (32) of suitable section above the passage (8) is sufficient for the filled cells (4) to discharge into this passage, by gravity.

On voit que cette installation d'apparene compliquée est, cependant, de fonctionnement très souple et très sûr, grâce à son implantation et sa régulation originale.We can see that this seemingly complicated installation is, however, very flexible and very safe to operate, thanks to its original layout and regulation.

Claims (10)

1. A process for continuously supplying fragile caps in a given orientation, to a closure machine operating at a high rate, from a plurality of cells for producing said caps, the caps being collected at the outlet of the cells and transferred towards the closure machine by an endless chain conveyor, characterised in that the number of production cells is (N + 1), N being the number of cells necessary to comply with the required closure rate (C), that the connection between the conveyor (3) and the machine (7) is provided by an inclined main channel (8) provided with at least two detectors for detecting mini and maxi levels (29 and 28 respectively), that the conveyor (3) is a two-speed cavitytype conveyor, the maximum rate of which is at a minimum equal to the rate of production of the (N + 1) cells and can be reduced to a lower rate corresponding at maximum to the nominal closure rate (C), the conveyor being caused to go from the first speed to the second speed by the detectors (28, 29) of the main channel, that the connection between each cell (1 a) and the conveyor (3) ist provided by an inclined individual channel (2a), each of which ist provided with at least two detectors for detecting mini and maxi levels (24a and 23a respectively), each cell being capable of operating at two rates: a maximum rate f + e, which is a little higher than the required quantity c and a lower rate
Figure imgb0020
which is lower than the necessary rate C N+1, the cell being caused to go from one rate to the other by the level detectors (23a, 24a) or the corresponding channel (2a), each individual channel (2a) being provided with a distribution selector (26a) which by circular transposition feeds the caps (5) into the successive cavities (4) of the conveyor, each cavity (4) thus being associated with one of the successive individual channels (2a).
2. A process according to claim 1 characterised in that the caps (5) are transferred from the outlet of the main channel (8) to the crimping heads (10) by a distributor disc (9) which rotates at a circumferential speed that is half the speed of the heads (10).
3. An installation for the supply without interruption, in accordane with the process of claim 1 or claim 2, of fragile caps which are in a given orientation, to a closure machine which operates at a high rate, said installation comprising, in a parallel arrangement, a plurality of cap production cells and, as a means for supplying caps to the machine from the cells, a cavity-type conveyor in the form of an endless chain, characterised in that the cavities are vertical bottomless cavities (4), that the means for feeding caps to the cavities from each cell (1 a) is an inclined individual channel (2a) provided with at least two detectors for detecting mini and maxi levels (24a and 23a respectively), that the outlet of each individual channel (2a) is provided with a selector (26a) controlling the supply of caps to the successive cavities (4) of the conveyor by circular transposition, that the means for supplying the machine from the conveyor (3) is another inclined channel (8) which opens on to a distributor disc (9) having compartments which are movable into positions opposite the crimping heads (10).
4. An installation according to claim 3 characterised in that the cross-section of each of the inclined channels (main channel (8) and individual channel (2a)) and that of the conveyor (3) and the compartments of the distributor disc (9) substantially corresponds to the cross-section of the caps (4).
5. An installation according to claim 4 characterised in that each inclined channel (main channel (8) and individual channel (2a)) is also provided, besides the mini-maxi level detectors (29, 28) (24a, 23a), with go-stop detectors (27-30) (22a, 25a) respectively below and above the mini and maxi detectors.
6. Installation according to any one of claims 3, 4 or 5 characterised in that the production cells are disposed above the conveyor (3) and are each suspended on horizontal slide members (13a, 14a) in a plane perpendicular to the conveyor (3), which slide members (13a, 14a) permit each cell (1 a) to be independently displaced laterally with respect to the conveyor (3) without interfering with operation of the remainder of the installation.
7. An installation according to any one of claims 3, 4, 5 or 6 characterised in that each channel (2a) providing for the transfer of caps (4) from a cell (1 a) to the conveyor (3) comprises two elements, one being fixed with respect to the conveyor and the other with respect to the cell, the two elements being connected together by a latching means (21 a) and thus defining a defined position for each cell (1 a) when it is in operation.
8. An installation according to any one of claims 3,4,5,6 or 7 characterised in that the cap production cells are suspended from transverse slide members which are disposed at an elevated position and can thus be easily displaced into three positions: operational, reloading and maintenance.
9. An installation according to claim 8 characterised in that the cells are mounted on slide members by way of slide shoes (16).
10. An installation according to any one of claims 3, 4, 5, 6 or 7 characterised in that the production cells are controlled to operate at two speeds
Figure imgb0021
which are respectively controlled by the mini and maxi detectors of the corresponding individual channels, while the conveyor is controlled to operate at two cavity movement rates, one being a rapid rate
Figure imgb0022
and the other being a slow rate
Figure imgb0023
said rates being controlled respectively by the mini detector (29) and the maxi detector (28) of the main channel (8).
EP81420169A 1980-11-14 1981-11-12 Method and apparatus for feeding caps to closing machines Expired EP0053563B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8024691 1980-11-14
FR8024691A FR2494250B1 (en) 1980-11-14 1980-11-14 METHOD FOR SUPPLYING CAPSULES TO A CAPPING MACHINE

Publications (2)

Publication Number Publication Date
EP0053563A1 EP0053563A1 (en) 1982-06-09
EP0053563B1 true EP0053563B1 (en) 1984-06-06

Family

ID=9248187

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81420169A Expired EP0053563B1 (en) 1980-11-14 1981-11-12 Method and apparatus for feeding caps to closing machines

Country Status (11)

Country Link
US (1) US4445310A (en)
EP (1) EP0053563B1 (en)
JP (1) JPS57114495A (en)
BR (1) BR8107309A (en)
CA (1) CA1167427A (en)
DD (1) DD201993A5 (en)
DE (1) DE3164008D1 (en)
DK (1) DK502981A (en)
ES (1) ES507098A0 (en)
FR (1) FR2494250B1 (en)
OA (1) OA06950A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62174096U (en) * 1986-03-28 1987-11-05
US5038952A (en) * 1989-12-14 1991-08-13 Coors Brewing Company Closure assembly for pressurized plastic beverage container
US5026237A (en) * 1990-01-24 1991-06-25 Coors Brewing Company Method and apparatus for crimping a container cap
US6135676A (en) * 1997-12-23 2000-10-24 Crown Cork & Seal Technologies Corporation System and method for bulk handling closures
US6263940B1 (en) 1999-04-21 2001-07-24 Axon Corporation In-line continuous feed sleeve labeling machine and method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR926222A (en) * 1945-05-03 1947-09-25 Alka Aluminiumkapslar Ab Improvements to automatic bottle capping machines
US2866306A (en) * 1956-07-24 1958-12-30 Continental Can Co High speed cover feed and control arrangement
US2952104A (en) * 1958-02-04 1960-09-13 Anchor Hocking Glass Corp Method and means for remote cap feeding
US3546847A (en) * 1969-04-11 1970-12-15 Mitsubishi Heavy Ind Ltd Crown cap feeder device for bottle stopper fitting machine
BE754413A (en) * 1969-08-04 1971-01-18 Seitz Werke Gmbh DRIVING DEVICE ADDITIONED TO ROTATING CAPPING MACHINES HANDLING CROWN CAPS OR EQUIVALENT CAPSULES
GB1519777A (en) * 1974-11-27 1978-08-02 Molins Ltd Systems for making and packing cigarettes

Also Published As

Publication number Publication date
BR8107309A (en) 1982-08-03
ES8304025A1 (en) 1983-02-16
OA06950A (en) 1983-07-31
CA1167427A (en) 1984-05-15
ES507098A0 (en) 1983-02-16
DE3164008D1 (en) 1984-07-12
FR2494250B1 (en) 1985-07-05
EP0053563A1 (en) 1982-06-09
DK502981A (en) 1982-05-15
DD201993A5 (en) 1983-08-24
JPS57114495A (en) 1982-07-16
US4445310A (en) 1984-05-01
FR2494250A1 (en) 1982-05-21

Similar Documents

Publication Publication Date Title
EP1805092B1 (en) Conveyor for a finishing machine used to orient objects
EP3498638B1 (en) Device for supplying a grouping conveyor
US6910313B2 (en) System and apparatus for an automated container filling production line
EP2648978B1 (en) Boxing method and device intended to sequentially box batches of products inside packaging receptacles
EP0115989B1 (en) Method for automatically filling and closing containers, and machine for carrying out the method
EP0053563B1 (en) Method and apparatus for feeding caps to closing machines
WO2016108026A1 (en) Device and method for delivering oriented elements
EP1415919A1 (en) Method and apparatus for filling trays with a food product
FR2730697A1 (en) Automatic packaging system for filling of containers with superposed layers of fruits esp. oranges
EP3240744B1 (en) Device and method for the reliable delivery of shaped stopper elements
EP0236174B1 (en) Device for distributing and delivering, one at a time, and in a vertical position, objects to a conveyor
EP2632805B1 (en) Device and method for overwrapping identical or similar products and boxing the overwrapped products
FR2561206A1 (en) METHOD AND APPARATUS EQUIPPED WITH A FAST-RUNNING PRODUCTION MACHINE FOR THE MANUFACTURE OF HYGIENE ARTICLES, IN PARTICULAR PERIODIC, PROTECTED-SLIPS, OR SIMILAR OBJECTS
EP0486360B1 (en) Dynamic accumulation device for containers in a transfer line with air jets
CN103619711A (en) Packaging module, machine and method for performing at least two operations on flexible containers
WO1993006010A1 (en) Process and device for cutting a culinary preparation into portions and packaging said portions, applications of said process and device
EP1996467B1 (en) Automated unit for filling bottles with a liquid or semi-liquid substance on a production line
EP3562767A1 (en) Method and device for forming an assembly of products of different types on a conveyor
FR2646140A1 (en) Machine for conditioning (packing) and manufacturing a multiple package of small sachets
LU82594A1 (en) LOAD DISTRIBUTION AND TRANSFER SYSTEM BETWEEN SEVERAL CONVEYORS IN A HANDLING INSTALLATION
WO2000043268A1 (en) Method and installation for producing and continuously filling flexible receptacles
WO2019048783A1 (en) Transfer of layers of products from or to the top of a pallet
FR2686314A1 (en) Device for filling boxes with fragile loose (bulk) objects
BE566740A (en)
FR2494232A1 (en) Store for tubular packages - has sloping feed conveyors and detectors to control feed and filling of storage container

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19820619

R17P Request for examination filed (corrected)

Effective date: 19820619

ITF It: translation for a ep patent filed

Owner name: ING. A. GIAMBROCONO & C. S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CEBAL

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 3164008

Country of ref document: DE

Date of ref document: 19840712

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19841006

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19841008

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19841120

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19841130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19841130

Year of fee payment: 4

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19841231

Year of fee payment: 4

Ref country code: BE

Payment date: 19841231

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19851113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19851130

Ref country code: CH

Effective date: 19851130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19860601

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19861130

BERE Be: lapsed

Owner name: CEBAL

Effective date: 19861130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19870731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19870801

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881118

EUG Se: european patent has lapsed

Ref document number: 81420169.5

Effective date: 19860811