EP0041005B1 - Verfahren zur mechanischen Energieerzeugung aus Wärme mit Mehrstoffgemischen als Arbeitsmittel - Google Patents
Verfahren zur mechanischen Energieerzeugung aus Wärme mit Mehrstoffgemischen als Arbeitsmittel Download PDFInfo
- Publication number
- EP0041005B1 EP0041005B1 EP81400755A EP81400755A EP0041005B1 EP 0041005 B1 EP0041005 B1 EP 0041005B1 EP 81400755 A EP81400755 A EP 81400755A EP 81400755 A EP81400755 A EP 81400755A EP 0041005 B1 EP0041005 B1 EP 0041005B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- mixture
- temperature
- heat
- process according
- anyone
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 97
- 239000012530 fluid Substances 0.000 title claims abstract description 43
- 238000000034 method Methods 0.000 title claims abstract description 20
- 238000004519 manufacturing process Methods 0.000 title claims description 3
- 230000008016 vaporization Effects 0.000 claims abstract description 24
- 238000009834 vaporization Methods 0.000 claims abstract description 23
- 239000007791 liquid phase Substances 0.000 claims abstract description 12
- 238000009833 condensation Methods 0.000 claims abstract description 10
- 230000005494 condensation Effects 0.000 claims abstract description 10
- 238000004064 recycling Methods 0.000 claims abstract 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 21
- 239000012808 vapor phase Substances 0.000 claims description 14
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 12
- 239000000470 constituent Substances 0.000 claims description 10
- 229910021529 ammonia Inorganic materials 0.000 claims description 6
- 239000004231 Riboflavin-5-Sodium Phosphate Substances 0.000 claims description 5
- 239000004234 Yellow 2G Substances 0.000 claims description 5
- 230000003247 decreasing effect Effects 0.000 claims description 4
- 150000001412 amines Chemical class 0.000 claims description 2
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 125000004432 carbon atom Chemical group C* 0.000 claims description 2
- 150000008282 halocarbons Chemical class 0.000 claims description 2
- 229930195733 hydrocarbon Natural products 0.000 claims description 2
- 150000002430 hydrocarbons Chemical class 0.000 claims description 2
- 150000002576 ketones Chemical class 0.000 claims description 2
- 150000001298 alcohols Chemical class 0.000 claims 1
- 230000000750 progressive effect Effects 0.000 abstract 1
- 239000003570 air Substances 0.000 description 9
- 238000010586 diagram Methods 0.000 description 9
- 239000007788 liquid Substances 0.000 description 8
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 8
- 239000002151 riboflavin Substances 0.000 description 7
- 238000001816 cooling Methods 0.000 description 5
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 5
- 239000012809 cooling fluid Substances 0.000 description 4
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 4
- DDMOUSALMHHKOS-UHFFFAOYSA-N 1,2-dichloro-1,1,2,2-tetrafluoroethane Chemical compound FC(F)(Cl)C(F)(F)Cl DDMOUSALMHHKOS-UHFFFAOYSA-N 0.000 description 3
- RFCAUADVODFSLZ-UHFFFAOYSA-N 1-Chloro-1,1,2,2,2-pentafluoroethane Chemical compound FC(F)(F)C(F)(F)Cl RFCAUADVODFSLZ-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- VOPWNXZWBYDODV-UHFFFAOYSA-N Chlorodifluoromethane Chemical compound FC(F)Cl VOPWNXZWBYDODV-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000001273 butane Substances 0.000 description 3
- 235000019406 chloropentafluoroethane Nutrition 0.000 description 3
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 description 3
- 235000019404 dichlorodifluoromethane Nutrition 0.000 description 3
- AFABGHUZZDYHJO-UHFFFAOYSA-N dimethyl butane Natural products CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 3
- 239000004172 quinoline yellow Substances 0.000 description 3
- JSEUKVSKOHVLOV-UHFFFAOYSA-N 1,2-dichloro-1,1,2,3,3,3-hexafluoropropane Chemical compound FC(F)(F)C(F)(Cl)C(F)(F)Cl JSEUKVSKOHVLOV-UHFFFAOYSA-N 0.000 description 2
- GXDHCNNESPLIKD-UHFFFAOYSA-N 2-methylhexane Natural products CCCCC(C)C GXDHCNNESPLIKD-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 239000004229 Alkannin Substances 0.000 description 2
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- 239000004230 Fast Yellow AB Substances 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- UMNKXPULIDJLSU-UHFFFAOYSA-N dichlorofluoromethane Chemical compound FC(Cl)Cl UMNKXPULIDJLSU-UHFFFAOYSA-N 0.000 description 2
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 2
- QWTDNUCVQCZILF-UHFFFAOYSA-N isopentane Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- CYRMSUTZVYGINF-UHFFFAOYSA-N trichlorofluoromethane Chemical compound FC(Cl)(Cl)Cl CYRMSUTZVYGINF-UHFFFAOYSA-N 0.000 description 2
- BOSAWIQFTJIYIS-UHFFFAOYSA-N 1,1,1-trichloro-2,2,2-trifluoroethane Chemical compound FC(F)(F)C(Cl)(Cl)Cl BOSAWIQFTJIYIS-UHFFFAOYSA-N 0.000 description 1
- NPNPZTNLOVBDOC-UHFFFAOYSA-N 1,1-difluoroethane Chemical compound CC(F)F NPNPZTNLOVBDOC-UHFFFAOYSA-N 0.000 description 1
- NBUKAOOFKZFCGD-UHFFFAOYSA-N 2,2,3,3-tetrafluoropropan-1-ol Chemical compound OCC(F)(F)C(F)F NBUKAOOFKZFCGD-UHFFFAOYSA-N 0.000 description 1
- 239000004340 Chloropentafluoroethane Substances 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 239000004338 Dichlorodifluoromethane Substances 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- NHTMVDHEPJAVLT-UHFFFAOYSA-N Isooctane Chemical compound CC(C)CC(C)(C)C NHTMVDHEPJAVLT-UHFFFAOYSA-N 0.000 description 1
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 1
- RHQDFWAXVIIEBN-UHFFFAOYSA-N Trifluoroethanol Chemical compound OCC(F)(F)F RHQDFWAXVIIEBN-UHFFFAOYSA-N 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 229940099364 dichlorofluoromethane Drugs 0.000 description 1
- 229940087091 dichlorotetrafluoroethane Drugs 0.000 description 1
- JVSWJIKNEAIKJW-UHFFFAOYSA-N dimethyl-hexane Natural products CCCCCC(C)C JVSWJIKNEAIKJW-UHFFFAOYSA-N 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 1
- 239000001282 iso-butane Substances 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000004149 tartrazine Substances 0.000 description 1
- 229940029284 trichlorofluoromethane Drugs 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K25/00—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
- F01K25/06—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids
Definitions
- Such a fluid vaporizes and condenses at a substantially constant temperature.
- the fluid mixture of the above patent is a non-azeotropic mixture of trifluoroethanol and water.
- the present invention is based on the observation that the temperature of the external fluids with which the exchanges take place changes, as a general rule, during the exchange.
- the mixture is vaporized according to a temperature interval A by taking heat from an external fluid 1 which constitutes the heat source and the temperature of which changes according to a temperature interval A '. It is then relaxed by producing mechanical energy which can be used directly or transformed into electrical energy, then it is condensed according to a temperature interval B by yielding heat to an external fluid Il which constitutes the cooling fluid and whose the temperature changes according to a temperature interval B '.
- the temperature intervals A and B must be as close as possible to the temperature intervals A 'and B', which corresponds to the best conditions of thermal reversibility.
- the temperature interval A ' according to which the heat is supplied to the cycle being fixed, the composition of the mixture is chosen so as to obtain a vaporization interval A close to the temperature interval A'.
- the temperature interval A In the case of a binary mixture, the temperature interval A generally changes as shown in the diagram shown in Figure 1.
- the vaporization temperatures at the pressure considered are T l and T ll , the vaporization of the mixture begins at the bubble temperature of the liquid T LB and ends at the dew temperature of the vapor T VR .
- the spraying interval is therefore equal to the difference between the temperatures T LB and T VR and can be adjusted by choosing the appropriate composition.
- the condensation interval B is generally close to the vaporization interval A. In this case, it is advantageous to adjust the flow rate of the cooling fluid, water or air, used to carry out the condensation so that the interval of temperature B 'is close to the condensation interval B.
- the mixture is then expanded in the vane motor M1 which drives the alternator AT1.
- An electrical power of 9 kW is collected at the terminals of the alternator.
- the mixture comes out of the M1 vane motor at a pressure of 1.6 bars. It is gradually condensed A in the exchanger E102 from where it is collected in the reserve tank B1. Cooling is ensured by water which enters through line 7 at 12 ° C and exits through line 8 at 32 ° C.
- the liquid mixture is taken up, through line 6, by the pump P1 and recycled to the evaporator E101.
- the use of a mixture of butane and hexane makes it possible, during the vaporization and condensation stages, to follow the temperature evolution of the external fluids, the mixture of fluids vaporizing according to an evolution increasing temperature parallel to the decreasing evolution of temperature of the external fluid 1 and condensing according to a decreasing evolution of temperature parallel to the increasing evolution of temperature of the external fluid II.
- These changes in temperature necessitate operating the heat exchanges at the evaporator and at the condenser under conditions as close as possible to the counter-current.
- a pure counter-current heat exchange mode represents the preferred solution, but for implementation reasons, it is also possible to mount exchange surfaces in a generally counter-current arrangement, each of the exchange surfaces forming part of said arrangement operating under conditions different from the counter current, for example following a heat exchange with cross currents or with a circulation of one of the fluids taking place in U-shaped tubes.
- the mixtures (M) used can be mixtures of two, three (or more) constituents (separate chemical compounds).
- the constituents of the mixture can be hydrocarbons, the molecule of which comprises a number of carbon atoms of for example between 3 and 8, such as propane, normal butane and isobutane, normal pentane and isopentane, normal hexane and isohexane, normal heptane and isoheptane, normal octane and isooctane as well as aromatic hydrocarbons such as benzene and toluene and cyclic hydrocarbons such as cyclopentane and cyclohexane.
- the mixture used can be a mixture of halogenated hydrocarbons of the “Freon” type such as chlorodifluoromethane (R-22), dichlorodifluoromethane (R-12 ), chloropentafluoroethane (R-115), difluoroethane (R-152), trichlorofluoromethane (R-11), dichlorotetrafluoroethane (R-114), dichlorohexafluoropropane (R-216), dichlorofluoromethane (R-21), trichlorotrifluoroethane (R-113).
- halogenated hydrocarbons of the “Freon” type such as chlorodifluoromethane (R-22), dichlorodifluoromethane (R-12 ), chloropentafluoroethane (R-115), difluoroethane (R-152), trichlorofluoromethane (R-11), dichlorotetrafluor
- One of the constituents of the mixture can be an azeotrope such as the R-502 azeotrope of R-22 and R-115 (48.8 / 52.2% by weight), the R-500 azeotrope of R-12 and of R-31 (78.0 / 22.0% by weight), the azeotropic R-506 of R-31 and of R-114 (55.1 / 44.9% by weight).
- an azeotrope such as the R-502 azeotrope of R-22 and R-115 (48.8 / 52.2% by weight), the R-500 azeotrope of R-12 and of R-31 (78.0 / 22.0% by weight), the azeotropic R-506 of R-31 and of R-114 (55.1 / 44.9% by weight).
- mixtures comprising water and at least one second water-miscible constituent such as mixtures formed of water and ammonia, mixtures formed of water and an amine such as methylamine or ethylamine, mixtures formed of water and an alcohol such as methanol, mixtures formed of water and a ketone such as acetone.
- the composition of the mixture is chosen so that the vaporization intervals A and condensation B are as close as possible to the temperature intervals A 'and B' according to which evolve external fluids.
- the difference between the temperature intervals A and A ′ is less than 5 ° C.
- the pump P11 makes it possible to send a fraction of the liquid mixture via the conduit 12 into the exchanger E103 in which it vaporizes according to a temperature interval A, by exchanging heat with an external fluid which enters through the conduit 13 and leaves by the conduit 14.
- the mixture leaves vaporized from the exchanger E103 by the conduit 15 and it is sent to the engine stage M2.
- the pump P10 sends the remaining fraction of the liquid mixture via the pipe 16 into the exchanger E104, in which it vaporizes according to a temperature interval A 2 by exchanging heat with the external fluid which arrives through the pipe 14 and exits through the conduit 17.
- the mixture leaves vaporized from the exchanger E104 and the steam thus obtained is mixed with the steam coming from the expansion through the stage M2, then expanded at the same time as the steam coming from the stage M2 in the 'motor stage M3 from which it' emerges through conduit 19.
- the intermediate pressure level is chosen correctly, that is to say the pressure at which the mixture vaporizes in the exchanger E104, the temperature intervals A and A 2 can be consecutive and it is thus possible to follow with the mixture a change in temperature parallel to a change in temperature of the external fluid which supplies heat to the cycle, corresponding to a temperature interval A 'approximately twice as wide as in the case of the operating diagram represented in the Figure 2.
- the condensed mixture is only partially vaporized in the exchanger E106 by taking heat from the external fluid which arrives via line 20 and leaves via line 21.
- the liquid and vapor fractions are separated in the separator flask S1.
- the steam fraction is expanded in the T3 turbine.
- the liquid phase is sent to the exchanger E107 in which it exchanges heat with the condensed mixture which is sent to the evaporator, then expanded through the expansion valve V1 and mixed with the expanded vapor phase leaving the turbine T3 .
- the liquid vapor mixture thus obtained is condensed by yielding heat to an external cooling fluid, collected in the reserve tank B3 and recycled by the pump P3 to the evaporator.
- the operating conditions of a device operating according to the arrangement shown diagrammatically in FIG. 4 are the subject of Example 2.
- This mixture is sent through line 31 into the exchanger E107 from which it emerges through line 22 at a temperature of 55 ° C. It is then sent to the exchanger E106 in which it partially vaporizes by taking a thermal power of 1,585 kW from a flow of water which arrives via line 20 at a temperature of 90 ° C and exits through line 21 at a temperature of 65 ° C.
- the liquid-vapor mixture leaves the exchanger E106 through line 23 at a temperature of 85 ° C. and at a pressure of 20 bars. It is collected in the separator tank S1 in which the liquid phase and the vapor phase are separated. The liquid phase contains 52% ammonia by weight. It is evacuated via line 25 and sent to the exchanger E107.
- the vapor phase is sent via line 24 to the turbine T3 in which it is expanded to a pressure of 8 bars. On the shaft of the turbine T3, a power of 100 kW is collected by means of the electric brake FE1.
- the expanded vapor is evacuated through the pipe 26.
- the liquid phase which leaves through the pipe 27 of the exchanger E107 is expanded through the expansion valve V1, from where it comes out through the pipe 28. It is then mixed with the vapor phase arriving through line 26 and the liquid-vapor mixture is sent through line 29 into the air cooler AR1, in which it is fully condensed B and from which it leaves through line 30 at a temperature of 28 ° C.
- the AR1 air condenser is made up of tubes provided with fins inside which the mixture circulates by condensing, these tubes being arranged in five layers placed transversely to the air circulation but mounted against the current , the mixture thus circulating generally against the current of the cooling air.
- the condensed mixture is collected in the reserve tank B3 from where it is taken up by the feed pump P3.
- the operating diagram shown in Figure 4, makes it possible to adapt to variable operating conditions.
- the pressure levels in the evaporator and in the condenser are reduced, which makes it possible to reduce the capacity of the system, c is the power delivered on the shaft.
- the operating conditions are generally chosen so that the pressure of the mixture in the evaporator is between 3 and 30 bars and so that the pressure of the mixture in the condenser is between 1 and 10 bars.
- the temperatures constituting the temperature range A are all greater than 50 ° C and less than 350 ° C and the temperatures constituting the temperature range B are all greater than 20 ° C and less than 80 ° C.
- the evaporator and the condenser can be, for example, tube and shell exchangers, double-tube exchangers or plate exchangers.
- a fluid which is a gas for example if air is used as coolant for the condenser, it is generally advantageous to provide the exchange surfaces with fins placed on the side of the gas to improve heat exchange with this gas.
- a machine can be for example a turbine with one wheel or with several wheels, radial or axial, a screw machine of the same type as the screw compressors but operating in expansion, a vane motor or a reciprocating piston engine.
- the mechanical power delivered can be very variable and range, for example, from a few kW to several megawatts.
- the mixture of fluids must not form an azeotrope under the conditions of vaporization. This means that at least two constituents of this mixture do not form an azeotrope between them; however, each of the constituents can individually be an azeotrope.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Claims (12)
dadurch gekennzeichnet, daß der mit den Außenflüssigkeiten und 11 in den Stufen a) bzw. c) bewirkte Wärmeaustausch im Gegenstrom erfolgt, wobei das Flüssigkeitsgemisch (M) in Stufe a) nach einer Temperatursteigerung (A) verdampft, welche parallel zur Temperatursenkung (A') der Außenflüssigkeit I erfolgt, und die Kondensation in Stufe c) nach einer Temperatursenkung (B) parallel zur Temperatursteigerung (B') der Außenflüssigkeit II bewirkt wird, wobei die Größe des Temperaturintervalls (B) mindestens 7°C und höchstens 30 °C beträgt.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT81400755T ATE14778T1 (de) | 1980-05-23 | 1981-05-12 | Verfahren zur mechanischen energieerzeugung aus waerme mit mehrstoffgemischen als arbeitsmittel. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8011649A FR2483009A1 (fr) | 1980-05-23 | 1980-05-23 | Procede de production d'energie mecanique a partir de chaleur utilisant un melange de fluides comme agent de travail |
FR8011649 | 1980-05-23 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0041005A1 EP0041005A1 (de) | 1981-12-02 |
EP0041005B1 true EP0041005B1 (de) | 1985-08-07 |
Family
ID=9242336
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP81400755A Expired EP0041005B1 (de) | 1980-05-23 | 1981-05-12 | Verfahren zur mechanischen Energieerzeugung aus Wärme mit Mehrstoffgemischen als Arbeitsmittel |
Country Status (6)
Country | Link |
---|---|
US (1) | US4422297A (de) |
EP (1) | EP0041005B1 (de) |
JP (1) | JPS5728819A (de) |
AT (1) | ATE14778T1 (de) |
DE (1) | DE3171684D1 (de) |
FR (1) | FR2483009A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010024487A1 (de) * | 2010-06-21 | 2011-12-22 | Andreas Wunderlich | Verfahren und Vorrichtung zur Erzeugung mechanischer Energie in einem Kreisprozess |
Families Citing this family (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2499149A1 (fr) * | 1981-02-05 | 1982-08-06 | Linde Ag | Procede de transformation d'energie thermique en energie mecanique |
US4442675A (en) * | 1981-05-11 | 1984-04-17 | Soma Kurtis | Method for thermodynamic cycle |
US4506524A (en) * | 1983-08-15 | 1985-03-26 | Schlichtig Ralph C | Absorption type heat transfer system functioning as a temperature pressure potential amplifier |
US4827877A (en) * | 1987-01-13 | 1989-05-09 | Hisaka Works, Limited | Heat recovery system utilizing non-azeotropic medium |
US4779424A (en) * | 1987-01-13 | 1988-10-25 | Hisaka Works, Limited | Heat recovery system utilizing non-azeotropic medium |
US4785876A (en) * | 1987-01-13 | 1988-11-22 | Hisaka Works, Limited | Heat recovery system utilizing non-azetotropic medium |
US5186013A (en) * | 1989-02-10 | 1993-02-16 | Thomas Durso | Refrigerant power unit and method for refrigeration |
JP2503150Y2 (ja) * | 1990-05-10 | 1996-06-26 | 中部電力株式会社 | 非共沸混合流体サイクルプラントの蒸気凝縮装置 |
US5255519A (en) * | 1992-08-14 | 1993-10-26 | Millennium Technologies, Inc. | Method and apparatus for increasing efficiency and productivity in a power generation cycle |
DE19653256A1 (de) * | 1996-12-20 | 1998-06-25 | Asea Brown Boveri | Kondensator für binäre/polynäre Kondensation |
US5842345A (en) * | 1997-09-29 | 1998-12-01 | Air Products And Chemicals, Inc. | Heat recovery and power generation from industrial process streams |
CA2393386A1 (en) * | 2002-07-22 | 2004-01-22 | Douglas Wilbert Paul Smith | Method of converting energy |
US6751959B1 (en) * | 2002-12-09 | 2004-06-22 | Tennessee Valley Authority | Simple and compact low-temperature power cycle |
US6820422B1 (en) * | 2003-04-15 | 2004-11-23 | Johnathan W. Linney | Method for improving power plant thermal efficiency |
US7124587B1 (en) * | 2003-04-15 | 2006-10-24 | Johnathan W. Linney | Heat exchange system |
US7305829B2 (en) * | 2003-05-09 | 2007-12-11 | Recurrent Engineering, Llc | Method and apparatus for acquiring heat from multiple heat sources |
US8117844B2 (en) * | 2004-05-07 | 2012-02-21 | Recurrent Engineering, Llc | Method and apparatus for acquiring heat from multiple heat sources |
US7074343B2 (en) * | 2004-05-26 | 2006-07-11 | E. I. Du Pont De Nemours And Company | 1,1,1,2,2,4,5,5,5-nonafluoro-4-(trifluoromethyl)-3-pentanone refrigerant compositions comprising a hydrocarbon and uses thereof |
US20070144195A1 (en) * | 2004-08-16 | 2007-06-28 | Mahl George Iii | Method and apparatus for combining a heat pump cycle with a power cycle |
US20060112693A1 (en) * | 2004-11-30 | 2006-06-01 | Sundel Timothy N | Method and apparatus for power generation using waste heat |
US7665304B2 (en) * | 2004-11-30 | 2010-02-23 | Carrier Corporation | Rankine cycle device having multiple turbo-generators |
US7270794B2 (en) * | 2005-03-30 | 2007-09-18 | Shipley Larry W | Process for recovering useful products and energy from siliceous plant matter |
JP2006322692A (ja) * | 2005-05-20 | 2006-11-30 | Ebara Corp | 蒸気発生器、及び排熱発電装置 |
WO2011103560A2 (en) * | 2010-02-22 | 2011-08-25 | University Of South Florida | Method and system for generating power from low- and mid- temperature heat sources |
US20120006024A1 (en) * | 2010-07-09 | 2012-01-12 | Energent Corporation | Multi-component two-phase power cycle |
RU2457338C2 (ru) * | 2010-08-26 | 2012-07-27 | Игорь Анатольевич Ревенко | Способ преобразования тепловой энергии в механическую, способ увеличения энтальпии и коэффициента сжимаемости водяного пара |
CN101922864A (zh) * | 2010-09-26 | 2010-12-22 | 中冶赛迪工程技术股份有限公司 | 钢铁企业分布式纯低温煤气余热回收利用系统 |
SE535318C2 (sv) * | 2010-12-01 | 2012-06-26 | Scania Cv Ab | Arrangemang och förfarande för att omvandla värmeenergi till mekanisk energi |
CN103717699B (zh) * | 2011-04-21 | 2016-10-12 | 埃姆泰克能量公司 | 用于兰金循环的工作流体 |
US20130174552A1 (en) * | 2012-01-06 | 2013-07-11 | United Technologies Corporation | Non-azeotropic working fluid mixtures for rankine cycle systems |
ITBS20120008A1 (it) * | 2012-01-20 | 2013-07-21 | Turboden Srl | Metodo e turbina per espandere un fluido di lavoro organico in un ciclo rankine |
DE102012108468A1 (de) * | 2012-09-11 | 2014-03-13 | Amovis Gmbh | Arbeitsmittelgemisch für Dampfkraftanlagen |
CN103374332A (zh) * | 2013-07-04 | 2013-10-30 | 天津大学 | 含有环戊烷的有机朗肯循环混合工质 |
US10436075B2 (en) * | 2015-01-05 | 2019-10-08 | General Electric Company | Multi-pressure organic Rankine cycle |
US11618684B2 (en) | 2018-09-05 | 2023-04-04 | Kilt, Llc | Method for controlling the properties of biogenic silica |
GB2581770B (en) * | 2019-01-14 | 2023-01-18 | Gas Expansion Motors Ltd | Engine |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3516248A (en) * | 1968-07-02 | 1970-06-23 | Monsanto Co | Thermodynamic fluids |
DE2215868A1 (de) * | 1971-04-01 | 1972-10-26 | Thermo Electron Corp | Verfahren zum Betreiben einer vor zugsweise nach dem Clausius Rankine Pro zeß betriebenen Kraft Erzeuger Anlage |
FR2337855A1 (fr) * | 1976-01-07 | 1977-08-05 | Inst Francais Du Petrole | Procede de production de chaleur utilisant une pompe de chaleur fonctionnant avec un melange de fluides |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR670497A (fr) * | 1928-06-19 | 1929-11-29 | Installation thermique pour véhicules, machines volantes, bateaux et autres embarcations marines | |
GB551292A (en) * | 1942-01-23 | 1943-02-16 | Brian Furmstone Rice Stack | A heat engine employing mixed vapours |
US3511049A (en) * | 1968-10-07 | 1970-05-12 | American Air Filter Co | Motive fluid composition |
US4242870A (en) * | 1974-08-29 | 1981-01-06 | Searingen Judson S | Power systems using heat from hot liquid |
DE2852076A1 (de) * | 1977-12-05 | 1979-06-07 | Fiat Spa | Anlage zur erzeugung mechanischer energie aus waermequellen unterschiedlicher temperatur |
JPS54105652A (en) * | 1978-02-07 | 1979-08-18 | Daikin Ind Ltd | Rankine cycle working fluid |
JPS55146208A (en) * | 1979-05-01 | 1980-11-14 | Daikin Ind Ltd | Power generating apparatus |
-
1980
- 1980-05-23 FR FR8011649A patent/FR2483009A1/fr active Granted
-
1981
- 1981-05-12 DE DE8181400755T patent/DE3171684D1/de not_active Expired
- 1981-05-12 AT AT81400755T patent/ATE14778T1/de active
- 1981-05-12 EP EP81400755A patent/EP0041005B1/de not_active Expired
- 1981-05-22 JP JP7855681A patent/JPS5728819A/ja active Pending
- 1981-05-22 US US06/266,569 patent/US4422297A/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3516248A (en) * | 1968-07-02 | 1970-06-23 | Monsanto Co | Thermodynamic fluids |
DE2215868A1 (de) * | 1971-04-01 | 1972-10-26 | Thermo Electron Corp | Verfahren zum Betreiben einer vor zugsweise nach dem Clausius Rankine Pro zeß betriebenen Kraft Erzeuger Anlage |
FR2337855A1 (fr) * | 1976-01-07 | 1977-08-05 | Inst Francais Du Petrole | Procede de production de chaleur utilisant une pompe de chaleur fonctionnant avec un melange de fluides |
Non-Patent Citations (1)
Title |
---|
Handbuch der Kältetechnik (herausg. v. R. Plank) 6. Band, Teil A, page 494 (Springer 1969) * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010024487A1 (de) * | 2010-06-21 | 2011-12-22 | Andreas Wunderlich | Verfahren und Vorrichtung zur Erzeugung mechanischer Energie in einem Kreisprozess |
Also Published As
Publication number | Publication date |
---|---|
US4422297A (en) | 1983-12-27 |
FR2483009B1 (de) | 1982-07-23 |
FR2483009A1 (fr) | 1981-11-27 |
DE3171684D1 (en) | 1985-09-12 |
ATE14778T1 (de) | 1985-08-15 |
JPS5728819A (en) | 1982-02-16 |
EP0041005A1 (de) | 1981-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0041005B1 (de) | Verfahren zur mechanischen Energieerzeugung aus Wärme mit Mehrstoffgemischen als Arbeitsmittel | |
EP0162746B1 (de) | Absorptionsverfahren zur Kälte- und/oder Wärmeerzeugung mit einem aus mehreren Bestandteilen bestehenden Gemisch als Arbeitsmittel | |
AU2004263612B2 (en) | Method and device for carrying out a thermodynamic cycle | |
US9388797B2 (en) | Method and apparatus for producing power from geothermal fluid | |
EP0057120B1 (de) | Verfahren zum Heizen eines Raumes mittels einer Kompressionswärmepumpe mit einem Gemisch als Arbeitsmedium | |
FR2818365A1 (fr) | Procede de refrigeration d'un gaz liquefie, gaz obtenus par ce procede, et installation mettant en oeuvre celui-ci | |
FR2826969A1 (fr) | Procede de liquefaction et de deazotation de gaz naturel, installation de mise en oeuvre, et gaz obtenus par cette separation | |
EP2764243B1 (de) | Verfahren und system zur umwandlung von meereswärmeenergie | |
FR3074846A1 (fr) | Procede de stockage et de production d'energie par air comprime avec recuperation d'energie supplementaire | |
US20120067049A1 (en) | Systems and methods for power generation from multiple heat sources using customized working fluids | |
WO2021019146A1 (fr) | Procédé de production d'énergie électrique utilisant plusieurs cycles de rankine combinés | |
WO2021019143A1 (fr) | Procédé de récupération d'énergie frigorifique avec production d'électricité ou liquéfaction d'un courant gazeux | |
FR2583988A1 (fr) | Procede de distillation avec recuperation d'energie par recompression de vapeur a l'aide d'un ejecteur | |
FR2575812A1 (fr) | Procede de production de froid et/ou de chaleur mettant en oeuvre un melange non-azeotropique de fluides dans un cycle a ejecteur | |
EP3191693B1 (de) | System zur stromerzeugung basierend auf einem rankine-prozess | |
EP3429717B1 (de) | Verfahren für energiesparende chromatographische trennung | |
FR3090734A1 (fr) | Système de cogénération d'énergie électrique et d'énergie thermique par un module de cycle de Rankine | |
WO2019073132A1 (fr) | Procede et appareil de separation d'air par distillation cryogenique | |
US3702534A (en) | Power fluids for rankine cycle engines | |
FR2496754A1 (fr) | Procede pour recuperer de l'energie, conformement a un cycle de rankine en serie, par gazeification de gaz naturel liquefie et utilisation du potentiel de froid | |
FR2670570A1 (fr) | Fluide de travail pour pompes a chaleur a absorption fonctionnant a tres hautes temperatures. | |
EP4004348A1 (de) | Verfahren zur erzeugung von elektrischer energie unter verwendung mehrerer kombinierter rankine-zyklen | |
CA2278654A1 (fr) | Systeme frigorifique a absorption et melange de travail pour ce systeme | |
FR2607581A1 (fr) | Convertisseur de chaleur ambiante | |
WO2022117407A1 (fr) | Système et procédé de stockage et de récupération d'énergie par gaz comprimé avec cycle de rankine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH DE GB IT NL SE |
|
17P | Request for examination filed |
Effective date: 19820507 |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH DE GB IT LI NL SE |
|
REF | Corresponds to: |
Ref document number: 14778 Country of ref document: AT Date of ref document: 19850815 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 3171684 Country of ref document: DE Date of ref document: 19850912 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19890403 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19890412 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19890430 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19890518 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19890531 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19890731 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19900201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19900512 Ref country code: AT Effective date: 19900512 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19900513 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19900531 Ref country code: CH Effective date: 19900531 Ref country code: BE Effective date: 19900531 |
|
BERE | Be: lapsed |
Owner name: INSTITUT FRANCAIS DU PETROLE Effective date: 19900531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19901201 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee | ||
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
EUG | Se: european patent has lapsed |
Ref document number: 81400755.5 Effective date: 19910115 |