EP0043525B1 - Corrosion inhibitors for alkanolamine gas treating systems - Google Patents
Corrosion inhibitors for alkanolamine gas treating systems Download PDFInfo
- Publication number
- EP0043525B1 EP0043525B1 EP81104985A EP81104985A EP0043525B1 EP 0043525 B1 EP0043525 B1 EP 0043525B1 EP 81104985 A EP81104985 A EP 81104985A EP 81104985 A EP81104985 A EP 81104985A EP 0043525 B1 EP0043525 B1 EP 0043525B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- vanadium
- compound
- corrosion
- acid
- composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000005260 corrosion Methods 0.000 title claims description 49
- 230000007797 corrosion Effects 0.000 title claims description 49
- 239000003112 inhibitor Substances 0.000 title claims description 40
- 239000000203 mixture Substances 0.000 claims description 23
- 150000002894 organic compounds Chemical class 0.000 claims description 19
- 150000003682 vanadium compounds Chemical class 0.000 claims description 17
- FRASJONUBLZVQX-UHFFFAOYSA-N 1,4-naphthoquinone Chemical compound C1=CC=C2C(=O)C=CC(=O)C2=C1 FRASJONUBLZVQX-UHFFFAOYSA-N 0.000 claims description 16
- 239000002253 acid Substances 0.000 claims description 15
- 230000002401 inhibitory effect Effects 0.000 claims description 14
- OTLNPYWUJOZPPA-UHFFFAOYSA-N 4-nitrobenzoic acid Chemical compound OC(=O)C1=CC=C([N+]([O-])=O)C=C1 OTLNPYWUJOZPPA-UHFFFAOYSA-N 0.000 claims description 12
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 claims description 10
- 150000003839 salts Chemical class 0.000 claims description 9
- 229910052720 vanadium Inorganic materials 0.000 claims description 9
- -1 m-nitrophenot Chemical compound 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 7
- 159000000032 aromatic acids Chemical class 0.000 claims description 5
- VYWYYJYRVSBHJQ-UHFFFAOYSA-N 3,5-dinitrobenzoic acid Chemical compound OC(=O)C1=CC([N+]([O-])=O)=CC([N+]([O-])=O)=C1 VYWYYJYRVSBHJQ-UHFFFAOYSA-N 0.000 claims description 4
- AFPHTEQTJZKQAQ-UHFFFAOYSA-N 3-nitrobenzoic acid Chemical compound OC(=O)C1=CC=CC([N+]([O-])=O)=C1 AFPHTEQTJZKQAQ-UHFFFAOYSA-N 0.000 claims description 4
- ONMOULMPIIOVTQ-UHFFFAOYSA-N 98-47-5 Chemical compound OS(=O)(=O)C1=CC=CC([N+]([O-])=O)=C1 ONMOULMPIIOVTQ-UHFFFAOYSA-N 0.000 claims description 4
- BTJIUGUIPKRLHP-UHFFFAOYSA-N 4-nitrophenol Chemical compound OC1=CC=C([N+]([O-])=O)C=C1 BTJIUGUIPKRLHP-UHFFFAOYSA-N 0.000 claims description 3
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 claims description 3
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 claims 3
- 229910021144 KVO3 Inorganic materials 0.000 claims 1
- 229910003206 NH4VO3 Inorganic materials 0.000 claims 1
- 229910020700 Na3VO4 Inorganic materials 0.000 claims 1
- 229910019501 NaVO3 Inorganic materials 0.000 claims 1
- CMZUMMUJMWNLFH-UHFFFAOYSA-N sodium metavanadate Chemical compound [Na+].[O-][V](=O)=O CMZUMMUJMWNLFH-UHFFFAOYSA-N 0.000 claims 1
- IHIXIJGXTJIKRB-UHFFFAOYSA-N trisodium vanadate Chemical compound [Na+].[Na+].[Na+].[O-][V]([O-])([O-])=O IHIXIJGXTJIKRB-UHFFFAOYSA-N 0.000 claims 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 21
- 229910000831 Steel Inorganic materials 0.000 description 19
- 239000010959 steel Substances 0.000 description 19
- 239000007789 gas Substances 0.000 description 17
- 238000012360 testing method Methods 0.000 description 16
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 15
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 14
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 13
- 229910002092 carbon dioxide Inorganic materials 0.000 description 11
- 239000001569 carbon dioxide Substances 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 229910052717 sulfur Inorganic materials 0.000 description 8
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 7
- 239000011593 sulfur Substances 0.000 description 6
- 229920006395 saturated elastomer Polymers 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000011885 synergistic combination Substances 0.000 description 4
- RTZZCYNQPHTPPL-UHFFFAOYSA-N 3-nitrophenol Chemical compound OC1=CC=CC([N+]([O-])=O)=C1 RTZZCYNQPHTPPL-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000003750 conditioning effect Effects 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 125000004434 sulfur atom Chemical group 0.000 description 3
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 2
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical group C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- YEILPOXQZGPJSN-UHFFFAOYSA-N S.C(=O)=O.O.C(O)CN Chemical compound S.C(=O)=O.O.C(O)CN YEILPOXQZGPJSN-UHFFFAOYSA-N 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- 230000002745 absorbent Effects 0.000 description 2
- 239000002250 absorbent Substances 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 150000001463 antimony compounds Chemical class 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 150000001879 copper Chemical class 0.000 description 2
- 229910001431 copper ion Inorganic materials 0.000 description 2
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 239000005077 polysulfide Substances 0.000 description 2
- 229920001021 polysulfide Polymers 0.000 description 2
- 150000008117 polysulfides Polymers 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- HXKKHQJGJAFBHI-UHFFFAOYSA-N 1-aminopropan-2-ol Chemical compound CC(O)CN HXKKHQJGJAFBHI-UHFFFAOYSA-N 0.000 description 1
- KJZIBPUUBIVGMV-UHFFFAOYSA-N 2-aminoethanol;carbon dioxide Chemical compound O=C=O.NCCO KJZIBPUUBIVGMV-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 239000004277 Ferrous carbonate Substances 0.000 description 1
- MBMLMWLHJBBADN-UHFFFAOYSA-N Ferrous sulfide Chemical compound [Fe]=S MBMLMWLHJBBADN-UHFFFAOYSA-N 0.000 description 1
- ZMZDMBWJUHKJPS-UHFFFAOYSA-M Thiocyanate anion Chemical compound [S-]C#N ZMZDMBWJUHKJPS-UHFFFAOYSA-M 0.000 description 1
- FLFDJAKABJGVTL-UHFFFAOYSA-M [O-]C(C(C=C1)=CC=C1[N+]([O-])=O)=O.[V+5] Chemical compound [O-]C(C(C=C1)=CC=C1[N+]([O-])=O)=O.[V+5] FLFDJAKABJGVTL-UHFFFAOYSA-M 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- LHIJANUOQQMGNT-UHFFFAOYSA-N aminoethylethanolamine Chemical compound NCCNCCO LHIJANUOQQMGNT-UHFFFAOYSA-N 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 229940058905 antimony compound for treatment of leishmaniasis and trypanosomiasis Drugs 0.000 description 1
- 229910001439 antimony ion Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 150000005323 carbonate salts Chemical class 0.000 description 1
- 150000001869 cobalt compounds Chemical class 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- OMZSGWSJDCOLKM-UHFFFAOYSA-N copper(II) sulfide Chemical compound [S-2].[Cu+2] OMZSGWSJDCOLKM-UHFFFAOYSA-N 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000006056 electrooxidation reaction Methods 0.000 description 1
- AEOCXXJPGCBFJA-UHFFFAOYSA-N ethionamide Chemical compound CCC1=CC(C(N)=S)=CC=N1 AEOCXXJPGCBFJA-UHFFFAOYSA-N 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- RAQDACVRFCEPDA-UHFFFAOYSA-L ferrous carbonate Chemical compound [Fe+2].[O-]C([O-])=O RAQDACVRFCEPDA-UHFFFAOYSA-L 0.000 description 1
- 229960004652 ferrous carbonate Drugs 0.000 description 1
- 235000019268 ferrous carbonate Nutrition 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 150000004674 formic acids Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- ZMZDMBWJUHKJPS-UHFFFAOYSA-N hydrogen thiocyanate Natural products SC#N ZMZDMBWJUHKJPS-UHFFFAOYSA-N 0.000 description 1
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910000015 iron(II) carbonate Inorganic materials 0.000 description 1
- 229910021506 iron(II) hydroxide Inorganic materials 0.000 description 1
- NCNCGGDMXMBVIA-UHFFFAOYSA-L iron(ii) hydroxide Chemical compound [OH-].[OH-].[Fe+2] NCNCGGDMXMBVIA-UHFFFAOYSA-L 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- CRVGTESFCCXCTH-UHFFFAOYSA-N methyl diethanolamine Chemical compound OCCN(C)CCO CRVGTESFCCXCTH-UHFFFAOYSA-N 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 150000002913 oxalic acids Chemical class 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 125000000636 p-nitrophenyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)[N+]([O-])=O 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229910000352 vanadyl sulfate Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F11/00—Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
- C23F11/06—Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in markedly alkaline liquids
Definitions
- This invention relates to novel corrosion inhibitors for alkanolamine gas treating systems.
- Gases such as natural gas, flue gas, and synthesis gas have been purified by the utilization of aqueous alkanolamine solutions for the absorption of acid gases such as CO 2 , H 2 S, and COS contained in the gas stream.
- acid gases such as CO 2 , H 2 S, and COS contained in the gas stream.
- a 5 percent to 30 percent by weight alkanolamine solution e.g., a monoethanolamine solution
- the process is a continuous and cyclic one which can be reversed at higher temperatures by desorbing the acid gases from the alkanolamine solution.
- the US-A-3808140 claims a corrosion inhibited composition consisting essentially of an aqueous alkanolamine solution employed in acid gas removal service and an inhibiting amount of a combination of a V(V)-compound and an antimony compound. It further discloses that the choice of vanadium compound is not critical since it is the vanadium-containing anion, particularly vanadium in the plus 4 or 5 valence state which provides the corresion-inhibiting property in combination with antimony ions.
- the US-A-3896044 and 3959170 disclose the use as inhibitors in aqueous alkanolamine solutions used in acid gas removal of, inter alia, nitroaromatic acids and their salts and antimony compounds, stannous salts, organocompounds and V(IV)- or V(V)-compounds, but the US-A-3896044 claims a corrosion inhibitor selected from the class of nitro-substituted aromatic acids and nitro-substituted acid salts and the US-A3808140 claims a corrosion inhibitor in form of a stannous salt or mixtures thereof in an amount of 0.01 to 2 weight per cent based on the weight of the alkanolamine solution.
- a corrosion inhibitor comprising synergistic combinations of particular vanadium compounds wherein the vanadium therein is in the plus four or plus five valence state and an organic compound selected from the group consisting of nitro-substituted aromatic acids, nitro-substituted acid salts, 1,4-naphthoquinone, and mixtures thereof.
- the organic compound is preferably selected from the group consisting of p-nitrobenzoic acid, m-nitrobenzoic acid, 3,5-dinitrobenzoic acid, p-nitrophenol, m-nitrophenol, m-nitrobenzenesulfonic acid, 1,4-naphthoquinone and mixtures thereof.
- the inhibiting amounts of the vanadium compound and organic compound employed may each be less than the amount of vanadium compound or organic compound that when employed alone provides protection, although other beneficial results are believed to occur when the combination of these compounds is employed in higher concentrations.
- the corrosion inhibitors described herein are especially useful in aqueous monoethanolamine scrubbers employed for removing hydrogen sulfide and carbon dioxide in natural gas treating systems.
- vanadium compounds in this invention is not critical since it is the vanadium therein in the plus 4 or 5 valence state, preferably plus 5, which provides this unusual corrosion inhibiting property in combination with the organic compounds.
- vanadium compounds in this invention can employ V 2 0 5 , NaV0 3 , Na 3 V0 4 , KV0 3 , NH 4 V0 3 , VOCI 3 , VOS0 4 , VO 2 , VOCI 2 , the like and mixtures thereof.
- the organic compounds employed as corrosion inhibitors in combination with the aforementioned vanadium compounds are selected from the group consisting of nitro-substituted aromatic acids, nitro-substituted acid salts, and 1,4-naphthoquinone, and preferably selected from the group consisting of p-nitrobenzoic acid, m-nitrobenzoic acid, 3,5-dinitrobenzoic acid, p-nitrophenyl, m-nitrophenol, m-nitrobenzenesulfonic acid, 1,4-naphthoquinone, and mixtures thereof.
- the effect of concentration of inhibitor is generally monotonic, i.e., the inhibitor fails to provide protection from corrosion below a minimum concentration, while above this concentration it always provides protection.
- This critical concentration is referred to as the minimum effective concentration (hereinafter the m.e.c.) for the inhibitor.
- the m.e.c. for an individual inhibitor may be determined simply by testing the inhibitor at various concentrations to determine the minimum concentration required to provide protection. It has been found that the combination of the vanadium compounds and the organic compounds of this invention at concentrations below these minimum effective concentrations provides protection surprisingly superior to each one alone at the same concentration. Further, it is believed that when the vanadium compound(s) and organic compound(s) are employed in combination in an amount above their individual minimum effective concentrations that other advantageous results are obtained.
- the concentrations of the vanadium compounds and organic compounds may vary from 0.01 mM to 50 mM.
- the synergistic combinations of the particular vanadium compound and the organic compound are generally added in an amount to provide a concentration of from 0.01 mM to 1 mM for the vanadium compound and in an amount to provide a concentration of from 0.1 mM to 10 mM for the organic compound, and preferably in an inhibiting amount to provide a concentration for both the vanadium compound(s) and organic compound(s) less than each of their respective minimum effective concentrations.
- Alkanolamine systems which are benefited by the inclusion of the instant combined corrosion inhibitor are those mono- and polyalkanolamines having 2 to 4 carbon atoms per hydroxyalkyl group.
- Typical alkanolamines are monoethanolamine, diethanolamine, and monoisopropanolamine.
- the corrosion inhibitors of the instant invention were tested in monoethanolamine-water-carbon dioxide-hydrogen sulfide solutions because, while aqueous monoethanolamine solutions are not corrosive towards ferrous metals, when saturated with carbon dioxide and/or hydrogen sulfide they become quite corrosive to mild steel. It is thought that electro-chemical corrosion is involved with the anodic reaction expected to produce products such as ferrous hydroxide, ferrous carbonate, ferrous sulfide, or certain complexes.
- the ability of a given corrosion inhibitor to provide protection was determined by measuring the relative corrosion rate for the alkanolamine solution containing the inhibitor and by measuring the steel's potential at the end of the test to determine whether the steel was active or passive.
- the relative corrosion rate for a particular alkanolamine solution is the corrosion rate of the alkanolamine solution with the inhibitor divided by the corrosion rate of the alkanolamine solution without the inhibitor.
- the corrosion rate in each case is calculated by determining the weight loss of a metal sample after conducting the test for a given period of time.
- a relative corrosion rate greater than 0.5 ⁇ 0.1 is considered to indicate that the inhibitor failed to provide protection.
- the potential of the steel was measured at the end of each test.
- a potential more positive than about -500 mV at 20°C is considered to indicate that the steel is passive and that the inhibitor has provided protection.
- Heat transfer corrosion tests were conducted as follows: A circular coupon of cold-rolled mild steel 89 mm in diameter and 0.8 mm thick was cleaned and weighed. The coupon was then clamped to a borosilicate glass corrosion cell so as to form the bottom surface of the cell. The corrosion cell was charged with 30 percent by weight monoethanolamine solution saturated with carbon dioxide. Any residual air was purged from the cell with carbon dioxide. The steel coupon was made active by electrochemically reducing its air-formed passive film. Alternatively, if it is desired to have a passive steel coupon, this electrochemical reduction is omitted. A sample of 30 percent by weight monoethanolamine solution saturated with hydrogen sulfide is introduced anaerobically into the corrosion cell.
- the volume of this sample is about 25 percent of the volume of the monoethanolamine-carbon dioxide employed initially to charge the corrosion cell.
- the monoethanolamine saturated with hydrogen sulfide is prepared from carefully purified hydrogen sulfide to assure that sulfur, which might otherwise be an adventitious inhibitor, is not present).
- active steel is prepared under 30 percent monoethanolamine saturated with a mixture of about 20 percent by weight hydrogen sulfide and about 80 percent by weight carbon dioxide with the careful exclusion of oxygen, which might oxidize hydrogen sulfide to sulfur.
- the purging gas is now changed from carbon dioxide to a gas containing about 20 percent by volume hydrogen sulfide and about 80 percent by volume carbon dioxide.
- the corrosion cell is now ready to test the inhibition of cold active steel, and if this is desired test, the inhibitor is injected anaerobically and the cell is heated through the test coupon to reflux temperature.
- the inhibition of hot active steel may be tested by heating the corrosion cell to reflux prior to introduction of the inhibitor being tested.
- the mixed hydrogen sulfide and carbon dioxide purge gas is replaced by carbon dioxide and the cell is permitted to cool.
- the potential of the steel test coupon is then remeasured. The steel coupon is cleaned and corrosion rate is then calculated.
- the corrosion inhibitors of this invention are tested. Examples 1-24 were all conducted on hot active steel under hydrogen sulfide and carbon dioxide for twenty-four hours per the previously described procedure. In each example, the vanadium was added before adding the other inhibitor.
- the corrosion rate of uninhibited monoethanolamine-water-carbon dioxide-hydrogen sulfide solutions was initially determined by carrying out tests on twenty-nine steel coupons without adding a corrosion inhibitor. Each test coupon showed a weight loss that corresponded to a corrosion rate of 228.6 ⁇ 35 f lm/a in the one-day test and a corrosion rate of 104.1i25 am/a in the eight-day tests. These corrosion rates were employed to calculate the relative corrosion rates of all the examples in Tables I and II. These corrosion rates show that the efforts to exclude adventitious inhibitors from the tests were successful.
- the vanadium compound used in Examples 1-47 was either V 2 0, or NaV0 3 .
- Table I shows the results obtained by employing the combined corrosion inhibitors of the invention at concentrations where each inhibitor alone fails to provide protection but when employed together the combination provides protection.
- Examples 1-7 show the superior protection provided by the combined inhibitor.
- Examples 1-3 show vanadium (V) has an m.e.c. between 0.2 and 0.3 mM when used alone on hot active steel.
- Examples 4-6 show that the m.e.c. for p-nitrobenzoic acid is between 10 and 20 mM on hot active steel.
- Example 7 shows the superior protection that the combination of 0.1 mM vanadium (V) and 1.0 mM p-nitrobenzoic acid provides for hot active steel.
- Table II shows the protection realized with the vanadium (V)-p-nitrobenzoic acid combination. In addition, Table II shows that at concentrations in excess of those employed for the combined inhibitors that the individual additives failed to provide protection.
- Table II show that the combination of vanadium (V) and p-nitrobenzoic acid provides protection when the vanadium (V) is at a concentration of from 0.02 mM to 0.25 mM and when the p-nitrobenzoic acid is at a concentration of from 0.6 mM to 8.0 mM. When employed at these concentrations, the combination of vanadium (V) and p-nitrobenzoic acid provides protection even though the m.e.c. for each additive is not employed.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Preventing Corrosion Or Incrustation Of Metals (AREA)
- Gas Separation By Absorption (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT81104985T ATE10293T1 (de) | 1980-06-30 | 1981-06-26 | Korrosionsinhibitoren fuer anlagen zur behandlung von gasen mit alkanolaminen. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16397580A | 1980-06-30 | 1980-06-30 | |
US163975 | 1980-06-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0043525A1 EP0043525A1 (en) | 1982-01-13 |
EP0043525B1 true EP0043525B1 (en) | 1984-11-14 |
Family
ID=22592441
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP81104985A Expired EP0043525B1 (en) | 1980-06-30 | 1981-06-26 | Corrosion inhibitors for alkanolamine gas treating systems |
Country Status (20)
Country | Link |
---|---|
EP (1) | EP0043525B1 (en:Method) |
JP (1) | JPS604272B2 (en:Method) |
AR (1) | AR228276A1 (en:Method) |
AT (1) | ATE10293T1 (en:Method) |
AU (1) | AU542053B2 (en:Method) |
BR (1) | BR8104104A (en:Method) |
CA (1) | CA1158852A (en:Method) |
CS (1) | CS242870B2 (en:Method) |
DE (1) | DE3167178D1 (en:Method) |
ES (1) | ES503481A0 (en:Method) |
GR (1) | GR75712B (en:Method) |
HU (1) | HU185932B (en:Method) |
IN (1) | IN154625B (en:Method) |
MX (1) | MX161784A (en:Method) |
NO (1) | NO163537C (en:Method) |
NZ (1) | NZ197575A (en:Method) |
PH (1) | PH16622A (en:Method) |
PL (2) | PL130311B1 (en:Method) |
RO (1) | RO81354B (en:Method) |
ZA (1) | ZA814278B (en:Method) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10137404B2 (en) | 2012-08-30 | 2018-11-27 | IFP Energies Nouvelles | Method of absorbing acid compounds contained in a gaseous effluent using an amine-based aqueous solution |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60180877U (ja) * | 1984-05-14 | 1985-11-30 | 新潟ビ−.エス.アンド.ビ−.セイフテイ.システムズ株式会社 | 溶接形破裂板の保持構造 |
JPS6254696U (en:Method) * | 1985-09-24 | 1987-04-04 | ||
JPH02119192U (en:Method) * | 1989-03-13 | 1990-09-26 | ||
JPH02122691U (en:Method) * | 1989-03-15 | 1990-10-08 | ||
AR010696A1 (es) * | 1996-12-12 | 2000-06-28 | Sasol Tech Pty Ltd | Un metodo para la eliminacion del dioxido de carbono de un gas de proceso |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3808140A (en) * | 1970-07-13 | 1974-04-30 | B Mago | Antimony-vanadium corrosion inhibitors for alkanolamine gas treating system |
US3896044A (en) * | 1971-11-22 | 1975-07-22 | Union Carbide Corp | Nitro-substituted aromatic acid corrosion inhibitors for alkanolamine gas treating system |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3959170A (en) * | 1971-11-22 | 1976-05-25 | Union Carbide Corporation | Corrosion inhibitors for alkanolamine gas treating system |
US3951844A (en) * | 1974-04-29 | 1976-04-20 | Union Carbide Corporation | Corrosion inhibition of aqueous potassium carbonate gas treating systems |
-
1981
- 1981-06-24 IN IN682/CAL/81A patent/IN154625B/en unknown
- 1981-06-24 NO NO812157A patent/NO163537C/no unknown
- 1981-06-24 ZA ZA814278A patent/ZA814278B/xx unknown
- 1981-06-26 AT AT81104985T patent/ATE10293T1/de active
- 1981-06-26 CA CA000380674A patent/CA1158852A/en not_active Expired
- 1981-06-26 DE DE8181104985T patent/DE3167178D1/de not_active Expired
- 1981-06-26 EP EP81104985A patent/EP0043525B1/en not_active Expired
- 1981-06-27 JP JP56100386A patent/JPS604272B2/ja not_active Expired
- 1981-06-29 PL PL1981239063A patent/PL130311B1/pl unknown
- 1981-06-29 BR BR8104104A patent/BR8104104A/pt unknown
- 1981-06-29 GR GR65370A patent/GR75712B/el unknown
- 1981-06-29 ES ES503481A patent/ES503481A0/es active Granted
- 1981-06-29 MX MX188064A patent/MX161784A/es unknown
- 1981-06-29 AR AR285900A patent/AR228276A1/es active
- 1981-06-29 PH PH25830A patent/PH16622A/en unknown
- 1981-06-29 CS CS814945A patent/CS242870B2/cs unknown
- 1981-06-29 HU HU811888A patent/HU185932B/hu unknown
- 1981-06-30 RO RO104734A patent/RO81354B/ro unknown
- 1981-06-30 AU AU72401/81A patent/AU542053B2/en not_active Ceased
- 1981-06-30 NZ NZ197575A patent/NZ197575A/en unknown
- 1981-09-26 PL PL1981231927A patent/PL127863B1/pl unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3808140A (en) * | 1970-07-13 | 1974-04-30 | B Mago | Antimony-vanadium corrosion inhibitors for alkanolamine gas treating system |
US3896044A (en) * | 1971-11-22 | 1975-07-22 | Union Carbide Corp | Nitro-substituted aromatic acid corrosion inhibitors for alkanolamine gas treating system |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10137404B2 (en) | 2012-08-30 | 2018-11-27 | IFP Energies Nouvelles | Method of absorbing acid compounds contained in a gaseous effluent using an amine-based aqueous solution |
Also Published As
Publication number | Publication date |
---|---|
GR75712B (en:Method) | 1984-08-02 |
PH16622A (en) | 1983-11-28 |
CA1158852A (en) | 1983-12-20 |
DE3167178D1 (en) | 1984-12-20 |
CS494581A2 (en) | 1984-06-18 |
MX161784A (es) | 1990-12-27 |
PL130311B1 (en) | 1984-07-31 |
AR228276A1 (es) | 1983-02-15 |
PL127863B1 (en) | 1983-12-31 |
RO81354B (ro) | 1983-02-28 |
EP0043525A1 (en) | 1982-01-13 |
RO81354A (ro) | 1983-02-15 |
AU542053B2 (en) | 1985-02-07 |
ATE10293T1 (de) | 1984-11-15 |
ZA814278B (en) | 1982-07-28 |
ES8300875A1 (es) | 1982-11-16 |
JPS604272B2 (ja) | 1985-02-02 |
NO812157L (no) | 1982-01-04 |
NO163537B (no) | 1990-03-05 |
ES503481A0 (es) | 1982-11-16 |
NO163537C (no) | 1990-06-13 |
CS242870B2 (en) | 1986-05-15 |
IN154625B (en:Method) | 1984-11-24 |
PL231927A1 (en:Method) | 1982-03-15 |
JPS5739178A (en) | 1982-03-04 |
BR8104104A (pt) | 1982-03-16 |
HU185932B (en) | 1985-04-28 |
AU7240181A (en) | 1982-01-07 |
NZ197575A (en) | 1984-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4143119A (en) | Method and composition for inhibiting the corrosion of ferrous metals | |
US4100100A (en) | Cobalt-containing inhibitor for sour gas conditioning solutions | |
US4102804A (en) | Inhibitor for gas conditioning solutions | |
US3959170A (en) | Corrosion inhibitors for alkanolamine gas treating system | |
US4372873A (en) | Vanadium-amine corrosion inhibitor system for sour gas conditioning solutions | |
JPS5942073B2 (ja) | 防食用組成物 | |
US4446119A (en) | Method and compositions for reducing corrosion in the removal of acidic gases from gaseous mixtures | |
US4431563A (en) | Inhibitors for acid gas conditioning solutions | |
EP0043525B1 (en) | Corrosion inhibitors for alkanolamine gas treating systems | |
US4595723A (en) | Corrosion inhibitors for alkanolamines | |
US4502979A (en) | Corrosion inhibitors for alkanolamine gas treating systems | |
US6036888A (en) | Corrosion inhibitor for alkanolamine units | |
CA1220774A (en) | Process for preventing corrosion in alkaline systems | |
US4959177A (en) | Reducing stress corrosion cracking in treating gases with alkanol amines | |
US4116629A (en) | Corrosion inhibition of stainless steel exposed to hot carbonates | |
US4405584A (en) | Process for removing acidic gases | |
US4452764A (en) | Bismuth inhibitors for acid gas conditioning solutions | |
US4499003A (en) | Antimony-molybdenum salt corrosion inhibitor composition | |
US4944917A (en) | Use of thiosulfate salt for corrosion inhibition in acid gas scrubbing processes | |
JPS5837392B2 (ja) | コウテツ ノ ボウシヨクホウ | |
US5885487A (en) | Corrosion inhibitor for alkanolamine units | |
US5472638A (en) | Corrosion inhibitor | |
US4590036A (en) | Process for corrosion inhibition utilizing an antimony-molybdenum salt corrosion inhibitor composition | |
US4857283A (en) | Use of sulfur dioxide for corrosion inhibition in acid gas scrubbing processes | |
GB1589932A (en) | Corrosion inhibiting compositions for use in gas scrubbing solutions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): AT BE DE FR GB IT LU NL SE |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: UNION CARBIDE CORPORATION |
|
17P | Request for examination filed |
Effective date: 19820709 |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): AT BE DE FR GB IT LU NL SE |
|
REF | Corresponds to: |
Ref document number: 10293 Country of ref document: AT Date of ref document: 19841115 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 3167178 Country of ref document: DE Date of ref document: 19841220 |
|
ET | Fr: translation filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19850630 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19860422 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Effective date: 19890626 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19900615 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19900709 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19910614 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19910619 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19910627 |
|
ITTA | It: last paid annual fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Effective date: 19910630 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19910630 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19910723 Year of fee payment: 11 |
|
BERE | Be: lapsed |
Owner name: UNION CARBIDE CORP. Effective date: 19910630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19920626 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19930101 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19920626 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19930226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19930302 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
EUG | Se: european patent has lapsed |
Ref document number: 81104985.7 Effective date: 19920109 |