EP0049530A1 - Method and device for carbonizing metallic pieces - Google Patents

Method and device for carbonizing metallic pieces Download PDF

Info

Publication number
EP0049530A1
EP0049530A1 EP81108034A EP81108034A EP0049530A1 EP 0049530 A1 EP0049530 A1 EP 0049530A1 EP 81108034 A EP81108034 A EP 81108034A EP 81108034 A EP81108034 A EP 81108034A EP 0049530 A1 EP0049530 A1 EP 0049530A1
Authority
EP
European Patent Office
Prior art keywords
carbon
workpieces
gas mixture
annealing furnace
soot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP81108034A
Other languages
German (de)
French (fr)
Other versions
EP0049530B1 (en
Inventor
Karlheinz Längerich
Rüdiger Dr. Conrad
Wolfgang Dr. Danzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Xaver Fendt and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH, Xaver Fendt and Co filed Critical Linde GmbH
Publication of EP0049530A1 publication Critical patent/EP0049530A1/en
Application granted granted Critical
Publication of EP0049530B1 publication Critical patent/EP0049530B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases

Definitions

  • the invention relates to a method and a device for carburizing metallic workpieces, in which the workpieces are brought to a high temperature in an annealing furnace, exposed to the action of a carbon-containing gas mixture and hardened.
  • gas carburizing and carbonitriding are becoming increasingly important.
  • the processes are carried out in closed annealing furnaces, which allow a controlled atmosphere to be set and maintained at a certain reaction temperature.
  • the main problem with the gas carburizing process is the transfer of carbon from the gas atmosphere to the material, e.g. Steel, to be carried out in a controlled manner in order to achieve reproducible carburizing results on workpieces of different basic carbon content, different alloys and in particular different shapes.
  • a carburizing gas atmosphere from a gas mixture of the three components nitrogen, coal Introduce hydrogen and oxygen dispenser into the furnace chamber (DE-OS 24 50 879 and DE-OS 28 18 558).
  • hydrocarbons paraffin or paraffinic hydrocarbons, methane, ethane, propane, butane or natural gas with a proportion of 7.5 to 38 grams of carbon.
  • Oxygen, air, carbon dioxide, carbon monoxide, water vapor or mixtures thereof serve as oxygen donors.
  • the gas components are fed to the furnace separately or in mixtures.
  • the measurement and control of the gas atmosphere takes place via a dew point, infrared (C0 2 ) or oxygen measurement.
  • the carburizing process is divided into two or three intervals in which the carburizing agent is fed into the furnace (interval carbons). The intervals are separated in time by two or three phases in which no carbonizing agent is fed into the furnace. During the carbonization intervals, the carbon potential in the furnace rises sharply and soot is formed. In the subsequent phase, in which air is fed into the furnace instead of carbon dioxide, the carbon potential drops again to zero. Edge oxidations cannot be avoided with this procedure. However, if the proportion of carburizing agent in the gas mixture is reduced in order to avoid excessive soot formation, the carburizing time increases considerably.
  • the invention is therefore based on the object of a method for the uniform carburizing of workpieces that are more reliable, faster and therefore more economical.
  • This object is achieved in that one or more of the carbon-containing gas components of the gas mixture are added in a pulsating manner during its action on the surface of the workpieces.
  • the invention is based on the knowledge that a large carbon potential gradient between the workpiece surface and the core itself comes to the fore as an additional driving diffusion force from the beginning of carburization.
  • the carbon-containing gas components of the gas mixture are added in a pulsating manner. This means that the carbon content of the gas mixture is raised to a certain level in various phases during the carburization, these phases being separated by time intervals in which the carbon content is not changed by the addition of carbon-containing gas components, and the carbon content of the gas mixture consequently decreases.
  • the gas mixture has at least atmospheric pressure and rises rapidly during the intermittent addition of a carbon-containing gas component.
  • This pressure increase is particularly pronounced when hydrocarbons with two or more carbon atoms are introduced into the furnace, since each of their molecules breaks down into several gas molecules with a corresponding pressure increase.
  • the pressure of the gas atmosphere fluctuates in the same rhythm in which the pulsating addition of the carbon-containing gas components takes place ("breathing" of the gas atmosphere).
  • the main advantage of this process is that the glow time is reduced by up to 60% compared to the endogas process, while the duration of carburization takes place under glow time and understanding diffusion. Large hardening depths are also achieved.
  • a uniform carburization is achieved, which leads to the workpieces being free of soot and edge oxidation.
  • the process is significantly more reliable, because of the low H 2 content, the risk of explosion is lower and the furnaces can be gassed safely during idle and at the weekend.
  • the addition period is 2 to 200 seconds, preferably 15 to 60 seconds, while the duration of the diffusion phase is 10 to 500 seconds, preferably 50 to 200 seconds.
  • the methane and / or the soot content in the gas mixture is measured, the measured variables are fed to a control unit and the addition of one or more of the hydrocarbons by the control unit after comparison of the values of the methane and / or soot content with a setpoint set in each case.
  • the setpoints are selected so that over-carbonization, ie, soot formation, does not take place.
  • the surface of the metallic workpieces therefore always remains soot-free. Rather, the carbon potential is kept almost constant at a value, the working line, around which the carbon potential fluctuates.
  • the carbon potential rises briefly during the pulsed addition of hydrocarbons and falls below the almost constant mean value given during the subsequent diffusion phase.
  • material potential never drops to zero. It is crucial here that the working line of the process is at a high carbon potential above the classic soot limit, without producing soot, since the stay in the soot area is only very short. This fact has proven to be an essential feature of the method according to the invention, on which the high carburizing rate can be attributed.
  • the method according to the invention can also be used for carbonitriding the workpieces.
  • ammonia is added pulsating to the gas mixture while it is acting on the surface of the workpieces.
  • An annealing furnace for carrying out the method according to the invention essentially has a device for supplying and discharging gases into and from the annealing furnace and an associated control device.
  • the control device is advantageously connected to a soot sensor and a gas analyzer for determining the methane content in the gas mixture, the control unit responding to the difference between measured value signals and a setpoint signal for the soot and / or methane content that can be set in one or two setpoint transmitters Valve for the addition of hydrocarbons is connected.
  • the device for supplying the carbon-containing gas components opens into the interior of the annealing furnace in the lower region and in the immediate vicinity of the carburized workpieces located in the annealing furnace.
  • An annealing furnace 1 is connected via a line 2 to a control unit consisting of a soot sensor 3, a gas analyzer 4 and a controller 5.
  • the gas components nitrogen, carbon dioxide, hydrocarbon, and which come directly from storage bottles, are fed via valves 7, 8 and 9 and a feed 6 into the annealing furnace, which is connected to an outflow line 10 for the exhaust gases.
  • Valve 7, which regulates the supply of nitrogen, is open for driving in and heating up the batch in the furnace chamber, while valve 8 (carbon dioxide) and valve 9 (hydrocarbon, for example propane) are closed.
  • valves 7 and 8 are open and also valve 9 for a short time, for example 20 seconds.
  • the gas mixture passed into the furnace chamber accordingly consists of inert nitrogen, CO 2 and propane.
  • the propane is unstable at the high temperatures and breaks down into radicals, some of which are highly reactive, which cause rapid oversaturation of the workpiece surface with carbon. Because of the resulting significant carbon potential gradient between the workpiece surface and the core, this potential gradient comes to the fore as an additional driving diffusion force from the beginning of the carbonization.
  • both methane and soot are generated in the gas mixture.
  • a part of this gas mixture is drawn off via line 2 and the soot content in the soot sensor and the methane content in the gas analyzer 4, for example an infrared analyzer, are measured.
  • the controller 5 the output values of these two measuring devices are compared with predetermined target values, and if these target values are exceeded, the valve 9 is closed via a relay 11, i.e. the supply of e.g. Interrupted propane.
  • the addition period for the propane is, for example, 20 seconds.
  • the controller 5 opens the valve 9 again via the relay 11 and a new cycle begins.
  • valves 8 and 9 close and the charge is lowered to the hardening temperature.
  • a double spur gear made of 20 Mn CrS, module 5 is sketched in the detail in FIG. 3.
  • the broad dashed line outside the body edges marks the surface hardened area, the narrow dashed line its position and its course.
  • the course of the hardened surface layer requires the determination of the measuring points, which are designated M1 and M2, for the hardening depth.
  • a production batch having a surface area of about 11 m 2 and a weight of 500 kg is at a temperature Glühtem e-p 130 min of 945 ° C in a Aichelin multipurpose chamber furnace. Carburized long. The addition period for propane is approximately 20 seconds and the duration of the diffusion phase is approximately 60 seconds.
  • Figure 4 shows the hardness curve on a double spur gear (material 16 Mn Cr5) from this batch.
  • the surface hardness in HV according to DIN 6773 is plotted against the hardening depth in mm.
  • Curve 1 relates to measuring point 1 and curve 2 to measuring point 2.
  • the workpiece is free of carbides and residual austenite, the carburized steel is martensite. It can clearly be seen that there is constant surface hardening down to a hardening depth of approx. 0.45 mm. However, this then decreases with the hardening depth, due to the shape of the workpiece at measuring point M1 more slowly than at measuring point M2.
  • a specified surface hardness of 610 HV (solid line) corresponds to a hardening depth of 0.83 mm at measuring point M1 and 0.68 mm at measuring point M2. This means that the indentation in the workpiece is sufficiently hardened to avoid deformation.
  • Example 2 Analogous to Example 1, with the difference that the annealing temperature is 960 ° C., the annealing time is 30 minutes, and the addition period for Propane on average 90 seconds and the diffusion time is approximately 200 seconds.
  • Figure 5 shows the hardness curve.
  • a surface hardness of 610 HV corresponds to a hardening depth of 0.45 mm at measuring point M1 and 0.36 mm at measuring point M2. So after a short time (30 min) a considerable hardening depth was reached.
  • FIG. 6 shows the course of the case hardening depth at a limit hardness of 610 HV1 as a function of the annealing time at different annealing temperatures.
  • the almost linear course of the curve from a hardening depth of approx. 0.45 mm is noteworthy.
  • Curves for annealing temperatures between 930 ° C and 960 ° C lie between the two curves shown. The results of 60 tests under production conditions are incorporated into the curve.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Forging (AREA)

Abstract

Es wird ein Verfahren zum Einsatzhärten metallischer Werkstücke angegeben. Dabei werden die Werkstücke in einem Glühofen auf hohe Temperatur gebracht, der Einwirkung eines kohlenstoffhaltigen Gasgemisches ausgesetzt und gehärtet. Um auf zuverlässige, schnelle und wirtschaftliche Weise ein gleichmäßiges Aufkohlen der Werkstücke zu erreichen, wird bzw. werden eine oder mehrere der kohlenstoffhaltigen Gaskomponenten des Gasgemisches während dessen Einwirkung auf die Oberfläche der Werkstücke dem Gasgemisch pulsierend zugegeben.A method for case hardening metallic workpieces is specified. The workpieces are brought to a high temperature in an annealing furnace, exposed to a carbon-containing gas mixture and hardened. In order to achieve a uniform carburizing of the workpieces in a reliable, fast and economical manner, one or more of the carbon-containing gas components of the gas mixture are or are added to the gas mixture in a pulsating manner during its action on the surface of the workpieces.

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Aufkohlen metallischer Werkstücke, bei dem die Werkstücke in einem Glühofen auf hohe Temperatur gebracht, der Einwirkung eines kohlenstoffhaltigen Gasgemisches ausgesetzt und gehärtet werden.The invention relates to a method and a device for carburizing metallic workpieces, in which the workpieces are brought to a high temperature in an annealing furnace, exposed to the action of a carbon-containing gas mixture and hardened.

Unter den bekannten Aufkohlungsverfahren gewinnen die Gasaufkohlung sowie das Carbonitrieren zunehmend an Bedeutung. Die Verfahren werden in Glühöfen geschlossener Bauweise durchgeführt, die es gestatten eine kontrollierte Atmosphäre bei einer bestimmten Reaktionstemperatur einzustellen und aufrechtzuerhalten. Die wesentliche Problematik des Gasaufkohlungsverfahrens besteht darin, die Übertragung des Kohlenstoffs von der Gasatmosphäre auf den Werkstoff, z.B. Stahl, geregelt durchzuführen, um reproduzierbare Aufkohlungsergebnisse an Werkstücken verschiedenen Grundkohlenstoffgehaltes, verschiedener Legierungen und insbesondere verschiedener Formgebung zu erzielen.Among the known carburizing processes, gas carburizing and carbonitriding are becoming increasingly important. The processes are carried out in closed annealing furnaces, which allow a controlled atmosphere to be set and maintained at a certain reaction temperature. The main problem with the gas carburizing process is the transfer of carbon from the gas atmosphere to the material, e.g. Steel, to be carried out in a controlled manner in order to achieve reproducible carburizing results on workpieces of different basic carbon content, different alloys and in particular different shapes.

Es ist bekannt, zur Ausbildung einer Aufkohlungsgasatmosphäre ein Gasgemisch aus den drei Komponenten Stickstoff, Kohlenwasserstoff und Sauerstoffspender in den Ofenraum einzuführen (DE-OS 24 50 879 und DE-OS 28 18 558). Als Kohlenwasserstoffe werden genannt: Paraffin oder paraffinische Kohlenwasserstoffe, Methan, Äthan, Propan, Butan oder Erdgas mit einem Anteil von 7,5 bis 38 Grammatom Kohlenstoff. Als Sauerstoffspender dienen dabei Sauerstoff, Luft, Kohlendioxid, Kohlenmonoxid, Wasserdampf oder Mischungen davon. Die Gaskomponenten werden getrennt oder in Mischungen dem Ofen zugeführt. Die Messung und Regelung der Gasatmosphäre erfolgt über eine Taupunkt-, Infrarot- (C02) oder Sauerstoffmessung.It is known to form a carburizing gas atmosphere from a gas mixture of the three components nitrogen, coal Introduce hydrogen and oxygen dispenser into the furnace chamber (DE-OS 24 50 879 and DE-OS 28 18 558). The following are mentioned as hydrocarbons: paraffin or paraffinic hydrocarbons, methane, ethane, propane, butane or natural gas with a proportion of 7.5 to 38 grams of carbon. Oxygen, air, carbon dioxide, carbon monoxide, water vapor or mixtures thereof serve as oxygen donors. The gas components are fed to the furnace separately or in mixtures. The measurement and control of the gas atmosphere takes place via a dew point, infrared (C0 2 ) or oxygen measurement.

Es hat sich jedoch gezeigt, daß der obengenannte Zusammenhang zwischen Kohlendioxid-, Sauerstoffgehalt und Taupunkt einerseits und Kohlenstoffpotential andererseits nicht ohne weiteres zur Kontrolle herangezogen werden kann, da die in den Ofen eingeleiteten Gase sich nicht im Reaktionsgleichgewicht befinden.However, it has been shown that the above-mentioned relationship between carbon dioxide, oxygen content and dew point, on the one hand, and carbon potential, on the other hand, cannot readily be used for control purposes, since the gases introduced into the furnace are not in reaction equilibrium.

In diesem Zusammenhang ist es auch bekannt, einer Gasatmosphäre Methan als kohlenstoffhaltiges Gas zuzugeben. Bei diesem Verfahren wird der Aufkohlungsprozeß in zwei oder drei Intervalle geteilt, in welchen das Kohlungsmittel in den Ofen geleitet wird (Intervallkohlen). Die Intervalle sind zeitlich durch zwei oder drei Phasen getrennt, in denen kein Kohlungsmittel in den Ofen geleitet wird. Während der Kohlungsintervalle steigt das Kohlenstoffpotential im Ofen stark an und es kommt zur Rußbildung. In der nachfolgenden Phase, in der kein Kohlungsmittel sondern Luft in den Ofen geleitet wird, sinkt das Kohlenstoffpotential wieder auf Null. Bei dieser Verfahrensweise sind jedoch Randoxidationen nicht zu vermeiden. Wird jedoch zur Vermeidung übermäßiger Rußbildung der Anteil des Kohlungsmittels am Gasgemisch verringert, so steigt die Kohlungszeit beträchtlich an.In this context, it is also known to add methane as a carbon-containing gas to a gas atmosphere. In this process, the carburizing process is divided into two or three intervals in which the carburizing agent is fed into the furnace (interval carbons). The intervals are separated in time by two or three phases in which no carbonizing agent is fed into the furnace. During the carbonization intervals, the carbon potential in the furnace rises sharply and soot is formed. In the subsequent phase, in which air is fed into the furnace instead of carbon dioxide, the carbon potential drops again to zero. Edge oxidations cannot be avoided with this procedure. However, if the proportion of carburizing agent in the gas mixture is reduced in order to avoid excessive soot formation, the carburizing time increases considerably.

Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zum gleichmäßigen Aufkohlen von Werkstücken zur Verfügung zu stellen, das zuverlässiger und schneller und so wirtschaftlicher arbeitet.The invention is therefore based on the object of a method for the uniform carburizing of workpieces that are more reliable, faster and therefore more economical.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß eine oder mehrere der kohlenstoffhaltigen Gaskomponenten des Gasgemisches während dessen Einwirkung auf die Oberfläche der Werkstücke pulsierend zugegeben werden.This object is achieved in that one or more of the carbon-containing gas components of the gas mixture are added in a pulsating manner during its action on the surface of the workpieces.

Die Erfindung beruht auf der Erkenntnis, daß ein großes Kohlenstoffpotentialgefälle zwischen Werkstückoberfläche und Kern selbst als zusätzliche treibende Diffusionskraft von Beginn der Aufkohlung an stark inden Vordergrund tritt. Um dieses Kohlenstoffpotentialgefälle zu erreichen,werden die kohlenstoffhaltigen Gaskomponenten des Gasgemisches pulsierend zugegeben. Das bedeutet, daß der Kohlenstoffanteil des Gasgemisches während der Aufkohlung in zahlreichen Phasen jeweils auf ein bestimmtes Niveau gehoben wird, wobei diese Phasen durch Zeitintervalle getrennt sind, in denen der Kohlenstoffanteil nicht durch Zugabe von kohlenstoffhaltigen Gaskomponenten geändert wird, der Kohlenstoffanteil des Gasgemisches demzufolge sinkt. Das Gasgemisch besitzt wenigstens Atmosphärendruck und steigt während einer stoßweisen Zugabe einer kohlenstoffhaltigen Gaskomponente schnell an. Dieser Druckanstieg ist besonders ausgeprägt, wenn Kohlenwasserstoffe mit zwei oder mehreren Kohlenstoffatomen in den Ofen eingeleitet werden, da jedes deren Moleküle in mehrere Gasmoleküle unter entsprechender Druckerhöhung zerfällt. Der Druck der Gasatmosphäre schwankt im gleichen Rhythmus in dem auch die pulsierende Zugabe der kohlenstoffhaltigen Gaskomponenten erfolgt ("Atmen" der Gasatmosphäre).The invention is based on the knowledge that a large carbon potential gradient between the workpiece surface and the core itself comes to the fore as an additional driving diffusion force from the beginning of carburization. In order to achieve this carbon potential gradient, the carbon-containing gas components of the gas mixture are added in a pulsating manner. This means that the carbon content of the gas mixture is raised to a certain level in various phases during the carburization, these phases being separated by time intervals in which the carbon content is not changed by the addition of carbon-containing gas components, and the carbon content of the gas mixture consequently decreases. The gas mixture has at least atmospheric pressure and rises rapidly during the intermittent addition of a carbon-containing gas component. This pressure increase is particularly pronounced when hydrocarbons with two or more carbon atoms are introduced into the furnace, since each of their molecules breaks down into several gas molecules with a corresponding pressure increase. The pressure of the gas atmosphere fluctuates in the same rhythm in which the pulsating addition of the carbon-containing gas components takes place ("breathing" of the gas atmosphere).

Der Hauptvorteil, den dieses Verfahren bietet, liegt in einer Glühzeitverkürzung bis zu 60 % gegenüber dem Endogasoverfahren, wobei unter Glühzeit die Dauer der Aufkohlung und der Diffusion verstanden wird. Außerdem werden große Einhärtungstiefen erreicht. Mit dem erfindungsgemäßen Verfahren wird ein gleichmäßiges Aufkohlen erzielt, das zu dem zu ruß-und randoxidationsfreien Werkstücken führt. Ferner ist das Verfahren wesentlichen betriebssicherer, wegen des geringen H2-Gehaltes ist die Explosionsgefahr geringer und die öfen können im Leerlauf und am Wochenende gefahrlos begast werden.The main advantage of this process is that the glow time is reduced by up to 60% compared to the endogas process, while the duration of carburization takes place under glow time and understanding diffusion. Large hardening depths are also achieved. With the method according to the invention, a uniform carburization is achieved, which leads to the workpieces being free of soot and edge oxidation. Furthermore, the process is significantly more reliable, because of the low H 2 content, the risk of explosion is lower and the furnaces can be gassed safely during idle and at the weekend.

Es sind außerdem auch keine Gasgeneratoren mehr nötig.In addition, gas generators are no longer necessary.

Als besonders vorteilhaft erweist es sich, einen oder mehrere Kohlenwasserstoffe pulsierend zuzugeben, wobei die Dauer der Zugabeperiode gegenüber den Zwischenräumen zwischen zwei Zugabeperioden (Diffusionsphase) kurz ist. Die Zugabeperiode beträgt dabei 2 bis 200 sec., vorzugsweise 15 bis 60sec., während die Dauer der Diffusionsphase 10 bis 500 sec., vorzugsweise 50 bis 200 sec. beträgt.It has proven to be particularly advantageous to add one or more hydrocarbons in a pulsating manner, the duration of the addition period being short compared to the spaces between two addition periods (diffusion phase). The addition period is 2 to 200 seconds, preferably 15 to 60 seconds, while the duration of the diffusion phase is 10 to 500 seconds, preferably 50 to 200 seconds.

Gemäß einer weiteren Ausgestaltung des erfindungsgemäßen Verfahrens wird der Methan- und/oder der Rußanteil in dem Gasgemisch gemessen, die Meßgrößen einer Regeleinheit zugeführt und die Zugabe eines oder mehrerer der Kohlenwasserstoffe von der Regeleinheit nach Vergleich der Werte des Methan- und/ oder Rußgehaltes mit einem jeweils vorgegebenen Sollwert eingestellt.According to a further embodiment of the method according to the invention, the methane and / or the soot content in the gas mixture is measured, the measured variables are fed to a control unit and the addition of one or more of the hydrocarbons by the control unit after comparison of the values of the methane and / or soot content with a setpoint set in each case.

Erfindungsgemäß werden die Sollwerte so gewählt, daß ein Uberkohlen, d.h. Rußbildung nicht stattfindet. Die Oberfläche der metallischen Werkstücke bleibt daher stets rußfrei. Vielmehr wird das Kohlenstoffpotential nahezu konstant auf einem Wert, der Arbeitslinie, gehalten um den das Kohlenstoffpotential schwankt. Das Kohlenstoffpotential steigt während der pulsartigen Zugabe von Kohlenwasserstoffen kurzfristig an und sinkt während der nachfolgender Diffusionsphase unter den oben angegebenen, nahezu konstanten Mittelwert. Das Kohlenstoffpotential sinkt jedoch nie auf Null. Entscheidend dabei ist, daß die Arbeitslinie des Verfahrens bei einem hohen Kohlenstoffpotential über der klassischen Rußgrenze liegt, ohne daß Ruß produziert wird, da der Aufenthalt im Rußgebiet nur sehr kurz ist. Diese Tatsache hat sich als ein wesentliches Merkmal des erfindungsgemäßen Verfahrens erwiesen, auf das die hohe Aufkohlungsgeschwindigkeit zurückzuführen ist.According to the invention, the setpoints are selected so that over-carbonization, ie, soot formation, does not take place. The surface of the metallic workpieces therefore always remains soot-free. Rather, the carbon potential is kept almost constant at a value, the working line, around which the carbon potential fluctuates. The carbon potential rises briefly during the pulsed addition of hydrocarbons and falls below the almost constant mean value given during the subsequent diffusion phase. The coal However, material potential never drops to zero. It is crucial here that the working line of the process is at a high carbon potential above the classic soot limit, without producing soot, since the stay in the soot area is only very short. This fact has proven to be an essential feature of the method according to the invention, on which the high carburizing rate can be attributed.

Das erfindungsgemäße Verfahren kann auch zum Carbonitrieren der Werkstücke verwendet werden. Dazu wird dem Gasgemisch während dessen Einwirkung auf die Oberfläche der Werkstücke zusätzlich Ammoniak pulsierend zugegeben.The method according to the invention can also be used for carbonitriding the workpieces. For this purpose, ammonia is added pulsating to the gas mixture while it is acting on the surface of the workpieces.

Ein Glühofen zur Durchführung des erfindungsgemäßen Verfahrens weist im wesentlichen eine Einrichtung zur Zuführung und Ableitung von Gasen in bzw. aus dem Glühofen und eine zugeordnete Regeleinrichtung auf. Die Regeleinrichtung ist mit Vorteil mit einem Rußsensor und einem Gasanalysator zur Bestimmung des Methangehaltes in dem Gasgemisch verbunden, wobei die Regeleinheit auf die Differenz zwischen Meßwertsignalen und einem in einem bzw. zwei Sollwertgebern einstellbaren Sollwertsignal für den Ruß- und/oder Methangehalt anspricht und mit einem Ventil für die Zugabe von Kohlenwasserstoffen in Verbindung steht.An annealing furnace for carrying out the method according to the invention essentially has a device for supplying and discharging gases into and from the annealing furnace and an associated control device. The control device is advantageously connected to a soot sensor and a gas analyzer for determining the methane content in the gas mixture, the control unit responding to the difference between measured value signals and a setpoint signal for the soot and / or methane content that can be set in one or two setpoint transmitters Valve for the addition of hydrocarbons is connected.

Bei einem derartigen Glühofen ist es ferner vorteilhaft, wenn die Einrichtung zurZuführung der kohlenstoffhaltigen Gaskomponenten im unteren Bereich und in unmittelbarer Nähe der im Glühofen befindlichen, auftukohlenden Werkstücke in den Glühofeninnenraum mündet.In such an annealing furnace, it is also advantageous if the device for supplying the carbon-containing gas components opens into the interior of the annealing furnace in the lower region and in the immediate vicinity of the carburized workpieces located in the annealing furnace.

Im folgenden soll anhand der Zeichnung der Ablauf des erfindungsgemäßen Verfahrens demonstriert werden. Es zeigen:

  • Figur 1 die schematische Darstellung einer Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens;
  • Figur2 den zeitlichen Verlauf der Änderung des Kohlenstoffgehaltes im Aufkohlungsgas;
  • Figur 3 einen schematischen Ausschnitt aus einem Doppelstirnrad;
  • Figur 4 den Härteverlauf gemäß Beispiel 1;
  • Figur 5 den Härteverlauf gemäß Beispiel 2;
  • Figur 6 den Verlauf der Einhärtetiefe mit der Zeit.
The sequence of the method according to the invention is to be demonstrated below with reference to the drawing. Show it:
  • Figure 1 is a schematic representation of an apparatus for performing the method according to the invention;
  • Figure 2 shows the time course of the change in the carbon content in the carburizing gas;
  • Figure 3 shows a schematic section of a double spur gear;
  • Figure 4 shows the hardness curve according to Example 1;
  • Figure 5 shows the hardness curve according to Example 2;
  • Figure 6 shows the course of the hardening depth with time.

Ein Glühofen 1 ist über eine Leitung 2 mit einer Regeleinheit bestehend aus einem Rußsensor 3, einem Gasanalysator 4 und einem Regler 5 verbunden. Die Gaskomponenten Stickstoff, Koh- lendioxid Kohlenwasserstoff, und die direkt aus Vorratsflaschen stammen, werden über die Ventile 7, 8 und 9 und eine Zuführung 6 in den Glühofen geleitet, der mit einer Ausströmleitung 10 für die Abgase verbunden ist. Zum Einfahren und Aufheizen der Charge in dem Ofenraum ist Ventil 7, das die Stickstoffzufuhr regelt, geöffnet, während Ventil 8 (Kohlendioxid) und Ventil 9 (Kohlenwasserstoff, z.B. Propan) geschlossen sind. Ist im Glühofen eine Temperatur von 800° - 1000°C, je nach Legierung der Werkstücke und erwünschter Einhärtetiefe erreicht, so beginnt das Aufkohlen der Charge. Dazu sind die Ventile 7 und 8 geöffnet und kurzzeitig, beispielsweise 20 sec. lang, auch Ventil 9. Das in den Ofenraum geleitete Gasgemisch besteht demgemäß aus inertem Stickstoff, CO2 und Propan.An annealing furnace 1 is connected via a line 2 to a control unit consisting of a soot sensor 3, a gas analyzer 4 and a controller 5. The gas components nitrogen, carbon dioxide, hydrocarbon, and which come directly from storage bottles, are fed via valves 7, 8 and 9 and a feed 6 into the annealing furnace, which is connected to an outflow line 10 for the exhaust gases. Valve 7, which regulates the supply of nitrogen, is open for driving in and heating up the batch in the furnace chamber, while valve 8 (carbon dioxide) and valve 9 (hydrocarbon, for example propane) are closed. When a temperature of 800 ° - 1000 ° C is reached in the annealing furnace, depending on the alloy of the workpieces and the desired hardening depth, the carburization of the batch begins. For this purpose, valves 7 and 8 are open and also valve 9 for a short time, for example 20 seconds. The gas mixture passed into the furnace chamber accordingly consists of inert nitrogen, CO 2 and propane.

Das Propan ist bei den hohen Temperaturen instabil und zerfällt in teilweise stark reaktionsfreudige Radikale, die eine rasch ablaufende Übersättigung der Werkstückoberfläche mit Kohlenstoff bewirken. Wegen des daraus resultierenden erheblichen Kohlenstoffpotentialgefälles zwischen Werkstückoberfläche und Kern tritt dieses Potentialgefälle selbst als zusätzliche treibende Diffusionskraft von Beginn der Kohlung an stark in den Vordergrund.The propane is unstable at the high temperatures and breaks down into radicals, some of which are highly reactive, which cause rapid oversaturation of the workpiece surface with carbon. Because of the resulting significant carbon potential gradient between the workpiece surface and the core, this potential gradient comes to the fore as an additional driving diffusion force from the beginning of the carbonization.

Im Gasgemisch entsteht nun wegen der Kohlenstoffübersättigung an der Werkstückoberfläche sowohl Methan als auch Ruß. Ein Teil dieses Gasgemisches wird über Leitung 2 abgezogen und der Rußanteil in dem Rußsensor und der Methangehalt in dem Gasanalysator 4, beispielsweise einem Infrarotanalysator gemessen. In dem Regler 5 werden die Ausgangswerte dieser beiden Meßgeräterit vorgegebenen Sollwerten verglichen und bei Überschreiten dieser Sollwerte das Ventil 9 über ein Relais 11 geschlossen, also die Zufuhr von z.B. Propan unterbrochen. Die Zugabeperiode für das Propan beträgt dabei beispielsweise 20 sec..Because of the carbon supersaturation, both methane and soot are generated in the gas mixture. A part of this gas mixture is drawn off via line 2 and the soot content in the soot sensor and the methane content in the gas analyzer 4, for example an infrared analyzer, are measured. In the controller 5, the output values of these two measuring devices are compared with predetermined target values, and if these target values are exceeded, the valve 9 is closed via a relay 11, i.e. the supply of e.g. Interrupted propane. The addition period for the propane is, for example, 20 seconds.

Während der nun anschließenden Diffusionsphase, die beispielsweise 60 sec.beträgt, wird die Übersättigung der Werkstückoberfläche kontinuierlich abgebaut, in dem der Kohlenstoff weiter in Richtung Kern der Werkstücke diffundiert. Gleichzeitig werden die wegen der hohen Übersättigung entstandenen Eisenkarbide vom Werkstoff rückgelöst. Geringe Mengen amorpher Ruß werden von der Werkstückoberfläche durch Reaktion mit C02 zu CO wieder entfernt. Während dieser Periode sinken die Werte des Methans bzw. Rußgehaltes im Gasgemisch wieder ab. Bei Erreichen eines vorgegebenen Mindestsollwertes öffnet der Regler 5 über das Relais 11 das Ventil 9 wieder und ein neuer Zyklus beginnt.During the subsequent diffusion phase, which is, for example, 60 seconds, the supersaturation of the workpiece surface is continuously reduced by the carbon diffusing further towards the core of the workpiece. At the same time, the iron carbides formed due to the high supersaturation are redissolved from the material. Small amounts of amorphous soot are removed from the workpiece surface by reaction with CO 2 to CO. During this period, the methane and soot content in the gas mixture decrease again. When a predetermined minimum setpoint is reached, the controller 5 opens the valve 9 again via the relay 11 and a new cycle begins.

Nach einer vorgegebenen Aufkohlungszeit bzw. nach Erreichen einer vorgegebenen Einhärtetiefe schließen die Ventile 8 und 9 und die Charge wird auf Härtetemperatur abgesenkt.After a predetermined carburizing time or after reaching a predetermined hardening depth, the valves 8 and 9 close and the charge is lowered to the hardening temperature.

In Figur 2 ist der Kohlenstoffgehalt im Gasgemisch in Volumenprozent gegen die Zeit in Sekunden aufgetragen. In diesem Diagramm ist gestrichelt die Arbeitslinie "dynamisches Gleichgewicht" des erfindungsgemäßen Verfahrens eingezeichnet, während die klassische Rußgrenze thermodynamisches Gleichgewicht als durchgezogene Linie dargestellt ist.In Figure 2, the carbon content in the gas mixture is plotted in volume percent against time in seconds. The working line "dynamic equilibrium" of the method according to the invention is shown in dashed lines in this diagram, while the classic soot limit thermodynamic equilibrium is shown as a solid line.

Ein Doppelstirnrad aus 20 Mn CrS, Modul 5 ist im Ausschnitt in Figur 3 skizziert. Die breite Strichpunktlinie außerhalb der Körperkanten kennzeichnet den randschichtgehärteten Bereich, die schmale Strichpunktlinie seine Lage und seinen Verlauf. Der Verlauf der gehärteten Randschicht erfordert die Festlegung der Meßstellen, die mit M1 und M2 bezeichnet sind, für die Einhärtetiefe.A double spur gear made of 20 Mn CrS, module 5 is sketched in the detail in FIG. 3. The broad dashed line outside the body edges marks the surface hardened area, the narrow dashed line its position and its course. The course of the hardened surface layer requires the determination of the measuring points, which are designated M1 and M2, for the hardening depth.

Beispiel 1example 1

Eine Produktionscharge mit einer Oberfläche von ca. 11 m2 und einem Gewicht von ca. 500 kg wird bei einer Glühtempe-ratur von 945°C in einem Aichelin-Mehrzweckkammerofen 130 Min. lang aufgekohlt. Dabei beträgt die Zugabeperiode für Propan ca. 20 sec. und die Dauer der Diffusionsphase ca. 60 sec..A production batch having a surface area of about 11 m 2 and a weight of 500 kg is at a temperature Glühtem e-p 130 min of 945 ° C in a Aichelin multipurpose chamber furnace. Carburized long. The addition period for propane is approximately 20 seconds and the duration of the diffusion phase is approximately 60 seconds.

Figur 4 gibt den Härteverlauf an einem Doppelstirnrad (Werkstoff 16 Mn Cr5),aus dieser Charge wieder. Es ist die Oberflächenhärte in HV gemäß DIN 6773 gegen die Einhärtetiefe in mm aufgetragen. Kurve 1 bezieht sich auf die Meßstelle 1 und Kurve 2 auf die Meßstelle 2. Das Werkstück ist frei von Carbiden und Restaustenit, der aufgekohlte Stahl liegt als Martensit vor. Man sieht deutlich, daß bis zu einer Einhärtetiefe von ca. 0,45 mm eine konstante Oberflächenhärtung vorliegt. Diese nimmt dann jedoch mit der Einhärtetiefe ab, bedingt durch die Formgebung des Werkstückes bei Meßstelle M1 langsamer als bei Meßstelle M2. Einer vorgegebenen Oberflächenhärte von 610 HV (durchgezogene Linie) entspricht eine Einhärtetiefe an Meßstelle M1 von 0,83 mm und an Meßstelle M2 von 0,68 mm. Das bedeutet, daß auch die Einbuchtung im Werkstück ausreichend gehärtet ist, um Verformungen zu vermeiden.Figure 4 shows the hardness curve on a double spur gear (material 16 Mn Cr5) from this batch. The surface hardness in HV according to DIN 6773 is plotted against the hardening depth in mm. Curve 1 relates to measuring point 1 and curve 2 to measuring point 2. The workpiece is free of carbides and residual austenite, the carburized steel is martensite. It can clearly be seen that there is constant surface hardening down to a hardening depth of approx. 0.45 mm. However, this then decreases with the hardening depth, due to the shape of the workpiece at measuring point M1 more slowly than at measuring point M2. A specified surface hardness of 610 HV (solid line) corresponds to a hardening depth of 0.83 mm at measuring point M1 and 0.68 mm at measuring point M2. This means that the indentation in the workpiece is sufficiently hardened to avoid deformation.

Beispiel 2Example 2

Analog Beispiel 1 mit dem Unterschied, daß die Glühtemperatur 960°C, die Glühzeit 30 Min., die Zugabeperiode für Propan im Schnitt 90 sec. und die Diffusionsdauer ca. 200 sec. beträgt.Analogous to Example 1, with the difference that the annealing temperature is 960 ° C., the annealing time is 30 minutes, and the addition period for Propane on average 90 seconds and the diffusion time is approximately 200 seconds.

Figur 5 zeigt den Härteverlauf. Einer Oberflächenhärte von 610 HV entspricht in diesem Falle einer Einhärtetiefe von 0,45 mm bei Meßstelle M1 und 0,36 mm bei Meßstelle M2. Es ist also nach kurzer Zeit (30 min) schon eine beachtliche Einhärtetiefe erreicht worden.Figure 5 shows the hardness curve. In this case, a surface hardness of 610 HV corresponds to a hardening depth of 0.45 mm at measuring point M1 and 0.36 mm at measuring point M2. So after a short time (30 min) a considerable hardening depth was reached.

Figur 6 zeigt den Verlauf der Einsatzhärtetiefe bei einer Grenzhärte von 610 HV1 in Abhängigkeit von der Glühzeit bei verschiedenen Glühtemperaturen. Beachtenswert ist dabei der nahezu lineare Verlauf der Kurve ab ca. 0,45 mm Einhärtetiefe. Kurven für Glühtemperaturen zwischen 930°C und 960°C liegen zwischen den beiden eingezeichneten Kurven. In die Kurve sind die Ergebnisse aus 60 Versuchen unter Produktionsbedingungen eingearbeitet.FIG. 6 shows the course of the case hardening depth at a limit hardness of 610 HV1 as a function of the annealing time at different annealing temperatures. The almost linear course of the curve from a hardening depth of approx. 0.45 mm is noteworthy. Curves for annealing temperatures between 930 ° C and 960 ° C lie between the two curves shown. The results of 60 tests under production conditions are incorporated into the curve.

Claims (7)

1. Verfahren zum Einsatzhärten metallischer Werkstücke, bei dem die Werkstücke in einem Glühofen auf hohe Temperatur gebracht, der Einwirkung eines kohlenstoffhaltigen Gasgemisches ausgesetzt und gehärtet werden, dadurch gekennzeichnet, daß eine oder mehrere der kohlenstoffhaltigen Gaskomponenten des Gasgemisches während dessen Einwirkung auf die Oberfläche der Werkstücke dem Gasgemisch pulsierend zugegeben wird bzw. werden.1. A process for case hardening of metallic workpieces, in which the workpieces are brought to a high temperature in an annealing furnace, exposed to the action of a carbon-containing gas mixture and hardened, characterized in that one or more of the carbon-containing gas components of the gas mixture during its action on the surface of the workpieces is added to the gas mixture in a pulsating manner. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß ein oder mehrere Kohlenwasserstoff(e) - insbesondere Kohlenwasserstoffe mit zwei oder mehreren Kohlenstoffatomen - pulsierend zugegeben wird (werden), wobei die Dauer der Zugabeperiode gegenüber den Zwischenräumen zwischen zwei Zugabeperioden (Diffusionsphasen) kurz ist.2. The method according to claim 1, characterized in that one or more hydrocarbon (s) - in particular hydrocarbons with two or more carbon atoms - is (are) added, the duration of the addition period is short compared to the intervals between two addition periods (diffusion phases) . 3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß die Zugabeperiode 2 bis 200 sec., vorzugsweise 15 bis 60 sec. und der Zeitraum vom Ende einer Zugabeperiode bis zum Beginn der nächsten (Diffusionsphase) 10 bis 500 sec., vorzugsweise 50 bis 200 sec. beträgt.3. The method according to any one of claims 1 or 2, characterized in that the addition period 2 to 200 sec., Preferably 15 to 60 sec. And the period from the end of an addition period to the beginning of the next (diffusion phase) 10 to 500 sec., is preferably 50 to 200 sec. 4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß kontinuierlich der Methan- und/oder der Rußanteil in dem Gasgemisch gemessen werden,die Meßgrößen einer Regeleinheit zugeführt werden und die Zugabe eines oder mehrerer der Kohlenwasserstoffe von der Regeleinheit nach Vergleich der Werte des Methan- und/oder des Rußgehaltes mit einem jeweils vorgegebenen Sollwert geregelt wird.4. The method according to any one of claims 1 to 3, characterized in that the methane and / or the continuously The amount of soot in the gas mixture is measured, the measured quantities are fed to a control unit and the addition of one or more of the hydrocarbons is controlled by the control unit after comparing the values of the methane and / or the soot content with a respectively predetermined target value. 5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß dem Gemisch während dessen Einwirkung auf die Oberfläche der Werkstücke zusätzlich Ammoniak pulsierend zugegeben wird.5. The method according to any one of claims 1 to 4, characterized in that the mixture is additionally added pulsating ammonia during its action on the surface of the workpieces. 6. Glühofen zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 5 mit Einrichtungen zur Zuführung und Ableitung von Gasen in bzw. aus dem Glühofeninnenraum und einer zugeordneten Regeleinrichtung, dadurch gekennzeichnet, daß die Regeleinrichtung mit einem Rußsensor und einem Gasanalysator zur Bestimmung des Methangehaltes in dem Gasgemisch in Verbindung steht, wobei die Regeleinrichtung auf die Differenz zwischen Meßwertsignalen und einem in einem bzw. zwei Sollwertgeber(n) einstellbaren Sollwertsignal für den Ruß- und/oder Methangehalt anspricht und mit einem Ventil für die Zugabe von kohlenstoffhaltigen Gaskomponenten in Verbindung steht.6. annealing furnace for performing the method according to any one of claims 1 to 5 with means for supplying and discharging gases into or from the interior of the annealing furnace and an associated control device, characterized in that the control device with a soot sensor and a gas analyzer for determining the methane content in is connected to the gas mixture, the control device being responsive to the difference between measured value signals and a setpoint signal for the soot and / or methane content which can be set in one or two setpoint generators and being connected to a valve for the addition of carbon-containing gas components. 7. Glühofen nach Anspruch 6, dadurch gekennzeichnet, daß die Einrichtung zur Zuführung der kohlenstoffhaltigen Gaskomponenten im unteren Bereich und in unmittelbarer Nähe der im Glühofen befindlichen, aufzukohlenden Werkstücke in den Glühofeninnenraum mündet.7. annealing furnace according to claim 6, characterized in that the device for supplying the carbon-containing gas components in the lower region and in the immediate vicinity of the workpieces located in the annealing furnace, to be carburized opens into the interior of the annealing furnace.
EP81108034A 1980-10-08 1981-10-07 Method and device for carbonizing metallic pieces Expired EP0049530B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3038078 1980-10-08
DE19803038078 DE3038078A1 (en) 1980-10-08 1980-10-08 METHOD AND DEVICE FOR CARBONING METAL WORKPIECES

Publications (2)

Publication Number Publication Date
EP0049530A1 true EP0049530A1 (en) 1982-04-14
EP0049530B1 EP0049530B1 (en) 1985-06-05

Family

ID=6113949

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81108034A Expired EP0049530B1 (en) 1980-10-08 1981-10-07 Method and device for carbonizing metallic pieces

Country Status (11)

Country Link
US (1) US4472209A (en)
EP (1) EP0049530B1 (en)
AT (1) AT369792B (en)
AU (1) AU543782B2 (en)
BR (1) BR8102150A (en)
DE (2) DE3038078A1 (en)
DK (1) DK433181A (en)
ES (1) ES505891A0 (en)
GR (2) GR75086B (en)
NO (1) NO813283L (en)
ZA (1) ZA812500B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0080124A2 (en) * 1981-11-20 1983-06-01 Linde Aktiengesellschaft Process for case hardening metallic articles
EP0156378A2 (en) * 1984-03-29 1985-10-02 Joachim Dr.-Ing. Wünning Method and apparatus for carburizing steel with a gas
DE3507527A1 (en) * 1984-11-20 1986-05-22 Ewald 4133 Neukirchen-Vluyn Schwing Process and equipment for carburising a steel workpiece
DE3707003A1 (en) * 1987-03-05 1988-09-15 Ewald Schwing METHOD FOR CARBONING A STEEL WORKPIECE
FR2678287A1 (en) * 1991-06-26 1992-12-31 Etudes Const Mecaniques Process and oven for low-pressure cementation
EP0532386A1 (en) * 1991-09-13 1993-03-17 Innovatique S.A. Process and apparatus for carburizing steel in an atmosphere of low pressure
WO2003097893A1 (en) * 2002-05-15 2003-11-27 Linde Aktiengesellschaft Method and device for heat treatment of metallic work pieces
WO2012048669A1 (en) 2010-10-11 2012-04-19 Ipsen International Gmbh Method and arrangement for carburizing and carbonitriding metallic materials
US8828150B2 (en) 2007-10-01 2014-09-09 Robert Bosch Gmbh Method for carburizing workpieces and its application
EP2541176A3 (en) * 2005-11-23 2014-09-24 Surface Combustion, Inc. Fluid delivery system for an atmospheric furnace used for treating one or more articles

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4632707A (en) * 1985-04-09 1986-12-30 Air Products And Chemicals, Inc. Protective atmosphere process for annealing and/or hardening ferrous metals
WO1992005295A1 (en) * 1986-08-12 1992-04-02 Nobuo Nishioka Gas carburizing process and apparatus
US4776901A (en) * 1987-03-30 1988-10-11 Teledyne Industries, Inc. Nitrocarburizing and nitriding process for hardening ferrous surfaces
DE3714283C1 (en) * 1987-04-29 1988-11-24 Ipsen Ind Internat Gmbh Process for gas carburizing steel
US4989840A (en) * 1989-11-08 1991-02-05 Union Carbide Canada Limited Controlling high humidity atmospheres in furnace main body
CH681186A5 (en) * 1989-11-09 1993-01-29 Battelle Memorial Institute
US5133813A (en) * 1990-07-03 1992-07-28 Tokyo Heat Treating Company Ltd. Gas-carburizing process and apparatus
DE4221958C1 (en) * 1992-07-02 1993-11-18 Mannesmann Ag Method for producing a gear element of a pinion shaft
IT1272670B (en) * 1993-09-24 1997-06-26 Lindberg Ind Srl METHOD AND DEVICE FOR THE FORMATION AND CONTROLLED DELIVERY OF A GASEOUS ATMOSPHERE WITH AT LEAST TWO COMPONENTS AND APPLICATION OF HEAT TREATMENT OR FUEL PLANTS
RU2048601C1 (en) * 1993-12-20 1995-11-20 Рыжов Николай Михайлович Method and apparatus to diagnose process of steels and alloys chemical thermal treatment in glow discharge
FR2821362B1 (en) * 2001-02-23 2003-06-13 Etudes Const Mecaniques LOW PRESSURE CEMENTING PROCESS
US7468107B2 (en) * 2002-05-01 2008-12-23 General Motors Corporation Carburizing method
DE10232432A1 (en) * 2002-07-17 2004-01-29 Linde Ag Vacuum carburizing method and apparatus
DE10235131A1 (en) * 2002-08-01 2004-02-19 Ipsen International Gmbh Method and device for blackening components
WO2005038076A1 (en) * 2003-10-14 2005-04-28 Etudes Et Constructions Mecaniques Low-pressure carburising method and furnace
US20080120843A1 (en) * 2006-11-06 2008-05-29 Gm Global Technology Operations, Inc. Method for manufacturing low distortion carburized gears
US8075420B2 (en) * 2009-06-24 2011-12-13 Acushnet Company Hardened golf club head

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB527081A (en) * 1938-03-30 1940-10-02 Renault Louis Improvements in or relating to gaseous cementation
DE2450879A1 (en) * 1973-10-26 1975-04-30 Air Prod Ltd METHOD FOR HEAT TREATMENT OF FERROUS METALS
DE2818558A1 (en) * 1977-04-27 1978-11-09 Air Prod & Chem METHOD FOR THE HEAT TREATMENT OF FERROUS METALS

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US29881A (en) * 1860-09-04 Ghaut-elevator
US2886478A (en) * 1953-06-29 1959-05-12 Honeywell Regulator Co Method and control apparatus for carburizing ferrous objects
US4035203A (en) * 1973-12-21 1977-07-12 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for the heat-treatment of steel and for the control of said treatment
US4049473A (en) * 1976-03-11 1977-09-20 Airco, Inc. Methods for carburizing steel parts
DE2636273C3 (en) * 1976-08-12 1980-02-07 Ipsen Industries International Gmbh, 4190 Kleve Method for controlling carburization of parts in a vacuum furnace
US4152177A (en) * 1977-02-03 1979-05-01 General Motors Corporation Method of gas carburizing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB527081A (en) * 1938-03-30 1940-10-02 Renault Louis Improvements in or relating to gaseous cementation
DE2450879A1 (en) * 1973-10-26 1975-04-30 Air Prod Ltd METHOD FOR HEAT TREATMENT OF FERROUS METALS
DE2818558A1 (en) * 1977-04-27 1978-11-09 Air Prod & Chem METHOD FOR THE HEAT TREATMENT OF FERROUS METALS

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Harterri Technische Mitteilungen, Band 35, Nr. 6, Juni 1980, seiten 284-288 Munchen, DE. G. BOUTTIER et al.: "Schutzgasatmosphare auf Stickstoff-Basis" (Vorgetragen auf dem 35. Hartereikolloqium vom 3.-5. Oktober 1979 in Wiesbaden) * seite 285.3: "Thermochemische Behandlungen; seite 286, beispiel 9 * *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0080124A2 (en) * 1981-11-20 1983-06-01 Linde Aktiengesellschaft Process for case hardening metallic articles
EP0080124A3 (en) * 1981-11-20 1984-08-22 Linde Aktiengesellschaft Process for case hardening metallic articles
EP0156378A2 (en) * 1984-03-29 1985-10-02 Joachim Dr.-Ing. Wünning Method and apparatus for carburizing steel with a gas
EP0156378A3 (en) * 1984-03-29 1986-03-26 Joachim Dr.-Ing. Wunning Method and apparatus for carburizing steel with a gas
DE3507527A1 (en) * 1984-11-20 1986-05-22 Ewald 4133 Neukirchen-Vluyn Schwing Process and equipment for carburising a steel workpiece
DE3707003A1 (en) * 1987-03-05 1988-09-15 Ewald Schwing METHOD FOR CARBONING A STEEL WORKPIECE
FR2678287A1 (en) * 1991-06-26 1992-12-31 Etudes Const Mecaniques Process and oven for low-pressure cementation
EP0532386A1 (en) * 1991-09-13 1993-03-17 Innovatique S.A. Process and apparatus for carburizing steel in an atmosphere of low pressure
FR2681332A1 (en) * 1991-09-13 1993-03-19 Innovatique Sa METHOD AND DEVICE FOR CUTTING STEEL IN A LOW PRESSURE ATMOSPHERE.
WO2003097893A1 (en) * 2002-05-15 2003-11-27 Linde Aktiengesellschaft Method and device for heat treatment of metallic work pieces
EP2541176A3 (en) * 2005-11-23 2014-09-24 Surface Combustion, Inc. Fluid delivery system for an atmospheric furnace used for treating one or more articles
EP2541177A3 (en) * 2005-11-23 2014-09-24 Surface Combustion, Inc. Fluid delivery system for an atmospheric furnace used for treating one or more articles
US8828150B2 (en) 2007-10-01 2014-09-09 Robert Bosch Gmbh Method for carburizing workpieces and its application
WO2012048669A1 (en) 2010-10-11 2012-04-19 Ipsen International Gmbh Method and arrangement for carburizing and carbonitriding metallic materials

Also Published As

Publication number Publication date
ES8206658A1 (en) 1982-09-01
AT369792B (en) 1983-01-25
EP0049530B1 (en) 1985-06-05
AU6915481A (en) 1982-04-22
ATA539980A (en) 1982-06-15
ZA812500B (en) 1982-04-28
US4472209A (en) 1984-09-18
DE3038078A1 (en) 1982-05-06
AU543782B2 (en) 1985-05-02
GR75375B (en) 1984-07-13
BR8102150A (en) 1982-08-17
DK433181A (en) 1982-04-09
ES505891A0 (en) 1982-09-01
DE3170866D1 (en) 1985-07-11
NO813283L (en) 1982-04-13
GR75086B (en) 1984-07-13

Similar Documents

Publication Publication Date Title
EP0049530B1 (en) Method and device for carbonizing metallic pieces
DE2450879A1 (en) METHOD FOR HEAT TREATMENT OF FERROUS METALS
DE3411605C2 (en) Process and device for gas carburizing of steel
DE69032144T2 (en) Method and device for the thermal or thermochemical treatment of steel
DE2909978A1 (en) METHOD AND DEVICE FOR REGULATING THE CARBON LEVEL OF A GAS MIXTURE REACTING IN A FURNACE
DE2934930A1 (en) METHOD FOR THE HEAT TREATMENT OF IRON ITEMS
EP0662525B1 (en) Process for preventing surface oxidation during steel carburizing
DE3204632C2 (en)
EP0080124B1 (en) Process for case hardening metallic articles
EP0031034B1 (en) Process for the adjustable carburizing or heating in a protective gas of steel work pieces
DE2837272B2 (en) Process for gas carburizing of work pieces made of steel
EP1160349B1 (en) Process and apparatus for heat treating of metallic workpieces
DE2109676A1 (en) Process for the dynamically controlled decarburization of steel melts
DE3139622A1 (en) Process for the gas-carburisation of steel
DE632935C (en) Process and device for surface carbonization of iron and steel
DE3149212A1 (en) METHOD FOR ADJUSTING OVEN ATMOSPHERES
DE19514932A1 (en) Method and device for regulating the CO content of an oven atmosphere for carburizing and carbonitriding metallic workpieces
WO2003097893A1 (en) Method and device for heat treatment of metallic work pieces
DE2704450B2 (en) Process for the continuous control of the gas carburization of metallic workpieces
EP0049532B1 (en) Process for the carbonization and heat-treatment of steels in a non-carbon-affecting atmosphere
DE3935486A1 (en) Gas carbonitriding ferrous components - by controlling amount of gas components to obtain required nitriding and carburising characteristic values
DE2152440A1 (en) Soot free steel carburizing system - with automatic control of carbon potential of gas and soot threshold
DE3224607A1 (en) Method for the case-hardening and neutral-carburising annealing of metal workpieces
DE2450750A1 (en) High speed continuous gas carburizing in rotary furnace - achieved by supplying carburizing gas at supersonic speed
DD298433A5 (en) METHOD AND DEVICE FOR THE THERMAL OR THERMOCHEMICAL TREATMENT OF STEEL

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT NL

17P Request for examination filed

Effective date: 19820317

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE AKTIENGESELLSCHAFT

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT LI NL

REF Corresponds to:

Ref document number: 3170866

Country of ref document: DE

Date of ref document: 19850711

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19861031

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19880501

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19891031

Ref country code: CH

Effective date: 19891031

Ref country code: BE

Effective date: 19891031

BERE Be: lapsed

Owner name: LINDE A.G.

Effective date: 19891031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19931011

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940927

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19951007

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19951007

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20001121

Year of fee payment: 20