EP0041005B1 - Method for mechanical energy production from heat using a mixture of fluids as the working fluid - Google Patents
Method for mechanical energy production from heat using a mixture of fluids as the working fluid Download PDFInfo
- Publication number
- EP0041005B1 EP0041005B1 EP81400755A EP81400755A EP0041005B1 EP 0041005 B1 EP0041005 B1 EP 0041005B1 EP 81400755 A EP81400755 A EP 81400755A EP 81400755 A EP81400755 A EP 81400755A EP 0041005 B1 EP0041005 B1 EP 0041005B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- mixture
- temperature
- heat
- process according
- anyone
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 97
- 239000012530 fluid Substances 0.000 title claims abstract description 43
- 238000000034 method Methods 0.000 title claims abstract description 20
- 238000004519 manufacturing process Methods 0.000 title claims description 3
- 230000008016 vaporization Effects 0.000 claims abstract description 24
- 238000009834 vaporization Methods 0.000 claims abstract description 23
- 239000007791 liquid phase Substances 0.000 claims abstract description 12
- 238000009833 condensation Methods 0.000 claims abstract description 10
- 230000005494 condensation Effects 0.000 claims abstract description 10
- 238000004064 recycling Methods 0.000 claims abstract 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 21
- 239000012808 vapor phase Substances 0.000 claims description 14
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 12
- 239000000470 constituent Substances 0.000 claims description 10
- 229910021529 ammonia Inorganic materials 0.000 claims description 6
- 239000004231 Riboflavin-5-Sodium Phosphate Substances 0.000 claims description 5
- 239000004234 Yellow 2G Substances 0.000 claims description 5
- 230000003247 decreasing effect Effects 0.000 claims description 4
- 150000001412 amines Chemical class 0.000 claims description 2
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 125000004432 carbon atom Chemical group C* 0.000 claims description 2
- 150000008282 halocarbons Chemical class 0.000 claims description 2
- 229930195733 hydrocarbon Natural products 0.000 claims description 2
- 150000002430 hydrocarbons Chemical class 0.000 claims description 2
- 150000002576 ketones Chemical class 0.000 claims description 2
- 150000001298 alcohols Chemical class 0.000 claims 1
- 230000000750 progressive effect Effects 0.000 abstract 1
- 239000003570 air Substances 0.000 description 9
- 238000010586 diagram Methods 0.000 description 9
- 239000007788 liquid Substances 0.000 description 8
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 8
- 239000002151 riboflavin Substances 0.000 description 7
- 238000001816 cooling Methods 0.000 description 5
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 5
- 239000012809 cooling fluid Substances 0.000 description 4
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 4
- DDMOUSALMHHKOS-UHFFFAOYSA-N 1,2-dichloro-1,1,2,2-tetrafluoroethane Chemical compound FC(F)(Cl)C(F)(F)Cl DDMOUSALMHHKOS-UHFFFAOYSA-N 0.000 description 3
- RFCAUADVODFSLZ-UHFFFAOYSA-N 1-Chloro-1,1,2,2,2-pentafluoroethane Chemical compound FC(F)(F)C(F)(F)Cl RFCAUADVODFSLZ-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- VOPWNXZWBYDODV-UHFFFAOYSA-N Chlorodifluoromethane Chemical compound FC(F)Cl VOPWNXZWBYDODV-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000001273 butane Substances 0.000 description 3
- 235000019406 chloropentafluoroethane Nutrition 0.000 description 3
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 description 3
- 235000019404 dichlorodifluoromethane Nutrition 0.000 description 3
- AFABGHUZZDYHJO-UHFFFAOYSA-N dimethyl butane Natural products CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 3
- 239000004172 quinoline yellow Substances 0.000 description 3
- JSEUKVSKOHVLOV-UHFFFAOYSA-N 1,2-dichloro-1,1,2,3,3,3-hexafluoropropane Chemical compound FC(F)(F)C(F)(Cl)C(F)(F)Cl JSEUKVSKOHVLOV-UHFFFAOYSA-N 0.000 description 2
- GXDHCNNESPLIKD-UHFFFAOYSA-N 2-methylhexane Natural products CCCCC(C)C GXDHCNNESPLIKD-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 239000004229 Alkannin Substances 0.000 description 2
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- 239000004230 Fast Yellow AB Substances 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- UMNKXPULIDJLSU-UHFFFAOYSA-N dichlorofluoromethane Chemical compound FC(Cl)Cl UMNKXPULIDJLSU-UHFFFAOYSA-N 0.000 description 2
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 2
- QWTDNUCVQCZILF-UHFFFAOYSA-N isopentane Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- CYRMSUTZVYGINF-UHFFFAOYSA-N trichlorofluoromethane Chemical compound FC(Cl)(Cl)Cl CYRMSUTZVYGINF-UHFFFAOYSA-N 0.000 description 2
- BOSAWIQFTJIYIS-UHFFFAOYSA-N 1,1,1-trichloro-2,2,2-trifluoroethane Chemical compound FC(F)(F)C(Cl)(Cl)Cl BOSAWIQFTJIYIS-UHFFFAOYSA-N 0.000 description 1
- NPNPZTNLOVBDOC-UHFFFAOYSA-N 1,1-difluoroethane Chemical compound CC(F)F NPNPZTNLOVBDOC-UHFFFAOYSA-N 0.000 description 1
- NBUKAOOFKZFCGD-UHFFFAOYSA-N 2,2,3,3-tetrafluoropropan-1-ol Chemical compound OCC(F)(F)C(F)F NBUKAOOFKZFCGD-UHFFFAOYSA-N 0.000 description 1
- 239000004340 Chloropentafluoroethane Substances 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 239000004338 Dichlorodifluoromethane Substances 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- NHTMVDHEPJAVLT-UHFFFAOYSA-N Isooctane Chemical compound CC(C)CC(C)(C)C NHTMVDHEPJAVLT-UHFFFAOYSA-N 0.000 description 1
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 1
- RHQDFWAXVIIEBN-UHFFFAOYSA-N Trifluoroethanol Chemical compound OCC(F)(F)F RHQDFWAXVIIEBN-UHFFFAOYSA-N 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 229940099364 dichlorofluoromethane Drugs 0.000 description 1
- 229940087091 dichlorotetrafluoroethane Drugs 0.000 description 1
- JVSWJIKNEAIKJW-UHFFFAOYSA-N dimethyl-hexane Natural products CCCCCC(C)C JVSWJIKNEAIKJW-UHFFFAOYSA-N 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 1
- 239000001282 iso-butane Substances 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000004149 tartrazine Substances 0.000 description 1
- 229940029284 trichlorofluoromethane Drugs 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K25/00—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
- F01K25/06—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids
Definitions
- Such a fluid vaporizes and condenses at a substantially constant temperature.
- the fluid mixture of the above patent is a non-azeotropic mixture of trifluoroethanol and water.
- the present invention is based on the observation that the temperature of the external fluids with which the exchanges take place changes, as a general rule, during the exchange.
- the mixture is vaporized according to a temperature interval A by taking heat from an external fluid 1 which constitutes the heat source and the temperature of which changes according to a temperature interval A '. It is then relaxed by producing mechanical energy which can be used directly or transformed into electrical energy, then it is condensed according to a temperature interval B by yielding heat to an external fluid Il which constitutes the cooling fluid and whose the temperature changes according to a temperature interval B '.
- the temperature intervals A and B must be as close as possible to the temperature intervals A 'and B', which corresponds to the best conditions of thermal reversibility.
- the temperature interval A ' according to which the heat is supplied to the cycle being fixed, the composition of the mixture is chosen so as to obtain a vaporization interval A close to the temperature interval A'.
- the temperature interval A In the case of a binary mixture, the temperature interval A generally changes as shown in the diagram shown in Figure 1.
- the vaporization temperatures at the pressure considered are T l and T ll , the vaporization of the mixture begins at the bubble temperature of the liquid T LB and ends at the dew temperature of the vapor T VR .
- the spraying interval is therefore equal to the difference between the temperatures T LB and T VR and can be adjusted by choosing the appropriate composition.
- the condensation interval B is generally close to the vaporization interval A. In this case, it is advantageous to adjust the flow rate of the cooling fluid, water or air, used to carry out the condensation so that the interval of temperature B 'is close to the condensation interval B.
- the mixture is then expanded in the vane motor M1 which drives the alternator AT1.
- An electrical power of 9 kW is collected at the terminals of the alternator.
- the mixture comes out of the M1 vane motor at a pressure of 1.6 bars. It is gradually condensed A in the exchanger E102 from where it is collected in the reserve tank B1. Cooling is ensured by water which enters through line 7 at 12 ° C and exits through line 8 at 32 ° C.
- the liquid mixture is taken up, through line 6, by the pump P1 and recycled to the evaporator E101.
- the use of a mixture of butane and hexane makes it possible, during the vaporization and condensation stages, to follow the temperature evolution of the external fluids, the mixture of fluids vaporizing according to an evolution increasing temperature parallel to the decreasing evolution of temperature of the external fluid 1 and condensing according to a decreasing evolution of temperature parallel to the increasing evolution of temperature of the external fluid II.
- These changes in temperature necessitate operating the heat exchanges at the evaporator and at the condenser under conditions as close as possible to the counter-current.
- a pure counter-current heat exchange mode represents the preferred solution, but for implementation reasons, it is also possible to mount exchange surfaces in a generally counter-current arrangement, each of the exchange surfaces forming part of said arrangement operating under conditions different from the counter current, for example following a heat exchange with cross currents or with a circulation of one of the fluids taking place in U-shaped tubes.
- the mixtures (M) used can be mixtures of two, three (or more) constituents (separate chemical compounds).
- the constituents of the mixture can be hydrocarbons, the molecule of which comprises a number of carbon atoms of for example between 3 and 8, such as propane, normal butane and isobutane, normal pentane and isopentane, normal hexane and isohexane, normal heptane and isoheptane, normal octane and isooctane as well as aromatic hydrocarbons such as benzene and toluene and cyclic hydrocarbons such as cyclopentane and cyclohexane.
- the mixture used can be a mixture of halogenated hydrocarbons of the “Freon” type such as chlorodifluoromethane (R-22), dichlorodifluoromethane (R-12 ), chloropentafluoroethane (R-115), difluoroethane (R-152), trichlorofluoromethane (R-11), dichlorotetrafluoroethane (R-114), dichlorohexafluoropropane (R-216), dichlorofluoromethane (R-21), trichlorotrifluoroethane (R-113).
- halogenated hydrocarbons of the “Freon” type such as chlorodifluoromethane (R-22), dichlorodifluoromethane (R-12 ), chloropentafluoroethane (R-115), difluoroethane (R-152), trichlorofluoromethane (R-11), dichlorotetrafluor
- One of the constituents of the mixture can be an azeotrope such as the R-502 azeotrope of R-22 and R-115 (48.8 / 52.2% by weight), the R-500 azeotrope of R-12 and of R-31 (78.0 / 22.0% by weight), the azeotropic R-506 of R-31 and of R-114 (55.1 / 44.9% by weight).
- an azeotrope such as the R-502 azeotrope of R-22 and R-115 (48.8 / 52.2% by weight), the R-500 azeotrope of R-12 and of R-31 (78.0 / 22.0% by weight), the azeotropic R-506 of R-31 and of R-114 (55.1 / 44.9% by weight).
- mixtures comprising water and at least one second water-miscible constituent such as mixtures formed of water and ammonia, mixtures formed of water and an amine such as methylamine or ethylamine, mixtures formed of water and an alcohol such as methanol, mixtures formed of water and a ketone such as acetone.
- the composition of the mixture is chosen so that the vaporization intervals A and condensation B are as close as possible to the temperature intervals A 'and B' according to which evolve external fluids.
- the difference between the temperature intervals A and A ′ is less than 5 ° C.
- the pump P11 makes it possible to send a fraction of the liquid mixture via the conduit 12 into the exchanger E103 in which it vaporizes according to a temperature interval A, by exchanging heat with an external fluid which enters through the conduit 13 and leaves by the conduit 14.
- the mixture leaves vaporized from the exchanger E103 by the conduit 15 and it is sent to the engine stage M2.
- the pump P10 sends the remaining fraction of the liquid mixture via the pipe 16 into the exchanger E104, in which it vaporizes according to a temperature interval A 2 by exchanging heat with the external fluid which arrives through the pipe 14 and exits through the conduit 17.
- the mixture leaves vaporized from the exchanger E104 and the steam thus obtained is mixed with the steam coming from the expansion through the stage M2, then expanded at the same time as the steam coming from the stage M2 in the 'motor stage M3 from which it' emerges through conduit 19.
- the intermediate pressure level is chosen correctly, that is to say the pressure at which the mixture vaporizes in the exchanger E104, the temperature intervals A and A 2 can be consecutive and it is thus possible to follow with the mixture a change in temperature parallel to a change in temperature of the external fluid which supplies heat to the cycle, corresponding to a temperature interval A 'approximately twice as wide as in the case of the operating diagram represented in the Figure 2.
- the condensed mixture is only partially vaporized in the exchanger E106 by taking heat from the external fluid which arrives via line 20 and leaves via line 21.
- the liquid and vapor fractions are separated in the separator flask S1.
- the steam fraction is expanded in the T3 turbine.
- the liquid phase is sent to the exchanger E107 in which it exchanges heat with the condensed mixture which is sent to the evaporator, then expanded through the expansion valve V1 and mixed with the expanded vapor phase leaving the turbine T3 .
- the liquid vapor mixture thus obtained is condensed by yielding heat to an external cooling fluid, collected in the reserve tank B3 and recycled by the pump P3 to the evaporator.
- the operating conditions of a device operating according to the arrangement shown diagrammatically in FIG. 4 are the subject of Example 2.
- This mixture is sent through line 31 into the exchanger E107 from which it emerges through line 22 at a temperature of 55 ° C. It is then sent to the exchanger E106 in which it partially vaporizes by taking a thermal power of 1,585 kW from a flow of water which arrives via line 20 at a temperature of 90 ° C and exits through line 21 at a temperature of 65 ° C.
- the liquid-vapor mixture leaves the exchanger E106 through line 23 at a temperature of 85 ° C. and at a pressure of 20 bars. It is collected in the separator tank S1 in which the liquid phase and the vapor phase are separated. The liquid phase contains 52% ammonia by weight. It is evacuated via line 25 and sent to the exchanger E107.
- the vapor phase is sent via line 24 to the turbine T3 in which it is expanded to a pressure of 8 bars. On the shaft of the turbine T3, a power of 100 kW is collected by means of the electric brake FE1.
- the expanded vapor is evacuated through the pipe 26.
- the liquid phase which leaves through the pipe 27 of the exchanger E107 is expanded through the expansion valve V1, from where it comes out through the pipe 28. It is then mixed with the vapor phase arriving through line 26 and the liquid-vapor mixture is sent through line 29 into the air cooler AR1, in which it is fully condensed B and from which it leaves through line 30 at a temperature of 28 ° C.
- the AR1 air condenser is made up of tubes provided with fins inside which the mixture circulates by condensing, these tubes being arranged in five layers placed transversely to the air circulation but mounted against the current , the mixture thus circulating generally against the current of the cooling air.
- the condensed mixture is collected in the reserve tank B3 from where it is taken up by the feed pump P3.
- the operating diagram shown in Figure 4, makes it possible to adapt to variable operating conditions.
- the pressure levels in the evaporator and in the condenser are reduced, which makes it possible to reduce the capacity of the system, c is the power delivered on the shaft.
- the operating conditions are generally chosen so that the pressure of the mixture in the evaporator is between 3 and 30 bars and so that the pressure of the mixture in the condenser is between 1 and 10 bars.
- the temperatures constituting the temperature range A are all greater than 50 ° C and less than 350 ° C and the temperatures constituting the temperature range B are all greater than 20 ° C and less than 80 ° C.
- the evaporator and the condenser can be, for example, tube and shell exchangers, double-tube exchangers or plate exchangers.
- a fluid which is a gas for example if air is used as coolant for the condenser, it is generally advantageous to provide the exchange surfaces with fins placed on the side of the gas to improve heat exchange with this gas.
- a machine can be for example a turbine with one wheel or with several wheels, radial or axial, a screw machine of the same type as the screw compressors but operating in expansion, a vane motor or a reciprocating piston engine.
- the mechanical power delivered can be very variable and range, for example, from a few kW to several megawatts.
- the mixture of fluids must not form an azeotrope under the conditions of vaporization. This means that at least two constituents of this mixture do not form an azeotrope between them; however, each of the constituents can individually be an azeotrope.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Description
La nécessité d'économiser l'énergie et d'utiliser de nouvelles sources d'énergie conduit à développer des procédés de production d'énergie mécanique, pouvant être utilisée directement ou transformée en énergie électrique, à partir de sources de chaleur à relativement bas niveau thermique, c'est-à-dire dans une gamme de température pouvant aller par exemple de 50 à 400 °C. De telles sources de chaleur peuvent être de nature diverse : rejets thermiques industriels, chaleur transmise par des capteurs solaires, eau géothermale, etc... A partir de telles sources de chaleur, il est possible de produire de l'énergie mécanique au moyen d'un cycle de Rankine utilisant un fluide de travail qui est vaporisé sous pression en prélevant de la chaleur sur la source de chaleur, détendu en produisant de l'énergie mécanique, par exemple dans une turbine, cette énergie mécanique pouvant être utilisée directement ou transformée en énergie électrique, et condensé au moyen d'un fluide de refroidissement, eau ou air.The need to save energy and use new energy sources leads to the development of processes for the production of mechanical energy, which can be used directly or transformed into electrical energy, from relatively low level heat sources thermal, that is to say in a temperature range which can range, for example, from 50 to 400 ° C. Such sources of heat can be of various nature: industrial thermal discharges, heat transmitted by solar collectors, geothermal water, etc ... From such sources of heat, it is possible to produce mechanical energy by means of '' a Rankine cycle using a working fluid which is vaporized under pressure by taking heat from the heat source, expanded by producing mechanical energy, for example in a turbine, this mechanical energy can be used directly or transformed into electrical energy, and condensed by means of a cooling fluid, water or air.
Pour améliorer le rendement du cycle et éviter d'opérer à très basse pression, il est avantageux de remplacer l'eau, qui est très généralement employée à plus haute température, par un fluide dont la température d'ébullition et la température critique sont beaucoup plus basses, tel que par exemple le butane ou l'ammoniac.To improve the efficiency of the cycle and avoid operating at very low pressure, it is advantageous to replace the water, which is very generally used at higher temperature, with a fluid whose boiling point and critical temperature are many lower, such as, for example, butane or ammonia.
Un tel fluide se vaporise et se condense à une température sensiblement constante.Such a fluid vaporizes and condenses at a substantially constant temperature.
On connaît déjà, du DE-A-2 215 868, un procédé de production d'énergie mécanique dans lequel
- a) on vaporise progressivement un mélange de fluides comprenant au moins deux constituants ne formant pas d'azéotrope entre eux dans les conditions de vaporisation, en prélevant la chaleur de vaporisation au moins en partie sur un fluide extérieur I,
- b) on détend la phase vapeur ainsi obtenue en produisant de l'énergie mécanique,
- c) on condense progressivement la vapeur ainsi obtenue en cédant de la chaleur à au moins un fluide extérieur Il et
- d) on recycle la phase liquide provenant de l'étape (c) à l'étape (a).
- a) progressively vaporizing a mixture of fluids comprising at least two constituents which do not form an azeotrope with one another under the vaporization conditions, by taking the heat of vaporization at least in part from an external fluid I,
- b) the vapor phase thus obtained is relaxed by producing mechanical energy,
- c) the vapor thus obtained is gradually condensed by yielding heat to at least one external fluid II and
- d) the liquid phase from step (c) to step (a) is recycled.
Le mélange de fluides du brevet ci-dessus est un mélange non-azéotropique de trifluoréthanol et d'eau.The fluid mixture of the above patent is a non-azeotropic mixture of trifluoroethanol and water.
Le brevet britannique GB-A-2 016 607 considère que les mélanges non-azéotropiques de fluides sont insatisfaisants pour la mise en oeuvre de cycles de Rankine. Ce brevet propose donc l'emploi d'un mélange azéotropique de 2, 2, 3, 3-tétrafluoropropanol et d'eau.British patent GB-A-2,016,607 considers that non-azeotropic mixtures of fluids are unsatisfactory for the implementation of Rankine cycles. This patent therefore proposes the use of an azeotropic mixture of 2, 2, 3, 3-tetrafluoropropanol and water.
L'emploi, dans une pompe à chaleur, d'un échangeur de chaleur à contre-courant fonctionnant avec un fluide de travail anazéotropique est connu de FR-A-2337855.The use, in a heat pump, of a counter-current heat exchanger operating with an anzeotropic working fluid is known from FR-A-2337855.
La présente invention est basée sur l'observation selon laquelle la température des fluides extérieurs avec lesquels s'effectuent les échanges évolue, en règle générale, au cours de l'échange.The present invention is based on the observation that the temperature of the external fluids with which the exchanges take place changes, as a general rule, during the exchange.
Il a été découvert, et c'est là un des objets de la présente invention, qu'il est avantageux dans ce cas d'utiliser un mélange de fluides qui se vaporise et se condense progressivement en suivant l'évolution de température de chacun des fluides extérieurs avec lesquels s'effectuent les échanges.It has been discovered, and this is one of the objects of the present invention, that it is advantageous in this case to use a mixture of fluids which vaporizes and condenses progressively according to the temperature development of each of the external fluids with which exchanges take place.
Le mélange est vaporisé suivant un intervalle de température A en prélevant de la chaleur sur un fluide extérieur 1 qui constitue la source de chaleur et dont la température évolue suivant un intervalle de température A'. Il est alors détendu en produisant de l'énergie mécanique qui peut être utilisée directement ou transformée en énergie électrique, puis il est condensé suivant un intervalle de température B en cédant de la chaleur à un fluide extérieur Il qui constitue le fluide de refroidissement et dont la température évolue suivant un intervalle de température B'.The mixture is vaporized according to a temperature interval A by taking heat from an
Pour tirer pleinement parti du procédé selon l'invention, il est nécessaire toutefois d'observer certaines conditions.To take full advantage of the process according to the invention, it is however necessary to observe certain conditions.
Pour que le rendement obtenu soit maximum, les intervalles de température A et B doivent être aussi voisins que possible des intervalles de température A' et B', ce qui correspond aux meilleures conditions de réversibilité thermique. L'intervalle de température A' suivant lequel la chaleur est fournie au cycle étant fixé, la composition du mélange est choisie de manière à obtenir un intervalle de vaporisation A voisin de l'intervalle de température A'. Dans le cas d'un mélange binaire, l'intervalle de température A évolue généralement comme le montre le diagramme représenté sur la Figure 1. Pour une fraction molaire donnée XI du constituant 1 le plus volatil d'un mélange formé des constituants 1 et Il dont les températures de vaporisation à la pression considérée sont Tl et Tll, la vaporisation du mélange débute à la température de bulle du liquide TLB et se termine à la température de rosée de la vapeur TVR. L'intervalle de vaporisation est donc égal à l'écart entre les températures TLB et TVR et peut être ajusté en choisissant la composition appropriée.For the yield obtained to be maximum, the temperature intervals A and B must be as close as possible to the temperature intervals A 'and B', which corresponds to the best conditions of thermal reversibility. The temperature interval A 'according to which the heat is supplied to the cycle being fixed, the composition of the mixture is chosen so as to obtain a vaporization interval A close to the temperature interval A'. In the case of a binary mixture, the temperature interval A generally changes as shown in the diagram shown in Figure 1. For a given molar fraction X I of the most
L'intervalle de condensation B est généralement voisin de l'intervalle de vaporisation A. Il est dans ce cas avantageux de régler le débit du fluide de refroidissement, eau ou air, employé pour effectuer la condensation de manière à ce que l'intervalle de température B' soit voisin de l'intervalle de condensation B.The condensation interval B is generally close to the vaporization interval A. In this case, it is advantageous to adjust the flow rate of the cooling fluid, water or air, used to carry out the condensation so that the interval of temperature B 'is close to the condensation interval B.
Ceci permet en outre, par rapport au fonctionnement avec un corps pur, de réduire le débit d'eau ou d'air de refroidissement et de diminuer la consommation d'énergie liée à la ventilation d'air de refroidissement ou au pompage d'eau de refroidissement. Toutefois, il est nécessaire d'éviter que l'intervalle de température B ne devienne trop important pour éviter une baisse du rendement. Pour cette raison, il importe de limiter l'intervalle de température B à une valeur de 30 °C. D'autre part, cet intervalle doit être d'au moins 7 °C pour que le gain de rendement qu'apporte l'utilisation d'un mélange soit notable. Par conséquent, pour se placer dans des conditions de rendement optimales et bénéficier des avantages qu'apporte l'utilisation d'un mélange, il importe que l'intervalle de température B soit compris entre 7 et 30 °C. Cette condition sera en général également valable pour l'intervalle de température A qui est généralement voisin de l'intervalle de température B, lorsque la vaporisation est opérée en une seule étape.This also makes it possible, compared to operation with a pure body, to reduce the flow of water or cooling air and to reduce the energy consumption linked to cooling air ventilation or to pumping water. cooling. However, it is necessary to avoid that the temperature interval B does not becomes too important to avoid a drop in yield. For this reason, it is important to limit the temperature interval B to a value of 30 ° C. On the other hand, this interval must be at least 7 ° C. so that the gain in yield brought about by the use of a mixture is significant. Consequently, in order to be placed in optimal yield conditions and to benefit from the advantages which the use of a mixture brings, it is important that the temperature range B is between 7 and 30 ° C. This condition will generally also be valid for the temperature interval A which is generally close to the temperature interval B, when the vaporization is carried out in a single step.
La réalisation du procédé peut être décrite en se référant à l'exemple 1.The implementation of the process can be described with reference to Example 1.
L'exemple est illustré par la Figure 2. Par le conduit 1 arrive un débit de 5,67 m3/h d'eau à une température de 85 °C. Par le conduit 4, on fait parvenir 1 254 Kg/h d'un mélange de composition suivante (en fractions molaires) :
- Butane normal : 0,8
- Hexane normal : 0,2
Ce mélange arrive à 20 °C et commence à se vaporiser à 52 °C en échangeant de la chaleur à contre-courant avec l'eau qui arrive par le
- Normal butane: 0.8
- Normal hexane: 0.2
This mixture arrives at 20 ° C and begins to vaporize at 52 ° C by exchanging heat against the current with the water which arrives through
Le mélange est alors détendu dans le moteur à palettes M1 qui entraîne l'alternateur AT1. On recueille aux bornes de l'alternateur une puissance électrique de 9 kW. Le mélange ressort du moteur à palettes M1 à une pression de 1,6 bars. Il est condensé progressivement A dans l'échangeur E102 d'où il est recueilli dans le bac de réserve B1. Le refroidissement est assuré par de l'eau qui entre par le conduit 7 à 12 °C et ressort par le conduit 8 à 32 °C.The mixture is then expanded in the vane motor M1 which drives the alternator AT1. An electrical power of 9 kW is collected at the terminals of the alternator. The mixture comes out of the M1 vane motor at a pressure of 1.6 bars. It is gradually condensed A in the exchanger E102 from where it is collected in the reserve tank B1. Cooling is ensured by water which enters through line 7 at 12 ° C and exits through line 8 at 32 ° C.
Le mélange liquide est repris, à travers le conduit 6, par la pompe P1 et recyclé à l'évaporateur E101.The liquid mixture is taken up, through
Dans cet exemple, l'utilisation d'un mélange de butane et d'hexane, permet, au cours des étapes de vaporisation et de condensation, de suivre l'évolution de température des fluides extérieurs, le mélange de fluides se vaporisant suivant une évolution croissante de température parallèle à l'évolution décroissante de température du fluide extérieur 1 et se condensant suivant une évolution décroissante de température parallèle à l'évolution croissante de température du fluide extérieur II. Ces évolutions de température nécessitent d'opérer les échanges de chaleur à l'évaporateur et au condenseur dans des conditions aussi proches que possible du contre-courant. Un mode d'échange de chaleur à contre-courant pur représente la solution préférée mais pour des raisons de réalisation, il est également possible de monter des surfaces d'échange selon un agencement globalement à contre-courant, chacune des surfaces d'échange faisant partie dudit agencement fonctionnant dans des conditions différentes du contre-courant, par exemple suivant un échange de chaleur à courants croisés ou encore avec une circulation d'un des fluides s'effectuant dans des tubes en U.In this example, the use of a mixture of butane and hexane makes it possible, during the vaporization and condensation stages, to follow the temperature evolution of the external fluids, the mixture of fluids vaporizing according to an evolution increasing temperature parallel to the decreasing evolution of temperature of the
Les mélanges (M) utilisés peuvent être des mélanges de deux, trois (ou davantage) constituants (composés chimiques distincts). Les constituants du mélange peuvent être des hydrocarbures dont la molécule comprend un nombre d'atomes de carbone compris par exemple entre 3 et 8, tels que le propane, le butane normal et l'isobutane, le pentane normal et l'isopentane, l'hexane normal et l'isohexane, l'heptane normal et l'isoheptane, l'octane normal et l'isooctane ainsi que des hydrocarbures aromatiques tels que le benzène et le toluène et des hydrocarbures cycliques tels que le cyclopentane et le cyclohexane. Lorsque l'on désire que le mélange ne soit pas inflammable ou ne soit que difficilement inflammable, le mélange utilisé peut être un mélange d'hydrocarbures halogénés du type « Fréon tels que le chlorodifluorométhane (R-22), le dichlorodifluorométhane (R-12), le chloro- pentafluoroéthane (R-115), le difluoroéthane (R-152), le trichlorofluorométhane (R-11), le dichlo- rotétrafluoroéthane (R-114), le dichlorohexafluo- ropropane (R-216), le dichlorofluorométhane (R-21), le trichlorotrifluoroéthane (R-113). L'un des constituants du mélange peut être un azéotrope tel que le R-502 azéotrope de R-22 et de R-115 (48,8/52,2 % en poids), le R-500 azéotrope de R-12 et de R-31 (78,0/22,0 % en poids), le R-506 azéotrope de R-31 et de R-114 (55,1/44,9 % en poids).The mixtures (M) used can be mixtures of two, three (or more) constituents (separate chemical compounds). The constituents of the mixture can be hydrocarbons, the molecule of which comprises a number of carbon atoms of for example between 3 and 8, such as propane, normal butane and isobutane, normal pentane and isopentane, normal hexane and isohexane, normal heptane and isoheptane, normal octane and isooctane as well as aromatic hydrocarbons such as benzene and toluene and cyclic hydrocarbons such as cyclopentane and cyclohexane. When it is desired that the mixture is not flammable or is only hardly flammable, the mixture used can be a mixture of halogenated hydrocarbons of the “Freon” type such as chlorodifluoromethane (R-22), dichlorodifluoromethane (R-12 ), chloropentafluoroethane (R-115), difluoroethane (R-152), trichlorofluoromethane (R-11), dichlorotetrafluoroethane (R-114), dichlorohexafluoropropane (R-216), dichlorofluoromethane (R-21), trichlorotrifluoroethane (R-113). One of the constituents of the mixture can be an azeotrope such as the R-502 azeotrope of R-22 and R-115 (48.8 / 52.2% by weight), the R-500 azeotrope of R-12 and of R-31 (78.0 / 22.0% by weight), the azeotropic R-506 of R-31 and of R-114 (55.1 / 44.9% by weight).
D'autres types de mélanges sont des mélanges comprenant de l'eau et au moins un second constituant miscible avec l'eau tels que les mélanges formés d'eau et d'ammoniac, les mélanges formés d'eau et d'une amine telle que la méthylamine ou l'éthylamine, les mélanges formés d'eau et d'un alcool tel que le méthanol, les mélanges formés d'eau et d'une cétone telle que l'acétone.Other types of mixtures are mixtures comprising water and at least one second water-miscible constituent such as mixtures formed of water and ammonia, mixtures formed of water and an amine such as methylamine or ethylamine, mixtures formed of water and an alcohol such as methanol, mixtures formed of water and a ketone such as acetone.
Lorsque le procédé fonctionne selon le schéma représenté sur la Figure 2, la composition du mélange est choisie de manière à ce que les intervalles de vaporisation A et de condensation B soient les plus voisins possible des intervalles de températures A' et B' selon lesquels évoluent les fluides extérieurs. Pour obtenir un gain maximum sur le rendement, il est préférable que l'écart entre les intervalles de température A et A' soit inférieur à 5 °C.When the process operates according to the diagram shown in Figure 2, the composition of the mixture is chosen so that the vaporization intervals A and condensation B are as close as possible to the temperature intervals A 'and B' according to which evolve external fluids. To obtain a maximum gain in yield, it is preferable that the difference between the temperature intervals A and A ′ is less than 5 ° C.
Il a été découvert également que dans le cas où un mélange est utilisé comme fluide de travail d'autres perfectionnements peuvent être envisagés lorsqu'en un point du circuit le mélange est scindé en deux fractions, qui sont remélangées en un autre point du circuit, l'une desdites fractions parcourant l'ensemble des différentes étapes du cycle et l'autre de ces fractions ne parcourant qu'une partie des étapes de ce cycle.It has also been discovered that in the case where a mixture is used as working fluid, other improvements can be envisaged. gés when at a point of the circuit the mixture is split into two fractions, which are remixed in another point of the circuit, one of said fractions crossing all the different stages of the cycle and the other of these fractions crossing only 'part of the stages of this cycle.
Si la chaleur récupérée à l'évaporateur est disponible dans un intervalle de température relativement large et que le mélange est choisi pour se vaporiser suivant un intervalle de température voisin, opérer selon le schéma de fonctionnement représenté sur la Figure 2 conduit à fonctionner avec un large intervalle de température B, ce qui ne correspond pas aux conditions les plus favorables au rendement. On peut dans ce cas opérer selon le schéma de fonctionnement représenté sur la Figure 3. Le mélange est condensé dans l'échangeur E105 en étant refroidi par un fluide extérieur qui entre par le conduit 9 et ressort par le conduit 10. Le mélange condensé ressort de l'échangeur E105 par le conduit 11 et il est envoyé dans le bac de réserve B2. La pompe P11 permet d'envoyer une fraction du mélange liquide par le conduit 12 dans l'échangeur E103 dans lequel il se vaporise suivant un intervalle de température A, en échangeant de la chaleur avec un fluide extérieur qui entre par le conduit 13 et ressort par le conduit 14. Le mélange ressort vaporisé de l'échangeur E103 par le conduit 15 et il est envoyé dans l'étage moteur M2. La pompe P10 envoie la fraction restante du mélange liquide par le conduit 16 dans l'échangeur E104, dans lequel il se vaporise suivant un intervalle de température A2 en échangeant de la chaleur avec le fluide extérieur qui arrive par le conduit 14 et ressort par le conduit 17. Le mélange ressort vaporisé de l'échangeur E104 et la vapeur ainsi obtenue est mélangée avec la vapeur provenant de la détente à travers l'étage M2, puis détendue en même temps que la vapeur provenant de l'étage M2 dans l'étage moteur M3 d'où elle' ressort par le conduit 19.If the heat recovered on the evaporator is available in a relatively wide temperature range and the mixture is chosen to vaporize according to a neighboring temperature range, operate according to the operating diagram shown in Figure 2 leads to operating with a wide temperature interval B, which does not correspond to the conditions most favorable to the yield. In this case, it is possible to operate according to the operating diagram represented in FIG. 3. The mixture is condensed in the exchanger E105 while being cooled by an external fluid which enters via the conduit 9 and leaves through the
A condition de choisir convenablement le niveau de pression intermédiaire, c'est-à-dire la pression à laquelle le mélange se vaporise dans l'échangeur E104, les intervalles de température A, et A2 peuvent être consecutifs et il est ainsi possible de suivre avec le mélange une évolution de température parallèle à une évolution de température du fluide extérieur qui fournit de la chaleur au cycle, correspondant à un intervalle de température A' environ deux fois plus large que dans le cas du schéma de fonctionnement représenté sur la Figure 2.Provided that the intermediate pressure level is chosen correctly, that is to say the pressure at which the mixture vaporizes in the exchanger E104, the temperature intervals A and A 2 can be consecutive and it is thus possible to follow with the mixture a change in temperature parallel to a change in temperature of the external fluid which supplies heat to the cycle, corresponding to a temperature interval A 'approximately twice as wide as in the case of the operating diagram represented in the Figure 2.
Il a été également découvert que dans de nombreux cas il est particulièrement avantageux d'opérer selon l'agencement schématisé sur la figure 4. Le mélange condensé n'est vaporisé que partiellement dans l'échangeur E106 en prélevant de la chaleur sur le fluide extérieur qui arrive par le conduit 20 et repart par le conduit 21. A la sortie de l'échangeur E106 les fractions liquide et vapeur sont séparées dans le ballon séparateur S1. La fraction vapeur est détendue dans la turbine T3. La phase liquide est envoyée dans l'échangeur E107 dans lequel elle échange de la chaleur avec le mélange condensé qui est envoyé à l'évaporateur, puis détendue à travers la vanne de détente V1 et mélangée avec la phase vapeur détendue sortant de la turbine T3. Le mélange liquide vapeur ainsi obtenu est condensé en cédant de la chaleur à un fluide extérieur de refroidissement, recueilli dans le bac de réserve B3 et recyclé par la pompe P3 à l'évaporateur. Les conditions de fonctionnement d'un dispositif opérant selon l'agencement schématisé sur la Figure 4 font l'objet de l'exemple 2.It has also been discovered that in many cases it is particularly advantageous to operate according to the arrangement shown diagrammatically in FIG. 4. The condensed mixture is only partially vaporized in the exchanger E106 by taking heat from the external fluid which arrives via
L'exemple est illustré par la Figure 4. Par la pompe P3, on fait circuler un débit de 3 956 Kg/h d'un mélange d'eau et d'ammoniac de composition suivante (en fractions poids) :
Ce mélange est envoyé par le conduit 31 dans l'échangeur E107 d'où il ressort par le conduit 22 à la température de 55 °C. Il est alors envoyé dans l'échangeur E106 dans lequel il se vaporise partiellement en prélevant une puissance thermique de 1 585 kW sur un débit d'eau qui arrive par le conduit 20 à une température de 90 °C et ressort par le conduit 21 à une température de 65 °C. Le mélange liquide-vapeur ressort de l'échangeur E106 par le conduit 23 à la température de 85 °C et à la pression de 20 bars. Il est recueilli dans le bac séparateur S1 dans lequel la phase liquide et la phase vapeur sont séparées. La phase liquide contient 52 % d'ammoniac en poids. Elle est évacuée par le conduit 25 et envoyée à l'échangeur E107.This mixture is sent through
La phase vapeur est envoyée par la conduite 24 dans la turbine T3 dans laquelle elle est détendue jusqu'à une pression de 8 bars. Sur l'arbre de la turbine T3 on recueille au moyen du frein électrique FE1 une puissance de 100 kW. La vapeur détendue est évacuée par le conduit 26. La phase liquide qui ressort par le conduit 27 de l'échangeur E107 est détendue à travers la vanne de détente V1, d'où elle ressort par le conduit 28. Elle est alors mélangée avec la phase vapeur arrivant par le conduit 26 et le mélange liquide-vapeur est envoyé par le conduit 29 dans l'aéroré- frigérant AR1, dans lequel il est entièrement condensé B et d'où il ressort par le conduit 30 à la température de 28 °C.-L'aérocondenseur AR1 est formé de tubes munis d'ailettes à l'intérieur desquels le mélange circule en se condensant, ces tubes étant disposés en cinq nappes placées transversalement par rapport à la circulation d'air mais montées à contre-courant, le mélange circulant ainsi globalement à contre-courant de l'air de refroidissement. Le mélange condensé est recueilli dans le bac de réserve B3 d'où il est repris par la pompe d'alimentation P3.The vapor phase is sent via
Le schéma de fonctionnement, représenté sur la Figure 4, permet de s'adapter à des conditions de fonctionnement variables. En particulier, en modifiant le débit acheminé par la pompe P3 à travers le conduit 31, il est possible de modifier les niveaux de pression à l'évaporateur et au condenseur. En particulier en augmentant le débit de la pompe P3, pour des températures de sortie à l'évaporateur et au condenseur fixées, on diminue les niveaux de pression à l'évaporateur et au condenseur, ce qui permet de réduire la capacité du système, c'est-à-dire la puissance délivrée sur l'arbre.The operating diagram, shown in Figure 4, makes it possible to adapt to variable operating conditions. In particular, by modifying the flow rate conveyed by the pump P3 through the
De manière générale le mode de fonctionnement schématisé sur la figure 4 élargit considérablement les possibilités offertes par l'utilisation des mélanges dans les cycles moteurs.In general, the operating mode shown diagrammatically in FIG. 4 considerably widens the possibilities offered by the use of the mixtures in the engine cycles.
Il permet d'utiliser des mélanges de constituants dont les températures d'ébullition sont très différents, tels que l'eau et l'ammoniac, dans des applications où les intervalles de température dans l'évaporateur et le condenseur sont restreints, par exemple de l'ordre de 10 à 15°, puisque dans l'évaporateur on ne réalise qu'une vaporisation partielle, ce qui permet d'opérer avec un intervalle de température aussi réduit qu'on le souhaite.It makes it possible to use mixtures of constituents whose boiling temperatures are very different, such as water and ammonia, in applications where the temperature intervals in the evaporator and the condenser are restricted, for example of on the order of 10 to 15 °, since in the evaporator only partial vaporization is carried out, which makes it possible to operate with a temperature interval as reduced as desired.
D'autre part, comme celà a déjà été indiqué ci-dessus, il est possible dans un tel système d'ajuster les niveaux de pression en jouant sur la concentration de la solution qui circule. Il est possible ainsi de se placer dans les conditions optimales permettant de réaliser un débit volumique réduit et donc une machine de détente peu volumineuse sans mettre en jeu des pressions excessives qui conduiraient à des investissements trop importants.On the other hand, as already indicated above, it is possible in such a system to adjust the pressure levels by varying the concentration of the solution which circulates. It is thus possible to place oneself in the optimal conditions making it possible to achieve a reduced volume flow rate and therefore a low volume expansion machine without bringing into play excessive pressures which would lead to excessively large investments.
Quel que soit le schéma de fonctionnement, les conditions de fonctionnement sont choisies en général de manière à ce que la pression du mélange dans l'évaporateur soit comprise entre 3 et 30 bars et de manière à ce que la pression du mélange dans le condenseur soit comprise entre 1 et 10 bars. Les températures constituant l'intervalle de température A sont toutes supérieures à 50 °C et inférieures à 350 °C et les températures constituant l'intervalle de température B sont toutes supérieures à 20 °C et inférieures à 80 °C.Whatever the operating diagram, the operating conditions are generally chosen so that the pressure of the mixture in the evaporator is between 3 and 30 bars and so that the pressure of the mixture in the condenser is between 1 and 10 bars. The temperatures constituting the temperature range A are all greater than 50 ° C and less than 350 ° C and the temperatures constituting the temperature range B are all greater than 20 ° C and less than 80 ° C.
Les schémas de fonctionnement donnés à titre d'exemples ne sont pas limitatifs et en particulier tous les perfectionnements connus de l'homme de l'art dans le cas des cycles de Rankine utilisant un corps pur comme fluide de travail peuvent être envisagés dans le cas des mélanges. Par exemple lorsque le moteur dans lequel s'effectue la détente de la phase vapeur comporte plusieurs étages, il est possible de préchauffer le mélange liquide envoyé à l'évaporateur par un échange de chaleur avec une fraction vapeur prélevée entre deux étages du moteur, la condensation de cette fraction vapeur permettant de préchauffer le mélange liquide.The operating diagrams given by way of example are not limiting and in particular all the improvements known to those skilled in the art in the case of Rankine cycles using a pure body as working fluid can be envisaged in the case mixtures. For example, when the engine in which the expansion of the vapor phase takes place comprises several stages, it is possible to preheat the liquid mixture sent to the evaporator by heat exchange with a vapor fraction withdrawn between two stages of the engine, the condensation of this vapor fraction allowing the liquid mixture to preheat.
Il est également possible d'effectuer différentes variantes et combinaisons à partir des schémas de base qui ont été décrits. Par exemple, il est possible d'effectuer une vaporisation en deux ou plusieurs étapes à des niveaux de pression différents pour élargir l'intervalle de prélèvement de la chaleur, la vaporisation effectuée au cours de chacune desdites étapes de vaporisation n'étant que partielle et la phase liquide restant à l'issue desdites étapes de vaporisation étant recyclée à l'étape de condensation selon l'agencement qui a été décrit dans l'exemple 2 dans le cas d'une seule étape de vaporisation.It is also possible to make different variants and combinations from the basic diagrams which have been described. For example, it is possible to carry out a vaporization in two or more stages at different pressure levels in order to widen the heat removal interval, the vaporization carried out during each of said vaporization stages being only partial and the liquid phase remaining at the end of said vaporization stages being recycled to the condensation stage according to the arrangement which was described in Example 2 in the case of a single vaporization stage.
D'autre part, différents types d'équipements connus de l'homme de l'art peuvent être utilisés dans le procédé selon l'invention.On the other hand, different types of equipment known to those skilled in the art can be used in the method according to the invention.
L'évaporateur et le condenseur peuvent être par exemple des échangeurs à tubes et calandre, des échangeurs à double-tube ou des échangeurs à plaques. Lorsque l'échange de chaleur s'effectue avec un fluide qui est un gaz, par exemple si l'air est utilisé comme fluide de refroidissement au condenseur, il est généralement avantageux de munir les surfaces d'échange d'ailettes placées du côté du gaz pour améliorer l'échange thermique avec ce gaz.The evaporator and the condenser can be, for example, tube and shell exchangers, double-tube exchangers or plate exchangers. When the heat exchange takes place with a fluid which is a gas, for example if air is used as coolant for the condenser, it is generally advantageous to provide the exchange surfaces with fins placed on the side of the gas to improve heat exchange with this gas.
La détente de la phase vapeur générée dans l'évaporateur, qui permet de produire de l'énergie mécanique, peut s'effectuer dans toutes les machines connues pour cet échange : une telle machine peut être par exemple une turbine à une roue ou à plusieurs roues, radiale ou axiale, une machine à vis du même type que les compresseurs à vis mais fonctionnant en détente, un moteur à palettes ou un moteur alternatif à pistons.The expansion of the vapor phase generated in the evaporator, which makes it possible to produce mechanical energy, can be carried out in all the machines known for this exchange: such a machine can be for example a turbine with one wheel or with several wheels, radial or axial, a screw machine of the same type as the screw compressors but operating in expansion, a vane motor or a reciprocating piston engine.
La puissance mécanique délivrée peut être très variable et aller par exemple de quelques kW à plusieurs Mégawatts.The mechanical power delivered can be very variable and range, for example, from a few kW to several megawatts.
Dans les revendications qui suivent, il est indiqué que le mélange de fluides ne doit pas former d'azéotrope dans les conditions de la vaporisation. Ceci signifie qu'au moins deux constituants de ce mélange ne forment pas d'azéotrope entre eux ; cependant chacun des constituants peut à titre individuel être un azéotrope.In the claims which follow, it is indicated that the mixture of fluids must not form an azeotrope under the conditions of vaporization. This means that at least two constituents of this mixture do not form an azeotrope between them; however, each of the constituents can individually be an azeotrope.
Claims (12)
characterized in that the heat exchanges effected with the external fluids and II in the steps (a) and (c) respectively are operated counter-currently, the fluids mixture (M) being vaporized in step (a) according to an increasing temperature evolution (A) parallel to the decreasing temperature evolution (A') of the external fluid I and being condensed in step (c) according to a decreasing temperature evolution (B) parallel to the increasing temperature evolution (B') of the external fluid II, the width of the temperature interval B being at least 7 °C and at most 30 °C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT81400755T ATE14778T1 (en) | 1980-05-23 | 1981-05-12 | PROCESS FOR MECHANICAL ENERGY GENERATION FROM HEAT USING MULTI-SUBSTANCE MIXTURES AS WORK EQUIPMENT. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8011649A FR2483009A1 (en) | 1980-05-23 | 1980-05-23 | PROCESS FOR PRODUCING MECHANICAL ENERGY FROM HEAT USING A MIXTURE OF FLUIDS AS A WORKING AGENT |
FR8011649 | 1980-05-23 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0041005A1 EP0041005A1 (en) | 1981-12-02 |
EP0041005B1 true EP0041005B1 (en) | 1985-08-07 |
Family
ID=9242336
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP81400755A Expired EP0041005B1 (en) | 1980-05-23 | 1981-05-12 | Method for mechanical energy production from heat using a mixture of fluids as the working fluid |
Country Status (6)
Country | Link |
---|---|
US (1) | US4422297A (en) |
EP (1) | EP0041005B1 (en) |
JP (1) | JPS5728819A (en) |
AT (1) | ATE14778T1 (en) |
DE (1) | DE3171684D1 (en) |
FR (1) | FR2483009A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010024487A1 (en) * | 2010-06-21 | 2011-12-22 | Andreas Wunderlich | Method and device for generating mechanical energy in a cycle |
Families Citing this family (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2499149A1 (en) * | 1981-02-05 | 1982-08-06 | Linde Ag | Converting fluid sensible heat into mechanical energy - using mixt. of tri:chloro:mono:fluoro:methane and di:chloro:di:fluoro:methane as auxiliary fluid agent |
US4442675A (en) * | 1981-05-11 | 1984-04-17 | Soma Kurtis | Method for thermodynamic cycle |
US4506524A (en) * | 1983-08-15 | 1985-03-26 | Schlichtig Ralph C | Absorption type heat transfer system functioning as a temperature pressure potential amplifier |
US4827877A (en) * | 1987-01-13 | 1989-05-09 | Hisaka Works, Limited | Heat recovery system utilizing non-azeotropic medium |
US4779424A (en) * | 1987-01-13 | 1988-10-25 | Hisaka Works, Limited | Heat recovery system utilizing non-azeotropic medium |
US4785876A (en) * | 1987-01-13 | 1988-11-22 | Hisaka Works, Limited | Heat recovery system utilizing non-azetotropic medium |
US5186013A (en) * | 1989-02-10 | 1993-02-16 | Thomas Durso | Refrigerant power unit and method for refrigeration |
JP2503150Y2 (en) * | 1990-05-10 | 1996-06-26 | 中部電力株式会社 | Vapor condenser of non-azeotropic mixed fluid cycle plant |
US5255519A (en) * | 1992-08-14 | 1993-10-26 | Millennium Technologies, Inc. | Method and apparatus for increasing efficiency and productivity in a power generation cycle |
DE19653256A1 (en) * | 1996-12-20 | 1998-06-25 | Asea Brown Boveri | Binary / polynary condensation capacitor |
US5842345A (en) * | 1997-09-29 | 1998-12-01 | Air Products And Chemicals, Inc. | Heat recovery and power generation from industrial process streams |
CA2393386A1 (en) * | 2002-07-22 | 2004-01-22 | Douglas Wilbert Paul Smith | Method of converting energy |
US6751959B1 (en) * | 2002-12-09 | 2004-06-22 | Tennessee Valley Authority | Simple and compact low-temperature power cycle |
US6820422B1 (en) * | 2003-04-15 | 2004-11-23 | Johnathan W. Linney | Method for improving power plant thermal efficiency |
US7124587B1 (en) * | 2003-04-15 | 2006-10-24 | Johnathan W. Linney | Heat exchange system |
US7305829B2 (en) * | 2003-05-09 | 2007-12-11 | Recurrent Engineering, Llc | Method and apparatus for acquiring heat from multiple heat sources |
US8117844B2 (en) * | 2004-05-07 | 2012-02-21 | Recurrent Engineering, Llc | Method and apparatus for acquiring heat from multiple heat sources |
US7074343B2 (en) * | 2004-05-26 | 2006-07-11 | E. I. Du Pont De Nemours And Company | 1,1,1,2,2,4,5,5,5-nonafluoro-4-(trifluoromethyl)-3-pentanone refrigerant compositions comprising a hydrocarbon and uses thereof |
US20070144195A1 (en) * | 2004-08-16 | 2007-06-28 | Mahl George Iii | Method and apparatus for combining a heat pump cycle with a power cycle |
US20060112693A1 (en) * | 2004-11-30 | 2006-06-01 | Sundel Timothy N | Method and apparatus for power generation using waste heat |
US7665304B2 (en) * | 2004-11-30 | 2010-02-23 | Carrier Corporation | Rankine cycle device having multiple turbo-generators |
US7270794B2 (en) * | 2005-03-30 | 2007-09-18 | Shipley Larry W | Process for recovering useful products and energy from siliceous plant matter |
JP2006322692A (en) * | 2005-05-20 | 2006-11-30 | Ebara Corp | Steam generator and exhaust heat power generating device |
WO2011103560A2 (en) * | 2010-02-22 | 2011-08-25 | University Of South Florida | Method and system for generating power from low- and mid- temperature heat sources |
US20120006024A1 (en) * | 2010-07-09 | 2012-01-12 | Energent Corporation | Multi-component two-phase power cycle |
RU2457338C2 (en) * | 2010-08-26 | 2012-07-27 | Игорь Анатольевич Ревенко | Conversion method of heat energy to mechanical energy, method for increasing enthalpy and compression coefficient of water vapour |
CN101922864A (en) * | 2010-09-26 | 2010-12-22 | 中冶赛迪工程技术股份有限公司 | Waste heat recycling system of distributed pure low temperature coal gas from iron and steel enterprises |
SE535318C2 (en) * | 2010-12-01 | 2012-06-26 | Scania Cv Ab | Arrangement and method for converting thermal energy into mechanical energy |
CN103717699B (en) * | 2011-04-21 | 2016-10-12 | 埃姆泰克能量公司 | Working fluid for rankine cycle |
US20130174552A1 (en) * | 2012-01-06 | 2013-07-11 | United Technologies Corporation | Non-azeotropic working fluid mixtures for rankine cycle systems |
ITBS20120008A1 (en) * | 2012-01-20 | 2013-07-21 | Turboden Srl | METHOD AND TURBINE TO EXPAND AN ORGANIC WORKING FLUID IN A RANKINE CYCLE |
DE102012108468A1 (en) * | 2012-09-11 | 2014-03-13 | Amovis Gmbh | Working mixture for steam power plants |
CN103374332A (en) * | 2013-07-04 | 2013-10-30 | 天津大学 | Organic rankine cycle mixing working medium with cyclopentane |
US10436075B2 (en) * | 2015-01-05 | 2019-10-08 | General Electric Company | Multi-pressure organic Rankine cycle |
US11618684B2 (en) | 2018-09-05 | 2023-04-04 | Kilt, Llc | Method for controlling the properties of biogenic silica |
GB2581770B (en) * | 2019-01-14 | 2023-01-18 | Gas Expansion Motors Ltd | Engine |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3516248A (en) * | 1968-07-02 | 1970-06-23 | Monsanto Co | Thermodynamic fluids |
DE2215868A1 (en) * | 1971-04-01 | 1972-10-26 | Thermo Electron Corp | Method for operating a power generator system operated preferably according to the Rankine Pro process |
FR2337855A1 (en) * | 1976-01-07 | 1977-08-05 | Inst Francais Du Petrole | HEAT PRODUCTION PROCESS USING A HEAT PUMP OPERATING WITH A MIXTURE OF FLUIDS |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR670497A (en) * | 1928-06-19 | 1929-11-29 | Thermal installation for vehicles, flying machines, boats and other marine craft | |
GB551292A (en) * | 1942-01-23 | 1943-02-16 | Brian Furmstone Rice Stack | A heat engine employing mixed vapours |
US3511049A (en) * | 1968-10-07 | 1970-05-12 | American Air Filter Co | Motive fluid composition |
US4242870A (en) * | 1974-08-29 | 1981-01-06 | Searingen Judson S | Power systems using heat from hot liquid |
DE2852076A1 (en) * | 1977-12-05 | 1979-06-07 | Fiat Spa | PLANT FOR GENERATING MECHANICAL ENERGY FROM HEAT SOURCES OF DIFFERENT TEMPERATURE |
JPS54105652A (en) * | 1978-02-07 | 1979-08-18 | Daikin Ind Ltd | Rankine cycle working fluid |
JPS55146208A (en) * | 1979-05-01 | 1980-11-14 | Daikin Ind Ltd | Power generating apparatus |
-
1980
- 1980-05-23 FR FR8011649A patent/FR2483009A1/en active Granted
-
1981
- 1981-05-12 DE DE8181400755T patent/DE3171684D1/en not_active Expired
- 1981-05-12 AT AT81400755T patent/ATE14778T1/en active
- 1981-05-12 EP EP81400755A patent/EP0041005B1/en not_active Expired
- 1981-05-22 JP JP7855681A patent/JPS5728819A/en active Pending
- 1981-05-22 US US06/266,569 patent/US4422297A/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3516248A (en) * | 1968-07-02 | 1970-06-23 | Monsanto Co | Thermodynamic fluids |
DE2215868A1 (en) * | 1971-04-01 | 1972-10-26 | Thermo Electron Corp | Method for operating a power generator system operated preferably according to the Rankine Pro process |
FR2337855A1 (en) * | 1976-01-07 | 1977-08-05 | Inst Francais Du Petrole | HEAT PRODUCTION PROCESS USING A HEAT PUMP OPERATING WITH A MIXTURE OF FLUIDS |
Non-Patent Citations (1)
Title |
---|
Handbuch der Kältetechnik (herausg. v. R. Plank) 6. Band, Teil A, page 494 (Springer 1969) * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010024487A1 (en) * | 2010-06-21 | 2011-12-22 | Andreas Wunderlich | Method and device for generating mechanical energy in a cycle |
Also Published As
Publication number | Publication date |
---|---|
US4422297A (en) | 1983-12-27 |
FR2483009B1 (en) | 1982-07-23 |
FR2483009A1 (en) | 1981-11-27 |
DE3171684D1 (en) | 1985-09-12 |
ATE14778T1 (en) | 1985-08-15 |
JPS5728819A (en) | 1982-02-16 |
EP0041005A1 (en) | 1981-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0041005B1 (en) | Method for mechanical energy production from heat using a mixture of fluids as the working fluid | |
EP0162746B1 (en) | Absorption process for producing cold and/or heat using a mixture of several constituents as a working fluid | |
AU2004263612B2 (en) | Method and device for carrying out a thermodynamic cycle | |
US9388797B2 (en) | Method and apparatus for producing power from geothermal fluid | |
EP0057120B1 (en) | Method of heating a room by means of a compression heat pump using a mixed working medium | |
FR2818365A1 (en) | METHOD OF REFRIGERATING A LIQUEFIED GAS, GAS OBTAINED THEREBY, AND INSTALLATION USING THE SAME | |
FR2826969A1 (en) | PROCESS FOR THE LIQUEFACTION AND DEAZOTATION OF NATURAL GAS, THE INSTALLATION FOR IMPLEMENTATION, AND GASES OBTAINED BY THIS SEPARATION | |
EP2764243B1 (en) | Method and improved system for converting marine heat energy | |
FR3074846A1 (en) | METHOD FOR STORING AND GENERATING COMPRESSED AIR ENERGY WITH ADDITIONAL ENERGY RECOVERY | |
US20120067049A1 (en) | Systems and methods for power generation from multiple heat sources using customized working fluids | |
WO2021019146A1 (en) | Method for generating electrical energy using multiple combined rankine cycles | |
WO2021019143A1 (en) | Method for recovering refrigerating energy with electricity production or liquefying of a gaseous stream | |
FR2583988A1 (en) | DISTILLATION PROCESS WITH ENERGY RECOVERY BY VAPOR RECOMPRESSION USING AN EJECTOR | |
FR2575812A1 (en) | PROCESS FOR PRODUCING COLD AND / OR HEAT USING A NON-AZEOTROPIC MIXTURE OF FLUIDS IN AN EJECTOR CYCLE | |
EP3191693B1 (en) | System for energy production based on a rankine cycle | |
EP3429717B1 (en) | Method of energy-efficient chromatographic separation | |
FR3090734A1 (en) | System of cogeneration of electrical energy and thermal energy by a Rankine cycle module | |
WO2019073132A1 (en) | Method and device for separating air by cryogenic distillation | |
US3702534A (en) | Power fluids for rankine cycle engines | |
FR2496754A1 (en) | Energy recovery from natural gas by rankine cycle - uses liquefied natural gas for low temperature in first cycle to drive turbine for second | |
FR2670570A1 (en) | WORKING FLUID FOR ABSORPTION HEAT PUMPS OPERATING AT VERY HIGH TEMPERATURES. | |
EP4004348A1 (en) | Method for generating electrical energy using multiple combined rankine cycles | |
CA2278654A1 (en) | Absorption refrigerating system and working mixture for said system | |
FR2607581A1 (en) | Ambient heat converter | |
WO2022117407A1 (en) | System and method for storing and recovering energy via compressed gas with a rankine cycle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH DE GB IT NL SE |
|
17P | Request for examination filed |
Effective date: 19820507 |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH DE GB IT LI NL SE |
|
REF | Corresponds to: |
Ref document number: 14778 Country of ref document: AT Date of ref document: 19850815 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 3171684 Country of ref document: DE Date of ref document: 19850912 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19890403 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19890412 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19890430 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19890518 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19890531 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19890731 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19900201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19900512 Ref country code: AT Effective date: 19900512 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19900513 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19900531 Ref country code: CH Effective date: 19900531 Ref country code: BE Effective date: 19900531 |
|
BERE | Be: lapsed |
Owner name: INSTITUT FRANCAIS DU PETROLE Effective date: 19900531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19901201 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee | ||
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
EUG | Se: european patent has lapsed |
Ref document number: 81400755.5 Effective date: 19910115 |