EP0036891B1 - Minimieren der spannung in monokristallen - Google Patents

Minimieren der spannung in monokristallen Download PDF

Info

Publication number
EP0036891B1
EP0036891B1 EP80902195A EP80902195A EP0036891B1 EP 0036891 B1 EP0036891 B1 EP 0036891B1 EP 80902195 A EP80902195 A EP 80902195A EP 80902195 A EP80902195 A EP 80902195A EP 0036891 B1 EP0036891 B1 EP 0036891B1
Authority
EP
European Patent Office
Prior art keywords
pressure
boule
liquid body
atmosphere
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80902195A
Other languages
English (en)
French (fr)
Other versions
EP0036891A4 (de
EP0036891A1 (de
Inventor
William Adam Bonner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AT&T Corp
Original Assignee
Western Electric Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Western Electric Co Inc filed Critical Western Electric Co Inc
Publication of EP0036891A1 publication Critical patent/EP0036891A1/de
Publication of EP0036891A4 publication Critical patent/EP0036891A4/de
Application granted granted Critical
Publication of EP0036891B1 publication Critical patent/EP0036891B1/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B27/00Single-crystal growth under a protective fluid
    • C30B27/02Single-crystal growth under a protective fluid by pulling from a melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure

Definitions

  • the invention refers to a method for making a single crystal boule of a material comprising at least two constituents as defined in the preamble clause of claim 1.
  • Materials in single crystal form play a role in various device applications such as, e.g., semiconductor and, in particular, semiconductor optical devices.
  • optical devices are light emitting diodes, laser diodes, optical detectors, opto-isolators, and phototransistors as described, e.g., in the book by A. A. Bergh et al., Light Emitting Diodes, Clarendon Press, 1976.
  • Devices may typically comprise a substrate and one or several deposited epitaxial layers, substrate and layers being rendered semiconducting or semi-insulating by the presence of appropriate dopants such as, e.g., S, Se, Sn, Zn, Te, Cd, Cr, or Fe.
  • doped and undoped III-V compounds are doped and undoped III-V compounds.
  • the manufacture of device substrates typically involves cutting wafers from a single crystal boule which may have been produced by controlled solidification from a melt; among controlled solidification techniques, pulling from a melt has proved particularly effective for III-V compounds such as, e.g., indium arsenide, gallium arsenide, gallium phosphide, and indium phosphide. In some instances, pulling may be carried out under atmospheric conditions; in others, pulling is preferably carried out under elevated pressure and from a melt whose surface is protected by an immiscible liquid. Apparatus for carrying out such so-called Liquid Encapsulated Czochralski growth has been disclosed by a number of authors and, in particular, by J.
  • Quality of pulled crystals depends on the appropriate choice of various processing parameters such as, e.g., melt composition, pressure, temperature, pull rate, and rate of rotation of a crystal being pulled.
  • processing parameters such as, e.g., melt composition, pressure, temperature, pull rate, and rate of rotation of a crystal being pulled.
  • One concern in selecting processing parameters is with the minimization of twinning as documented, e.g., by A. Steinemann et al., "Growth Peculiarities of Gallium Arsenide Single Crystals", Solid State Electronics, Vol. 6 (1963), Pergamon Press, pp. 597-604; and by A. J. Marshall et al., “Growth of InP Crystals by the Synthesis Solute Diffusion Method", Journal of Crystal Growth, Vol. 44 (1978), pp. 651-652.
  • Crystals made according to this method are essentially free from internal strain and have a smooth surface and more uniform dislocation density. Furthermore, resulting crystals have minimal tendency to crack during wafering. Devices made from such wafers exhibit desirably uniform operating characteristics.
  • Strain minimization in single crystals is effected in the course of crystal fabrication by controlled solidification of a liquid body such as, e.g., a solution or a melt of a material having desired stoichiometric composition.
  • a liquid body is prepared by heating, e.g., by resistance heating or by induction heating a suitable susceptor surrounding a crucible containing constituents. Typical crucible materials are fused silica and pyrolytic boron nitride. Exemplary apparatus is depicted in references cited above.
  • a liquid encapsulating layer is provided over the surface of the liquid body, and a pressurized, preferably inert atmosphere is supplied at a pressure sufficient to minimize loss of constituents through volatilization. Volatilization is particularly detrimental when it leads to a change in the stoichiometry of the liquid body material as may be determined, e.g., by chemical or X-ray analysis.
  • An encapsulating material typically has a lower melting point than an underlying liquid body; this is the case, e.g., when a boron trioxide encapsulant layer is used on an indium phosphide semiconductor melt.
  • Solidification is by directionally cooling the liquid body, e.g., by progressive movement from a warmer to a cooler region, either horizontally or vertically. This may involve contacting a surface of the liquid body with a seed crystal having desired crystallographic alignment; crystal growth occurs at the liquid-solid interface upon slowly pulling, i.e., raising the seed crystal or lowering the crucible. Pull rates may typically be about 10-20 mm per hour and, in the interest of growing twin-free crystals, are preferably selected so as to result in the growth of a boule having limited vertical angle. Processing parameters such as, e.g., melt temperature, rotation rate, and pull rate may be conveniently monitored by visual inspection of a growing crystal boule. As a growing crystal is pulled-through an encapsulant layer, a thin skin of encapsulant material adheres to its surface.
  • critical pressure is defined as the lowest pressure sufficient to essentially prevent volatilization of any constituent of the liquid body from which the crystal was grown. For example, in the case of a melt of indium phosphide covered with an encapsulating layer of boron trioxide, critical pressure is approximately 28 atm. (28x 101325 Pa) pure dry nitrogen.
  • pressure is only partially released prior to cooling, further release of pressure may be effected gradually during subsequent cooling of the boule. Rate of pressure decrease is relatively unimportant, a rate of 1 atm (101325 Pa) per minute being convenient.
  • temperature is maintained, e.g., by power input to the radio frequency susceptor, resulting in heating of the crystal by radiation and conduction via the supplied atmosphere.
  • heat may be supplied by one or several separate or auxiliary heaters.
  • Heating preferably is sufficient for an encapsulant skin on the crystal to remain soft during release of pressure so as to maximize stress relief and to minimize the effects of differential thermal contraction between encapsulant skin and grown crystal.
  • Heating at a temperature in a preferred range of 550-650 degrees C is appropriate for a B 2 0 3 encapsulant.
  • Cooling after release of pressure is preferably at rates not exceeding 20 degrees C per minute.
  • the procedure described above may be interpreted in terms of a post-growth annealing treatment in the course of which pressure is lowered.
  • Such treatment has been found to reduce internal stress as may be growth induced or as may be due to differential contraction of crystal and an encapsulant skin adhering to the crystal after growth.
  • minimization of internal stress is manifested, e.g., by minimization of cracking during wafering, by sharp, clear cleavage, and by uniformity of device characteristics when wafers are used as device substrates.
  • the method is applicable, e.g., to doped or undoped semiconductor compounds such as, e.g., InP and GaP as well as to multicomponent semiconductor compounds such as, e.g., ternary and quaternary congruently melting compounds.
  • Impurities may be present so as to -result in fewer than 1015 free carriers per cm 3 as in materials considered nominally undoped, or they may be present in amounts typically yielding up to 5x10 18 per cm 3 or more n- or p-type carriers.
  • the method may also be used for the growth of a single crystal boule of a materia' comprising metals, preferably from a melt covered, e.g., with a suitable oxide or halide encapsulant.
  • single crystal oxides may be grown from melts which may be covered, e.g., with immiscible metallic encapsulants.
  • Indium phosphide boules weighing approximately 100 and having a diameter of approximately 30 mm and a length of approximately 80 mm were made as follows. Polycrystalline InP was placed in a fused silica crucible and covered with a B 1 0 3 layer. Crucible dimensions were a diameter of 38 mm and a depth of 50 mm; the crucible had a hemispherical bottom. B 1 0 3 was 0.999999 pure, anhydrous, and completely degassed.
  • the filled crucible was placed in the growth chamber in a graphite susceptor, the chamber was evacuated, purged with nitrogen, and again evacuated, and a 20 kW, 450 kilocycle radio frequency generator was coupled to the susceptor.
  • the charge was slowly heated under vacuum to the softening point of B 2 O 3 at approximately 600 degrees C. While the temperature was gradually raised further to approximately 1060-1070 degrees C, the chamber was filled with nitrogen and pressure gradually raised to approximately 38 atm (38x 101325 Pa).
  • a seed crystal having (111)-direction vertical was preheated while it was lowered at the end of a pull rod through the B 2 O 3 layer, and brought into contact with the surface of the InP melt.
  • the pull rod was rotated at approximately 25 RPM and withdrawn at a rate of approximately 15 mm per hour.
  • the grown crystal was maintained at a temperature in excess of 600 degrees C while pressure was lowered at a rate of approximately 1 atm (101325 Pa) per hour to ambient pressure.
  • the crystal was then cooled at a rate of approximately 10 degrees C per minute to ambient temperature.
  • a smooth-surfaced single crystal boule was obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Claims (8)

1. Verfahren zum Herstellen eines Einkristallkörpers, dessen Material wenigstens zwei Bestandteile enthält, mit folgenden Schritten
(1) Erzeugen eines flüssigen Körpers aus dem Material mit einer darüber liegenden flüssigen Schicht aus Abdeckmaterial,
(2) Vorsehen einer Atmosphäre über dem flüssigen Körper und der flüssigen Abdeckmaterialschicht,
(3) gerichtetes Abkühlen zum Züchten eines (Kristall-)Körpers durch Ziehen durch das Abdeckmaterial hindurch, während sich die Atmosphäure bei einem ersten Druck größer oder gleich einem kritischen Druck befindet, welcher als der niedrigste Druck definiert ist, der ausreichend ist, eine Verflüchtigung jedes der zwei oder mehr Bestandteile im wesentlichen zu verhindern, wobei der so gezüchtete Körper eine Schicht aus Verkapselungsmaterial hierauf trägt, und
(4) Abkühlen des Körpers auf Umgebungstemperatur, gekennzeichnet durch Verringern des Druckes der Atmosphäre nach der Züchtung von dem ersten Druck auf einen zweiten Druck, der kleiner oder gleich 50% des kritischen Drucks ist, während die Temperatur des Körpers größer oder gleich 90% der mittleren Temperatur, in Grad Kelvin, des Körpers nach Vervollständigung dessen Wachstums ist.
2. Verfahren nach Anspruch 1, gekennzeichnet durch weiteres Verringern des Druckes der Atmosphäre von dem zweiten Druck während der Abkühlung des Körpers.
3. Verfahren nach Anspruch 1, gekennzeichnet durch Erwärmen des Körpers, während der Druck der Atmosphäre vom ersten auf den zweiten Druck verringert wird, auf eine Temperatur, bei der das Material der Abdeckschicht weich ist.
4. Verfahren nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß das Material des flüssigen Körpers im wesentlichen aus dotiertem oder undotiertem Indiumphosphid besteht.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß
- das Material der Abdeckschicht im wesentlichen aus Bortrioxid besteht,
-der erste Druck größer oder gleich 28 Atmosphären (28x101325 Pa) ist, und
- der (Kristall-)Körper auf eine Temperatur im Bereich von 550 bis 650°C erwärmt wird, während der Druck der Atmosphäre vom ersten auf den zweiten Druck verringert wird.
6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der flüssige Körper eine Schmelze oder eine Lösung ist.
7. Verfahren nach Anspruch 1, gekennzeichnet durch Abkühlen des Körpers mit Geschwindigkeiten kleiner oder gleich 20°C pro Minute.
8. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Material des flüssigen Körpers im wesentlichen aus einem dotierten oder undotierten Halbleitermaterial besteht.
EP80902195A 1979-10-12 1981-04-21 Minimieren der spannung in monokristallen Expired EP0036891B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US06/084,070 US4299650A (en) 1979-10-12 1979-10-12 Minimization of strain in single crystals
US84070 1979-10-12

Publications (3)

Publication Number Publication Date
EP0036891A1 EP0036891A1 (de) 1981-10-07
EP0036891A4 EP0036891A4 (de) 1982-03-22
EP0036891B1 true EP0036891B1 (de) 1984-07-25

Family

ID=22182700

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80902195A Expired EP0036891B1 (de) 1979-10-12 1981-04-21 Minimieren der spannung in monokristallen

Country Status (6)

Country Link
US (1) US4299650A (de)
EP (1) EP0036891B1 (de)
JP (1) JPH0341433B2 (de)
CA (1) CA1166556A (de)
DE (1) DE3068691D1 (de)
WO (1) WO1981001016A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5914440B2 (ja) * 1981-09-18 1984-04-04 住友電気工業株式会社 CaAs単結晶への硼素のド−ピング方法
JPS59232995A (ja) * 1983-06-10 1984-12-27 Sumitomo Electric Ind Ltd 引上単結晶の冷却方法
US4585511A (en) * 1983-07-22 1986-04-29 Cominco Ltd. Method of growing gallium arsenide crystals using boron oxide encapsulant
US5770873A (en) * 1984-10-05 1998-06-23 Hitachi, Ltd. GaAs single crystal as well as method of producing the same, and semiconductor device utilizing the GaAs single crystal
JPH0628234B2 (ja) * 1984-10-05 1994-04-13 株式会社日立製作所 GaAs単結晶および半導体装置
FR2596777B1 (fr) * 1986-04-08 1994-01-21 Etat Francais Cnet Procede de preparation de semi-isolants 3-5 mono-cristallins par dopage et application des semi-isolants ainsi obtenus
US5431125A (en) * 1991-06-14 1995-07-11 The United States Of America As Represented By The Secretary Of The Air Force Twin-free crystal growth of III-V semiconductor material
JP4120777B2 (ja) * 2002-04-30 2008-07-16 信越半導体株式会社 InP単結晶の製造方法及びInP単結晶
US6809027B2 (en) * 2002-06-06 2004-10-26 International Business Machines Corporation Self-aligned borderless contacts

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3647389A (en) * 1970-05-11 1972-03-07 Bell Telephone Labor Inc Method of group iii-v semiconductor crystal growth using getter dried boric oxide encapsulant
US3954518A (en) * 1975-02-19 1976-05-04 Honeywell Inc. Method for reducing compositional gradients in mercury cadmium telluride
US4083748A (en) * 1975-10-30 1978-04-11 Western Electric Company, Inc. Method of forming and growing a single crystal of a semiconductor compound
JPS545900A (en) * 1977-06-16 1979-01-17 Toshiba Corp Method of heat treating single crystal

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF CRYSTAL GROWTH, vol. 19, April 1973, S.F. NYGREN: "Liquid encapsulated czochralski, growth of 35 mm diameter single crystals of GaP, pages 21-32 *
JOURNAL OF THE ELECTROCHEMICALSOCIETY, vol. 127, no. 8, August 1980, W.A. BONNER: "Annealing technique for LEC grown twin-free InP crystals", pages 1798-1800 *

Also Published As

Publication number Publication date
JPS56501401A (de) 1981-10-01
US4299650A (en) 1981-11-10
EP0036891A4 (de) 1982-03-22
JPH0341433B2 (de) 1991-06-24
DE3068691D1 (en) 1984-08-30
CA1166556A (en) 1984-05-01
WO1981001016A1 (en) 1981-04-16
EP0036891A1 (de) 1981-10-07

Similar Documents

Publication Publication Date Title
US4999082A (en) Process for producing monocrystalline group II-IV or group III-V compounds and products thereof
US4478675A (en) Method of producing GaAs single crystals doped with boron
EP1634981B1 (de) Indiumphosphidsubstrat, indiumphosphideinkristall und herstellungsverfahren dafür
Bonner InP synthesis and LEC growth of twin-free crystals
JP3156382B2 (ja) 化合物半導体単結晶およびその成長方法
EP0036891B1 (de) Minimieren der spannung in monokristallen
EP3591102B1 (de) Verbindungshalbleiter und verfahren zur herstellung eines einkristalls eines verbindungshalbleiters
US5871580A (en) Method of growing a bulk crystal
US4594173A (en) Indium doped gallium arsenide crystals and method of preparation
US20060260536A1 (en) Vessel for growing a compound semiconductor single crystal, compound semiconductor single crystal, and process for fabricating the same
US4299651A (en) Production of single crystal II-V material
US4654110A (en) Total immersion crystal growth
US4637854A (en) Method for producing GaAs single crystal
EP0104741B1 (de) Verfahren zum Wachsen von kristallinem Material
JPH10259100A (ja) GaAs単結晶の製造方法
JP2003206200A (ja) p型GaAs単結晶及びその製造方法
US4824520A (en) Liquid encapsulated crystal growth
JPH10218699A (ja) 化合物半導体単結晶の成長方法
JP2529934B2 (ja) 単結晶の製造方法
EP0334684B1 (de) Verfahren zur thermischen Behandlung von Galliumarsenid-Einkristallen
US5228927A (en) Method for heat-treating gallium arsenide monocrystals
US5209811A (en) Method for heat-treating gallium arsenide monocrystals
JP7046242B1 (ja) リン化インジウム単結晶インゴットの製造方法及びリン化インジウム基板の製造方法
JPS606918B2 (ja) 3−5族化合物単結晶の製造方法
JPS60122791A (ja) 液体封止結晶引上方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19810611

AK Designated contracting states

Designated state(s): DE FR GB

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 3068691

Country of ref document: DE

Date of ref document: 19840830

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940816

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940826

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940901

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950908

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST