EP0057120B1 - Method of heating a room by means of a compression heat pump using a mixed working medium - Google Patents

Method of heating a room by means of a compression heat pump using a mixed working medium Download PDF

Info

Publication number
EP0057120B1
EP0057120B1 EP82400042A EP82400042A EP0057120B1 EP 0057120 B1 EP0057120 B1 EP 0057120B1 EP 82400042 A EP82400042 A EP 82400042A EP 82400042 A EP82400042 A EP 82400042A EP 0057120 B1 EP0057120 B1 EP 0057120B1
Authority
EP
European Patent Office
Prior art keywords
fluid
mixed
fraction
working fluid
vaporized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82400042A
Other languages
German (de)
French (fr)
Other versions
EP0057120A2 (en
EP0057120A3 (en
Inventor
Alexandre Rojey
Claude Ramet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Priority to AT82400042T priority Critical patent/ATE17273T1/en
Publication of EP0057120A2 publication Critical patent/EP0057120A2/en
Publication of EP0057120A3 publication Critical patent/EP0057120A3/en
Application granted granted Critical
Publication of EP0057120B1 publication Critical patent/EP0057120B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component

Definitions

  • the present invention relates to a method of heating a room by means of a compression heat pump, operating with a mixed working fluid.
  • the objective is to produce cold at 2 different temperature levels and the desired temperature difference is obtained by inserting a heat exchanger between the evaporators corresponding to each temperature level; heat exchange is carried out between the mixture of fluids being vaporized and the condensate from the compressor, before sending this condensate to the first evaporator.
  • the exchange thus carried out has the effect, not only of operating the 2 evaporators at different temperatures, but also of increasing the temperature difference between the inlet of the first evaporator and the outlet of the final evaporator, therefore increase the ⁇ T of heat removal from the external environment, which is exactly the opposite of the result obtained according to the invention.
  • a working fluid formed by at least two constituents of different boiling points in a thermal compression machine is also described in FR-A-2 337 855.
  • the objective is to recover calories on an external fluid over a relatively wide temperature range (for example between 0 and 100 ° C), and supply these calories to the condenser in a relatively close range (for example between 40 and 130 ° C) or narrower (for example between 70 and 85 ° C).
  • the heat exchange between the external fluid and the working fluid is carried out in an exchange zone comprising a single evaporator, so that the working fluid is completely vaporized.
  • the working fluid is previously introduced into the evaporator at the same temperature as the outside fluid and is thus sub-cooled before being expanded to recover the calories from the outside fluid.
  • the calories recovered are transferred to a second external fluid in a condensation zone in which the compressed working fluid at least partially condenses. Part of the liquid is then recycled to the evaporator.
  • This system comprising at the evaporator a simultaneous exchange of calories between the working fluid being vaporized and the two heat sources (external fluid and condensate) provides good results when the temperature range at the evaporator is relatively large. (for example 50 ° C).
  • the heat supplied to the evaporator is available in a relatively narrow temperature range, for example less than 10 ° C or even in some cases less than 5 ° C, while that heat must be supplied to the condenser in a relatively wide temperature range, for example greater than 10 ° C or even in some cases greater than 15 ° C.
  • the use of a mixed working fluid which condenses according to a temperature profile parallel to the temperature profile of the external fluid to which the heat pump supplies heat and according to a temperature interval close to the interval of temperature in which said external fluid evolves does not lead to a significant improvement compared to a pure body, because the evaporator the mixture vaporizes in general according to a temperature interval close to the temperature interval according to which it condenses and which, if it is close to the interval of temperature according to which the external fluid evolves to which the heat pump supplies heat, is much higher than the temperature interval according to which the external fluid evolves location from which the heat pump draws heat.
  • the mixed fluid is ill-suited to the conditions under which it must operate on the evaporator and does not bring any significant gain compared to the pure body.
  • the object of the process according to the invention is to heat a room by means of a compression heat pump delivering heat to said room over a temperature interval wider than that of the available heat source and operating with a mixed working fluid under conditions such that the mixture of constituents forming the mixed working fluid does not form an azeotrope.
  • step (a) the mixed working fluid is compressed in the vapor phase
  • step (b) the compressed mixed fluid coming from step (a) is brought into heat exchange contact with a relatively cold external fluid, constituting the local heating agent, so as to transfer the heat of compression to said external fluid, and this contact is maintained until condensation substantially complete of said mixed fluid
  • step (c) at least one liquid fraction of the mixed fluid substantially completely condensed in step (b) is brought into heat exchange contact with a cooling fluid defined in step (f), so further cooling said fraction of the mixed fluid and heating said cooling fluid defined in step (f),
  • step (d) expanding the fraction of cooled mixed fluid from step (c), (e) putting the fraction of expanded mixed fluid, originating from stage (d), in heat exchange contact with an external fluid which constitutes a heat source, the contact conditions allowing the partial vaporization of said fraction of the expanded mixed fluid, and ( f) said fraction of the partially vaporized mixed fluid from step (e) is placed in heat exchange contact with the fraction of the substantially completely liquefied mixed fluid sent to
  • step (f) The method is characterized in that the contact conditions of step (f) are chosen so as to complete the vaporization started in step (e), in that the proportion of fraction of mixed fluid vaporized in step (f) represents at least 5 mol% of the fraction of mixed fluid vaporized in all of steps (e) and (f) and in that the fraction of fully vaporized mixed fluid, originating from step, is returned (f), directly in step (a).
  • the proportion of fraction of the mixed fluid which is vaporized in step (f) represents practically between 5 and 40% by mole, that fraction vaporized in step (e) between 60 and 95% by mole of what is vaporized in the two stages (e and f).
  • the mixture arrives in the liquid phase via line 1. It is expanded through the expansion valve V1, is sent via line 4 to the exchanger E1 and is partially vaporized in the exchanger E1 by taking heat from an external fluid which arrives via line 2 and leaves via line 3.
  • the liquid-vapor mixture, leaving the exchanger E1 is sent by line 5 into the exchanger E2 from which it emerges fully vaporized and possibly overheated by line 6
  • It is compressed in the compressor K1 and the compressed vapor phase mixture is sent via line 7 to the exchanger E3 where it condenses by yielding heat to an external fluid which arrives via line 10 and leaves via line 11.
  • the mixture is discharged from the exchanger E3 through line 8, then enters the balloon B1.
  • the liquid phase is sent to the exchanger E2 in which it cools, supplying the heat necessary for the end of vaporization and for possible overheating of the mixture arriving via the line 5 and leaving via the line 6.
  • the composition of the mixture must be selected so that the temperature range during the condensation is close to the difference between the inlet and outlet temperatures. of the external fluid which is heated in the condenser.
  • the mixture is a binary mixture constituted by a first majority constituent and a second minority constituent
  • the temperature interval during the condensation at a given pressure increases with the proportion of this second constituent and that, consequently, if the two constituents have vaporization temperatures in the pure state and under the same pressure sufficiently different, at a given temperature interval in condensation corresponds a well defined composition.
  • the regulator V1 must ensure a pressure after expansion such that the mixture comes out completely vaporized at the outlet of the exchanger E2.
  • This condition reveals one of the advantages of the method according to the invention. It makes it possible to operate with an end of vaporization temperature and a pressure higher than those which would be achieved in the case of the usual techniques involving complete vaporization at the outlet of the exchanger E1. It allows, on the other hand, to enter the regulator V1 at a temperature much lower than the temperature at the outlet of the condenser E3 and thus to reduce the vaporized fraction due to the expansion. It is thus possible to bring the temperature at the start of vaporization of the mixture closer to the bubble temperature and thus further improve the conditions of the heat exchange in the exchanger E1. Increasing the pressure at the inlet of the compressor has a double advantage: it improves the coefficient of performance by reducing the compression ratio and increases the thermal capacity of the heat pump by reducing the molar volume to aspiration.
  • This second advantage is particularly important when seeking to reduce the investment corresponding to a given installation.
  • it is essential that the mixed working fluid at the outlet of the condenser E3 is fully condensed.
  • the condensation is carried out in part in the exchanger E2
  • the result is for a given thermal power an increase in the volume flow rate at suction and therefore the size of the compressor required.
  • this generally leads to placing the reserve tank B1 at the outlet of the condenser E3 and then collecting the mixed working fluid in the liquid phase via the conduit 9 and sub-cooling it in the exchanger E2.
  • the method according to the invention is therefore particularly suitable for a heat pump using air as the heat source, whether it is an air-air heat pump or an air-water heat pump.
  • FIG. 2 shows an operating diagram according to the invention of an air-air heat pump, intended for space heating, which is illustrated by example 2.
  • the box D1 unlike the box D2, is located outside the room to be heated, (split system), but it is clear that the method of the invention can be implemented in a one-piece installation.
  • the expanded mixture is partially vaporized in the evaporator E4.
  • the evaporator E4 In the evaporator E4, it generally flows against the current of the outside air (F l , F 2 ). This outside air is sucked in at the base of the enclosure D1 by the helical fan VE1 driven by the electric motor M1 and it is discharged outside through the protective grid GP1.
  • the evaporator E4 can be constituted, for example, by a tube provided with fins or needles, such as to improve the exchange and wound in a spiral.
  • the liquid-vapor mixture leaving the evaporator E4 through the line 22 finishes vaporizing in the exchanger E5 in contact with the mixture arriving through the line 21 and leaves the exchanger E5 through the line 20 in the superheated state.
  • the E6 exchanger is made up of several separate batteries which are traversed in series by the mixture which generally flows from top to bottom against the flow of air. This is sucked in through the intake duct G2 and leaves the enclosure D2 through the discharge duct G3 and thus flows from bottom to top. The condensed mixed fluid leaves through the conduit 25 and it is collected in the balloon B2.
  • the liquid mixed fluid leaves through the conduit 21 and it is sub-cooled in the exchanger E5 by heating the mixed fluid which vaporizes. It leaves via the conduit 24 via which it arrives at the regulator V2, from where it is sent via the conduit 26 to the evaporator E4.
  • such an installation can take heat from outside air, but also from extracted air or a combination of outside air and extracted air.
  • the points of introduction of the extracted air and the outside air may be different.
  • the method according to the invention can also be implemented in a heat pump using air as a heat source and heating water.
  • the condenser of the heat pump can be constituted for example by a double tube exchanger operating against the current.
  • the mixed working fluid is partially vaporized at a first pressure level P 1 in the exchanger E lo , into which it enters through the conduit 30 and exits through the conduit 31; the heat exchange in E10 is carried out with a first fraction of the external fluid constituting the cold source, arriving by the tube 43 and leaving by the tube 44.
  • the vaporization of the mixed fluid continues in the exchanger E11, in which the fluid mixed enters liquid-vapor mixture via line 31, leaves via line 32 and takes the heat of vaporization on the mixed liquid fluid, which flows against the current, enters E11 through line 41 and exits through line 42.
  • the liquid-vapor mixture is discharged through channel 32 in the flask B3, where the liquid and vapor phases separate.
  • the vapor phase is evacuated through the tube 33 and is sucked, still at the pressure P i , to an intermediate stage of the compressor K2.
  • the arrangement described therefore assumes that the compression is carried out in at least two stages.
  • the liquid phase is evacuated through line 34, sub-cooled in the exchanger E12, then is sent through line 35 through the expansion valve V4, where it is expanded to low pressure of cycle P 2 , less than P 1 .
  • the mixed fluid is sent via line 36 in the exchanger E13 and emerges therefrom in the liquid vapor state via line 37.
  • the exchanger provides partial vaporization of the mixed fluid at pressure P 2 , by taking heat from a second fraction of the external fluid extracted from the cold source, arriving through the tube 45 and leaving through the tube 46.
  • the end of the vaporization of the mixed fluid and possible overheating is carried out in the exchanger E12; the partially vaporized mixed fluid enters E12 through the tube 37, exits from it through the tube 38 and takes the heat required at the end of vaporization from the sub-cooled liquid which enters through the conduit 34 and leaves via the conduit 35.
  • the pressure levels P1 and P2 obtained using the expansion members V3 and V4 are fixed so that the temperature of the liquid vapor mixture at the inlet of the exchanger E13 is close to the temperature of the liquid vapor mixture at the inlet of the exchanger E10. It is therefore clear that the temperature interval between the start and the end of spraying is reduced. A direct consequence of this is that instead of having to compress the entire vapor mixture from the pressure level P2, it is possible to compress a fraction of this vapor mixture from the intermediate pressure level P1 greater than the pressure level P2.
  • the mixed fluid vaporized at the pressure P 2 is evacuated to the first stage of the compressor K1 by the line 38; it is mixed during compression with the mixed fluid vaporized at the pressure P 1 and sucked up through the pipe 33.
  • the final mixture is discharged from K2 through the channel 39 at the pressure P 3 , which is the high pressure of the cycle ( P 3 > P 1 > P 2 ). It is then desuperheated and condensed in the exchanger E14, by heating the external fluid which arrives against the current by the conduit 47 and leaves again by the conduit 48.
  • the mixed fluid once condensed, is collected via the tube 40 in the storage flask B4.
  • the mixed liquid fluid is discharged through the tube 41, is sub-cooled in the exchanger E11, then sent via the conduit 42 to the valve V3. There it is relaxed until the intermediate pressure of the cycle P i .
  • the mixture can be formed for example by a mixture of hydrocarbons or halogenated hydrocarbons of the “Freons” type, or alternatively of alcohols, ketones, esters, ethers, amines. It may be advantageous, in particular for installations operating at relatively high temperatures, to use a mixture of water and a water-soluble constituent, such as ammonia or even such as methanol.
  • a particularly important field of application of the method according to the invention relates to applications in space heating and in particular the heat pumps fitted to dwellings.
  • the invention also applies to installations which operate as a heat pump in winter and in air conditioning in summer and in which the transition from “winter to summer” operation is obtained for example by using a valve of inversion according to a well-known principle in air conditioning.
  • the method according to the invention corresponding to diagram 3 is suitable for applications of the industrial or collective heating type, in which the temperature variation of the heating fluid is significantly greater than the cooling of the fluid from the cold source.
  • the adjustment of the expansion device which precedes the evaporator must be carried out taking into account the composition of the mixture.
  • the regulator In heat pumps used for space heating, the regulator is generally provided with a bulb which contains the refrigerant used as working fluid.
  • the expansion pressure obtained corresponds to a pressure such that the same refrigerant at the bulb temperature is superheated from 5 to 15 ° C; this overheating being adjusted by adjusting the calibration of the regulator.
  • the same type of regulator can be used in the case of a mixture.
  • the pressure after expansion must, however, be adjusted so that the mixed working fluid is only partially vaporized during the exchange with the external fluid which serves as a heat source and comes out slightly overheated from the exchanger in which it draws heat from the mixture leaving the condenser.
  • This adjustment can be carried out both by adjusting the setting of the regulator and the position of the bulb as well as the nature of the fluid which fills the bulb which can be for example R-22 or R-12.
  • the bulb can be placed at different points and brought into temperature equilibrium with the mixed working fluid, for example at the end of step (e) or at the end of step (f) or at the end of the step (c) or at an intermediate point in any one of these steps.
  • step (f) it is possible either to increase the pressure if it is found that the overheating at the end of step (f) is excessive by moving the bulb towards a point whose temperature is higher, or to decrease pressure by moving the bulb to a point with a lower temperature.
  • step (f) it is possible to obtain an automatic adjustment of the pressure in the evaporator in response to a variation in the outside temperature.
  • the operating conditions are generally chosen so that the pressure of the mixture in the evaporator is greater than atmospheric pressure and that the pressure of the mixture in the condenser does not reach excessive values, for example greater than 30 bar. .
  • the inlet temperature of the external fluid which serves as a heat source is generally higher than 9 ° C for at least part of the operating time of the heat pump during the year.
  • the apparatus implementing the method can be carried out using different equipment for each of the components.
  • the exchanger in which the final vaporization step is carried out which is carried out by exchange with the mixture leaving the condenser, can for example be a double tube exchanger, different types of fins being able to be introduced either into the inner tube or tubes. and the annular space between the inner tube (s) and the outer tube.
  • Said exchanger may also be constituted by an exchanger with flat or spiral plates, the only condition to be observed being to carry out an exchange which is as close as possible to a pure counter-current.
  • the exchangers in contact with the external fluids can also be of any type provided that they are adapted to the nature of the external fluid with which the exchange takes place.
  • the compressor can be for example a lubricated piston compressor of the hermetic or open type, a dry piston compressor or for higher powers, a screw compressor or a centrifugal compressor.
  • FIGS 1, 2 and 3 which serve to illustrate the invention constitute only schematic diagrams and do not mention certain secondary elements which may form part of the usual installations of heat pumps, such as sight glass, drying cartridge, anti-blow bottle liquid at the compressor inlet, etc ...
  • Example 1 is illustrated in Figure 1.
  • the cold source consists of water extracted from a water table. This water, the flow rate of which is 1,500 l / h, arrives in the evaporator E1 via the pipe 2 at a temperature of 12 ° C. and leaves the evaporator E1 through the pipe 3 at a temperature of 5 ° C.
  • the heating water arrives via line 10 at a temperature of 21.3 ° C. and leaves via line 11 at a temperature of 34.5 ° C.
  • the mixture leaves the evaporator E1 at a temperature of 3.5 ° C.
  • the molar fraction vaporized at the outlet of E1 is 0.86.
  • the mixture finishes vaporizing in the exchanger E2 at a temperature of 9.3 ° C. It is observed that the introduction of the exchanger E2 in which the mixture leaving the evaporator E1 finishes vaporizing and in which the mixture leaving the reserve tank B1 is sub-cooled makes it possible both to increase the coefficient of 6.1% performance and reduce the volume flow rate at the compressor suction by 4.4%, compared to an identical installation without the E2 exchanger and operating with the same mixture.
  • Example 2 is illustrated in Figure 2.
  • the evaporator E4 receives an outside air flow of 4,864 m 3 / h arriving at a temperature of 8.3 ° C. This air comes out at a temperature of 6.3 ° C.
  • the condenser E6 allows the heating of a flow of 1,084 m 3 / h of air coming from the room to be heated, which arrives on the condenser E6 at a temperature of 21.1 ° C and leaves warmed up to a temperature of 33, 4 ° C.
  • the mixture leaves the evaporator E4 at a temperature of 0.6 ° C.
  • the molar fraction vaporized at the outlet of the evaporator E4 is 0.85.
  • the mixture finishes vaporizing in the E5 exchanger at a temperature of 5.1 ° C.
  • the introduction of the E5 exchanger makes it possible both to increase the coefficient of performance by 5.7% and to reduce the volume flow rate at the compressor suction by 7.4% compared to an identical installation without the E5 exchanger and operating with the same mixture.
  • Example 3 is illustrated in Figure 3.
  • the heat source to the evaporators E10 and E13 consists of water sent to 40 ° C and cooled to 33 ° C.
  • the water flow circulating in the evaporators E10 and E13 is identical and equal to 75 m 3 / h.
  • the heating fluid which is heated at the condenser E14 is water which enters the condenser E14 at a temperature of 45 ° C and which is reheated to a temperature of 82 ° C. Its flow is 35 m 3 / h.
  • the working fluid is an equimolar binary mixture consisting of dichlorodifluoromethane (R-12) and trichlorotrifluoroethane (R-113).
  • the compressor is a two-stage centrifugal type compressor.
  • the first stage sucks the steam mixture at a pressure of 1.31 bar and discharges it at an intermediate pressure of 2.49 bar.
  • the second stage compresses the mixture leaving the first stage and the mixture arriving via line 33 to a final pressure of 6.54 bar.
  • the sub-cooled liquid mixture leaving the exchanger E11 via the conduit 42 begins to vaporize in the evaporator E10.
  • the vaporized fraction is 0.4 in molar fraction; at the outlet of the evaporator E11, it is 0.5 in molar fraction; at the outlet of the evaporator E13, the vaporized fraction is a total of 0.8 in molar fraction (i.e. 0.3 in the evaporator E12.
  • the condensation interval in the exchanger E14 is 39 ° C. while the vaporization intervals at low pressure (vaporization operated in exchangers E13 and E12) and at intermediate pressure (vaporization operated in exchangers E10 and E11) are close 18 ° C. It is thus verified that the arrangement shown diagrammatically in FIG. 3 makes it possible to recover heat over a temperature interval much smaller than the temperature interval according to which it is supplied, by carrying out heat exchanges under good conditions of reversibility. This results in a gain on the coefficient of performance which, in the example considered, is approximately 25% compared to a cycle comprising a single evaporator and using the same mixture.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Beverage Vending Machines With Cups, And Gas Or Electricity Vending Machines (AREA)

Abstract

A heating and thermal conditioning process makes use of a compression heat pump operated with a mixed working fluid consisting of a non-azeotropic fluid mixture, wherein the compressed mixture. The compressed fluid mixture is completely condensed by heat exchange with an external fluid and then sub-cooled. The sub-cooled fluid is then expanded and partially vaporized, and the partially vaporized fraction is used as a sub-cooling agent for the condensed fluid mixture in a heat exchange having also the effect of completing said vaporization to produce a gaseous mixture whch is again compressed in a new cycle of operation of the heat pump.

Description

La présente invention concerne un procédé de chauffage d'un local au moyen d'une pompe à chaleur à compression, fonctionnant avec un fluide mixte de travail.The present invention relates to a method of heating a room by means of a compression heat pump, operating with a mixed working fluid.

L'utilisation dans une pompe à chaleur à compression d'un fluide mixte de travail, non azéotropique, qui se vaporise ou se condense à une pression donnée dans un intervalle de température, et non à une température fixe, permet d'améliorer le coefficient de performance de ladite pompe à chaleur:

  • Par fluide mixte de travail, non azéotropique, on entend un mélange d'au moins deux individus capables de se vaporiser et de se recondenser dans le domaine de travail de la pompe sans former d'azéotrope entre eux, en particulier deux individus chimiquement distincts (A) et (B) ne formant pas d'azéotrope entre eux dans le domaine de travail de la pompe ou un individu chimique (A) et un azéotrope (C) formé entre deux ou plusieurs autres individus chimiques, azéotropiquement indépendant de l'individu chimique (A), ou même deux azéotropes indépendants l'un de l'autre (C') et (C").
The use in a compression heat pump of a mixed non-azeotropic working fluid which vaporizes or condenses at a given pressure in a temperature range, and not at a fixed temperature, makes it possible to improve the coefficient of performance of said heat pump:
  • By non-azeotropic mixed working fluid is meant a mixture of at least two individuals capable of vaporizing and of recondensing in the working domain of the pump without forming an azeotrope between them, in particular two chemically distinct individuals ( A) and (B) not forming an azeotrope between them in the working area of the pump or a chemical individual (A) and an azeotrope (C) formed between two or more other chemical individuals, azeotropically independent of the individual chemical (A), or even two azeotropes independent of each other (C ') and (C ").

L'emploi d'un mélange non-azéotropique de fluides de travail dans une machine thermique à compression est déjà connu de US-A-2 255 585.The use of a non-azeotropic mixture of working fluids in a thermal compression machine is already known from US-A-2 255 585.

Dans ce cas particulier, l'objectif est de produire du froid à 2 niveaux différents de température et l'écart de température recherché est obtenu en intercalant un échangeur de chaleur entre les évaporateurs correspondant à chaque niveau de température ; l'échange de chaleur est réalisé entre le mélange de fluides en cours de vaporisation et le condensat issu du compresseur, avant envoi de ce condensat au premier évaporateur. L'échange ainsi réalisé a pour effet, non seulement de faire fonctionner les 2 évaporateurs à des températures différentes, mais également d'accroître la différence de température entre l'entrée du premier évaporateur et la sortie de l'évaporateur final, donc d'accroître le ΔT de prélèvement de la chaleur sur le milieu extérieur, ce qui est exactement le contraire du résultat obtenu selon l'invention.In this particular case, the objective is to produce cold at 2 different temperature levels and the desired temperature difference is obtained by inserting a heat exchanger between the evaporators corresponding to each temperature level; heat exchange is carried out between the mixture of fluids being vaporized and the condensate from the compressor, before sending this condensate to the first evaporator. The exchange thus carried out has the effect, not only of operating the 2 evaporators at different temperatures, but also of increasing the temperature difference between the inlet of the first evaporator and the outlet of the final evaporator, therefore increase the ΔT of heat removal from the external environment, which is exactly the opposite of the result obtained according to the invention.

L'emploi d'un fluide de travail formé par au moins deux constituants de points d'ébullition différents dans une machine thermique à compression est également décrit dans FR-A-2 337 855. Dans ce cas particulier, l'objectif est de récupérer des calories sur un fluide extérieur suivant un intervalle de température relativement large (par exemple entre 0 et 100 °C), et fournir ces calories au condenseur dans un intervalle relativement voisin (par exemple entre 40 et 130 °C) ou plus étroit (par exemple entre 70 et 85 °C). L'échange de chaleur entre le fluide extérieur et le fluide de travail est effectué dans une zone d'échange comportant un seul évaporateur, de sorte que le fluide de travail soit complètement vaporisé. Le fluide de travail est préalablement introduit dans l'évaporateur à la même température que le fluide extérieur il est ainsi sous refroidi avant d'être détendu pour récupérer les calories sur le fluide extérieur. Les calories récupérées sont cédées à un deuxième fluide extérieur dans une zone de condensation dans laquelle le fluide de travail comprimé se condense au moins en partie. Une partie du liquide est ensuite recyclé à l'évaporateur. Ce système comprenant à l'évaporateur un échange simultané de calories entre le fluide de travail en cours de vaporisation et les deux sources de chaleur (fluide extérieur et condensat) fournit de bons résultats lorsque l'intervalle de température à l'évaporateur est relativement grand (par exemple 50 °C).The use of a working fluid formed by at least two constituents of different boiling points in a thermal compression machine is also described in FR-A-2 337 855. In this particular case, the objective is to recover calories on an external fluid over a relatively wide temperature range (for example between 0 and 100 ° C), and supply these calories to the condenser in a relatively close range (for example between 40 and 130 ° C) or narrower (for example between 70 and 85 ° C). The heat exchange between the external fluid and the working fluid is carried out in an exchange zone comprising a single evaporator, so that the working fluid is completely vaporized. The working fluid is previously introduced into the evaporator at the same temperature as the outside fluid and is thus sub-cooled before being expanded to recover the calories from the outside fluid. The calories recovered are transferred to a second external fluid in a condensation zone in which the compressed working fluid at least partially condenses. Part of the liquid is then recycled to the evaporator. This system comprising at the evaporator a simultaneous exchange of calories between the working fluid being vaporized and the two heat sources (external fluid and condensate) provides good results when the temperature range at the evaporator is relatively large. (for example 50 ° C).

Dans un certain nombre d'applications des pompes à chaleur, la chaleur qui est fournie à l'évaporateur est disponible dans un intervalle de température relativement étroit, par exemple inférieur à 10 °C ou même dans certains cas inférieur à 5 °C, tandis que la chaleur doit être fournie au condenseur dans un intervalle de température relativement large, par exemple supérieur à 10 °C ou même dans certains cas supérieur à 15 °C.In a number of heat pump applications, the heat supplied to the evaporator is available in a relatively narrow temperature range, for example less than 10 ° C or even in some cases less than 5 ° C, while that heat must be supplied to the condenser in a relatively wide temperature range, for example greater than 10 ° C or even in some cases greater than 15 ° C.

Dans de tels cas l'utilisation d'un fluide mixte de travail qui se condense suivant un profil de température parallèle au profil de température du fluide extérieur auquel la pompe à chaleur fournit de la chaleur et suivant un intervalle de température voisin de l'intervalle de température dans lequel évolue ledit fluide extérieur (par intervalle de température voisin d'un autre intervalle de température, oh entend deux intervalles dont la largeur est voisine, quels que soient les niveaux thermiques auxquels ils se situent) ne conduit pas à une amélioration sensible par rapport à un corps pur du fait qu'à l'évaporateur le mélange se vaporise en général suivant un intervalle de température voisin de l'intervalle de température suivant lequel il se condense et qui, s'il est voisin de l'intervalle de température suivant lequel évolue le fluide extérieur auquel la pompe à chaleur fournit de la chaleur, est largement supérieur à l'intervalle de température suivant lequel évolue le fluide extérieur sur lequel la pompe à chaleur prélève de la chaleur. Dans ce cas, le fluide mixte est mal adapté aux conditions dans lesquelles il doit opérer à l'évaporateur et n'apporte pas de gain notable par rapport au corps pur.In such cases the use of a mixed working fluid which condenses according to a temperature profile parallel to the temperature profile of the external fluid to which the heat pump supplies heat and according to a temperature interval close to the interval of temperature in which said external fluid evolves (by temperature interval close to another temperature interval, oh means two intervals the width of which is close, whatever the thermal levels at which they lie) does not lead to a significant improvement compared to a pure body, because the evaporator the mixture vaporizes in general according to a temperature interval close to the temperature interval according to which it condenses and which, if it is close to the interval of temperature according to which the external fluid evolves to which the heat pump supplies heat, is much higher than the temperature interval according to which the external fluid evolves location from which the heat pump draws heat. In this case, the mixed fluid is ill-suited to the conditions under which it must operate on the evaporator and does not bring any significant gain compared to the pure body.

Le procédé selon l'invention a pour objet le chauffage d'un local au moyen d'une pompe à chaleur à compression délivrant de la chaleur audit local sur un intervalle de température plus large que celui de la source de chaleur disponible et fonctionnant avec un fluide mixte de travail dans des conditions telles que le mélange de constituants formant le fluide mixte de travail ne forme pas d'azéotrope.The object of the process according to the invention is to heat a room by means of a compression heat pump delivering heat to said room over a temperature interval wider than that of the available heat source and operating with a mixed working fluid under conditions such that the mixture of constituents forming the mixed working fluid does not form an azeotrope.

Dans ce procédé (a) on comprime le fluide mixte de travail en phase vapeur, (b) on met en contact d'échange thermique le fluide mixte comprimé provenant de l'étape (a) avec un fluide extérieur relativement froid, constituant l'agent de chauffage du local, de manière à céder la chaleur de compression audit fluide extérieur, et l'on maintient ce contact jusqu'à condensation sensiblement complète dudit fluide mixte, (c) on met en contact d'échange thermique au moins une fraction liquide du fluide mixte sensiblement complètement condensé dans l'étape (b) avec un fluide de refroidissement défini à l'étape (f), de manière à refroidir davantage ladite fraction du fluide mixte et à réchauffer ledit fluide de refroidissement défini à l'étape (f), (d) on détend la fraction de fluide mixte refroidie provenant de l'étape (c), (e) on met la fraction de fluide mixte détendue, provenant de l'étape (d), en contact d'échange thermique avec un fluide extérieur qui constitue une source de chaleur, les conditions de contact permettant la vaporisation partielle de ladite fraction du fluide mixte détendue, et (f) on met ladite fraction du fluide mixte partiellement vaporisée, provenant de l'étape (e), en contact d'échange thermique avec la fraction du fluide mixte sensiblement complètement liquéfié envoyé à l'étape (c), ladite fraction du fluide mixte partiellement vaporisée constituant le fluide de refroidissement de ladite étape (c).In this process (a) the mixed working fluid is compressed in the vapor phase, (b) the compressed mixed fluid coming from step (a) is brought into heat exchange contact with a relatively cold external fluid, constituting the local heating agent, so as to transfer the heat of compression to said external fluid, and this contact is maintained until condensation substantially complete of said mixed fluid, (c) at least one liquid fraction of the mixed fluid substantially completely condensed in step (b) is brought into heat exchange contact with a cooling fluid defined in step (f), so further cooling said fraction of the mixed fluid and heating said cooling fluid defined in step (f), (d) expanding the fraction of cooled mixed fluid from step (c), (e) putting the fraction of expanded mixed fluid, originating from stage (d), in heat exchange contact with an external fluid which constitutes a heat source, the contact conditions allowing the partial vaporization of said fraction of the expanded mixed fluid, and ( f) said fraction of the partially vaporized mixed fluid from step (e) is placed in heat exchange contact with the fraction of the substantially completely liquefied mixed fluid sent to step (c), said fraction of the mixed fluid partially vaporized constituent the cooling fluid of said step (c).

Le procédé est caractérisé en ce que les conditions de contact de l'étape (f) sont choisies de manière à achever la vaporisation commencée à l'étape (e), en ce que la proportion de fraction de fluide mixte vaporisée à l'étape (f) représente au moins 5 % en mole de la fraction de fluide mixte vaporisée dans l'ensemble des étapes (e) et (f) et en ce qu'on renvoie la fraction de fluide mixte entièrement vaporisée, provenant de l'étape (f), directement à l'étape (a).The method is characterized in that the contact conditions of step (f) are chosen so as to complete the vaporization started in step (e), in that the proportion of fraction of mixed fluid vaporized in step (f) represents at least 5 mol% of the fraction of mixed fluid vaporized in all of steps (e) and (f) and in that the fraction of fully vaporized mixed fluid, originating from step, is returned (f), directly in step (a).

La proportion de fraction du fluide mixte qui est vaporisée à l'étape (f) représente pratiquement entre 5 et 40 % en mole, celle vaporisée à l'étape (e) entre 60 et 95 % en mole de ce qui est vaporisé dans les deux étapes (e et f).The proportion of fraction of the mixed fluid which is vaporized in step (f) represents practically between 5 and 40% by mole, that fraction vaporized in step (e) between 60 and 95% by mole of what is vaporized in the two stages (e and f).

L'invention peut être décrite plus complètement en se rapportant au schéma représenté sur la Figure 1, qui représente un exemple de réalisation du procédé selon l'invention.The invention can be described more fully by referring to the diagram shown in Figure 1, which shows an embodiment of the method according to the invention.

Le mélange arrive en phase liquide par le conduit 1. Il est détendu à travers le détendeur V1, est envoyé par le conduit 4 à l'échangeur E1 et se vaporise partiellement dans l'échangeur E1 en prélevant de la chaleur sur un fluide extérieur qui arrive par le conduit 2 et repart par le conduit 3. Le mélange liquide-vapeur, sortant de l'échangeur E1, est envoyé par le conduit 5 dans l'échangeur E2 d'où il ressort entièrement vaporisé et éventuellement surchauffé par le conduit 6. Il est comprimé dans le compresseur K1 et le mélange comprimé en phase vapeur est envoyé par le conduit 7 à l'échangeur E3 où il se condense en cédant de la chaleur à un fluide extérieur qui arrive par le conduit 10 et repart par le conduit 11. Le mélange est refoulé de l'échangeur E3 par le conduit 8, puis pénètre dans le ballon B1. Par le conduit 9, la phase liquide est envoyée à l'échangeur E2 dans lequel elle se refroidit en fournissant la chaleur nécessaire à la fin de vaporisation et à une éventuelle surchauffe du mélange arrivant par le conduit 5 et repartant par le conduit 6.The mixture arrives in the liquid phase via line 1. It is expanded through the expansion valve V1, is sent via line 4 to the exchanger E1 and is partially vaporized in the exchanger E1 by taking heat from an external fluid which arrives via line 2 and leaves via line 3. The liquid-vapor mixture, leaving the exchanger E1, is sent by line 5 into the exchanger E2 from which it emerges fully vaporized and possibly overheated by line 6 It is compressed in the compressor K1 and the compressed vapor phase mixture is sent via line 7 to the exchanger E3 where it condenses by yielding heat to an external fluid which arrives via line 10 and leaves via line 11. The mixture is discharged from the exchanger E3 through line 8, then enters the balloon B1. Via the line 9, the liquid phase is sent to the exchanger E2 in which it cools, supplying the heat necessary for the end of vaporization and for possible overheating of the mixture arriving via the line 5 and leaving via the line 6.

Pour tirer le maximum d'avantages du procédé selon l'invention, la composition du mélange doit être sélectionnée de manière à ce que l'intervalle de température au cours de la condensation soit voisin de la différence entre les températures d'entrée et de sortie du fluide extérieur qui est chauffé au condenseur. Ainsi, par exemple, si le mélange est un mélange binaire constitué par un premier constituant majoritaire et un second constituant minoritaire, on sait que l'intervalle de température au cours de la condensation à une pression donnée augmente avec la proportion de ce second constituant et que, par conséquent, si les deux constituants ont des températures de vaporisation à l'état pur et sous la même pression suffisamment différentes, à un intervalle de température donné en condensation correspond une composition bien définie. Il est également possible de choisir la composition d'un mélange de plus de deux constituants, de manière à obtenir à une certaine pression un intervalle de température donné au cours de la condensation à condition d'utiliser des constituants qui ont des températures d'ébullition à l'état pur et sous la même pression suffisamment différentes.To obtain the maximum benefits from the process according to the invention, the composition of the mixture must be selected so that the temperature range during the condensation is close to the difference between the inlet and outlet temperatures. of the external fluid which is heated in the condenser. Thus, for example, if the mixture is a binary mixture constituted by a first majority constituent and a second minority constituent, it is known that the temperature interval during the condensation at a given pressure increases with the proportion of this second constituent and that, consequently, if the two constituents have vaporization temperatures in the pure state and under the same pressure sufficiently different, at a given temperature interval in condensation corresponds a well defined composition. It is also possible to choose the composition of a mixture of more than two constituents, so as to obtain, at a certain pressure, a given temperature range during the condensation provided that constituents which have boiling temperatures are used. in a pure state and under the same pressure sufficiently different.

D'autre part, pour profiter au maximum des avantages du procédé selon l'invention, il est désirable que le fluide de travail parvienne entièrement vaporisé au compresseur. Pour cela, le détendeur V1 doit assurer une pression après détente telle que le mélange sorte complètement vaporisé à la sortie de l'échangeur E2.On the other hand, to take full advantage of the advantages of the method according to the invention, it is desirable for the working fluid to reach the compressor entirely vaporized. For this, the regulator V1 must ensure a pressure after expansion such that the mixture comes out completely vaporized at the outlet of the exchanger E2.

Cette condition fait apparaître un des avantages du procédé selon l'invention. Il permet d'opérer avec une température de fin de vaporisation et une pression supérieures à celles qui seraient réalisées dans le cas des techniques habituelles impliquant une vaporisation complète à la sortie de l'échangeur E1. Il permet, d'autre part, d'entrer dans le détendeur V1 à une température beaucoup plus basse que la température à la sortie du condenseur E3 et ainsi de réduire la fraction vaporisée du fait de la détente. Il est possible ainsi de rapprocher la température de début de vaporisation du mélange de la température de bulle et ainsi d'améliorer encore les conditions de l'échange thermique dans l'échangeur E1. L'augmentation de la pression à l'entrée du compresseur présente un double avantage : elle permet d'améliorer le coefficient de performance en réduisant le taux de compression et d'augmenter la capacité thermique de la pompe à chaleur en réduisant le volume molaire à l'aspiration.This condition reveals one of the advantages of the method according to the invention. It makes it possible to operate with an end of vaporization temperature and a pressure higher than those which would be achieved in the case of the usual techniques involving complete vaporization at the outlet of the exchanger E1. It allows, on the other hand, to enter the regulator V1 at a temperature much lower than the temperature at the outlet of the condenser E3 and thus to reduce the vaporized fraction due to the expansion. It is thus possible to bring the temperature at the start of vaporization of the mixture closer to the bubble temperature and thus further improve the conditions of the heat exchange in the exchanger E1. Increasing the pressure at the inlet of the compressor has a double advantage: it improves the coefficient of performance by reducing the compression ratio and increases the thermal capacity of the heat pump by reducing the molar volume to aspiration.

Ce deuxième avantage est particulièrement important lorsque l'on cherche à réduire l'investissement correspondant à une installation donnée. Pour en bénéficier complètement il est essentiel que le fluide mixte de travail à la sortie du condenseur E3 soit entièrement condensé. En effet, on observe que si la condensation est opérée en partie dans l'échangeur E2, même si la fraction condensée dans l'échangeur E2 est faible, il en résulte pour une puissance thermique donnée une augmentation du débit volumique à l'aspiration et par conséquent de la taille du compresseur nécessaire. En pratique, ceci amène généralement à placer le bac de réserve B1 à la sortie du condenseur E3 et ensuite à recueillir le fluide mixte de travail en phase liquide par le conduit 9 et à le sous-refroidir dans l'échangeur E2.This second advantage is particularly important when seeking to reduce the investment corresponding to a given installation. To fully benefit from it, it is essential that the mixed working fluid at the outlet of the condenser E3 is fully condensed. In fact, it is observed that if the condensation is carried out in part in the exchanger E2, even if the fraction condensed in the exchanger E2 is small, the result is for a given thermal power an increase in the volume flow rate at suction and therefore the size of the compressor required. In practice, this generally leads to placing the reserve tank B1 at the outlet of the condenser E3 and then collecting the mixed working fluid in the liquid phase via the conduit 9 and sub-cooling it in the exchanger E2.

La réalisation du procédé selon l'invention peut être effectuée de manière particulièrement simple puisqu'elle n'entraîne aucune nécessité de dérivation sur le circuit principal ni aucun organe de régulation supplémentaire. Un mode de réalisation préféré comporte un ou plusieurs des adaptations suivantes :

  • 1. Adaptation du fluide mixte à l'intervalle de température du fluide extérieur chauffé au condenseur.
  • 2. Réglage de l'organe de détente (ou des organes de détente) de manière à assurer le(s) niveau(x) de pression après détente maximum, compatible(s) avec une vaporisation complète du mélange avant son entrée dans le compresseur.
The implementation of the method according to the invention can be carried out in a particularly simple manner since it does not entail any need for bypass on the main circuit nor any additional regulating member. A preferred embodiment includes one or more of the following adaptations:
  • 1. Adaptation of the mixed fluid to the temperature range of the external fluid heated to the condenser.
  • 2. Adjustment of the expansion member (or of the expansion members) so as to ensure the pressure level (s) after maximum expansion, compatible with complete vaporization of the mixture before it enters the compressor .

Le procédé selon l'invention s'adapte donc particulièrement bien à une pompe à chaleur utilisant l'air comme source de chaleur, que ce soit une pompe à chaleur air-air ou une pompe à chaleur air-eau.The method according to the invention is therefore particularly suitable for a heat pump using air as the heat source, whether it is an air-air heat pump or an air-water heat pump.

Sur la Figure 2 a été représenté un schéma de fonctionnement selon l'invention d'une pompe à chaleur air-air, destinée au chauffage de locaux, qui est illustré par l'exemple 2. Le caisson D1, contrairement au caisson D2, est situé à l'extérieur du local à chauffer, (split system), mais il est clair que le procédé de l'invention peut être mis en oeuvre dans une installation monobloc.FIG. 2 shows an operating diagram according to the invention of an air-air heat pump, intended for space heating, which is illustrated by example 2. The box D1, unlike the box D2, is located outside the room to be heated, (split system), but it is clear that the method of the invention can be implemented in a one-piece installation.

Le mélange détendu est partiellement vaporisé dans l'évaporateur E4. Dans l'évaporateur E4, il circule globalement à contre-courant de l'air extérieur (Fl, F2). Cet air extérieur est aspiré à la base de l'enceinte D1 par le ventilateur hélicoïde VE1 entraîné par le moteur électrique M1 et il est rejeté à l'extérieur à travers la grille de protection GP1. L'évaporateur E4 peut être constitué, par exemple, par un tube muni d'ailettes ou d'aiguilles, de nature à améliorer l'échange et enroulé en spirale. Le mélange liquide-vapeur sortant de l'évaporateur E4 par le conduit 22 achève de se vaporiser dans l'échangeur E5 au contact du mélange arrivant par le conduit 21 et sort de l'échangeur E5 par le conduit 20 à l'état surchauffé. Il passe alors dans le compresseur hermétique HK d'où il ressort comprimé par le conduit 23. Il entre ensuite dans l'échangeur E6 dans lequel il se condense en chauffant l'air d'un local, cet air (F3, F4) étant aspiré par le ventilateur centrifuge VE2 à la base de l'enceinte D2. L'échangeur E6 est formé de plusieurs batteries distinctes qui sont parcourues en série par le mélange qui circule globalement de haut en bas à contre-courant de l'air. Celui-ci est aspiré par la gaine d'admission G2 et ressort de l'enceinte D2 par la gaine de refoulement G3 et circule ainsi de bas en haut. Le fluide mixte condensé ressort par le conduit 25 et il est recueilli dans le ballon B2. Le fluide mixte liquide ressort par le conduit 21 et il est sous-refroidi dans l'échangeur E5 en chauffant le fluide mixte qui se vaporise. Il repart par le conduit 24 par lequel il arrive au détendeur V2, d'où il est envoyé par le conduit 26 à l'évaporateur E4.The expanded mixture is partially vaporized in the evaporator E4. In the evaporator E4, it generally flows against the current of the outside air (F l , F 2 ). This outside air is sucked in at the base of the enclosure D1 by the helical fan VE1 driven by the electric motor M1 and it is discharged outside through the protective grid GP1. The evaporator E4 can be constituted, for example, by a tube provided with fins or needles, such as to improve the exchange and wound in a spiral. The liquid-vapor mixture leaving the evaporator E4 through the line 22 finishes vaporizing in the exchanger E5 in contact with the mixture arriving through the line 21 and leaves the exchanger E5 through the line 20 in the superheated state. It then passes into the hermetic compressor HK from which it emerges compressed by the conduit 23. It then enters the exchanger E6 in which it condenses by heating the air in a room, this air (F 3 , F 4 ) being sucked in by the centrifugal fan VE2 at the base of the enclosure D2. The E6 exchanger is made up of several separate batteries which are traversed in series by the mixture which generally flows from top to bottom against the flow of air. This is sucked in through the intake duct G2 and leaves the enclosure D2 through the discharge duct G3 and thus flows from bottom to top. The condensed mixed fluid leaves through the conduit 25 and it is collected in the balloon B2. The liquid mixed fluid leaves through the conduit 21 and it is sub-cooled in the exchanger E5 by heating the mixed fluid which vaporizes. It leaves via the conduit 24 via which it arrives at the regulator V2, from where it is sent via the conduit 26 to the evaporator E4.

D'autre part, une telle installation peut prélever de la chaleur sur de l'air extérieur, mais aussi de l'air extrait ou une combinaison d'air extérieur et d'air extrait. Dans ce dernier cas, les points d'introduction de l'air extrait et de l'air extérieur peuvent être différents.On the other hand, such an installation can take heat from outside air, but also from extracted air or a combination of outside air and extracted air. In the latter case, the points of introduction of the extracted air and the outside air may be different.

Le procédé selon l'invention peut être également mis en oeuvre dans une pompe à chaleur utilisant de l'air comme source de chaleur et chauffant de l'eau. Dans ce cas, le condenseur de la pompe à chaleur peut être constitué par exemple par un échangeur double tube opérant à contre-courant.The method according to the invention can also be implemented in a heat pump using air as a heat source and heating water. In this case, the condenser of the heat pump can be constituted for example by a double tube exchanger operating against the current.

Lorsque l'intervalle de température selon lequel évolue le fluide extérieur qui est chauffé au condenseur de la pompe à chaleur est particulièrement large en comparaison de l'intervalle de température selon lequel évolue le fluide extérieur qui sert de source de chaleur à l'évaporateur de la pompe à chaleur, il est possible de réduire l'intervalle de vaporisation en réalisant l'étape de vaporisation à deux niveaux successifs de pression. Une telle disposition est réalisée sur le schéma de fonctionnement qui est représenté sur la Figure 3 et qui est illustré par l'exemple 3.When the temperature range over which the external fluid which is heated at the heat pump condenser is particularly large in comparison with the temperature interval over which the external fluid which serves as the heat source for the heat evaporator changes With the heat pump, it is possible to reduce the vaporization interval by carrying out the vaporization step at two successive pressure levels. Such an arrangement is made on the operating diagram which is represented in FIG. 3 and which is illustrated by example 3.

Le fluide mixte de travail est partiellement vaporisé à un premier niveau de pression P1 dans l'échangeur Elo, dans lequel il entre par le conduit 30 et ressort par le conduit 31 ; l'échange de chaleur dans E10 est effectué avec une première fraction du fluide extérieur constituant la source froide, arrivant par le tube 43 et repartant par le tube 44. La vaporisation du fluide mixte se poursuit dans l'échangeur E11, dans lequel le fluide mixte entre en mélange liquide-vapeur par le conduit 31, repart par le conduit 32 et prélève la chaleur de vaporisation sur le fluide mixte liquide, qui circule à contre-courant, pénètre dans E11 par le conduit 41 et ressort par le conduit 42. Le mélange liquide-vapeur est évacué par le canal 32 dans le ballon B3, où les phases liquide et vapeur se séparent. La phase vapeur est évacuée par le tube 33 et est aspirée, toujours à la pression Pi, à un étage intermédiaire du compresseur K2. La disposition décrite suppose donc que la compression est effectuée en au moins deux étages.The mixed working fluid is partially vaporized at a first pressure level P 1 in the exchanger E lo , into which it enters through the conduit 30 and exits through the conduit 31; the heat exchange in E10 is carried out with a first fraction of the external fluid constituting the cold source, arriving by the tube 43 and leaving by the tube 44. The vaporization of the mixed fluid continues in the exchanger E11, in which the fluid mixed enters liquid-vapor mixture via line 31, leaves via line 32 and takes the heat of vaporization on the mixed liquid fluid, which flows against the current, enters E11 through line 41 and exits through line 42. The liquid-vapor mixture is discharged through channel 32 in the flask B3, where the liquid and vapor phases separate. The vapor phase is evacuated through the tube 33 and is sucked, still at the pressure P i , to an intermediate stage of the compressor K2. The arrangement described therefore assumes that the compression is carried out in at least two stages.

A la sortie de B3, la phase liquide est évacuée par le conduit 34, sous-refroidie dans l'échangeur E12, puis est envoyée par le conduit 35 à travers la vanne de détente V4, où elle est détendue jusqu'à la pression basse du cycle P2, inférieure à P1. Une fois détendu dans V4, le fluide mixte est envoyé par le conduit 36 dans l'échangeur E13 et en ressort à l'état liquide vapeur par le conduit 37. L'échangeur assure la vaporisation partielle du fluide mixte à la pression P2, en prélevant de la chaleur sur une deuxième fraction du fluide extérieur extrait de la source froide, arrivant par le tube 45 et ressortant par le tube 46.At the outlet of B3, the liquid phase is evacuated through line 34, sub-cooled in the exchanger E12, then is sent through line 35 through the expansion valve V4, where it is expanded to low pressure of cycle P 2 , less than P 1 . Once expanded in V4, the mixed fluid is sent via line 36 in the exchanger E13 and emerges therefrom in the liquid vapor state via line 37. The exchanger provides partial vaporization of the mixed fluid at pressure P 2 , by taking heat from a second fraction of the external fluid extracted from the cold source, arriving through the tube 45 and leaving through the tube 46.

La fin de la vaporisation du fluide mixte et une surchauffe éventuelle est effectuée dans l'échangeur E12 ; le fluide mixte partiellement vaporisé entre dans E12 par le tube 37, en ressort par le tube 38 et prélève la chaleur nécessaire à la fin de vaporisation au liquide sous-refroidi qui entre par le conduit 34 et repart par le conduit 35.The end of the vaporization of the mixed fluid and possible overheating is carried out in the exchanger E12; the partially vaporized mixed fluid enters E12 through the tube 37, exits from it through the tube 38 and takes the heat required at the end of vaporization from the sub-cooled liquid which enters through the conduit 34 and leaves via the conduit 35.

Les niveaux de pression P1 et P2 obtenus à l'aide des organes de détente V3 et V4 sont fixés de manière à ce que la température du mélange liquide vapeur à l'entrée de l'échangeur E13 soit voisine de la température du mélange liquide vapeur à l'entrée de l'échangeur E10. Il est clair qu'ainsi l'intervalle de température entre le début et la fin de vaporisation est réduit. Une conséquence directe en est qu'au lieu d'avoir à comprimer tout le mélange vapeur à partir du niveau de pression P2, il est possible de comprimer une fraction de ce mélange vapeur à partir du niveau de pression intermédiaire P1 supérieur au niveau de pression P2.The pressure levels P1 and P2 obtained using the expansion members V3 and V4 are fixed so that the temperature of the liquid vapor mixture at the inlet of the exchanger E13 is close to the temperature of the liquid vapor mixture at the inlet of the exchanger E10. It is therefore clear that the temperature interval between the start and the end of spraying is reduced. A direct consequence of this is that instead of having to compress the entire vapor mixture from the pressure level P2, it is possible to compress a fraction of this vapor mixture from the intermediate pressure level P1 greater than the pressure level P2.

Le fluide mixte vaporisé à la pression P2 est évacué vers le premier étage du compresseur K1 par la conduite 38 ; il est mélangé au cours de la compression avec le fluide mixte vaporisé à la pression P1 et aspiré par le conduit 33. Le mélange final est refoulé de K2 par le canal 39 à la pression P3, qui est la pression haute du cycle (P3 > P1 > P2). Il est alors désurchauffé et condensé dans l'échangeur E14, en chauffant le fluide extérieur qui arrive à contre-courant par le conduit 47 et repart par le conduit 48.The mixed fluid vaporized at the pressure P 2 is evacuated to the first stage of the compressor K1 by the line 38; it is mixed during compression with the mixed fluid vaporized at the pressure P 1 and sucked up through the pipe 33. The final mixture is discharged from K2 through the channel 39 at the pressure P 3 , which is the high pressure of the cycle ( P 3 > P 1 > P 2 ). It is then desuperheated and condensed in the exchanger E14, by heating the external fluid which arrives against the current by the conduit 47 and leaves again by the conduit 48.

Le fluide mixte, une fois condensé, est recueilli par l'intermédiaire du tube 40 dans le ballon de stockage B4. Le fluide mixte liquide est évacué par le tube 41, est sous-refroidi dans l'échangeur E11, puis envoyé par le conduit 42 à la vanne V3. Là il est détendu jusqu'à la pression intermédiaire du cycle Pi.The mixed fluid, once condensed, is collected via the tube 40 in the storage flask B4. The mixed liquid fluid is discharged through the tube 41, is sub-cooled in the exchanger E11, then sent via the conduit 42 to the valve V3. There it is relaxed until the intermediate pressure of the cycle P i .

Différents mélanges peuvent être utilisés, comme fluide mixte de travail, à condition de ne pas former d'azéotrope dans les conditons de fonctionnement de la pompe à chaleur. Le mélange peut être formé par exemple par un mélange d'hydrocarbures ou d'hydrocarbures halogénés du type « Fréons •, ou encore d'alcools, de cétones, d'esters, éthers, amines. Il peut être avantageux, notamment pour des installations fonctionnant à des températures relativement élevées, d'utiliser un mélange d'eau et d'un constituant soluble dans l'eau, tel que l'ammoniac ou encore tel que le méthanol.Different mixtures can be used as mixed working fluid, provided that an azeotrope is not formed in the operating conditions of the heat pump. The mixture can be formed for example by a mixture of hydrocarbons or halogenated hydrocarbons of the “Freons” type, or alternatively of alcohols, ketones, esters, ethers, amines. It may be advantageous, in particular for installations operating at relatively high temperatures, to use a mixture of water and a water-soluble constituent, such as ammonia or even such as methanol.

Un domaine d'application particulièrement important du procédé selon l'invention concerne les applications au chauffage de locaux et notamment les pompes à chaleur équipant des habitations. L'invention s'applique également aux installations qui fonctionnent en pompe à chaleur en hiver et en conditionnement d'air en été et dans lesquelles le passage du fonctionnement « hiver au fonctionnement « été s'obtient par exemple en mettant en oeuvre une vanne d'inversion selon un principe bien connu en conditionnement d'air. Le procédé selon l'invention correspondant au schéma 3 est adapté à des applications du type chauffage industriel ou collectif, dans lesquelles la variation de température du fluide de chauffage est nettement plus grande que le refroidissement du fluide provenant de la source froide.A particularly important field of application of the method according to the invention relates to applications in space heating and in particular the heat pumps fitted to dwellings. The invention also applies to installations which operate as a heat pump in winter and in air conditioning in summer and in which the transition from “winter to summer” operation is obtained for example by using a valve of inversion according to a well-known principle in air conditioning. The method according to the invention corresponding to diagram 3 is suitable for applications of the industrial or collective heating type, in which the temperature variation of the heating fluid is significantly greater than the cooling of the fluid from the cold source.

Dans les installations de chauffage ou de conditionnement de locaux, pour des raisons de sécurité, le mélange utilisé est généralement un mélange de constituants du type « Fréons •. Les mélanges peuvent être ainsi formés par des mélanges binaires comportant un constituant majoritaire tel que le monochloro- difluorométhane (R-22), le dichlorofluorométhane (R-12), le chloropentafluoroéthane (R-115) ou encore un mélange azéotropique tel que le R-502, azéotrope de R-22 et de R-115 et un second constituant que le trichlorofluorométhane (R-11), le dichlorotétrafluoroéthane (R-114), le dichlorohexafluoropropane (R-216), le dichlorofluorométhane (R-21), le monochlorotrifluorométhane (R-13), le trifluorométhane (R-23), le trifluorobromométhane (R-13B1). Des exemples spécifiques sont les suivants :

  • R-22 + R-11
  • R-22 + R-114
  • R-12 + R-13
  • R-502 + R-114
In space heating or conditioning installations, for safety reasons, the mixture used is generally a mixture of constituents of the "Freons" type. The mixtures can thus be formed by binary mixtures comprising a majority constituent such as monochlorodifluoromethane (R-22), dichlorofluoromethane (R-12), chloropentafluoroethane (R-115) or even an azeotropic mixture such as R -502, an azeotrope of R-22 and R-115 and a second constituent such as trichlorofluoromethane (R-11), dichlorotetrafluoroethane (R-114), dichlorohexafluoropropane (R-216), dichlorofluoromethane (R-21), monochlorotrifluoromethane (R-13), trifluoromethane (R-23), trifluorobromomethane (R-13B1). Specific examples are:
  • R-22 + R-11
  • R-22 + R-114
  • R-12 + R-13
  • R-502 + R-114

Le réglage de l'organe de détente qui précède l'évaporateur doit être effectué en tenant compte de la composition du mélange. Dans les pompes à chaleur utilisées pour le chauffage de locaux, le détendeur est en général pourvu d'un bulbe qui contient le réfrigrant utilisé comme fluide de travail. La pression de détente obtenue correspond à une pression telle que le même réfrigérant à la température du bulbe est surchauffé de 5 à 15 °C ; cette surchauffe étant réglée en jouant sur le tarage du détendeur. Le même type de détendeur peut être utilisé dans le cas d'un mélange. La pression après détente doit être toutefois réglée de manière à ce que le fluide mixte de travail ne soit que partiellement vaporisé au cours de l'échange avec le fluide extérieur qui sert de source de chaleur et sorte légèrement surchauffé de l'échangeur dans lequel il prélève de la chaleur sur le mélange sortant du condenseur. Ce réglage peut être effectué à la fois en jouant sur le tarage du détendeur et sur la position du bulbe ainsi que sur la nature du fluide qui remplit le bulbe qui peut être par exemple du R-22 ou du R-12. Le bulbe peut être placé en différents points et mis en équilibre de température avec le fluide mixte de travail par exemple à la fin de l'étape (e) ou à la fin de l'étape (f) ou à la fin de l'étape (c) ou encore en un point intermédiaire de l'une quelconque de ces étapes.The adjustment of the expansion device which precedes the evaporator must be carried out taking into account the composition of the mixture. In heat pumps used for space heating, the regulator is generally provided with a bulb which contains the refrigerant used as working fluid. The expansion pressure obtained corresponds to a pressure such that the same refrigerant at the bulb temperature is superheated from 5 to 15 ° C; this overheating being adjusted by adjusting the calibration of the regulator. The same type of regulator can be used in the case of a mixture. The pressure after expansion must, however, be adjusted so that the mixed working fluid is only partially vaporized during the exchange with the external fluid which serves as a heat source and comes out slightly overheated from the exchanger in which it draws heat from the mixture leaving the condenser. This adjustment can be carried out both by adjusting the setting of the regulator and the position of the bulb as well as the nature of the fluid which fills the bulb which can be for example R-22 or R-12. The bulb can be placed at different points and brought into temperature equilibrium with the mixed working fluid, for example at the end of step (e) or at the end of step (f) or at the end of the step (c) or at an intermediate point in any one of these steps.

On conçoit qu'il est possible soit d'augmenter la pression si l'on constate que la surchauffe à la fin de l'étape (f) est excessive en déplaçant le bulbe vers un point dont la température est plus élevée, soit de diminuer la pression en déplaçant le bulbe vers un point dont la température est plus basse. En utilisant une telle disposition, il est possible d'obtenir un réglage automatique de la pression dans l'évaporateur en réponse à une variation de la température extérieure.It is understood that it is possible either to increase the pressure if it is found that the overheating at the end of step (f) is excessive by moving the bulb towards a point whose temperature is higher, or to decrease pressure by moving the bulb to a point with a lower temperature. By using such an arrangement, it is possible to obtain an automatic adjustment of the pressure in the evaporator in response to a variation in the outside temperature.

Les conditions de fonctionnement sont choisies en général de manière à ce que la pression du mélange dans l'évaporateur soit supérieure à la pression atmosphérique et que la pression du mélange dans le condenseur n'atteigne pas des valeurs excessives, par exemple supérieures à 30 bar.The operating conditions are generally chosen so that the pressure of the mixture in the evaporator is greater than atmospheric pressure and that the pressure of the mixture in the condenser does not reach excessive values, for example greater than 30 bar. .

La température d'entrée du fluide extérieur qui sert de source de chaleur est généralement supérieure à 9 °C pendant au moins une partie de la durée de fonctionnement de la pompe à chaleur au cours de l'année.The inlet temperature of the external fluid which serves as a heat source is generally higher than 9 ° C for at least part of the operating time of the heat pump during the year.

L'appareil mettant en oeuvre le procédé peut être réalisé en utilisant différents équipements pour chacun des composants.The apparatus implementing the method can be carried out using different equipment for each of the components.

Ainsi l'échangeur dans lequel est effectuée l'étape finale de vaporisation qui s'effectue par échange avec le mélange sortant du condenseur peut être par exemple un échangeur double tube, différents types d'ailettes pouvant être introduits soit dans le ou les tubes intérieurs et l'espace annulaire entre le ou les tubes intérieurs et le tube extérieur. Dans ce cas, il pourra être avantageux de faire circuler le mélange sortant du condenseur dans le ou les tubes intérieurs de manière à obtenir des vitesses de passage plus élevées.Thus, the exchanger in which the final vaporization step is carried out, which is carried out by exchange with the mixture leaving the condenser, can for example be a double tube exchanger, different types of fins being able to be introduced either into the inner tube or tubes. and the annular space between the inner tube (s) and the outer tube. In this case, it may be advantageous to circulate the mixture leaving the condenser in the inner tube or tubes so as to obtain higher passage speeds.

Ledit échangeur pourra être également constitué par un échangeur à plaques planes ou encore en spirale, la seule condition à respecter étant de réaliser un échange qui soit le plus proche possible d'un contre-courant pur.Said exchanger may also be constituted by an exchanger with flat or spiral plates, the only condition to be observed being to carry out an exchange which is as close as possible to a pure counter-current.

Les échangeurs en contact avec les fluides extérieurs, c'est-à-dire l'évaporateur et le condenseur, peuvent être également de type quelconque à condition d'être adaptés à la nature du fluide extérieur avec lequel s'effectue l'échange.The exchangers in contact with the external fluids, that is to say the evaporator and the condenser, can also be of any type provided that they are adapted to the nature of the external fluid with which the exchange takes place.

Le compresseur peut être par exemple un compresseur à piston lubrifié du type hermétique ou du type ouvert, un compresseur à piston sec ou pour des puissances supérieurs, un compresseur à vis ou un compresseur centrifuge.The compressor can be for example a lubricated piston compressor of the hermetic or open type, a dry piston compressor or for higher powers, a screw compressor or a centrifugal compressor.

les Figures 1, 2 et 3 qui servent à illustrer l'invention ne constituent que des schémas de principe et ne font pas mention de certains éléments secondaires pouvant faire partie des installations usuelles de pompes à chaleur, tels que voyant, cartouche séchante, bouteille anticoup de liquide à l'entrée du compresseur, etc...Figures 1, 2 and 3 which serve to illustrate the invention constitute only schematic diagrams and do not mention certain secondary elements which may form part of the usual installations of heat pumps, such as sight glass, drying cartridge, anti-blow bottle liquid at the compressor inlet, etc ...

Les exemples suivants illustrent la mise en oeuvre du procédé selon l'invention.The following examples illustrate the implementation of the method according to the invention.

Exemple 1Example 1

L'exemple 1 est illustré par la Figure 1. La source froide est constituée par l'eau extraite d'une nappe phréatique. Cette eau, dont le débit est de 1 500 I/h, arrive dans l'évaporateur E1 par le conduit 2 à une température de 12 °C et ressort de l'évaporateur E1 par le conduit 3 à une température de 5°C. Au condenseur E3, l'eau de chauffage dont le débit est de 1 000 I/h arrive par le conduit 10 à une température de 21,3°C et ressort par le conduit 11 à une température de 34,5 °C.Example 1 is illustrated in Figure 1. The cold source consists of water extracted from a water table. This water, the flow rate of which is 1,500 l / h, arrives in the evaporator E1 via the pipe 2 at a temperature of 12 ° C. and leaves the evaporator E1 through the pipe 3 at a temperature of 5 ° C. At the condenser E3, the heating water, the flow rate of which is 1000 l / h, arrives via line 10 at a temperature of 21.3 ° C. and leaves via line 11 at a temperature of 34.5 ° C.

Le fluide de travail est un mélange binaire dont la composition molaire est la suivante :

  • R-22 (chlorodifluorométhane) : 0,94
  • R-11 (trichlorotrifluorométhane) : 0,06
The working fluid is a binary mixture whose molar composition is as follows:
  • R-22 (chlorodifluoromethane): 0.94
  • R-11 (trichlorotrifluoromethane): 0.06

Le mélange sort de l'évaporateur E1 à une température de 3,5 °C. La fraction molaire vaporisée à la sortie de E1 est 0,86. Le mélange finit de se vaporiser dans l'échangeur E2 à une température de 9,3 °C. On observe que l'introduction de l'échangeur E2 dans lequel le mélange sortant de l'évaporateur E1 finit de se vaporiser et dans lequel le mélange sortant du bac de réserve B1 est sous-refroidi permet à la fois d'augmenter le coefficient de performance de 6,1 % et de réduire le débit volumique à l'aspiration du compresseur de 4,4 %, par rapport à une installation identique ne comportant pas l'échangeur E2 et fonctionnant avec le même mélange.The mixture leaves the evaporator E1 at a temperature of 3.5 ° C. The molar fraction vaporized at the outlet of E1 is 0.86. The mixture finishes vaporizing in the exchanger E2 at a temperature of 9.3 ° C. It is observed that the introduction of the exchanger E2 in which the mixture leaving the evaporator E1 finishes vaporizing and in which the mixture leaving the reserve tank B1 is sub-cooled makes it possible both to increase the coefficient of 6.1% performance and reduce the volume flow rate at the compressor suction by 4.4%, compared to an identical installation without the E2 exchanger and operating with the same mixture.

Exemple 2Example 2

L'exemple 2 est illustré par la Figure 2. L'évaporateur E4 reçoit un débit d'air extérieur de 4 864 m3/h arrivant à une température de 8,3 °C. Cet air ressort à une température de 6,3 °C. Le condenseur E6 permet le chauffage d'un débit de 1 084 m3/h d'air provenant du local à chauffer, qui arrive sur le condenseur E6 à une température de 21,1 °C et ressort réchauffé à une température de 33,4 °C.Example 2 is illustrated in Figure 2. The evaporator E4 receives an outside air flow of 4,864 m 3 / h arriving at a temperature of 8.3 ° C. This air comes out at a temperature of 6.3 ° C. The condenser E6 allows the heating of a flow of 1,084 m 3 / h of air coming from the room to be heated, which arrives on the condenser E6 at a temperature of 21.1 ° C and leaves warmed up to a temperature of 33, 4 ° C.

Le fluide de travail est un mélange ternaire dont la composition molaire est la suivante :

  • R-22 (chlorodifluorométhane) : 0,91
  • R-114 (dichlorotétrafluoroéthane) : 0,06
  • R-11 (trichlorofluorométhane) : 0,03
The working fluid is a ternary mixture, the molar composition of which is as follows:
  • R-22 (chlorodifluoromethane): 0.91
  • R-114 (dichlorotetrafluoroethane): 0.06
  • R-11 (trichlorofluoromethane): 0.03

Le mélange sort de l'évaporateur E4 à une température de 0,6 °C. La fraction molaire vaporisée à la sortie de l'évaporateur E4 est 0,85. Le mélange finit de se vaporiser dans l'échangeur E5 à une température de 5,1 °C. L'introduction de l'échangeur E5 permet à la fois d'augmenter le coefficient de performance de 5,7 % et de réduire le débit volumique à l'aspiration du compresseur de 7,4 % par rapport à une installation identique ne comportant pas l'échangeur E5 et fonctionnant avec le même mélange.The mixture leaves the evaporator E4 at a temperature of 0.6 ° C. The molar fraction vaporized at the outlet of the evaporator E4 is 0.85. The mixture finishes vaporizing in the E5 exchanger at a temperature of 5.1 ° C. The introduction of the E5 exchanger makes it possible both to increase the coefficient of performance by 5.7% and to reduce the volume flow rate at the compressor suction by 7.4% compared to an identical installation without the E5 exchanger and operating with the same mixture.

Exemple 3Example 3

L'exemple 3 est illustré par la Figure 3. La source de chaleur aux évaporateurs E10 et E13 est constituée par de l'eau envoyée à 40 °C et refroidie jusqu'à 33 °C. Le débit d'eau circulant dans les évaporateurs E10 et E13 est identique et égal à 75 m3/h. Le fluide de chauffage qui est chauffé au condenseur E14 est de l'eau qui entre dans le condenseur E14 à une température de 45 °C et qui est réchauffée jusqu'à une température de 82 °C. Son débit est de 35 m3/h. Le fluide de travail est un mélange binaire équimolaire constiué de dichlorodifluorométhane (R-12) et de trichlorotrifluoroéthane (R-113). Le compresseur est un compresseur du type centrifuge à deux étages. Le premier étage aspire le mélange vapeur à une pression de 1,31 bar et le refoule à une pression intermédiaire de 2,49 bar. Le second étage comprime le mélange sortant du premier étage et le mélange arrivant par le conduit 33 jusqu'à une pression finale de 6,54 bar.Example 3 is illustrated in Figure 3. The heat source to the evaporators E10 and E13 consists of water sent to 40 ° C and cooled to 33 ° C. The water flow circulating in the evaporators E10 and E13 is identical and equal to 75 m 3 / h. The heating fluid which is heated at the condenser E14 is water which enters the condenser E14 at a temperature of 45 ° C and which is reheated to a temperature of 82 ° C. Its flow is 35 m 3 / h. The working fluid is an equimolar binary mixture consisting of dichlorodifluoromethane (R-12) and trichlorotrifluoroethane (R-113). The compressor is a two-stage centrifugal type compressor. The first stage sucks the steam mixture at a pressure of 1.31 bar and discharges it at an intermediate pressure of 2.49 bar. The second stage compresses the mixture leaving the first stage and the mixture arriving via line 33 to a final pressure of 6.54 bar.

Le mélange liquide sous-refroidi sortant de l'échangeur E11 par le conduit42 commence à se vaporiser dans l'évaporateur E10. Par rapport au débit liquide de la conduite 41 on constate que, à la sortie de l'évaporateur E10, la fraction vaporisée est de 0,4 en fraction molaire ; à la sortie de l'évaporateur E11, elle est de 0,5 en fraction molaire ; à la sortie de l'évaporateur E13 la fraction vaporisée est au total de 0,8 en fraction molaire (soit 0,3 dans l'évaporateur E12.The sub-cooled liquid mixture leaving the exchanger E11 via the conduit 42 begins to vaporize in the evaporator E10. With respect to the liquid flow rate of line 41, it can be seen that, at the outlet of the evaporator E10, the vaporized fraction is 0.4 in molar fraction; at the outlet of the evaporator E11, it is 0.5 in molar fraction; at the outlet of the evaporator E13, the vaporized fraction is a total of 0.8 in molar fraction (i.e. 0.3 in the evaporator E12.

L'intervalle de condensation dans l'échangeur E14 est de 39 °C alors que les intervalles de vaporisation à basse pression (vaporisation opérée dans les échangeurs E13 et E12) et à pression intermédiaire (vaporisation opérée dans les échangeurs E10 et E11) sont voisins de 18 °C. On vérifie ainsi que la disposition schématisée sur la Figure 3 permet de récupérer de la chaleur sur un intervalle de température beaucoup plus réduit que l'intervalle de température suivant lequel elle est fournie, en opérant des échanges de chaleur dans de bonnes conditions de réversibilité. Il s'ensuit un gain sur le coefficient de performance qui, dans l'exemple considéré, est d'environ 25% par rapport à un cycle comprenant un seul évaporateur et utilisant le même mélange.The condensation interval in the exchanger E14 is 39 ° C. while the vaporization intervals at low pressure (vaporization operated in exchangers E13 and E12) and at intermediate pressure (vaporization operated in exchangers E10 and E11) are close 18 ° C. It is thus verified that the arrangement shown diagrammatically in FIG. 3 makes it possible to recover heat over a temperature interval much smaller than the temperature interval according to which it is supplied, by carrying out heat exchanges under good conditions of reversibility. This results in a gain on the coefficient of performance which, in the example considered, is approximately 25% compared to a cycle comprising a single evaporator and using the same mixture.

Claims (11)

1. Method of heating a room by means of a compression heat pump delivering heat to this room within a temperature range larger than the temperature range of the disposable heat source and operating with a mixed working fluid under such conditions that the mixture of constituents forming the mixed working fluid does not form any azeotrope, comprising the steps of : (a) compressing the mixed working fluid in vapor phase, (b) contacting in heat exchange relationship the compressed mixed fluid issued from step (a) with a relatively cold external fluid, said external fluid forming the heat source for the room, so as to supply compression heat to said external fluid, and maintaining said contact up to the substantially complete condensation of said mixed fluid, (c) contacting in heat exchange relationship, at least a liquid fraction of said mixed fluid substantially completely condensed in step (b) with a cooling fluid as defined in step (f), so as to further cool said liquid fraction of mixed fluid and to heat said cooling fluid defined in step (f), (d) expanding the cooled fraction of mixed fluid issued from step (c), (e) contacting the expanded fraction of mixed fluid, issued from step (d), in heat exchange relationship, with an external fluid constituting a heat source, the conditions of contact providing for the partial vaporization of said expanded fraction of mixed fluid and (f) contacting said partially vaporized fraction of mixed fluid issued from step (e), in heat exchange relationship, with the fraction of mixed fluid substantially completely condensed fed to step (c), said fraction of mixed fluid partially vaporized forming the cooling fluid of said step (c), characterized in that the contact conditions in step (f) are chosen so as to provide the completion of the vaporization initiated in step (e) and in that the proportion of the fraction of mixed working fluid vaporized in step (f) is at least 5 % in mole of the total fraction of mixed working fluid vaporized in steps (e) and (f) and in that the fraction of mixed working fluid completely vaporized issued from step (f) is fed back directly to step (a).
2. A process according to claim 1, wherein the heat exchange between the mixed working fluid of step (f) and the mixed working fluid of step (c) is conducted counter-currently.
3. A process according to one of claims 1 and 2, wherein the molar fraction of the mixed working fluid which is vaporized in step (e) is from 60 to 95 %, and that vaporized in step (f) is from 5 to 40 %, with respect to the total amount of mixed fluid vaporized in these two steps.
4. A process according to any of claims 1 to 3, wherein the heat exchange in step (b) is conducted counter-currently.
5. A process according to any of claims 1 to 4, wherein the heat exchange of step (e) is conducted counter-currently.
6. A process according to any of claims 1 to 5, wherein said temperature range of step (e) is smaller than 10°C and said temperature range of step (b) is larger than 10°C.
7. A process according to claim 6, wherein said temperature range of step (e) is smaller than 5 °C and said temperature range of step (b) is larger than 15 °C.
8. A process according to any of claims 1 to 7, wherein the mixed working fluid is a non-azeotropic mixture of constituents selected from hydrocarbons and halogenated hydrocarbons.
9. A process according to any of claims 1 to 7, wherein the mixed working fluid comprises one major constituent selected from the group consisting of R-22, R-12, R-115 and R-502 and a second constituent selected from the group consisting of R-11, R-114, R-216, R-21, R-13, R-23 and R-13 B1.
10. A process according to any of claims 1 to 9, wherein the composition of the mixed working fluid is selected so that the temperature range required for its substantially complete condentation in step (b) is close to the difference between the input and output temperatures of the relatively cold external fluid of the same step (b).
11. A process according to any of claims 1 to 10, wherein the expansion pressure is controlled in response to the temperature variations at the output of step (e) so as to partially vaporize the mixed fluid of step (e) and to complete its vaporization in step (f).
EP82400042A 1981-01-15 1982-01-11 Method of heating a room by means of a compression heat pump using a mixed working medium Expired EP0057120B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT82400042T ATE17273T1 (en) 1981-01-15 1982-01-11 METHOD OF HEATING A SPACE USING A COMPRESSION HEAT PUMP USING A MIXTURE AS THE WORKING FLUID.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8100847 1981-01-12
FR8100847A FR2497931A1 (en) 1981-01-15 1981-01-15 METHOD FOR HEATING AND HEAT CONDITIONING USING A COMPRESSION HEAT PUMP OPERATING WITH A MIXED WORKING FLUID AND APPARATUS FOR CARRYING OUT SAID METHOD

Publications (3)

Publication Number Publication Date
EP0057120A2 EP0057120A2 (en) 1982-08-04
EP0057120A3 EP0057120A3 (en) 1983-05-04
EP0057120B1 true EP0057120B1 (en) 1986-01-02

Family

ID=9254262

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82400042A Expired EP0057120B1 (en) 1981-01-15 1982-01-11 Method of heating a room by means of a compression heat pump using a mixed working medium

Country Status (6)

Country Link
US (1) US4406135A (en)
EP (1) EP0057120B1 (en)
JP (1) JPS57184860A (en)
AT (1) ATE17273T1 (en)
DE (1) DE3268192D1 (en)
FR (1) FR2497931A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020021555A1 (en) * 2016-07-21 2020-01-30 Exency Ltd. Exploiting compression heat in heat engines

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59157446A (en) * 1983-02-22 1984-09-06 松下電器産業株式会社 Refrigeration cycle device
FR2561363B1 (en) * 1984-03-14 1987-03-20 Inst Francais Du Petrole PROCESS FOR IMPLEMENTING A HEAT PUMP AND / OR A REFRIGERATION COMPRESSION MACHINE HAVING PERIODIC DEFROSTING BY CYCLE INVERSION
FR2564955B1 (en) * 1984-05-28 1987-03-20 Inst Francais Du Petrole PROCESS FOR PRODUCING HEAT AND / OR COLD USING A COMPRESSION MACHINE OPERATING WITH A MIXED WORKING FLUID
JPS6166053A (en) * 1984-09-06 1986-04-04 松下電器産業株式会社 Heat pump device
KR860002704A (en) * 1984-09-06 1986-04-28 야마시다 도시히꼬 Heat pump
DE3565718D1 (en) * 1984-09-19 1988-11-24 Toshiba Kk Heat pump system
HU198328B (en) * 1984-12-03 1989-09-28 Energiagazdalkodasi Intezet Method for multiple-stage operating hibrid (compression-absorption) heat pumps or coolers
FR2575812B1 (en) * 1985-01-09 1987-02-06 Inst Francais Du Petrole PROCESS FOR PRODUCING COLD AND / OR HEAT USING A NON-AZEOTROPIC MIXTURE OF FLUIDS IN AN EJECTOR CYCLE
FR2578638B1 (en) * 1985-03-08 1989-08-18 Inst Francais Du Petrole METHOD FOR TRANSFERRING HEAT FROM A HOT FLUID TO A COLD FLUID USING A MIXED FLUID AS A HEAT EXCHANGER
HU198329B (en) * 1986-05-23 1989-09-28 Energiagazdalkodasi Intezet Method and apparatus for increasing the power factor of compression hybrid refrigerators or heat pumps operating by solution circuit
US4724679A (en) * 1986-07-02 1988-02-16 Reinhard Radermacher Advanced vapor compression heat pump cycle utilizing non-azeotropic working fluid mixtures
FR2607142B1 (en) * 1986-11-21 1989-04-28 Inst Francais Du Petrole MIXTURE OF WORKING FLUIDS FOR USE IN COMPRESSION THERMODYNAMIC CYCLES COMPRISING TRIFLUOROMETHANE AND CHLORODIFLUOROETHANE
DE3922950A1 (en) * 1989-07-12 1991-01-17 Mayer Schuh Gmbh Ski boot with hard shell - has slide guides and strap ports linked by tension device
US5237828A (en) * 1989-11-22 1993-08-24 Nippondenso Co., Ltd. Air-conditioner for an automobile with non-azeotropic refrigerant mixture used to generate "cool head" and "warm feet" profile
US5076064A (en) * 1990-10-31 1991-12-31 York International Corporation Method and refrigerants for replacing existing refrigerants in centrifugal compressors
CH691743A5 (en) * 1996-04-01 2001-09-28 Satag Thermotechnik Ag Plant for power conversion by the cold vapor compression process.
WO2010065423A1 (en) * 2008-12-02 2010-06-10 Xergy Incorporated Electrochemical compressor and refrigeration system
GB2482629B (en) * 2009-05-01 2015-04-08 Xergy Inc Self-contained electrochemical heat transfer system
US11118816B2 (en) * 2009-05-01 2021-09-14 Xergy Inc. Advanced system for electrochemical cell
US9464822B2 (en) * 2010-02-17 2016-10-11 Xergy Ltd Electrochemical heat transfer system
DE102013211084A1 (en) * 2013-06-14 2014-12-18 Siemens Aktiengesellschaft Method for operating a heat pump and heat pump

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2041725A (en) * 1934-07-14 1936-05-26 Walter J Podbielniak Art of refrigeration
US2255584A (en) * 1937-12-11 1941-09-09 Borg Warner Method of and apparatus for heat transfer
US2255585A (en) * 1937-12-27 1941-09-09 Borg Warner Method of and apparatus for heat transfer
GB643886A (en) * 1947-10-20 1950-09-27 Martin Ruhemann Improvements in and relating to cooling processes and machines
US2581558A (en) * 1947-10-20 1952-01-08 Petrocarbon Ltd Plural stage cooling machine
US2841965A (en) * 1954-06-29 1958-07-08 Gen Electric Dual capacity refrigeration
US2794328A (en) * 1954-06-29 1957-06-04 Gen Electric Variable temperature refrigeration
US2794329A (en) * 1954-06-29 1957-06-04 Gen Electric Variable temperature refrigeration
US2867094A (en) * 1954-09-30 1959-01-06 Gen Electric Variable temperature refrigeration
US2952139A (en) * 1957-08-16 1960-09-13 Patrick B Kennedy Refrigeration system especially for very low temperature
DE1241468B (en) * 1962-12-01 1967-06-01 Andrija Fuderer Dr Ing Compression method for generating cold
DD100969A1 (en) * 1972-03-24 1973-10-12
US3889485A (en) * 1973-12-10 1975-06-17 Judson S Swearingen Process and apparatus for low temperature refrigeration
FR2296827A1 (en) * 1974-12-31 1976-07-30 Vignal Maurice Heat pump circulation system - has heat exchanger with cooling and heating passages connecting compressor condenser and expander unit
US4167101A (en) * 1975-08-14 1979-09-11 Institut Francais Du Petrole Absorption process for heat conversion
FR2337855A1 (en) * 1976-01-07 1977-08-05 Inst Francais Du Petrole HEAT PRODUCTION PROCESS USING A HEAT PUMP OPERATING WITH A MIXTURE OF FLUIDS
DE2628007A1 (en) * 1976-06-23 1978-01-05 Heinrich Krieger PROCESS AND SYSTEM FOR GENERATING COLD WITH AT LEAST ONE INCORPORATED CASCADE CIRCUIT
HU186726B (en) * 1979-06-08 1985-09-30 Energiagazdalkodasi Intezet Hybrid heat pump
FR2474151A1 (en) * 1980-01-21 1981-07-24 Inst Francais Du Petrole METHOD OF PRODUCING HEAT USING A HEAT PUMP USING A SPECIFIC MIXTURE OF FLUIDS AS A WORKING AGENT
FR2476287A1 (en) * 1980-02-15 1981-08-21 Inst Francais Du Petrole METHOD FOR THE PRODUCTION OF COLD AND / OR HEAT BY ABSORPTION CYCLE FOR USE IN PARTICULAR FOR THE HEATING OF PREMISES
SU1035354A1 (en) * 1980-10-16 1983-08-15 Всесоюзный Научно-Исследовательский Экспериментально-Конструкторский Институт Электробытовых Машин И Приборов Method of creating refrigeration in single-stage compression refrigerating machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020021555A1 (en) * 2016-07-21 2020-01-30 Exency Ltd. Exploiting compression heat in heat engines

Also Published As

Publication number Publication date
FR2497931A1 (en) 1982-07-16
EP0057120A2 (en) 1982-08-04
JPS57184860A (en) 1982-11-13
US4406135A (en) 1983-09-27
ATE17273T1 (en) 1986-01-15
FR2497931B1 (en) 1984-09-28
EP0057120A3 (en) 1983-05-04
DE3268192D1 (en) 1986-02-20

Similar Documents

Publication Publication Date Title
EP0057120B1 (en) Method of heating a room by means of a compression heat pump using a mixed working medium
CA1172054A (en) Method for producing heat by means of a heat pump using a mixture of fluids as working agents and air as heat source
EP0041005A1 (en) Method for mechanical energy production from heat using a mixture of fluids as the working fluid
CA2435795A1 (en) Method and system for extracting carbon dioxide by anti-sublimation for storage thereof
CA1295140C (en) Absorption heat and cold production process using a combination of components as woeking fluid
FR2514875A1 (en) METHOD OF HEATING AND / OR THERMALLY CONDITIONING A LOCAL USING A COMPRESSION HEAT PUMP USING A SPECIFIC MIXTURE OF WORKING FLUIDS
FR2575787A1 (en) METHOD FOR PRODUCING MECHANICAL ENERGY
FR2564955A1 (en) PROCESS FOR PRODUCING HEAT AND / OR COLD USING A COMPRESSION MACHINE OPERATING WITH A MIXED WORKING FLUID
FR2474151A1 (en) METHOD OF PRODUCING HEAT USING A HEAT PUMP USING A SPECIFIC MIXTURE OF FLUIDS AS A WORKING AGENT
US5647224A (en) Air conditioner and heat exchanger therefor
EP0192496B1 (en) Cold and/or heat production process using a non-azeotropic mixture of fluids in an ejector cycle
EP4325150A1 (en) Method and apparatus for cooling hydrogen
EP0081395B1 (en) Fluid for a heat pump and process for treating and/or thermally conditioning a room by means of a compression heat pump using a specific mixture of working fluids
FR2607142A1 (en) MIXTURE OF WORKING FLUIDS FOR USE IN COMPRESSION THERMODYNAMIC CYCLES COMPRISING TRIFLUOROMETHANE AND CHLORODIFLUOROETHANE
CA2278654A1 (en) Absorption refrigerating system and working mixture for said system
FR3074889A1 (en) SYSTEM AND METHOD FOR COOLING A GAS STREAM USING A EVAPORATOR
EP2411743B1 (en) Installation and method for the production of cold and/or heat
WO2022229293A1 (en) Heat pump and phase-change energy storage device
FR2561363A1 (en) Method for implementing a heat pump and/or a compression refrigeration machine comprising periodic defrosting by the inversion of the cycle
DK178705B1 (en) A heat pump system using water as the thermal fluid
FR2683301A1 (en) Mixed compression/absorption refrigeration device
EP0014630A1 (en) Thermodynamic engine and its use as a motor or as a refrigerating machine
RU2181864C1 (en) Method of cooling working medium and device for realization of this method
WO2020251480A1 (en) Water sourced heating-cooling machine with refrigerant cooling unit that cools with an external cooling source and heating-cooling method
FR3090081A1 (en) Cold production system comprising a compression machine, an absorption machine and a thermal storage system ensuring their coupling

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE GB IT NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH DE GB IT LI NL SE

17P Request for examination filed

Effective date: 19830930

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE GB IT LI NL SE

REF Corresponds to:

Ref document number: 17273

Country of ref document: AT

Date of ref document: 19860115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3268192

Country of ref document: DE

Date of ref document: 19860220

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19890131

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19910103

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19910111

Year of fee payment: 10

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19910308

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19920111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19920131

Ref country code: CH

Effective date: 19920131

Ref country code: BE

Effective date: 19920131

BERE Be: lapsed

Owner name: INSTITUT FRANCAIS DU PETROLE

Effective date: 19920131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19920801

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19921223

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19930107

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930306

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19940112

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19941001

EUG Se: european patent has lapsed

Ref document number: 82400042.6

Effective date: 19940810