EP0041005A1 - Method for mechanical energy production from heat using a mixture of fluids as the working fluid - Google Patents

Method for mechanical energy production from heat using a mixture of fluids as the working fluid Download PDF

Info

Publication number
EP0041005A1
EP0041005A1 EP81400755A EP81400755A EP0041005A1 EP 0041005 A1 EP0041005 A1 EP 0041005A1 EP 81400755 A EP81400755 A EP 81400755A EP 81400755 A EP81400755 A EP 81400755A EP 0041005 A1 EP0041005 A1 EP 0041005A1
Authority
EP
European Patent Office
Prior art keywords
mixture
temperature
heat
interval
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP81400755A
Other languages
German (de)
French (fr)
Other versions
EP0041005B1 (en
Inventor
Alexandre Rojey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Priority to AT81400755T priority Critical patent/ATE14778T1/en
Publication of EP0041005A1 publication Critical patent/EP0041005A1/en
Application granted granted Critical
Publication of EP0041005B1 publication Critical patent/EP0041005B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/06Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids

Definitions

  • Such a fluid vaporizes and condenses at a substantially constant temperature.
  • the mixture is vaporized according to a temperature interval A by taking heat from an external fluid I which constitutes the heat source and the temperature of which changes according to a temperature interval A '. It is then relaxed by producing mechanical energy which can be used directly or transformed into electrical energy, then it is condensed according to a temperature interval B by yielding heat to an external fluid II which constitutes the cooling fluid and whose the temperature changes according to a temperature interval B '.
  • the temperature intervals A and B must be as close as possible to the temperature intervals A 'and B', which corresponds to the best conditions of thermal reversibility.
  • the temperature interval A ' according to which the heat is supplied to the cycle being fixed, the composition of the mixture is chosen so as to obtain a vaporization interval A close to the temperature interval A'.
  • the temperature interval A generally evolves as shown in the diagram shown in Figure 1.
  • the vaporization temperatures at the pressure in question are T I and T II
  • the vaporization of the mixture begins at the bubble temperature of the liquid TLB and ends at the dew temperature of the vapor T VR .
  • the vaporization interval is therefore equal to the difference between the temperatures T LB and T VR and can be adjusted by choosing the appropriate composition.
  • the condensation interval B is generally close to the vaporization interval A. In this case, it is advantageous to adjust the flow rate of the cooling fluid, water or air, used to carry out the condensation so that the interval of temperature B 'is close to the condensation interval B.
  • This mixture arrives at 20 ° C and begins to vaporize at 52 ° C by exchanging heat against the current with the water which arrives through line 1 in the exchanger E101. After exchange, the water leaves the exchanger E101 via the line 2 at a temperature of 60 ° C and the mixture leaves vaporized from the exchanger E101 through the line 3 at a temperature of 75 ° C and at a pressure of 4 , lbars.
  • the mixture is then expanded in the paddle motor M1 which drives the alternator AT1.
  • An electrical power of 9 kW is collected at the terminals of the alternator.
  • the mixture emerges from the M1 vane motor at a pressure of 1.6 bars. It is gradually condensed / in the exchanger E102 from where it is collected in the reserve tank B1. Cooling is ensured by water which enters through line 7 at 12 ° C and exits through line 8 at 32 ° C.
  • the liquid mixture is taken up, through line 6, by the pump P1 and recycled to the evaporator E101.
  • the use of a mixture of butane and hexane makes it possible, during the vaporization and condensation stages, to follow the change in temperature of the external fluids, the mixture of fluids vaporizing according to an increasing change in temperature parallel to the decreasing change in temperature of the external fluid I and condensing according to a decreasing change in temperature parallel to the increasing change in temperature of the external fluid II.
  • These changes in temperature necessitate operating the heat exchanges at the evaporator and at the condenser under conditions as close as possible to the counter-current.
  • a pure counter-current heat exchange mode represents the preferred solution, but for implementation reasons, it is also possible to mount exchange surfaces in a generally counter-current arrangement, each of the exchange surfaces forming part of said arrangement operating under conditions different from the counter current, for example following a heat exchange with cross currents or with a circulation of one of the fluids taking place in U-shaped tubes.
  • the mixtures used can be mixtures of two, three (or more) constituents (separate chemical compounds).
  • the constituents of the mixture can be hydrocarbons, the molecule of which comprises a number of carbon atoms of, for example, between 3 and 8, such as propane, normal butane and isobutane, normal pentane and i-sopentane, normal hexane and isohexane, normal heptane and isoheptane, normal octane and isooctane as well as aromatic hydrocarbons such as benzene and toluene and cyclic hydrocarbons such as cyclopentane and cyclohexane.
  • the mixture used can be a mixture of halogenated hydrocarbons of the "Freon" type such as chlorodifluoromethane (R-22), dichlorodifluoromethane (R- 12), chloropentafluoroethane (R-115), difluoroethane (R-152), trichlorofluoromethane (R-11), dichloro-tetrafluoroethane (R-114), dichlorohexafluoropropane (R-216), dichlorofluoromethane (R- 21), trichlorotrifluoroethane (R-113).
  • halogenated hydrocarbons of the "Freon” type such as chlorodifluoromethane (R-22), dichlorodifluoromethane (R- 12), chloropentafluoroethane (R-115), difluoroethane (R-152), trichlorofluoromethane (R-11), dichloro-te
  • One of the constituents of the mixture can be an azeotrope such as the R-502 azeotrope of R-22 and R-115 (48.8 / 52.2% by weight), the R-500 azeotrope of R-12 and of R-31 (78.0 / 22.0% by weight), the azeotropic R-506 of R-31 and R-114 (55.1 / 44.9% by weight).
  • an azeotrope such as the R-502 azeotrope of R-22 and R-115 (48.8 / 52.2% by weight), the R-500 azeotrope of R-12 and of R-31 (78.0 / 22.0% by weight), the azeotropic R-506 of R-31 and R-114 (55.1 / 44.9% by weight).
  • mixtures comprising water and at least one second component miscible with water such as mixtures formed of water and ammonia, mixtures formed of water and a amine such as methylamine or ethylamine, mixtures formed of water and an alcohol such as methanol, mixtures formed of water and a ketone such as acetone.
  • the composition of the mixture is chosen so that the vaporization intervals A and of condensation B are as close as possible to the temperature intervals A 'and B' according to which evolve external fluids.
  • the difference between the temperature intervals A and A ′ is less than 5 ° C.
  • the pump P11 makes it possible to send a fraction of the liquid mixture via the conduit 12 into the exchanger E103 in which it vaporizes according to a temperature interval A 1 by exchanging heat with an external fluid which enters through the conduit 13 and comes out through the conduit 14.
  • the vaporized spring mixture of the exchanger E103 through the conduit 15 and it is sent to the engine stage M2.
  • the pump P10 sends the remaining fraction of the liquid mixture through the pipe 16 into the exchanger E104, in which it vaporizes according to a temperature interval A 2 by exchanging heat with the external fluid which arrives through the pipe 14 and res exits through line 17.
  • the mixture leaves vaporized from the exchanger E104 and the steam thus obtained is mixed with the steam coming from the expansion through stage M2, then expanded at the same time as the steam coming from stage M2 in the engine stage M3 from which it emerges through the conduit 19.
  • the temperature intervals A and A 2 can be consecutive and it is thus possible to follow with the mixture an evolution of temperature parallel-to an evolution of temperature of the external fluid which provides heat to the cycle, corresponding to a temperature interval A 'approximately twice as wide as in the case of the operating diagram represented in the Figure 2.
  • the condensed mixture is only partially vaporized in the exchanger E106 by taking heat from the external fluid which arrives via line 20 and leaves via line 21.
  • the liquid and vapor fractions are separated in the separator flask S1.
  • the steam fraction is expanded in the T3 turbine.
  • the liquid phase is sent to the exchanger E107 in which it exchanges heat with the condensed mixture which is sent to the evaporator, then expanded through the expansion valve V1 and mixed with the expanded vapor phase leaving the turbine T3 .
  • the mixture of the liquid vapor thus obtained is condensed by yielding heat to an external cooling fluid, collected in the reserve tank B3 and recycled by the pump P3 to the evaporator.
  • the operating conditions of a device operating according to the arrangement shown diagrammatically in FIG. 4 are the subject of Example 2.
  • This mixture is sent via line 31 into the exchanger E107 from which it emerges via! E line 22 at a temperature of 55 ° C. It is then sent to the exchanger E106 in which it partially vaporizes by taking a thermal power of 1585 kW from a water flow which arrives via the conduit 20 at a temperature of 90 ° C and exits through the conduit 21 at a temperature of 65 ° C.
  • the liquid-vapor mixture leaves the exchanger E106 through line 23 at a temperature of 85 ° C. and at a pressure of 20 bars. It is collected in the separator tank S1 in which the liquid phase and the vapor phase are separated. The liquid phase contains 52% ammonia by weight. It is evacuated via line 25 and sent to the exchanger E107.
  • the vapor phase is sent via line 24 to the turbine T3 in which it is expanded to a pressure of 8 bars.
  • On the shaft of the turbine T3 is collected by means of the electric brake FE1 a power of 100 kW.
  • the expanded steam is evacuated through the pipe 26.
  • the liquid phase which leaves through the pipe 27 of the exchanger E107 is expanded through the expansion valve VI, from where it comes out through the pipe 28. It is then mixed with the vapor phase arriving through line 26 and the liquid-vapor mixture is sent through line 29 into the air cooler AR1, in which it is fully condensed B and from which it emerges through line 30 at a temperature of 28 ° C.
  • the AR1 air condenser is made up of tubes provided with fins inside which the mixture circulates by condensing, these tubes being arranged in five layers placed transversely to the air circulation but mounted against the current, the mixture thus circulating generally against the flow of the cooling air.
  • the condensed mixture is collected in the reserve tank B3 from where it is taken up by the feed pump P3.
  • the operating diagram shown in Figure 4, makes it possible to adapt to variable operating conditions.
  • the pressure levels in the evaporator and in the condenser are reduced, which makes it possible to reduce the capacity of the system, c is the power delivered on the shaft.
  • the operating conditions are generally chosen so that the pressure of the mixture in the evaporator is between 3 and 30 bars and so that the pressure of the mixture in the condenser is between 1 and 10 bars.
  • the temperature interval A is generally within the temperature range of 50 à.350 ° C and the temperature interval B is generally within the temperature range from 20 to 80 ° vs.
  • the evaporator and the condenser can be, for example, tube and shell exchangers, double-tube exchangers or plate exchangers.
  • a fluid which is a gas for example if air is used as coolant for the condenser, it is generally advantageous to provide the exchange surfaces with fins placed on the side of the gas to improve heat exchange with this gas.
  • a machine can be for example a turbine with one wheel or with several wheels, radial or axial, a screw machine of the same type as the screw compressors but operating in expansion, a vane motor or a reciprocating piston engine.
  • the mechanical power delivered can be very variable and range, for example, from a few kW to several megawatts.
  • the mixture of fluids must not form an azeotrope under the conditions of the vano- rization. This means that at least two constituents of this mixture do not form an azeotrope between them; however, each of the constituents can individually be an azeotrope.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

Mechanical power is generated by a process comprising (a) progressive vaporization of a mixture of fluids, (b) expansion of the resultant vapor, (c) condensation of the vapor and (d) recycling to step (a) of the liquid phase obtained in step (c). The heat exchanges are effected counter-currently, thus providing parallel evolutions of temperature. The condensation is effected in a temperature interval of from 7 DEG to 30 DEG C.

Description

La nécessité d'économiser l'énergie et d'utiliser de nouvelles sources d'énergie conduit à développer des procédés de production d'énergie mécanique, pouvant être utilisée directement ou transformée en énergie électrique, à partir de sources de chaleur à relativement bas niveau thermique, c'est-à-dire dans une gamme de température pouvant aller par exemple de 50 à 400 °C. De telles sources de chaleur peuvent être de nature diverse : rejets thermiques industriels, chaleur transmise par des capteurs solaires, eau géothermale, etc... A partir de telles sources de chaleur, il est possible de produire de l'énergie mécanique au moyen d'un cycle de Rankine utilisant un fluide de travail qui est vaporisé sous pression en prélevant de la chaleur sur la source de chaleur, détendu en produisant de l'énergie mécanique, par exemple dans une turbine, cette énergie mécanique pouvant être utilisée directement ou transformée en énergie électriqueet condensé au moyen d'un fluide de refroidissement, eau ou air.The need to save energy and use new energy sources leads to the development of processes for the production of mechanical energy, which can be used directly or transformed into electrical energy, from relatively low level heat sources thermal, that is to say in a temperature range which can range, for example, from 50 to 400 ° C. Such sources of heat can be of various nature: industrial thermal discharges, heat transmitted by solar collectors, geothermal water, etc ... From such sources of heat, it is possible to produce mechanical energy by means of '' a Rankine cycle using a working fluid which is vaporized under pressure by taking heat from the heat source, expanded by producing mechanical energy, for example in a turbine, this mechanical energy can be used directly or transformed in electrical energy and condensed by means of a cooling fluid, water or air.

Pour améliorer le rendement du cycle et éviter d'opérer à très basse pression, il est avantageux de remplacer l'eau, qui est très généralement employée à plus haute température, par un fluide dont la température d'ébullition et la température critique sont beaucoup ptus basses, tel que par exemple le butane ou l'ammoniac.To improve the efficiency of the cycle and avoid operating at very low pressure, it is advantageous to replace the water, which is very generally used at higher temperature, with a fluid whose boiling point and critical temperature are many lower, such as butane or ammonia.

Un tel fluide se vaporise et se condense à une température sensiblement constante.Such a fluid vaporizes and condenses at a substantially constant temperature.

Or la température des fluides extérieurs avec lesquels s'effectuent les échanges évolue, en règle générale, au cours de l'échange.However, the temperature of the external fluids with which the exchanges take place changes, as a general rule, during the exchange.

Il a été découvert, et c'est là un des objets de la présente invention, qu'il est avantageux dans ce cas d'utiliser un mélange de fluides qui se vaporise et se condense progressivement en suivant l'évolution de température de chacun des fluides extérieurs avec lesquels s'effectuent les échanges.It has been discovered, and this is one of the objects of the present invention, that it is advantageous in this case to use a mixture of fluids which vaporizes and condenses progressively according to the temperature development of each of the external fluids with which exchanges take place.

Le mélange est vaporisé suivant un intervalle de température A en prélevant de la chaleur sur un fluide extérieur I qui constitue la source de chaleur et dont la température évolue suivant un intervalle de température A'. Il est alors détendu en produisant de l'énergie mécanique qui peut être utilisée directement ou transformée en énergie électrique, puis il est condensé suivant un intervalle de température B en cédant de la chaleur à un fluide extérieur II qui constitue le fluide de refroidissement et dont la température évolue suivant un intervalle de température B'.The mixture is vaporized according to a temperature interval A by taking heat from an external fluid I which constitutes the heat source and the temperature of which changes according to a temperature interval A '. It is then relaxed by producing mechanical energy which can be used directly or transformed into electrical energy, then it is condensed according to a temperature interval B by yielding heat to an external fluid II which constitutes the cooling fluid and whose the temperature changes according to a temperature interval B '.

Pour tirer pleinement parti du procédé selon l'invention, il est nécessaire toutefois d'observer certaines conditions.To take full advantage of the process according to the invention, it is however necessary to observe certain conditions.

Pour que le rendement obtenu soit maximum, les intervalles de température A et B doivent être aussi voisins que possible des intervalles de température A' et B', ce qui correspond aux meilleures conditions de réversibilité thermique. L'intervalle de température A' suivant lequel la chaleur est fournie au cycle étant fixé, la composition du mélange est choisie de manière à obtenir un intervalle de vaporisation A voisin de l'intervalle de température A'. Dans le cas d'un mélange binaire, l'intervalle de température A évolue généralement comme le montre le diagramme représenté sur la Figure 1. Pour une fraction molaire donnée xI du constituant 1 le plus volatil d'un mélange formé des constituants 1 et II dont les températures de vaporisation à la pression considérée sont TI et TII, la vaporisation du mélange débute à la température de bulle du liquide TLB et se termine à la température de rosée de la vapeur TVR. L'intervalle de vaporisation est donc égal à l'écart entre les températures TLB et TVR et peut être ajusté en choisissant la composition appropriée.For the yield obtained to be maximum, the temperature intervals A and B must be as close as possible to the temperature intervals A 'and B', which corresponds to the best conditions of thermal reversibility. The temperature interval A 'according to which the heat is supplied to the cycle being fixed, the composition of the mixture is chosen so as to obtain a vaporization interval A close to the temperature interval A'. In the case of a binary mixture, the temperature interval A generally evolves as shown in the diagram shown in Figure 1. For a given molar fraction x I of the most volatile component 1 of a mixture formed of components 1 and II, the vaporization temperatures at the pressure in question are T I and T II , the vaporization of the mixture begins at the bubble temperature of the liquid TLB and ends at the dew temperature of the vapor T VR . The vaporization interval is therefore equal to the difference between the temperatures T LB and T VR and can be adjusted by choosing the appropriate composition.

L'intervalle de condensation B est généralement voisin de l'intervalle de vaporisation A. Il est dans ce cas avantageux de régler le débit du fluide de refroidissement, eau ou air, employé pour effectuer la condensation de manière à ce que l'intervalle de température B' soit voisin de l'intervalle de condensation B.The condensation interval B is generally close to the vaporization interval A. In this case, it is advantageous to adjust the flow rate of the cooling fluid, water or air, used to carry out the condensation so that the interval of temperature B 'is close to the condensation interval B.

Ceci permet en outre, par rapport au fonctionnement avec un corps pur, de réduire le débit d'eau ou d'air de refroidissement et de diminuer la consommation d'énergie liée à la ventilation d'air de refroidissement ou au pompage d'eau de refroidissement. Toutefois, il est nécessaire d'éviter que l'intervalle de-température B ne devienne trop important pour éviter une baisse du rendement. Pour cette raison, il importe de limiter l'intervalle de température B à une valeur de 30 °C. D'autre part, cet intervalle doit être d'au moins 7°C pour que le gain de rendement qu'apporte l'utilisation d'un mélange soit notable. Par conséquent, pour se placer dans des conditions de rendement optimales et bénéficier des avantages qu'apporte l'utilisation d'un mélange, il importe que l'intervalle de température B soit compris entre 7 et 30 °C. Cette condition sera en général également valable pour l'intervalle de température A qui est généralement voisin de l'intervalle de température B, lorsque la vaporisation est opérée en une seule étape.This also makes it possible, compared to operation with a pure body, to reduce the flow of water or cooling air and to reduce the energy consumption linked to cooling air ventilation or to pumping water. cooling. However, it is necessary to prevent the temperature interval B from becoming too large to avoid a drop in yield. For this reason, it im limits the temperature interval B to a value of 30 ° C. On the other hand, this interval must be at least 7 ° C so that the gain in yield brought about by the use of a mixture is significant. Consequently, in order to be placed in optimal yield conditions and to benefit from the advantages which the use of a mixture brings, it is important that the temperature range B is between 7 and 30 ° C. This condition will generally also be valid for the temperature interval A which is generally close to the temperature interval B, when the vaporization is carried out in a single step.

La réalisation du procédé peut être décrite en se référant à l'exemple 1.The implementation of the process can be described with reference to Example 1.

EXEMPLE 1EXAMPLE 1

L'exemple est illustré par la Figure 2. Par le conduit 1 arrive un débit de 5,67 m3/h d'eau à une température de 85 °C. Par le conduit 4, on fait parvenir 1254 Kg/h d'un mélange de composition suivante (en fractions molaires) :

  • Butane normal : 0,8
  • Hexane normal : 0,2
The example is illustrated in Figure 2. Via the conduit 1 a flow of 5.67 m 3 / h of water arrives at a temperature of 85 ° C. Via line 4, 1254 kg / h of a mixture of the following composition are sent (in molar fractions):
  • Normal butane: 0.8
  • Normal hexane: 0.2

Ce mélange arrive à 20 °C et commence à se vaporiser à 52 °C en échangeant de la chaleur à contre-courant avec l'eau qui arrive par le conduit 1 dans l'échangeur E101. Après échange, l'eau ressort de l'échangeur E101 par le conduit 2 à une température de 60 °C et le mélange ressort vaporisé de l'échangeur E101 par le conduit 3 à une température de 75 °C et à une pression de 4,lbars.This mixture arrives at 20 ° C and begins to vaporize at 52 ° C by exchanging heat against the current with the water which arrives through line 1 in the exchanger E101. After exchange, the water leaves the exchanger E101 via the line 2 at a temperature of 60 ° C and the mixture leaves vaporized from the exchanger E101 through the line 3 at a temperature of 75 ° C and at a pressure of 4 , lbars.

Le mélange est alors détendu dans le moteur à palettes M1 qui entraîne l'alternateur AT1. On recueille aux bornes de l'alternateur une puissance électrique de 9 kW. Le mélange ressort du moteur à palettes Ml à une pression de 1,6bars. II est condensé progressivement/dans l'échangeur E102 d'où il est recueilli dans le bac de réserve B1. Le refroidissement est assuré par de l'eau qui entre par le conduit 7 à 12 °C et ressort par le conduit 8 à 32 °C.The mixture is then expanded in the paddle motor M1 which drives the alternator AT1. An electrical power of 9 kW is collected at the terminals of the alternator. The mixture emerges from the M1 vane motor at a pressure of 1.6 bars. It is gradually condensed / in the exchanger E102 from where it is collected in the reserve tank B1. Cooling is ensured by water which enters through line 7 at 12 ° C and exits through line 8 at 32 ° C.

Le mélange liquide est repris, à travers le conduit 6, par la pompe P1 et recyclé à l'évaporateur E101.The liquid mixture is taken up, through line 6, by the pump P1 and recycled to the evaporator E101.

Dans cet exemple, l'utilisation d'un mélange de butane et d'hexane, permet,au cours des étapes de vaporisation et de condensation,de suivre l'évolution de température des fluides extérieurs, le mélange de fluides se vaporisant suivant une évolution croissante de température parallèle à l'évolution décroissante de température du fluide extérieur I et se condensant suivant une évolution décroissante de température parallèle à l'évolution croissante de température du fluide extérieur II. Ces évolutions de température nécessitent d'opérer les échanges de chaleur à l'évaporateur et au condenseur dans des conditions aussi proches que possible du contre-courant. Un mode d'échange de chaleur à contre-courant pur représente la solution préférée mais pour des raisons de réalisation, il est également possible de monter des surfaces d'échange selon un agencement globalement à contre-courant, chacune des surfaces d'échange faisant partie dudit agencement fonctionnant dans des conditions différentes du contre-courant, par exemple suivant un échange de chaleur à courants croisés ou encore avec une circulation d'un des fluides s'effectuant dans des tubes en U.In this example, the use of a mixture of butane and hexane, makes it possible, during the vaporization and condensation stages, to follow the change in temperature of the external fluids, the mixture of fluids vaporizing according to an increasing change in temperature parallel to the decreasing change in temperature of the external fluid I and condensing according to a decreasing change in temperature parallel to the increasing change in temperature of the external fluid II. These changes in temperature necessitate operating the heat exchanges at the evaporator and at the condenser under conditions as close as possible to the counter-current. A pure counter-current heat exchange mode represents the preferred solution, but for implementation reasons, it is also possible to mount exchange surfaces in a generally counter-current arrangement, each of the exchange surfaces forming part of said arrangement operating under conditions different from the counter current, for example following a heat exchange with cross currents or with a circulation of one of the fluids taking place in U-shaped tubes.

Les mélanges utilisés peuvent être des mélanges de deux, trois (ou davantage) constituants (composés chimiques distincts). Les constituants du mélange peuvent être des hydrocarbures dont la molécule comprend un nombre d'atomes de carbone compris par exemple entre 3 et 8, tels que le propane, le butane normal et l'isobutane, le pentane normal et l'i-sopentane, l'hexane normal et l'isohexane, l'heptane normal et l'iso- heptane, l'octane normal et l'isooctane ainsi que des hydrocarbures aromatiques tels que le benzène et le toluène et des hydrocarbures cycliques tels que le cyclopentane et le cyclohexane. Lorsque l'on désire que le mélange ne soit pas inflammable ou ne soit que difficilement inflammable, le mélange utilisé peut être un mélange d'hydrocarbures halogénés du type "Fréon" tels que le chlorodifluorométhane (R-22), le dichlorodifluorométhane (R-12), le chloropentafluoroéthane (R-115), le difluoroéthane (R-152), le trichlorofluorométhane (R-11), le dichloro- tétrafluoroéthane (R-114), le dichlorohexafluoropropane (R-216), le dichlorofluorométhane (R-21), le trichlorotrifluoroéthane (R-113). L'un des constituants du mélange peut être un azéotrope tel que le R-502 azéotrope de R-22 et de R-115 (48,8/52,2 % en poids), le R-500 azéotrope de R-12 et de R-31 (78,0/22,0 % en poids), le R-506 azéotrope de R-31 et de R-114 (55,1/44,9 % en poids).The mixtures used can be mixtures of two, three (or more) constituents (separate chemical compounds). The constituents of the mixture can be hydrocarbons, the molecule of which comprises a number of carbon atoms of, for example, between 3 and 8, such as propane, normal butane and isobutane, normal pentane and i-sopentane, normal hexane and isohexane, normal heptane and isoheptane, normal octane and isooctane as well as aromatic hydrocarbons such as benzene and toluene and cyclic hydrocarbons such as cyclopentane and cyclohexane. When it is desired that the mixture is not flammable or is only hardly flammable, the mixture used can be a mixture of halogenated hydrocarbons of the "Freon" type such as chlorodifluoromethane (R-22), dichlorodifluoromethane (R- 12), chloropentafluoroethane (R-115), difluoroethane (R-152), trichlorofluoromethane (R-11), dichloro-tetrafluoroethane (R-114), dichlorohexafluoropropane (R-216), dichlorofluoromethane (R- 21), trichlorotrifluoroethane (R-113). One of the constituents of the mixture can be an azeotrope such as the R-502 azeotrope of R-22 and R-115 (48.8 / 52.2% by weight), the R-500 azeotrope of R-12 and of R-31 (78.0 / 22.0% by weight), the azeotropic R-506 of R-31 and R-114 (55.1 / 44.9% by weight).

D'autres types de mélanges sont des mélanges comprenant de l'eau et au moins un second constituant miscible avec l'eau tels que les mélanges formés d'eau et d'ammoniac, les mélanges formés d'eau et d'une amine telle que la méthylamine ou l'éthylamine, les mélanges formés d'eau et d'un alcool tel que le méthanol, les mélanges formés d'eau et d'une cétone telle que l'acétone.Other types of mixtures are mixtures comprising water and at least one second component miscible with water such as mixtures formed of water and ammonia, mixtures formed of water and a amine such as methylamine or ethylamine, mixtures formed of water and an alcohol such as methanol, mixtures formed of water and a ketone such as acetone.

Lorsque le procédé fonctionne selon le schéma représenté sur la Figure 2, la composition du mélange est choisie de manière à ce que les intervalles de vaporisation A et de condensation B soient les plus voisins possible des intervalles de température A' et B' selon lesquels évoluent les fluides extérieurs. Pour obtenir un gain maximum sur le rendement, il est préférable que l'écart entre les intervalles de température A et A' soit inférieur à 5 °C.When the process operates according to the diagram shown in FIG. 2, the composition of the mixture is chosen so that the vaporization intervals A and of condensation B are as close as possible to the temperature intervals A 'and B' according to which evolve external fluids. To obtain a maximum gain in yield, it is preferable that the difference between the temperature intervals A and A ′ is less than 5 ° C.

Il a été découvert également que dans le cas où un mélange est utilisé comme fluide de travail d'autres perfectionnements peuvent être envisagés lorsqu'en un point du circuit le mélange est scindé en deux fractions, qui sont remélangées en un autre point du circuit, l'une desdites fractions parcourant l'ensemble des différentes étapes du cycle et l'autre de ces fractions ne parcourant qu'une partie des étapes de ce cycle.It has also been discovered that in the case where a mixture is used as working fluid, other improvements can be envisaged when at one point of the circuit the mixture is divided into two fractions, which are remixed at another point of the circuit, one of said fractions covering all the different stages of the cycle and the other of these fractions covering only part of the stages of this cycle.

Si la chaleur récupérée à l'évaporateur est disponible dans un intervalle de température relativement large et que le mélange est choisi pour se vaporiser suivant un intervai le de température voisin, opérer selon le schéma de fonctionnement représenté sur la Figure 2 conduit à fonctionner avec un large intervalle de température B, ce qui ne correspond pas aux conditions les plus favorables au rendement. On peut dans ce cas opérer selon le schéma de fonctionnement représenté sur la Figure 3. Le mélange est condensé dans l'échangeur E105 en étant refroidi par un fluide extérieur qui entre par le conduit 9 et ressort par le conduit 10. Le mélange condensé ressort de l'échangeur E105 par le conduit 11 et il est envoyé dans le bac de réserve B2. La pompe P11 permet d'envoyer.une fraction du mélange liquide par le conduit 12 dans l'échangeur E103 dans lequel il se vaporise suivant un intervalle de température A1 en échangeant de la chaleur avec un fluide extérieur qui entre par le conduit 13 et ressort par le conduit 14. Le mélange ressort vaporisé de l'échangeur E103 par le conduit 15 et il est envoyé dans l'étage moteur M2. La pompe P10 envoie la fraction restante du mélange liquide par le conduit 16 dans l'échangeur E104, dans lequel il se vaporise suivant un intervalle de température A2 en échangeant de la chaleur avec le fluide extérieur qui arrive par le conduit 14 et ressort par le conduit 17. Le mélange ressort vaporisé de l'échangeur E104 et la vapeur ainsi obtenue est mélangée avec la vapeur provenant de la détente à travers l'étage M2, puis détendue en même temps que la vapeur provenant de l'étage M2 dans l'étage moteur M3 d'où elle ressort par le conduit 19.If the heat recovered by the evaporator is available in a relatively wide temperature range and the mixture is chosen to vaporize according to a neighboring temperature interval, operate according to the operating diagram shown in Figure 2 leads to operating with a wide temperature range B, which does not correspond to the conditions most favorable to yield. In this case, it is possible to operate according to the operating diagram represented in FIG. 3. The mixture is condensed in the exchanger E105 while being cooled by an external fluid which enters via the conduit 9 and leaves through the conduit 10. The condensed mixture emerges of the exchanger E105 via the conduit 11 and it is sent to the reserve tank B2. The pump P11 makes it possible to send a fraction of the liquid mixture via the conduit 12 into the exchanger E103 in which it vaporizes according to a temperature interval A 1 by exchanging heat with an external fluid which enters through the conduit 13 and comes out through the conduit 14. The vaporized spring mixture of the exchanger E103 through the conduit 15 and it is sent to the engine stage M2. The pump P10 sends the remaining fraction of the liquid mixture through the pipe 16 into the exchanger E104, in which it vaporizes according to a temperature interval A 2 by exchanging heat with the external fluid which arrives through the pipe 14 and res exits through line 17. The mixture leaves vaporized from the exchanger E104 and the steam thus obtained is mixed with the steam coming from the expansion through stage M2, then expanded at the same time as the steam coming from stage M2 in the engine stage M3 from which it emerges through the conduit 19.

A condition de choisir convenablement le niveau de pression intermédiaire, c'est-à-dire la pression à laquelle le mélange se vaporise dans l'échangeur E104, les intervalles de température A et A2 peuvent être consécutifs et il est ainsi possible de suivre avec le mélange une évolution de température parallèle-à une évolution de température du fluide extérieur qui fournit de la chaleur au cycle, correspondant à un intervalle de température A' environ deux fois plus large que dans le cas du schéma de fonctionnement représenté sur la Figure 2.Provided that the intermediate pressure level, that is to say the pressure at which the mixture vaporizes in the exchanger E104, is properly chosen, the temperature intervals A and A 2 can be consecutive and it is thus possible to follow with the mixture an evolution of temperature parallel-to an evolution of temperature of the external fluid which provides heat to the cycle, corresponding to a temperature interval A 'approximately twice as wide as in the case of the operating diagram represented in the Figure 2.

Il a été également découvert que dans de nombreux cas il est particulièrement avantageux d'opérer selon l'agencement schématisé sur la figure 4. Le mélange condensé n'est vaporisé que partiellement dans l'échangeur E106 en prélevant de la chaleur sur le fluide extérieur qui arrive par le conduit 20 et repart par le conduit 21. A la sortie de l'échangeur E106 les fractions liquide et vapeur sont séparées dans le ballon séparateur S1. La fraction vapeur est détendue dans la turbine T3. La phase liquide est envoyée dans l'échangeur E107 dans lequel elle échange de la chaleur avec le mélange condensé qui est envoyé à l'évaporateur, puis détendue à travers la vanne de détente V1 et mélangée avec la phase vapeur détendue sortant de la turbine T3. Le mélange l'iquide vapeur ainsi obtenu est condensé en cédant de la chaleur à un fluide extérieur de refroidissement, recueilli dans le bac de réserve B3 et recyclé par la pompe P3 à l'évaporateur. Les conditions de fonctionnement d'un dispositif opérant selon l'agencement schématisé sur la Figure 4 font l'objet de l'exemple 2.It has also been discovered that in many cases it is particularly advantageous to operate according to the arrangement shown diagrammatically in FIG. 4. The condensed mixture is only partially vaporized in the exchanger E106 by taking heat from the external fluid which arrives via line 20 and leaves via line 21. On leaving the exchanger E106, the liquid and vapor fractions are separated in the separator flask S1. The steam fraction is expanded in the T3 turbine. The liquid phase is sent to the exchanger E107 in which it exchanges heat with the condensed mixture which is sent to the evaporator, then expanded through the expansion valve V1 and mixed with the expanded vapor phase leaving the turbine T3 . The mixture of the liquid vapor thus obtained is condensed by yielding heat to an external cooling fluid, collected in the reserve tank B3 and recycled by the pump P3 to the evaporator. The operating conditions of a device operating according to the arrangement shown diagrammatically in FIG. 4 are the subject of Example 2.

EXEMPLE 2EXAMPLE 2

L'exemple est illustré par la Figure 4. Par la pompe P3, on fait circuler un débit de 3956 Kg/h d'un mélange d'eau et d'ammoniac de composition suivante (en fractions poids) :

  • NH3 : 0,75
  • H20 : 0,25
The example is illustrated in Figure 4. By pump P3, a flow rate of 3956 Kg / h is circulated of a mixture of water and ammonia of the following composition (in weight fractions):
  • NH 3 : 0.75
  • H 2 0: 0.25

Ce mélange est envoyé par le conduit 31 dans l'échangeur E107 d'où il ressort par !e conduit 22 à la température de 55 °C. II est alors envoyé dans l'échangeur E106 dans lequel il se vaporise partiellement en prélevant une puissance thermique de 1585 kW sur un débit d'eau qui arrive par le conduit 20 à une température de 90 °C et ressort par le conduit 21 à une température de 65 °C. Le.mélange liquide-vapeur ressort de l'échangeur E106 par le conduit 23 à la température de 85 °C et à la pression de 20 bars. II est recueilli dans le bac séparateur S1 dans lequel la phase liquide et la phase vapeur sont séparées. La phase liquide contient 52 % d'ammoniac en poids. Elle est évacuée par le conduit 25 et envoyée à l'échangeur E107.This mixture is sent via line 31 into the exchanger E107 from which it emerges via! E line 22 at a temperature of 55 ° C. It is then sent to the exchanger E106 in which it partially vaporizes by taking a thermal power of 1585 kW from a water flow which arrives via the conduit 20 at a temperature of 90 ° C and exits through the conduit 21 at a temperature of 65 ° C. The liquid-vapor mixture leaves the exchanger E106 through line 23 at a temperature of 85 ° C. and at a pressure of 20 bars. It is collected in the separator tank S1 in which the liquid phase and the vapor phase are separated. The liquid phase contains 52% ammonia by weight. It is evacuated via line 25 and sent to the exchanger E107.

La phase vapeur est envoyée par la conduite 24 dans la turbine T3 dans laquelle elle est détendue jusqu'à une pression de 8bars . Sur l'arbre de la turbine T3 on recueille au moyen du frein électrique FE1 une puissance de 100 kW. La vapeur détendue est évacuée par le conduit 26. La phase liquide qui ressort par le conduit 27 de l'échangeur E107 est détendue à travers la vanne de détente VI, d'où elle ressort par le conduit 28. Elle est alors mélangée avec la phase vapeur arrivant par le conduit 26 et le mélange liquide-vapeur est envoyé par le conduit 29 dans l'aéroréfrigérant AR1, dans lequel il est entièrement condensé B et d'où il ressort par le conduit 30 à la température de 28 °C. L'aérocondenseur AR1 est formé de tubes munis d'ailettes à l'intérieur desquels le mélange circule en se condensant, ces tubes étant disposés en cinq nappes placées transversalement par rapport à la circulation d'air mais montées à contre-courant, le mélange circulant ainsi globalement à contre-courant de l'air de refroidissement. Le mélange condensé est recueilli dans le bac de réserve B3 d'où il est repris par la pompe d'alimentation P3.The vapor phase is sent via line 24 to the turbine T3 in which it is expanded to a pressure of 8 bars. On the shaft of the turbine T3 is collected by means of the electric brake FE1 a power of 100 kW. The expanded steam is evacuated through the pipe 26. The liquid phase which leaves through the pipe 27 of the exchanger E107 is expanded through the expansion valve VI, from where it comes out through the pipe 28. It is then mixed with the vapor phase arriving through line 26 and the liquid-vapor mixture is sent through line 29 into the air cooler AR1, in which it is fully condensed B and from which it emerges through line 30 at a temperature of 28 ° C. The AR1 air condenser is made up of tubes provided with fins inside which the mixture circulates by condensing, these tubes being arranged in five layers placed transversely to the air circulation but mounted against the current, the mixture thus circulating generally against the flow of the cooling air. The condensed mixture is collected in the reserve tank B3 from where it is taken up by the feed pump P3.

Le schéma de fonctionnement, représenté sur la Figure 4, permet de s'adapter à des conditions de fonctionnement variables. En particulier, en modifiant le débit acheminé par la pompe P3 à travers le conduit 31, il est possible de modifier les niveaux de pression à l'évaporateur et au condenseur. En particulier en augmentant le débit de la pompe P3, pour des températures de sortie à l'évaporateur et au condenseur fixées, on diminue les niveaux de pression à l'évaporateur et au condenseur, ce qui permet de réduire la capacité du système, c'est-à-dire la puissance .délivrée sur l'arbre.The operating diagram, shown in Figure 4, makes it possible to adapt to variable operating conditions. In particular, by modifying the flow rate conveyed by the pump P3 through the conduit 31, it is possible to modify the pressure levels at the evaporator and at the condenser. In particular by increasing the flow rate of the pump P3, for fixed outlet temperatures to the evaporator and to the condenser, the pressure levels in the evaporator and in the condenser are reduced, which makes it possible to reduce the capacity of the system, c is the power delivered on the shaft.

De manière générale le mode de fonctionnement schématisé sur la figure 4 élargit considérablement les possibilités offertes par l'utilisation des mélanges dans les cycles moteurs.In general, the operating mode shown diagrammatically in FIG. 4 considerably widens the possibilities offered by the use of the mixtures in the engine cycles.

Il permet d'utiliser des mélanges de constituants dont les températures d'ébullition sont très différents, tels que l'eau et l'ammoniac, dans des applications où les intervalles de température dans l'évaporateur et le condenseur sont restreints,par exemple de l'ordre de 10 à 15°, puisque dans l'évaporateur on ne réalise qu'une vaporisation partielle, ce qui permet d'opérer avec un intervalle de température aussi réduit qu'on le souhaite.It makes it possible to use mixtures of constituents whose boiling temperatures are very different, such as water and ammonia, in applications where the temperature intervals in the evaporator and the condenser are restricted, for example of on the order of 10 to 15 °, since in the evaporator only partial vaporization is carried out, which makes it possible to operate with a temperature range as reduced as desired.

D'autre part, comme cela a déjà été indiqué ci-dessus, il est possible dans un tel système d'ajuster les niveaux de pression en jouant sur la concentration de la solution qui circule. Il est possible ainsi de se placer dans les conditions optimales permettant de réaliser un débit volumique réduit et donc une machine de détente peu volumineuse sans mettre en jeu des pressions excessives qui conduiraient à des investissements trop importants.On the other hand, as has already been indicated above, it is possible in such a system to adjust the pressure levels by varying the concentration of the solution which circulates. It is thus possible to place oneself in the optimal conditions making it possible to achieve a reduced volume flow rate and therefore a low volume expansion machine without bringing into play excessive pressures which would lead to excessively large investments.

Quel que soit le schéma de fonctionnement, les conditions de fonctionnement sont choisies en général de manière à ce que la pression du mélange dans l'évaporateur soit comprise entre 3 et 30 bars et de manière à ce que la pression du mélange dans le condenseur soit comprise entre 1 et 10 bars.Llintervalle de température A est généralement compris dans la gamme de température allant de 50 à.350 °C et l'intervalle de température B est généralement compris dans la gamme de température allant de 20 à 80 °C.Whatever the operating diagram, the operating conditions are generally chosen so that the pressure of the mixture in the evaporator is between 3 and 30 bars and so that the pressure of the mixture in the condenser is between 1 and 10 bars.L the temperature interval A is generally within the temperature range of 50 à.350 ° C and the temperature interval B is generally within the temperature range from 20 to 80 ° vs.

Les schémas de fonctionnement donnés à titre d'exemples ne sont pas limitatifs et en particulier tous les perfectionnements connus de l'homme de l'art dans le cas des cycles de Rankine utilisant un corps pur comme fluide de travail peuvent être envisagés dans le cas des mélanges. Par exemple lorsque le moteur dans lequel s'effectue la détente de la phase vapeur comporte plusieurs étages, il est possible de préchauffer le mélange liquide envoyé à l'évaporateur par un échange de chaleur avec une fraction vapeur prélevée entre deux étages du moteur, la condensation de cette fraction vapeur permettant de préchauffer le mélange liquide.The operating diagrams given by way of example are not limiting and in particular all the improvements known to those skilled in the art in the case of Rankine cycles using a pure body as working fluid can be envisaged in the case mixtures. For example, when the engine in which the expansion of the vapor phase takes place comprises several stages, it is possible to preheat the liquid mixture sent to the evaporator by heat exchange with a vapor fraction withdrawn between two stages of the engine, the condensation of this vapor fraction to preheat the liquid mixture.

II est également possible d'effectuer différentes variantes et combinaisons à partir des schémas de base qui ont été décrits. Par exemple, il est possible d'effectuer une vaporisation en deux ou plusieurs étapes à des niveaux de pression différents pour élargir l'intervalle de prélèvement de la chaleur, la vaporisation effectuée au cours de chacune desdites étapes de vaporisation n'étant que partielle et la phase liquide restant à l'issue desdites étapes de vaporisation étant recyclée à l'étape de condensation selon l'agencement qui a été décrit dans l'exemple 2 dans le cas d'une seule étape de vaporisation.It is also possible to carry out different variants and combinations from the basic diagrams which have been described. For example, it is possible to carry out a vaporization in two or more stages at different pressure levels in order to widen the heat removal interval, the vaporization carried out during each of said vaporization stages being only partial and the liquid phase remaining at the end of said vaporization stages being recycled to the condensation stage according to the arrangement which was described in Example 2 in the case of a single vaporization stage.

D'autre part, différents types d'équipements connus de l'homme de l'art peuvent être utilisés dans le procédé selon l'invention.On the other hand, different types of equipment known to those skilled in the art can be used in the method according to the invention.

L'évaporateur et le condenseur peuvent être par exemple des échangeurs à tubes et calandre, des échangeurs à double-tube ou des échangeurs à plaques. Lorsque l'échange de chaleur s'effectue avec un fluide qui est un gaz, par exemple si l'air est utilisé comme fluide de refroidissement au condenseur, il est généralement avantageux de munir les surfaces d'échange d'ailettes placées du côté du gaz pour améliorer l'échange thermique avec ce gaz.The evaporator and the condenser can be, for example, tube and shell exchangers, double-tube exchangers or plate exchangers. When the heat exchange takes place with a fluid which is a gas, for example if air is used as coolant for the condenser, it is generally advantageous to provide the exchange surfaces with fins placed on the side of the gas to improve heat exchange with this gas.

La détente de la phase vapeur générée dans l'évaporateur, qui permet de produire de l'énergie mécanique, peut s'effectuer dans toutes les machines connues pour cet échange : une telle machine peut être par exemple une turbine à une roue ou à plusieurs roues, radiale ou axiale, une machine à vis du même type que les compresseurs à vis mais fonctionnant en détente, un moteur à palettes ou un moteur alternatif à pistons.The expansion of the vapor phase generated in the evaporator, which makes it possible to produce mechanical energy, can be carried out in all the machines known for this exchange: such a machine can be for example a turbine with one wheel or with several wheels, radial or axial, a screw machine of the same type as the screw compressors but operating in expansion, a vane motor or a reciprocating piston engine.

La puissance mécanique délivrée peut être très variable et aller par exemple de quelques kW à plusieurs Mégawatts.The mechanical power delivered can be very variable and range, for example, from a few kW to several megawatts.

Dans les revendications qui suivent, il est indiqué que le mélange de fluides ne doit pas former d'azéotrope dans les conditions de la vano- risation. Ceci signifie qu'au moins deux constituants de ce mélange ne forment pas d'azéotrope entre eux; cependant chacun des constituants peut à titre individuel être un azéotrope.In the claims which follow, it is indicated that the mixture of fluids must not form an azeotrope under the conditions of the vano- rization. This means that at least two constituents of this mixture do not form an azeotrope between them; however, each of the constituents can individually be an azeotrope.

Claims (12)

1. Procédé de production d'énergie mécanique caractérisé (a) en ce que au moins une fraction d'un l'on vaporise progressivement mélange de fluides (M) comprenant au moins deux constituants ne formant pas d'azéotrope dans les conditions de vaporisation, en prélevant la chaleur de vaporisation au moins en partie sur un fluide extérieur dont la température évolue suivant un intervalle de température A' au cours de l'échange, la température du mélange évoluant suivant un intervalle de température A, (b) en ce que l'on détend la phase vapeur ainsi obtenue en produisant de l'énergie mécanique, (c) en ce que l'on condense progressivement, suivant un intervalle de température B, la vapeur ainsi obtenue en cédant de la chaleur à au moins un fluide extérieur Il dont la température évolue suivant un intervalle de température B', la largeur de l'intervalle de température B étant d'au moins 7°C et d'au plus 30°C, et (d) en ce que la phase liquide provenant de l'étape (c) est recyclée à l'étape (a), les échanges de chaleur effectués avec les fluides extérieurs 1 et 11 aux étapes (a) et (c) respectivement étant opérés à contre-courant, le mélange de fluides se vaporisant à l'étape (a) suivant une évolution croissante de température parallèle à l'évolution décroissante de température du fluide extérieur 1 et se condensant à l'étape (c) suivant une évolution décroissante de température parallèle à l'évolution croissante de température du fluide extérieur 11.1. A method of producing mechanical energy characterized (a) in that at least a fraction of a fluid mixture (M) is gradually vaporized comprising at least two constituents which do not form an azeotrope under the vaporization conditions , by taking the heat of vaporization at least in part from an external fluid whose temperature changes according to a temperature interval A 'during the exchange, the temperature of the mixture evolving according to a temperature interval A, (b) in this that the vapor phase thus obtained is expanded by producing mechanical energy, (c) in that one gradually condenses, according to a temperature interval B, the vapor thus obtained by yielding heat to at least one external fluid II whose temperature varies according to a temperature interval B ', the width of the temperature interval B being at least 7 ° C and at most 30 ° C, and (d) in that the phase liquid from step (c) is recycled to step (a), the heat exchanges carried out with the external fluids 1 and 11 in stages (a) and (c) respectively being operated against the current, the mixture of fluids vaporizing in stage (a) according to an increasing temperature evolution parallel to the decreasing evolution of temperature of the external fluid 1 and condensing in step (c) according to a decreasing evolution of temperature parallel to the increasing evolution of temperature of the external fluid 11. 2. Procédé selon la revendication 1, dans lequel le mélange de fluides est séparé en deux fractions en un point du circuit et les fractions résultantes sont remélangées en un autre point du circuit, la première de ces fractions séparées parcourant l'ensemble des étapes (a), (b) et (c) et la seconde de ces fractions ne parcourant pas au moins l'une des étapes parcourues par la première de ces fractions.2. Method according to claim 1, in which the mixture of fluids is separated into two fractions at one point in the circuit and the resulting fractions are remixed at another point in the circuit, the first of these separate fractions passing through all of the steps ( a), (b) and (c) and the second of these fractions not traversing at least one of the stages traversed by the first of these fractions. 3. Procédé selon l'une des revendications 1 et 2, dans lequel l'écart entre la température du mélange parcourant l'intervalle A et la température du fluide I parcourant l'intervalle A' est à chaque instant inférieur à 5°C.3. Method according to one of claims 1 and 2, wherein the difference between the temperature of the mixture traversing the interval A and the temperature of the fluid I traversing the interval A 'is at all times less than 5 ° C. 4. Procédé selon l'une des revendications 1 à 3, dans lequel le mélange (M) est vaporisé en au moins deux étapes effectuées à des niveaux de pression différents, une première fraction du mélange étant vaporisée au niveau de pression le plus élevé en prélevant de la chaleur dans un premier intervalle de température, la phase vapeur obtenue étant envoyée en tête de la machine motrice dans laquelle s'effectue la détente, ladite machine motrice comprenant un nombre d'étages au moins égal au nombre d'étapes de vaporisation, la fraction restante étant vaporisée en au moins une étape effectuée à un niveau de pression in- fér-ieur au niveau de pression de la première étape, en prélevant-de la chaleur dans un intervalle de température situé au moins en partie au-dessous du premier intervalle de température, la ou les fractions vapeur ainsi obtenues étant envoyées aux étages successifs de la machine motrice dans laquelle s'effectue la détente en des points correspondants aux niveaux de pression de la vapeur, le mélange vapeur obtenu après détente étant condensé et la phase liquide obtenue après condensation étant recyclée aux étapes de vaporisation.4. Method according to one of claims 1 to 3, wherein the mixture (M) is vaporized in at least two steps carried out at different pressure levels, a first fraction of the mixture being vaporized at the highest pressure level in taking heat in a first temperature interval, the vapor phase obtained being sent to the head of the driving machine in which the expansion takes place, said driving machine comprising a number of stages at least equal to the number of vaporization stages , the remaining fraction being vaporized in at least one step carried out at a pressure level lower than the pressure level of the first step, by withdrawing heat in a temperature interval situated at least partly below from the first temperature interval, the steam fraction (s) thus obtained being sent to the successive stages of the engine in which the expansion takes place at points corresponding to the pressure levels steam, the vapor mixture obtained after expansion being condensed and the liquid phase obtained after condensation being recycled to the vaporization stages. 5. Procédé selon l'une des revendications 1 à 4, dans lequel le mélange (M) est vaporisé partiellement dans l'évaporateur en prélevant de la chaleur sur un fluide extérieur, la phase vapeur et la phase liquide ainsi obtenues étant séparées, la phase vapeur étant détendue en produisant de l'énergie mécanique, la phase liquide étant envoyée dans un échangeur dans lequel elle échange de la chaleur avec le mélange (M) condensé qui est envoyé à l'évaporateur, la phase liquide étant ensuite détendue et mélangée avec la phase vapeur détendue, le mélange liquide-vapeur ainsi obtenu étant condensé en cédant de la chaleur à un fluide extérieur, le mélange (M) condensé ainsi obtenu étant recyclé à l'évaporateur.5. Method according to one of claims 1 to 4, wherein the mixture (M) is partially vaporized in the evaporator by taking heat from an external fluid, the vapor phase and the liquid phase thus obtained being separated, the vapor phase being expanded by producing mechanical energy, the liquid phase being sent to an exchanger in which it exchanges heat with the condensed mixture (M) which is sent to the evaporator, the liquid phase then being expanded and mixed with the expanded vapor phase, the liquid-vapor mixture thus obtained being condensed by yielding heat to an external fluid, the condensed mixture (M) thus obtained being recycled to the evaporator. 6. Procédé selon l'une des revendications 1 à 5, dans lequel le mélange est un mélange d'hydrocarbures dont le nombre d'atomes de carbone est de 3 à 8.6. Method according to one of claims 1 to 5, wherein the mixture is a mixture of hydrocarbons whose number of carbon atoms is from 3 to 8. 7. Procédé selon l'une des revendications 1 à 5, dans lequel le mélange est un mélange d'hydrocarbures halogénés.7. Method according to one of claims 1 to 5, wherein the mixture is a mixture of halogenated hydrocarbons. 8. Procédé selon l'une des revendications 1 à 5, dans lequel le mélange est un mélange d'eau et d'au moins un constituant miscible à l'eau choisi parmi les alcools, les cétones et les amines.8. Method according to one of claims 1 to 5, wherein the mixture is a mixture of water and at least one water-miscible constituent chosen from alcohols, ketones and amines. 9. Procédé selon l'une des revendications 1 à 5, dans lequel le mélange est un mélange d'eau et d'ammoniac.9. Method according to one of claims 1 to 5, wherein the mixture is a mixture of water and ammonia. 10. Procédé selon l'une des revendications 1 à 9, dans lequel l'intervalle de température A est compris dans la gamme de température allant de 50 à 350 °C et dans lequel l'intervalle de température B est compris dans la gamme de température allant de 20 à 80 °C.10. Method according to one of claims 1 to 9, in which the temperature range A is in the temperature range from 50 to 350 ° C and in which the temperature range B is in the range temperature ranging from 20 to 80 ° C. 11. Procédé selon l'une des revendications 1 à 10, dans lequel la pression du mélange dans l'évaporateur est comprise entre 3 et 30 bar et la pression du mélange dans le condenseur est comprise entre 1 et 10 bar.11. Method according to one of claims 1 to 10, wherein the pressure of the mixture in the evaporator is between 3 and 30 bar and the pressure of the mixture in the condenser is between 1 and 10 bar. 12. Procédé selon l'une des revendications 1 à 11, dans lequel l'énergie mécanique produite par détente du mélange en phase vapeur est convertie en énergie électrique.12. Method according to one of claims 1 to 11, wherein the mechanical energy produced by expansion of the vapor phase mixture is converted into electrical energy.
EP81400755A 1980-05-23 1981-05-12 Method for mechanical energy production from heat using a mixture of fluids as the working fluid Expired EP0041005B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT81400755T ATE14778T1 (en) 1980-05-23 1981-05-12 PROCESS FOR MECHANICAL ENERGY GENERATION FROM HEAT USING MULTI-SUBSTANCE MIXTURES AS WORK EQUIPMENT.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8011649A FR2483009A1 (en) 1980-05-23 1980-05-23 PROCESS FOR PRODUCING MECHANICAL ENERGY FROM HEAT USING A MIXTURE OF FLUIDS AS A WORKING AGENT
FR8011649 1980-05-23

Publications (2)

Publication Number Publication Date
EP0041005A1 true EP0041005A1 (en) 1981-12-02
EP0041005B1 EP0041005B1 (en) 1985-08-07

Family

ID=9242336

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81400755A Expired EP0041005B1 (en) 1980-05-23 1981-05-12 Method for mechanical energy production from heat using a mixture of fluids as the working fluid

Country Status (6)

Country Link
US (1) US4422297A (en)
EP (1) EP0041005B1 (en)
JP (1) JPS5728819A (en)
AT (1) ATE14778T1 (en)
DE (1) DE3171684D1 (en)
FR (1) FR2483009A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0137211A2 (en) * 1983-08-15 1985-04-17 Ralph Schlichtig Absorption type heat transfer system functioning as a temperature pressure potential amplifier
WO1985004216A1 (en) * 1981-05-11 1985-09-26 Miehe, Manfred Method and plant intended to a thermodynamic cycle process
WO2014040875A2 (en) * 2012-09-11 2014-03-20 Amovis Gmbh Working medium mixture for steam power plants

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2499149A1 (en) * 1981-02-05 1982-08-06 Linde Ag Converting fluid sensible heat into mechanical energy - using mixt. of tri:chloro:mono:fluoro:methane and di:chloro:di:fluoro:methane as auxiliary fluid agent
US4827877A (en) * 1987-01-13 1989-05-09 Hisaka Works, Limited Heat recovery system utilizing non-azeotropic medium
US4785876A (en) * 1987-01-13 1988-11-22 Hisaka Works, Limited Heat recovery system utilizing non-azetotropic medium
US4779424A (en) * 1987-01-13 1988-10-25 Hisaka Works, Limited Heat recovery system utilizing non-azeotropic medium
US5186013A (en) * 1989-02-10 1993-02-16 Thomas Durso Refrigerant power unit and method for refrigeration
JP2503150Y2 (en) * 1990-05-10 1996-06-26 中部電力株式会社 Vapor condenser of non-azeotropic mixed fluid cycle plant
US5255519A (en) * 1992-08-14 1993-10-26 Millennium Technologies, Inc. Method and apparatus for increasing efficiency and productivity in a power generation cycle
DE19653256A1 (en) * 1996-12-20 1998-06-25 Asea Brown Boveri Binary / polynary condensation capacitor
US5842345A (en) * 1997-09-29 1998-12-01 Air Products And Chemicals, Inc. Heat recovery and power generation from industrial process streams
CA2393386A1 (en) * 2002-07-22 2004-01-22 Douglas Wilbert Paul Smith Method of converting energy
US6751959B1 (en) * 2002-12-09 2004-06-22 Tennessee Valley Authority Simple and compact low-temperature power cycle
US7124587B1 (en) * 2003-04-15 2006-10-24 Johnathan W. Linney Heat exchange system
US6820422B1 (en) * 2003-04-15 2004-11-23 Johnathan W. Linney Method for improving power plant thermal efficiency
US7305829B2 (en) * 2003-05-09 2007-12-11 Recurrent Engineering, Llc Method and apparatus for acquiring heat from multiple heat sources
US8117844B2 (en) * 2004-05-07 2012-02-21 Recurrent Engineering, Llc Method and apparatus for acquiring heat from multiple heat sources
US7074343B2 (en) * 2004-05-26 2006-07-11 E. I. Du Pont De Nemours And Company 1,1,1,2,2,4,5,5,5-nonafluoro-4-(trifluoromethyl)-3-pentanone refrigerant compositions comprising a hydrocarbon and uses thereof
US20070144195A1 (en) * 2004-08-16 2007-06-28 Mahl George Iii Method and apparatus for combining a heat pump cycle with a power cycle
US20060112693A1 (en) * 2004-11-30 2006-06-01 Sundel Timothy N Method and apparatus for power generation using waste heat
US7665304B2 (en) * 2004-11-30 2010-02-23 Carrier Corporation Rankine cycle device having multiple turbo-generators
US7270794B2 (en) * 2005-03-30 2007-09-18 Shipley Larry W Process for recovering useful products and energy from siliceous plant matter
JP2006322692A (en) * 2005-05-20 2006-11-30 Ebara Corp Steam generator and exhaust heat power generating device
WO2011103560A2 (en) * 2010-02-22 2011-08-25 University Of South Florida Method and system for generating power from low- and mid- temperature heat sources
DE102010024487A1 (en) * 2010-06-21 2011-12-22 Andreas Wunderlich Method and device for generating mechanical energy in a cycle
US20120006024A1 (en) * 2010-07-09 2012-01-12 Energent Corporation Multi-component two-phase power cycle
RU2457338C2 (en) * 2010-08-26 2012-07-27 Игорь Анатольевич Ревенко Conversion method of heat energy to mechanical energy, method for increasing enthalpy and compression coefficient of water vapour
CN101922864A (en) * 2010-09-26 2010-12-22 中冶赛迪工程技术股份有限公司 Waste heat recycling system of distributed pure low temperature coal gas from iron and steel enterprises
SE535318C2 (en) * 2010-12-01 2012-06-26 Scania Cv Ab Arrangement and method for converting thermal energy into mechanical energy
WO2012142765A1 (en) * 2011-04-21 2012-10-26 Emmaljunga Barnvagnsfabrik Ab Working fluid for rankine cycle
US20130174552A1 (en) * 2012-01-06 2013-07-11 United Technologies Corporation Non-azeotropic working fluid mixtures for rankine cycle systems
ITBS20120008A1 (en) * 2012-01-20 2013-07-21 Turboden Srl METHOD AND TURBINE TO EXPAND AN ORGANIC WORKING FLUID IN A RANKINE CYCLE
CN103374332A (en) * 2013-07-04 2013-10-30 天津大学 Organic rankine cycle mixing working medium with cyclopentane
US10436075B2 (en) * 2015-01-05 2019-10-08 General Electric Company Multi-pressure organic Rankine cycle
US11618684B2 (en) 2018-09-05 2023-04-04 Kilt, Llc Method for controlling the properties of biogenic silica
GB2581770B (en) * 2019-01-14 2023-01-18 Gas Expansion Motors Ltd Engine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR670497A (en) * 1928-06-19 1929-11-29 Thermal installation for vehicles, flying machines, boats and other marine craft
GB551292A (en) * 1942-01-23 1943-02-16 Brian Furmstone Rice Stack A heat engine employing mixed vapours
US3511049A (en) * 1968-10-07 1970-05-12 American Air Filter Co Motive fluid composition
FR2410742A1 (en) * 1977-12-05 1979-06-29 Fiat Spa INSTALLATION OF THERMAL ENGINE SUPPLIED FROM HEAT SOURCES AT VARIOUS TEMPERATURES
GB2016607A (en) * 1978-02-07 1979-09-26 Daikin Ind Ltd Working fluid for rankine cycle
US4242870A (en) * 1974-08-29 1981-01-06 Searingen Judson S Power systems using heat from hot liquid

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3516248A (en) * 1968-07-02 1970-06-23 Monsanto Co Thermodynamic fluids
CA945383A (en) * 1971-04-01 1974-04-16 Dean T. Morgan Working fluid for rankine cycle system
FR2337855A1 (en) * 1976-01-07 1977-08-05 Inst Francais Du Petrole HEAT PRODUCTION PROCESS USING A HEAT PUMP OPERATING WITH A MIXTURE OF FLUIDS
JPS55146208A (en) * 1979-05-01 1980-11-14 Daikin Ind Ltd Power generating apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR670497A (en) * 1928-06-19 1929-11-29 Thermal installation for vehicles, flying machines, boats and other marine craft
GB551292A (en) * 1942-01-23 1943-02-16 Brian Furmstone Rice Stack A heat engine employing mixed vapours
US3511049A (en) * 1968-10-07 1970-05-12 American Air Filter Co Motive fluid composition
US4242870A (en) * 1974-08-29 1981-01-06 Searingen Judson S Power systems using heat from hot liquid
FR2410742A1 (en) * 1977-12-05 1979-06-29 Fiat Spa INSTALLATION OF THERMAL ENGINE SUPPLIED FROM HEAT SOURCES AT VARIOUS TEMPERATURES
GB2016607A (en) * 1978-02-07 1979-09-26 Daikin Ind Ltd Working fluid for rankine cycle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985004216A1 (en) * 1981-05-11 1985-09-26 Miehe, Manfred Method and plant intended to a thermodynamic cycle process
EP0137211A2 (en) * 1983-08-15 1985-04-17 Ralph Schlichtig Absorption type heat transfer system functioning as a temperature pressure potential amplifier
EP0137211A3 (en) * 1983-08-15 1986-01-08 Ralph Schlichtig Absorption type heat transfer system functioning as a temperature pressure potential amplifier
WO2014040875A2 (en) * 2012-09-11 2014-03-20 Amovis Gmbh Working medium mixture for steam power plants
WO2014040875A3 (en) * 2012-09-11 2014-08-07 Amovis Gmbh Working medium mixture for steam power plants

Also Published As

Publication number Publication date
EP0041005B1 (en) 1985-08-07
US4422297A (en) 1983-12-27
FR2483009A1 (en) 1981-11-27
DE3171684D1 (en) 1985-09-12
ATE14778T1 (en) 1985-08-15
FR2483009B1 (en) 1982-07-23
JPS5728819A (en) 1982-02-16

Similar Documents

Publication Publication Date Title
EP0041005B1 (en) Method for mechanical energy production from heat using a mixture of fluids as the working fluid
EP0162746B1 (en) Absorption process for producing cold and/or heat using a mixture of several constituents as a working fluid
US4760705A (en) Rankine cycle power plant with improved organic working fluid
CA2562836C (en) Method and device for executing a thermodynamic cycle process
AU2004263612B2 (en) Method and device for carrying out a thermodynamic cycle
EP0057120B1 (en) Method of heating a room by means of a compression heat pump using a mixed working medium
FR2826969A1 (en) PROCESS FOR THE LIQUEFACTION AND DEAZOTATION OF NATURAL GAS, THE INSTALLATION FOR IMPLEMENTATION, AND GASES OBTAINED BY THIS SEPARATION
FR2818365A1 (en) METHOD OF REFRIGERATING A LIQUEFIED GAS, GAS OBTAINED THEREBY, AND INSTALLATION USING THE SAME
FR3074846A1 (en) METHOD FOR STORING AND GENERATING COMPRESSED AIR ENERGY WITH ADDITIONAL ENERGY RECOVERY
US20120067049A1 (en) Systems and methods for power generation from multiple heat sources using customized working fluids
WO2015062782A1 (en) Method for converting heat energy into mechanical energy using a rankine cycle equipped with a heat pump
EP4004347A1 (en) Method for generating electrical energy using multiple combined rankine cycles
FR2504249A1 (en) PROCESS FOR PRODUCING COLD AND / OR HEAT USING AN ABSORPTION CYCLE
FR2583988A1 (en) DISTILLATION PROCESS WITH ENERGY RECOVERY BY VAPOR RECOMPRESSION USING AN EJECTOR
WO2021019143A1 (en) Method for recovering refrigerating energy with electricity production or liquefying of a gaseous stream
FR3025831B1 (en) ENERGY PRODUCTION SYSTEM BASED ON RANKINE CYCLE
EP3429717B1 (en) Method of energy-efficient chromatographic separation
FR3090734A1 (en) System of cogeneration of electrical energy and thermal energy by a Rankine cycle module
US3702534A (en) Power fluids for rankine cycle engines
CA2278654A1 (en) Absorption refrigerating system and working mixture for said system
FR2496754A1 (en) Energy recovery from natural gas by rankine cycle - uses liquefied natural gas for low temperature in first cycle to drive turbine for second
FR2671135A1 (en) Power station operating on the Rankine cycle using an organic fluid and implementation method
EP4004348A1 (en) Method for generating electrical energy using multiple combined rankine cycles
WO2014154869A1 (en) Cryogenic heat engine
FR3045726A1 (en) DEVICES AND METHOD FOR EXTRACTING AND VALORIZING THE ENERGY OF RELAXATION OF A GAS UNDER HEAT PRESSURE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE GB IT NL SE

17P Request for examination filed

Effective date: 19820507

ITF It: translation for a ep patent filed

Owner name: ST. ASSOC. MARIETTI & PIPPARELLI

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE GB IT LI NL SE

REF Corresponds to:

Ref document number: 14778

Country of ref document: AT

Date of ref document: 19850815

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3171684

Country of ref document: DE

Date of ref document: 19850912

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19890403

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19890412

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19890430

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19890518

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19890531

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19890731

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19900201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19900512

Ref country code: AT

Effective date: 19900512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19900513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19900531

Ref country code: CH

Effective date: 19900531

Ref country code: BE

Effective date: 19900531

BERE Be: lapsed

Owner name: INSTITUT FRANCAIS DU PETROLE

Effective date: 19900531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19901201

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 81400755.5

Effective date: 19910115