EP0053085B1 - Procédé de nettoyage des surfaces d'une installation, encrassées par des dépôts résultant de la combustion de matières carbonées - Google Patents

Procédé de nettoyage des surfaces d'une installation, encrassées par des dépôts résultant de la combustion de matières carbonées Download PDF

Info

Publication number
EP0053085B1
EP0053085B1 EP81420171A EP81420171A EP0053085B1 EP 0053085 B1 EP0053085 B1 EP 0053085B1 EP 81420171 A EP81420171 A EP 81420171A EP 81420171 A EP81420171 A EP 81420171A EP 0053085 B1 EP0053085 B1 EP 0053085B1
Authority
EP
European Patent Office
Prior art keywords
injecting
process according
deposits
solution
installation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81420171A
Other languages
German (de)
English (en)
Other versions
EP0053085A1 (fr
Inventor
Marc-André Forster
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Somafer SA
Original Assignee
Somafer SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Somafer SA filed Critical Somafer SA
Priority to AT81420171T priority Critical patent/ATE5023T1/de
Publication of EP0053085A1 publication Critical patent/EP0053085A1/fr
Application granted granted Critical
Publication of EP0053085B1 publication Critical patent/EP0053085B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G7/00Cleaning by vibration or pressure waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • B08B7/0007Cleaning by methods not provided for in a single other subclass or a single group in this subclass by explosions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G5/00Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J3/00Removing solid residues from passages or chambers beyond the fire, e.g. from flues by soot blowers
    • F23J3/02Cleaning furnace tubes; Cleaning flues or chimneys
    • F23J3/023Cleaning furnace tubes; Cleaning flues or chimneys cleaning the fireside of watertubes in boilers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G9/00Cleaning by flushing or washing, e.g. with chemical solvents

Definitions

  • the present invention relates to a method for cleaning the surfaces of an installation, fouled by deposits, including or not, resulting from the combustion of carbonaceous materials, applicable without having to stop the combustion process.
  • any combustion operation using carbonaceous materials is generally accompanied, on the one hand, by the emission of gas. more or less hot, on the other hand, from the formation of non-combustible mineral products and unburned carbon products. These products are more or less entrained in the circuits in which the gases are transported and they can either deposit on their surface or react chemically with the materials constituting said surfaces, due to the high temperature and their composition, melt and adhere to these last. We thus created more or less encrusting deposits.
  • Such a method is generally implemented outside any combustion process, that is to say the plant stopped; if not, use blowing heads designed so that they can be exposed to the action of more or less corrosive hot gases without deteriorating.
  • Chemical cleaning can also be used, for example, soaking the surfaces to be cleaned with an ammonia solution to neutralize the sulfuric anhydride present in the deposits to be eliminated (see for example FR-A-1 357992).
  • this method has the same disadvantages as those mentioned above.
  • This process is characterized in that a solution of at least one body capable of chemically reacting with carbonaceous deposits is injected into the installation, in the form of a dispersion which is entrained by the flow of combustion gases. minerals that clog the surfaces, and that the particles resulting from the chemical reactions are moved by phasing with aerial acoustic waves in order to cause them to be entrained by the flow of combustion gases or their fall towards the ashtrays of the installation.
  • the cleaning process is characterized, firstly, by injecting into the installation, in the form of a dispersion which is entrained by the flow of combustion gases, a solution of at least one body likely to react chemically with carbon and mineral deposits resulting from the combustion of carbonaceous materials.
  • the chemical reaction must most generally lead to the oxidation of the deposits.
  • carbon deposits there is combustion, therefore, destruction of said deposits; in the case of mineral deposits, an oxidation reaction takes place leading to an increase in volume, and therefore to the disintegration of the crystal structures of the deposits.
  • this destruction of the structures can also be induced by chemical reactions of the decomposition reaction type and / or substitution reactions.
  • the chemical reaction must also be able to take place under high temperature chemistry conditions.
  • the applicant preferably uses an oxidant and in particular a nitrate, or else a mixture of nitrates such as potassium nitrate and ammonium nitrate, which, when used in aqueous solution, have a concentration of the order of 200 to 300 g / liter.
  • the injected body always contains the corrosion inhibitors necessary to avoid chemical attacks on the materials constituting the system. It is also possible to use bodies capable of inducing neutralization and / or substitution reactions. The choice of the constituents of the injected body and the quantities of the injected body also take account of the atmospheric pollution regulations.
  • the body is used in the divided state in order to obtain the largest possible contact surface with carbonaceous and mineral deposits, and, consequently, an accelerated chemical reduction.
  • This state of division can be further increased by injecting the body in the form of a solution which is atomized by means of ultrasonic atomizers or by any other means capable of ensuring a suitable dispersion and the number and the geographical location of which are essentially a function of the structure of the installation to be cleaned.
  • the atomizers can be installed specially for the cleaning operation or permanently on the existing openings of the installation, for example on manholes.
  • the body can be injected continuously throughout the cleaning period or in a scheduled fashion.
  • the body pulverized and entrained by the gases resulting from the combustion is rapidly brought into contact with the carbonaceous and mineral deposits on which it reacts by causing them combustion or the desired chemical reaction. These reactions cause their fine fragmentation which will promote their subsequent displacement under the action of acoustic waves.
  • the system to be cleaned being in normal operation during the injection of the body, the temperatures at which the reactions take place are between 300 and 1000 ° C, and these reactions are therefore very fast, and even require high temperature chemistry.
  • the second characteristic of the invention therefore consists in displacing the particles resulting from the chemical reactions in order to cause them to entrain in the flow of combustion gases or their fall towards the ashtrays of the installation.
  • This setting in motion of the particles is obtained by their putting in phase with air acoustic waves, generated by sources of sound vibrations. These sources emit vibrations of audible frequencies of 250 Hertz, for example. It is in the audible frequency range that sound sources are most effective for the intended purpose, but it is possible to use infra or ultra-sound sources for certain deposits.
  • the deposits which foul the surfaces of the installation are reduced to a more or less pulverulent mass of particles which is either entrained by the gases resulting from the cumbustion and possibly stopped by electrostatic precipitators, or redeposited in certain places of the installation, for example in the lower parts of the installation where it does not hinder the heat exchanges and can be recovered at any time or during a stop of the 'installation according to the design of the latter.
  • FIG. 1 shows, schematically, a vertical section of a large power boiler (1) equipped with a burner (2) emitting a flame (3) generating hot gases which circulate in the direction of the arrows (4), accompanied by carbonaceous products and minerals which deposit on the surfaces (5) of the four exchangers (6).
  • Four sprayers (7) arranged in different places of the boiler inject the body capable of reacting chemically with the deposits which foul the surfaces while five sound sources (8) have been placed on each of the two lateral sides of the installation, parallel to the axis of the burner.
  • FIG. 2 represents a vertical section of a small power steel boiler (9) for the production of hot water or steam equipped with a burner (10) emitting a flame (11) from which result the gases which circulate following the direction of the arrows (12), leaving a part of the solid products which accompany them on the exchange surfaces (13).
  • a burner 10
  • three injectors (14) were placed while a sound source (15) was placed between the two tubular bundles of the installation.
  • FIG. 3 represents a vertical section of a refinery furnace (16) consuming 70 tonnes of heavy fuel oil per day.
  • This oven is equipped with three burners (17) which emit flames (18) in each of the three radiation cells (19).
  • the combustion gases circulate in the direction of the arrows (20) and allow some of the suspended particles to deposit, which they entrain on the surfaces of the exchangers (21).
  • Three sprayers (22) were placed near each of the burners, and a fourth, at the exit of the radiation cells, while seven sound sources (23) were placed for three of them on one of the side walls of the installation at the level of the cells and, for the other four, at the level of the exchangers (21).
  • the process was as follows: 200 liters of a solution containing 155 g / l of ammonium nitrate and 135 g / l of potassium nitrate were injected, brought by addition of ammonia at a pH in the region of 9.3 and this, for a period of 60 minutes in four periods of 15 minutes, with a stop of 30 m between each injection.
  • the boiler draft was reduced to a minimum in order to avoid loss of body through the chimney and four sound sources installed on the walls of the boiler were activated for 10 seconds every 15 minutes at a frequency of 250 Hz and an intensity of 140 decibels. These sources were kept in service for 24 hours after the end of the injection to complete the cleaning.
  • the particles which detached from the surfaces were entrained by the flow of combustion gases and stopped by an electro-filter.
  • 5000 liters of a solution containing 115 g / l of ammonium nitrate and 135 g / l of potassium nitrate brought to the surface were injected in five 30-minute periods, separated by 30-minute rest periods. a pH of 9.3 by addition of ammonia.
  • This process finds its application in the cleaning of the surfaces of installations such as, in particular, boiler combustion chambers, rotary or static heat exchangers, flues and smoke ducts, electrostatic filters, and on which we want to intervene without having to stop the combustion process and maintain maximum heat output in order to achieve significant energy savings.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Cleaning In General (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Prevention Of Fouling (AREA)

Description

  • La présente invention est relative à un procédé de nettoyage des surfaces d'une installation, encrassées par des dépôts inscrutants ou non, résultant de la combustion de matières carbonées, applicable sans avoir à arrêter le processus de combustion.
  • L'homme de l'art sait que toute opération de combustion mettant en oeuvre des matières carbonées, qu'elles soient à l'état gazeux, liquide ou solide, s'accompagne généralement, d'une part, de l'émission de gaz plus ou moins chauds, d'autre part, de la formation de produits minéraux non combustibles et de produits carbonés imbrulés. Ces produits sont plus ou moins entraînés dans les circuits où sont véhiculés les gaz et ils peuvent soit se déposer à leur surface, soit réagir chimiquement avec les matériaux constitutifs desdites surfaces, en raison de la température élevée et de leur composition, fondre et adhérer à ces dernières. On a ainsi création de dépôts plus ou moins incrustants.
  • Ces dépôts encrassent les surfaces avec lesquelles ils sont en contact et ceci peut avoir des conséquences fâcheuses lorsque ces surfaces sont, comme dans le cas de générateurs de chaleur, celles d'échangeurs chargées de transmettre un flux thermique à un fluide circulant de l'autre côté des surfaces. En effet, ces dépôts diminuent le coefficient de transfert de la surface et conduisent à une réduction de rendement calorifique des installations nécessitant parfois leur arrêt.
  • Il s'avère donc nécessaire de procéder périodiquement au nettoyage de ces surfaces encrassées, afin de supprimer ces dépôts, ou tout au moins, d'en limiter la quantité à une valeur acceptable.
  • Il est de pratique courante d'effectuer ce nettoyage par insufflation sur la surface à nettoyer d'un fluide sous pression tel que vapeur, eau ou air, qui agit à la fois ou séparément comme agent de refroidissement provoquant une rétraction des dépôts et comme agent mécanique assurant leur désagrégation. il
  • Mais ce procédé requiert l'utilisation de circuits de fluide sous une pression de plusieurs dizaines de bars, et s'applique aux seules surfaces qui peuvent être atteintes directement par le jet de fluide, écartant de ce fait son application aux installations présentant des circuits à chicanes.
  • Par ailleurs, un tel procédé est en général mis en oeuvre en dehors de tout processus de combustion, c'est-à-dire l'installation arrêtée; dans le cas contraire, il faut recourir à des têtes de soufflage conçues de façon à pouvoir être exposées à l'action de gaz chauds plus ou moins corrosifs sans se détériorer.
  • Un autre procédé classique, et sans doute d'une certaine efficacité, consiste à laver les surfaces encrassées, mais on se heurte alors au problème des dépôts qui se dissolvent mal ou qui donnent naissance à des solutions acides conduisant à la corrosion et à la destruction des matériaux constitutifs de l'installation. L'inconvénient réside également dans le fait qu'il faut inévitablement arrêter l'installation à nettoyer pendant un intervalle de temps assez prolongé, ce qui cause d'importantes pertes de productivité dans le cas où celle-ci fait partie d'une unité de fabrication travaillant en continu.
  • L'homme de l'art sait également qu'il peut résoudre ce problème de nettoyage par un grenaillage des surfaces de l'installation. Toutefois, une telle solution ne trouve son application que dans des installations de constitution particulière et disposées de façon convenable. D'où l'intérêt très limité de ce type de procédé.
  • On peut également faire appel au nettoyage chimique consistant, par exemple, à imbiber les surfaces à nettoyer d'une solution d'ammoniaque pour neutraliser l'anhydride sulfurique présent dans les dépôts à éliminer (voir par exemple FR-A- 1 357992). Cette méthode entraîne toutefois les mêmes inconvénients que ceux cités plus haut.
  • C'est pourquoi la demanderesse, soucieuse d'apporter sa contribution à un problème d'autant plus important que les économies d'énergie, et, donc, la recherche du rendement maximum des échangeurs de chaleur, constituent aujourd'hui pour les industriels un objectif primordial, a cherché et mis au point un procédé de nettoyage et d'entretien en état de propreté des surfaces encrassées par les dépôts résultant de la combustion de matières carbonées, tel, qu'il soit applicable sans avoir à arrêter en général le processus de combustion dans l'installation, c'est-à-dire sans perturber la marche des unités de production qui sont sous sa dépendance. Ce procédé présente également les avantages suivants: il permet de nettoyer les dépôts les plus adhérents sur des surfaces d'accès difficile sans recourir à l'utilisation de solutions de lavage créatrices de phénomènes de corrosion ou de dispositifs consommant des quantités d'énergie rédhibitoires et sans modification ou adaptation particulière de l'installation à nettoyer.
  • Ce procédé est caractérisé en ce que l'on injecte dans l'installation, sous forme d'une dispersion qui est entraînée par le flux des gaz de combustion, une solution d'au moins un corps susceptible de réagir chimiquement avec les dépôts carbonés et minéraux qui encrassent les surfaces, et que l'on déplace les particules résultant des réactions chimiques par mise en phase avec des ondes acoustiques aériennes afin de provoquer leur entraînement par le flux des gaz de combustion ou leur chute vers les cendriers de l'installation.
  • Ainsi, le procédé de nettoyage est caractérisé, d'abord, en ce que l'on injecte dans l'installation, sous forme d'une dispersion qui est entraînée par le flux des gaz de combustion, une solution d'au moins un corps susceptible de réagir chimiquement avec les dépôts carbonés et minéraux résultant de la combustion des matières carbonées.
  • La réaction chimique doit conduire, le plus généralement, à l'oxydation des dépôts. Dans le cas des dépôts carbonés, il y a combustion, donc, destruction desdits dépôts; dans le cas des dépôts minéraux, il se produit une réaction d'oxydation conduisant à une augmentation de volume, et, donc à la désagrégation des structures cristallines des dépôts. Mais, cette destruction des structures peut également être induite par des réactions chimiques du type réactions de décomposition et/ou des réactions de substitution. La réaction chimique doit aussi pouvoir se produire dans des conditions de chimie des hautes températures.
  • Du point de vue nature du corps injecté, la demanderesse utilise, de préférence, un oxydant et notamment un nitrate, ou encore un mélange de nitrates tels que le nitrate de potassium et le nitrate d'ammonium, lesquels, lorsqu'ils sont utilisés en solution aqueuse, ont une concentration de l'ordre de 200 à 300 g/litre.
  • Dans certains cas, il est préférable, pour empêcher toute corrosion, d'amener ces solutions à un pH supérieur à 9 en y ajoutant de l'ammoniaque ou tout autre corps susceptible de stabiliser le pH des dépôts.
  • Par ailleurs, le corps injecté contient toujours les inhibiteurs de corrosion nécessaires pour éviter les attaques chimiques sur les matériaux constitutifs du système. On peut, également, utiliser des corps susceptibles d'induire les réactions de neutralisation et/ou de substitution. Le choix des constituants du corps injecté et des quantités du corps injecté tiennent également compte des réglementations en matière de pollution atmosphérique.
  • De préférence, on met en oeuvre le corps à l'état divisé afin d'obtenir la surface de contact la plus grande possible avec les dépôts carbonés et minéraux, et, par suite, une réduction chimique accélérée.
  • Cet état de division peut être encore augmenté en injectant le corps sous forme d'une solution qui est atomisée au moyen d'atomiseurs ultrasoniques ou de tout autre moyen susceptible d'assurer une dispersion convenable et dont le nombre et la situation géographique sont essentiellement fonction de la structure de l'installation à nettoyer. Mais, ils sont généralement placés de façon que le nuage de corpuscules qu'ils produisent n'entre pas en contact avec la flamme résultant de la combustion des matières carbonées. Les atomiseurs peuvent être installés spécialement pour l'opération de nettoyage ou de façon permanente sur les ouvertures existantes de l'installation, par exemple sur les regards.
  • Le corps peut être injecté en continu pendant toute la période de nettoyage ou de façon programmée. Ainsi, sous l'action de cette injection au sein de la zone chaude de l'installation, le corps pulvérisé et entraîné par les gaz résultant de la combustion est rapidement mis en contact avec les dépôts carbonés et minéraux sur lesquels il réagit en provoquant leur combustion ou la réaction chimique désirée. Ces réactions entraînent leur fine fragmentation qui favorisera leur déplacement ultérieur sous l'action des ondes acoustiques.
  • Le système à nettoyer étant en marche normale pendant l'injection du corps, les températures auxquelles se produisent les réactions sont comprise entre 300 et 1000°C, et ces réactions sont donc très rapides, et même font appel à la chimie des hautes températures.
  • La deuxième caractéristique de l'invention consiste donc à déplacer les particules résultant des réactions chimiques afin de provoquer leur entraînement dans le flux des gaz de combustion ou leur chute vers les cendriers de l'installation. Cette mise en mouvement des particules est obtenue par leur mise en phase avec des ondes acoustiques aériennes, générées par des sources de vibrations sonores. Ces sources émettent des vibrations de fréquences audibles de 250 Hertz, par exemple. C'est dans le domaine de fréquences audibles que les sources sonores sont les plus efficaces pour le but recherché, mais il est possible de recourir à de sources infra ou ultra-sonores pour certains dépôts.
  • Du point de vue puissance, une gamme comprise entre 100 et 200 décibels par source doit être mise en oeuvre.
  • Ces sources doivent être à des emplacements judicieusement choisis en fonction des caractéristiques de l'installation, de la nature, de la situation géographique et de la quantité des dépôts à éliminer. Elles sont plus ou moins éloignées les unes des autres en fonction de leur rayon d'action. Leur conception doit être telle qu'elles puissent supporter des températures allant jusqu'à 1000°C sans se détériorer. Elles sont placées sur l'installation au moment du nettoyage ou restent à demeure.
  • Ainsi, sous l'action combinée du corps injecté et des ondes acoustiques, les dépôts qui encrassent les surfaces de l'installation, se trouvent réduits à une masse plus ou moins pulvérulente de particules qui est, soit entraînée par les gaz résultant de la cumbustion et arrêtée éventuellement par des électrofiltres, soit redéposée en certains endroits de l'installation, par exemple dans les parties basses de l'installation où elle ne gêne pas les échanges thermiques et pourra être récupérée à tout moment ou lors d'un arrêt de l'installation suivant la conception de cette dernière.
  • La présente invention est illustrée par les dessins qui accompagnent la demande. Ces dessins représentent différents types d'installations susceptibles de recevoir application du procédé revendiqué.
    • La figure 1 concerne une chaudière de grande puissance.
    • La figure 2 concerne une chaudière de petite puissance.
    • La figure 3 concerne un four de raffinerie.
  • La figure 1 représente, de façon schématique, une coupe verticale d'une chaudière de grande puissance (1) équipée d'un brûleur (2) émettant une flamme (3) générant des gaz chauds qui circulent suivant le sens des flèches (4), accompagnés par des produits carbonés et des produits minéraux qui viennent se déposer sur les surfaces (5) des quatre échangeurs (6). Quatre pulvérisateurs (7) disposés en différents endroits de la chaudière injectent le corps susceptible de réagir chimiquement avec les dépôts qui encrassent les surfces tandis que cinq sources sonores (8) ont été placées sur chacune des deux faces latérales de l'installation, parallèles à l'axe du brûleur.
  • La figure 2 représente une coupe verticale d'une chaudière acier de petite puissance (9) pour la production d'eau chaude ou de vapeur équipée d'un brûleur (10) émettant une flamme (11) d'où résultent des gaz qui circulent suivant le sens des flèches (12) en abandonnant une partie des produits solides qui les accompagnent sur les surfaces d'échange (13). Pour appliquer le procédé, on a placé trois injecteurs (14) tandis qu'une source sonore (15) a été mise en place entre les deux faisceaux tubulaires de l'installation.
  • La figure 3 représente une coupe verticale d'un four (16) de raffinerie consommant 70 tonnes de fuel lourd par jour. Ce four est équipé de trois brûleurs (17) qui émettent des flammes (18) dans chacune des trois cellules de radiation (19). Les gaz de combustion circulent suivant le sens des flèches (20) et laissent déposer une partie des particules en suspension qu'elles entraînent sur les surfaces des échangeurs (21). Trois pulvérisateurs (22) ont été disposés près de chacun des brûleurs, et un quatrième, à la sortie des cellules de radiation, tandis que sept sources sonores (23) ont été placées pour trois d'entre elles sur une des parois latérales de l'installation au niveau des cellules et, pour les quatre autres, au niveau des échangeurs (21).
  • Pour mieux faire comprendre l'invention, on décrit maintenant deux exemples d'application de l'invention.
  • Exemple 1 :
  • Une chaudière classique à eau surchauffée, d'une puissance calorifique de 10 thermies par heure, chauffée au charbon, en service permanent, a été traitée pendant la marche suivant le procédé de l'invention pour nettoyer à la fois les zones de radiation et d'échange de chaleur.
  • Le processus a été le suivant: on a injecté 200 litres d'une solution contenant 155 g/I de nitrate d'ammonium et 135 g/I de nitrate de potassium, amenée par addition d'ammoniaque à un pH voisin de 9,3 et ce, pendant une durée de 60 minutes en quatre périodes de 15 minutes, avec un arrêt de 30 m entre chaque injection.
  • Pendant la durée de l'injection, le tirage de la chaudière a été réduit au minimum afin d'éviter des pertes de corps par la cheminée et quatre sources sonores installées sur les parois de la chaudière ont été mises en action pendant 10 secondes toutes les 15 minutes suivant une fréquence de 250 Hz et une intensité de 140 décibels. Ces sources étaient maintenues en service pendant 24 heures après la fin de l'injection pour parfaire le nettoyage. Les particules qui se sont détachées des surfaces ont été entraînées par le flux des gaz de combustion et arrêtées par un électro- filtre.
  • Le rendement thermique de la chaudière qui avait chuté à 85% de la normale était redevenu voisin de 98% après traitement.
  • Exemple 2:
  • Un four de raffinerie du type représenté sur la figure 3 consommant 300 tonnes de fuel lourd par jour, en service depuis plus de six mois a été traité par le procédé de l'invention pour assurer le nettoyage des cellules de combustion et des échangeurs. Pour cela, on a injecté en cinq périodes de 30 minutes, séparées par des périodes de repos de 30 minutes, 5000 litres d'une solution contenant 115 g/I de nitrate d'ammonium et 135 g/1 de nitrate de potassium amenée à un pH de 9,3 par addition d'ammoniaque.
  • A la suite de chaque période d'injection, on mettait en action pendant 15 secondes, sept sources sonores réparties suivant la figure 3. Après entraînement des particules par les fumées ou leur dépôt dans le bas de l'installation, le rendement thermique de l'installation, qui avait chuté à 80%, est repassé à 95% de la normale habituelle.
  • Ce procédé trouve son application dans le nettoyage des surfaces d'installations telles que, notamment, chambres de combustion de chaudières, échangeurs de chaleur tournants ou statiques, conduits et gaines de fumées, filtres électrostatiques, et sur lesquelles on veut intervenir sans avoir à arrêter le processus de combustion et maintenir un rendement calorifique maximum de manière à réaliser d'importantes économies d'énergie.

Claims (12)

1. Procédé de nettoyage des surfaces d'une installation, encrassées par des dépôts résultant de la combustion de matières carbonées, caractérisé en ce que l'on injecte dans l'installation, sous forme d'une dispersion qui est entraînée par le flux des gaz de combustion, une solution d'au moins un corps susceptible de réagir chimiquement avec les dépôts carbonés et minéraux qui encrassent lesdites surfaces, et que l'on déplace les particules résultant des réactions chimiques par mise en phase avec des ondes acoustiques aériennes, afin de provoquer leur entraînement par le flux des gaz de combustion ou leur chute vers les cendriers de l'installation.
2. Procédé selon la revendication 1, caractérisé en ce que l'on injecte une solution d'au moins un corps susceptible de donner avec les dépôts à éliminer des réactions de décomposition et/ou de substitution.
3. Procédé selon la revendication 1, caractérisé en ce que l'on injecte une solution d'au moins un corps réagissant dans les conditions de chimie des hautes températures.
4. Procédé selon la revendication 1, caractérisé en ce que l'on injecte une solution d'au moins un corps oxydant.
5. Procédé selon la revendication 4, caractérisé en ce que l'on injecte une solution aqueuse contenant 200 à 300 g/I de nitrate d'ammonium.
6. Procédé selon la revendication 4, caractérisé en ce que l'on injecte une solution d'un mélange de nitrate de potassium et de nitrate d'ammonium.
7. Procédé selon la revendication 1, caractérisé en ce que la solution aqueuse est amenée à un pH supérieur à 9 par addition d'ammoniaque ou tout autre corps susceptible de stabiliser le pH des dépôts.
8. Procédé selon la revendication 1, caractérisé en ce que l'on injecte une solution d'au moins un corps mélangé à des inhibiteurs de corrosion.
9. Procédé selon la revendication 1, caractérisé en ce que l'on injecte la solution en dehors des zones de combustion.
10. Procédé selon la revendication 1, caractérisé en ce que la mise en phase des particules est réalisée avec des ondes de fréquences audibles.
11. Procédé selon la revendication 1, caractérisé en ce que les ondes acoustiques sont émises par des sources de vibrations sonores ayant chacune une puissance comprise entre 100 et 200 décibels.
12. Procédé selon la revendication 11, caractérisé en ce que les sources de vibrations sonore supportent des températures allant jusqu'à 1000°C.
EP81420171A 1980-11-26 1981-11-23 Procédé de nettoyage des surfaces d'une installation, encrassées par des dépôts résultant de la combustion de matières carbonées Expired EP0053085B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT81420171T ATE5023T1 (de) 1980-11-26 1981-11-23 Verfahren zum reinigen von oberflaechen, die durch ablagerungen aus der verbrennung kohlenstoffhaltiger materialien verunreinigt sind.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8025389 1980-11-26
FR8025389A FR2494814A1 (fr) 1980-11-26 1980-11-26 Procede de nettoyage des surfaces d'une installation, encrassees par des depots resultant de la combustion de matieres carbonees

Publications (2)

Publication Number Publication Date
EP0053085A1 EP0053085A1 (fr) 1982-06-02
EP0053085B1 true EP0053085B1 (fr) 1983-10-12

Family

ID=9248489

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81420171A Expired EP0053085B1 (fr) 1980-11-26 1981-11-23 Procédé de nettoyage des surfaces d'une installation, encrassées par des dépôts résultant de la combustion de matières carbonées

Country Status (9)

Country Link
US (1) US4396434A (fr)
EP (1) EP0053085B1 (fr)
AT (1) ATE5023T1 (fr)
CA (1) CA1173335A (fr)
DE (1) DE3161192D1 (fr)
ES (1) ES507417A0 (fr)
FR (1) FR2494814A1 (fr)
GR (1) GR68327B (fr)
PT (1) PT74036B (fr)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2095283B (en) * 1981-02-09 1984-08-01 Polarchem Ltd Method for the prevention of deposits on or the removal ofdeposits from heating and ancillary surfaces
DE3200582C1 (de) * 1982-01-12 1983-04-07 Heinrich, Emil, 7054 Korb Verfahren zum Entfernen von Schmiermitteln von aus Metallpulver gepressten Formteilen und Vorrichtung zur Durchfuehrung des Verfahrens
CA1201032A (fr) * 1982-10-28 1986-02-25 633972 Ontario Limited Chaudieres a condensation
US4655846A (en) * 1983-04-19 1987-04-07 Anco Engineers, Inc. Method of pressure pulse cleaning a tube bundle heat exchanger
US4645542A (en) * 1984-04-26 1987-02-24 Anco Engineers, Inc. Method of pressure pulse cleaning the interior of heat exchanger tubes located within a pressure vessel such as a tube bundle heat exchanger, boiler, condenser or the like
US4773357A (en) * 1986-08-29 1988-09-27 Anco Engineers, Inc. Water cannon apparatus and method for cleaning a tube bundle heat exchanger, boiler, condenser, or the like
US4960577A (en) * 1988-02-04 1990-10-02 Acurex Corporation Enhanced sorbent injection combined with natural gas reburning for a sox control for coal fired boilers
JPH04227487A (ja) * 1990-05-18 1992-08-17 Westinghouse Electric Corp <We> スラッジ及び腐食生成物の除去方法
US5461123A (en) * 1994-07-14 1995-10-24 Union Carbide Chemicals & Plastics Technology Corporation Gas phase fluidized bed polyolefin polymerization process using sound waves
JP2981288B2 (ja) * 1994-08-23 1999-11-22 フォスター ホイーラー エナージア オサケ ユキチュア 流動床反応器装置の操作方法及び装置
US5960086A (en) * 1995-11-02 1999-09-28 Tri-Strata Security, Inc. Unified end-to-end security methods and systems for operating on insecure networks
FI109098B (fi) * 2000-04-14 2002-05-31 Nirania Ky Akustinen puhdistuslaite ja -menetelmä
JP4229840B2 (ja) * 2002-02-08 2009-02-25 エスケー エナジー 株式会社 ヒーターチューブの洗浄のための洗浄剤および方法
US7360508B2 (en) * 2004-06-14 2008-04-22 Diamond Power International, Inc. Detonation / deflagration sootblower
US20070149432A1 (en) * 2004-08-03 2007-06-28 Jeon-Keun Oh Cleaning agent and method for cleaning heater tubes
KR100686361B1 (ko) 2005-11-28 2007-02-26 날코코리아 유한회사 연료 기기 세척용 조성물
UA95486C2 (uk) * 2006-07-07 2011-08-10 Форс Текнолоджи Спосіб та система для поліпшеного застосування високоінтенсивних акустичних хвиль
US11371788B2 (en) * 2018-09-10 2022-06-28 General Electric Company Heat exchangers with a particulate flushing manifold and systems and methods of flushing particulates from a heat exchanger

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US621884A (en) * 1899-03-28 John macnaull wilson
US2351163A (en) * 1943-01-21 1944-06-13 Diamond Power Speciality Boiler cleaner
US2664274A (en) * 1951-12-22 1953-12-29 Lummus Co Method and apparatus employing sonic waves in heat exchange
US2935956A (en) * 1954-09-22 1960-05-10 Jack F Govan Slag control
US3234580A (en) * 1961-07-19 1966-02-15 Julian W Keck Treatment of heat exchanger surfaces
NL293035A (fr) * 1962-05-24 1900-01-01
US3457108A (en) * 1964-08-03 1969-07-22 Dow Chemical Co Method of removing adherent materials
US3544366A (en) * 1967-02-03 1970-12-01 Carlo W Uhlmann Method for removing incrustation from metal surfaces
FI52147C (fi) * 1971-08-19 1977-06-10 Ahlstroem Oy Menetelmä ja laite höyrykattilan putkiston ulkopuolista puhdistusta va rten
SE365753B (fr) * 1972-01-04 1974-04-01 Tri Innovations Ab

Also Published As

Publication number Publication date
CA1173335A (fr) 1984-08-28
GR68327B (fr) 1981-11-30
ES8300996A1 (es) 1982-11-01
FR2494814A1 (fr) 1982-05-28
ATE5023T1 (de) 1983-10-15
US4396434A (en) 1983-08-02
ES507417A0 (es) 1982-11-01
PT74036B (fr) 1983-04-26
EP0053085A1 (fr) 1982-06-02
PT74036A (fr) 1981-12-01
DE3161192D1 (en) 1983-11-17

Similar Documents

Publication Publication Date Title
EP0053085B1 (fr) Procédé de nettoyage des surfaces d&#39;une installation, encrassées par des dépôts résultant de la combustion de matières carbonées
EP2153130B1 (fr) Procede de combustion a bas nox pour la fusion du verre et injecteur mixte
EP0524880A1 (fr) Procédé et installation de combustion pulsée
FR2616884A1 (fr) Procede de traitement d&#39;effluents gazeux provenant de la fabrication de composants electroniques et appareil d&#39;incineration pour sa mise en oeuvre
EP0186561A1 (fr) Procédé d&#39;incinération de déchets à température controlée
EP1766289A1 (fr) Procede de combustion homogene et générateur thermique utilisant un tel procédé.
WO1992011931A1 (fr) Procede de fabrication de produits chimiques
EP0270719B1 (fr) Procédé de réduction des imbrûlés de combustion et agent pour sa mise en oeuvre
FR2698156A1 (fr) Procédé de traitement thermique d&#39;un effluent comprenant des matières organiques polluantes ou un composé inorganique.
FR3053445B1 (fr) Procede de nettoyage de chaudieres, dispositif et chaudiere correspondants
EP0410867B1 (fr) Procédé de nettoyage de surfaces chaudes de fours, ainsi qu&#39;une installation et des granulés pour sa mise en oeuvre
CA2411755A1 (fr) Procede de regeneration d&#39;un filtre a particules et dispositif permettant la mise en oeuvre du procede
EP3816512A1 (fr) Module de production de chaleur comprenant un systeme de filtration haute temperature
EP0069009B1 (fr) Procédé de dégraissage d&#39;une bande laminée à froid
EP1247046A1 (fr) Methode et dispositif d&#39;auto-combustion de dechets organiques graisseux comportant un foyer a chauffe tangentielle
EP2310745B1 (fr) Procede et dispositif de traitement thermique d&#39;au moins un effluent comportant des polluants combustibles
FR2813655A1 (fr) Procede de generation de chaleur permettant une emission reduite des oxydes de soufre et consommation reduite d&#39;absorbant
WO1993002322A1 (fr) Procede d&#39;incineration de dechets organiques
FR2977928A1 (fr) Incinerateur de dechets tres energetiques
EP0007862B1 (fr) Agent liquide de destruction chimique de la suie et son procédé d&#39;application
SU1169715A1 (ru) Способ очистки газов от гидразина
FR2749066A1 (fr) Procede de reduction, par recombustion, des oxydes d&#39;azote contenus dans les fumees issues d&#39;une combustion primaire realisee dans un four, et installation pour sa mise en oeuvre
RU2230984C2 (ru) Способ сжигания топлива в топочном устройстве
BE521113A (fr)
FR2627767A1 (fr) Chambre de combustion pour laser chimique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE GB IT LU NL SE

17P Request for examination filed

Effective date: 19820619

ITF It: translation for a ep patent filed

Owner name: ING. A. GIAMBROCONO & C. S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 5023

Country of ref document: AT

Date of ref document: 19831015

Kind code of ref document: T

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19831028

Year of fee payment: 3

REF Corresponds to:

Ref document number: 3161192

Country of ref document: DE

Date of ref document: 19831117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19831130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19841006

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19841008

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19841009

Year of fee payment: 4

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19841101

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19841231

Year of fee payment: 4

Ref country code: BE

Payment date: 19841231

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19851123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19851124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19851130

Ref country code: CH

Effective date: 19851130

Ref country code: BE

Effective date: 19851130

BERE Be: lapsed

Owner name: ETS SOMALOR-FERRARI SOMAFER S.A.

Effective date: 19851130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19860601

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19860801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881118

EUG Se: european patent has lapsed

Ref document number: 81420171.1

Effective date: 19860807