EP0028225A1 - Moteur thermique a combustion interne et a injection - Google Patents

Moteur thermique a combustion interne et a injection

Info

Publication number
EP0028225A1
EP0028225A1 EP80900775A EP80900775A EP0028225A1 EP 0028225 A1 EP0028225 A1 EP 0028225A1 EP 80900775 A EP80900775 A EP 80900775A EP 80900775 A EP80900775 A EP 80900775A EP 0028225 A1 EP0028225 A1 EP 0028225A1
Authority
EP
European Patent Office
Prior art keywords
piston
crankshaft
hollow piston
cylinder
pinion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP80900775A
Other languages
German (de)
English (en)
Inventor
Pierre Lavaux
Norbert Hudowicz
Jacques Payen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0028225A1 publication Critical patent/EP0028225A1/fr
Ceased legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B41/00Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L5/00Slide valve-gear or valve-arrangements
    • F01L5/04Slide valve-gear or valve-arrangements with cylindrical, sleeve, or part-annularly shaped valves
    • F01L5/06Slide valve-gear or valve-arrangements with cylindrical, sleeve, or part-annularly shaped valves surrounding working cylinder or piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B59/00Internal-combustion aspects of other reciprocating-piston engines with movable, e.g. oscillating, cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/28Engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders
    • F02B75/30Engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders with one working piston sliding inside another

Definitions

  • the present invention relates to internal combustion and injection thermal engines.
  • the engines according to the invention are of the type comprising at least one cylinder in which a piston moves which is connected to a crankshaft by a connecting rod.
  • An objective of the invention is to provide thermal engines of a new type in order to improve the conditions for filling cylinders, to improve thermal efficiency, to adapt the compression ratio to the power required, to determine with precision the dosage of the fuel as a function of the volume of air actually admitted into the combustion chamber and adapt the volumetric variations of the expansion chamber in order to prolong the expansion - and to use a greater part of the energy released by combustion.
  • Another object of the invention is to provide four-stroke thermal engines comprising an air intake chamber separated from the combustion and expansion chamber, so that it is possible to adapt the structure separately. of each chamber to its function and that it becomes possible to produce combustion during each revolution of the crankshaft.
  • the engines according to the invention are of the known type comprising in each cylinder an axial piston which is connected to a crankshaft by a connecting rod.
  • each cylinder comprises a second hollow piston, which is arranged coaxially around the axial piston, which is moved in a reciprocated synchronized movement and out of phase with respect to the movement alternating axial piston and which comprises a cylindrical skirt in which the axial piston moves, a hollow disc placed across one end of said skirt and a valve which closes the openings of said disc and which opens automatically inwards of said hollow piston.
  • the hollow pistons are driven by two diametrically opposite links which are each articulated on a crankpin which travels along a cycloidal trajectory.
  • this cycloidal trajectory is a three-lobed cycloid with three vertices.
  • Each of the links is driven by a cycloidal gear train which comprises:
  • a satellite pinion which rolls on said ring gear and which carries an eccentric crank pin around which the head of said rod is articulated and a bearing coaxial with said satellite pinion;
  • a first pinion for driving in rotation said satellite pinion which is coaxial with said ring gear and which carries an eccentric bore in which said bearing is engaged and rotates freely;
  • the planetary toothed ring is fixed on a biras which carries a bore which is engaged coaxially on the crankshaft, so that said toothed ring and said first pinion can be angularly displaced around the axis of the crankshaft, which rotates said cycloidal trajectory around its center and varies the phase difference between the alternating movements of the first piston and the hollow piston.
  • a motor according to the invention further comprises means such as screws or hydraulic jacks for adjusting the angular position of the arm which carries the planetary gear ring.
  • the foot of each of the links is articulated on a slide which is constituted by a plate fitted into a flat cut in the external face of the skirt of said hollow piston, which plate slides in two slides parallel to the axis common to the two pistons.
  • Each cylinder has a combustion and expansion chamber and an intake chamber, of variable volume, which are separated by the head of said hollow piston.
  • each cylinder opposite the crankshaft is closed by a cylinder head comprising air intake ducts which are closed by an automatic valve which opens towards the interior of the intake chamber and the intake chamber comprises at least one lateral lumen which is closed by a flap which slides parallel to the axis of the cylinder and which comprises means for adjusting its position.
  • the invention results in new internal combustion and injection heat engines. Fuel injection takes place directly in the combustion chamber and / or in the air intake chamber.
  • the engines according to the invention have numerous advantages linked to the presence in each cylinder of a second hollow piston which envelops the axial piston and which is driven by an alternating movement synchronized with the reciprocating movement of the axial piston, but out of phase with respect to to this one.
  • a first advantage is that each cylinder is divided into two chambers of variable volume, which are separated by the hollow piston.
  • One of these chambers serves as an air intake chamber while the other serves as a combustion and expansion chamber.
  • the air intake and metering phases can take place simultaneously with the compression, expansion and exhaust phases and it becomes possible to obtain a four-stroke engine comprising a combustion and expansion phase. and therefore an engine time during each crankshaft revolution.
  • Another advantage lies in the fact that the volume of air admitted during each cycle can be easily dosed by varying the height of the lower edge of a sliding shutter which closes an air inlet lumen in the admission room. The admitted volume varies linearly with the position of the flap.
  • the expansion speed is therefore higher at the start of the expansion and a greater part of the energy is used to produce mechanical work at the start of the expansion, which has the effect of reducing the temperature of the engine and therefore of facilitating the cooling and also to reduce the losses of calories dissipated in the cooling circuits and therefore to improve the efficiency. It has been calculated that the average temperature during expansion would be of the order of 2,000 ° K for an engine according to the invention against 2,300 ° K for a four-stroke engine of the same dimensions.
  • Another advantage of the engines according to the invention lies in the fact that the minimum volume of the expansion chamber and therefore the compression ratio and the expansion ratio can be varied by pivoting around the axis of the crankshaft. arm which carries the cycloidal gear trains, which makes it possible to adapt these ratios to the filling of the engine and to improve the efficiency.
  • Another advantage of the motors according to the invention lies in the fact that the volume of the expansion chamber continues to increase after the axial piston has passed the bottom dead center because the hollow piston rises with a speed greater than that of the piston axial. This results in a higher expansion ratio.
  • the resistant torque exerted on the axial piston during the start of the ascent is compensated by a motor torque which is exerted at this moment of the cycle by the hollow piston.
  • the average engine torque of an engine according to the invention having the same stroke and the same bore as a four-stroke engine is multiplied by a factor of approximately 1.5.
  • An engine according to the invention is an engine without controlled valves.
  • the air intake in the intake chamber and in the combustion chamber takes place automatically through automatic valves and the exhaust also takes place automatically by side lights of the skirt of the hollow piston.
  • the passage sections of the calibrated valves of an engine according to the invention can be much greater than those of the valves which equip four-stroke engines because there is not on the same cylinder head an exhaust valve juxtaposed with a valve of admission.
  • the duration of filling of the intake chamber extends over a fraction of a cycle which is of the order of 280 ° against 180 ° approximately for a four-stroke engine. As a result, the filling of the cylinder with combustion air remains good even at high operating speeds of the order of 8,000 revolutions per minute.
  • Figures 1 and 2 are axial sections of the motor perpendicular to each other.
  • Figure 1 is parallel to the axis of the crankshaft and
  • Figure 2 is perpendicular to this axis.
  • Figure 3 is a geometric figure which represents the hypocycloidal trajectory of the crank pin driving the hollow piston.
  • FIG. 4 is a diagram which represents the strokes of the pistons as a function of time.
  • Figure 5 is a perspective view of the cycloidal gear train driving the hollow piston.
  • Figure 6 is a section along VI-VI perpendicular to the axis of the pistons.
  • Figures 7 to 14 are views showing the successive positions of the pistons during a cycle.
  • Figures 1 and 2 show by way of example an internal combustion engine with a single cylinder but of course, an engine according to the invention may comprise several cylinders.
  • the engine comprises an engine block 1 which, in the example shown, is the block of a water-cooled engine comprising recesses la in which a coolant circulates.
  • an engine according to the invention could be air-cooled.
  • the engine block 1 defines a cylindrical cavity of axis x x1 in which one. piston 2 moves in an alternating motion parallel to the x x1 axis.
  • the axial piston 2 is connected by a connecting rod 3 to a crankpin 4a of a crankshaft of axis v v '.
  • the crankshaft carries a flywheel 5 and a pinion 5a for driving auxiliaries, oil pump, water pump, dynamo, etc. All of this part of a piston engine is well known and there is no need to describe it in detail.
  • An engine according to the invention is an engine with direct injection of fuel by injectors into the cylinder. It can be a petrol injection engine or a diesel engine.
  • a motor according to the invention comprises, in each cylinder, a second hollow piston 6, comprising a cylindrical skirt 7 which surrounds the axial piston 2, which therefore moves inside the skirt 7 as inside a cylinder .
  • the piston 2 has seals and segments 2a which seal the sliding conta between the piston 2 and the skirt 7.
  • the skirt 7 also includes seals and segments 7a which ensure the seal between the hollow piston 6 and the cylinder 1.
  • the head of the hollow piston which is situated at the end opposite to the crankshaft, consists of a hollow disc 8
  • the disc 8 has air intake openings 8a.
  • the hollow piston 6 further comprises an automatic valve 9 which closes or unmasks the openings 8a.
  • the automatic valve 9 has the form of a flat ring to which are fixed guide rods 9b, which are engaged in recesses of the disc 8. Each of these recesses contains a calibrated spring 9a which s 'presses on the disc 8 and on the end of a rod 9b and which keeps the valve pressed against its seat.
  • valve 9 opens automatically towards the interior of the hollow piston.
  • the axial piston 2 and the hollow piston 6 define between them a cylindrical chamber 10 of variable volume, which is the combustion and expansion chamber of the fuel mixture.
  • the hollow piston 6 delimits with the walls of the cylinder and with the cylinder head 13 a variable volume chamber 11 which is an air intake chamber.
  • the end of the cylinder is closed by a cylinder head 13 comprising inlet ducts 13a which communicate with the outside.
  • the recesses 13a are closed by an automatic valve 12 which is a flat ring, of the same type as the valve 9, which is kept applied on its seat by calibrated springs 12a and which opens automatically towards the interior of the chamber 11 when the vacuum therein reaches a threshold which is determined by the calibrated springs 12a.
  • an automatic valve 12 which is a flat ring, of the same type as the valve 9, which is kept applied on its seat by calibrated springs 12a and which opens automatically towards the interior of the chamber 11 when the vacuum therein reaches a threshold which is determined by the calibrated springs 12a.
  • the intake chamber 11 further comprises one or more lateral lights 14 which make it communicate with a conduit 15 which communicates with the atmosphere.
  • the lights 14 are arranged so that they are fully exposed when the hollow piston 6 is in bottom dead center.
  • a flap 16 which slides parallel to the axis x x1 more or less closes the lights 14 according to its position.
  • the position of the lower edge 16a of the flap 16 defines the volume of air which is trapped in the chamber 11 when the hollow piston rises and which is then transferred entirely into the combustion chamber when the hollow piston completely scans the intake chamber.
  • the volume of air admitted during each cycle varies linearly as a function of the position of the flap 16.
  • the motor comprises means for adjusting the position of the flap 16. On fixed motors, at constant speed, these means are constituted by example, as shown in Figure 1, by a threaded rod 17 which is screwed into a threaded bore through the flap 16 parallel to the axis x x1.
  • a knurled button 17a makes it possible to rotate the threaded rod which is extended by a guide rod 17b.
  • the threaded rod 17 can be replaced by any other equivalent means making it possible to move the flap 16 parallel to the axis x x1 of the cylinder.
  • the flap 16 is connected by a linkage or by a cable to a control member of the pedal, zipper, lever or lever type, which makes it possible to vary the air intake as a function of the power required. of the motor.
  • the sliding shutter 16 performs a function similar to that of the pivoting shutter a carburetor.
  • FIG. 5 is an exploded perspective view of one of the two trains of cycloidal gears which drive the hollow piston 6 and which are symmetrical with respect to x x1.
  • a slide constituted by a plate 30 is fitted into each of these flats.
  • a single slide has been shown in Figure 5 for clarity of the drawing.
  • Each slide has a bore 33 in which the foot 34 of a link 19 is articulated.
  • the slide 30 has the effect of supporting the tangential component of the thrust of the link which it transfers to the slides in order to avoid risks of deformation of the skirt of the hollow piston
  • the link 19 is articulated on a crank pin 20 which is driven by a cycloidal gear train.
  • Each crank pin 20 is carried by a pinion 21 which meshes with the teeth of a fixed toothed crown 22 of axis u u1.
  • the axis y y1 of the crank pin 20 is offset by a length e relative to the axis z zl of the pinion 21 which carries it, so that when the pinion rolls around the ring gear, the center of the crank pin travels a trajectory cycloidal or trochoidal.
  • the toothing of the ring gear 22 is internal and the pinion gear 21 rolls inside the planetary crown.
  • the ratio between the radius R of the ring gear and the radius r of the satellite pinion is equal to 3 so that the center of the crank pin describes a three-lobed hypocycloid, of curvilinear triangular shape, having three vertices.
  • the toothing of the toothed ring 22 could be external and the planet gear could then roll outside the toothed ring and then travel along an epicycloidal trajectory with three vertices also of curvilinear triangular shape.
  • Each satellite pinion carries a bearing 23 coaxial with the pinion.
  • Each satellite pinion is driven in rotation around the axis u u1 of the ring gear in synchronism with the crankshaft and this rotary drive causes the satellite pinion to roll on the teeth of the ring gear, so that the center of the crank pin 20 travels entirely through the cycloidal trajectory each time the crankshaft makes a revolution.
  • the drive in rotation of the satellite pinion around the axis u u1 is obtained by means of a first drive pinion 24, coaxial with the ring gear 22, which is itself driven in rotation, directly or by one or several intermediate pinions, by a second pinion 25 wedged on the crankshaft 4.
  • the drive ratio is such that the pinion 24 rotates at the same speed as the crankshaft.
  • Each pinion 24 carries an eccentric bore 35 in which is engaged the bearing 23 coaxial with the satellite pinion, which bearing can pivot freely in this bore.
  • the eccentricity of the bore 35 corresponds to the distance R-r between the axis z z1 of the satellite pinion of radius r and the axis u u1 of the ring gear of radius R.
  • the pinion 24 could be replaced by a drive arm of length R-r which would be rotated around the axis u u1 in synchronism with the crankshaft.
  • Each drive mechanism of the hollow piston has an arm or pendulum 36 on which the ring gear 22 is fixed.
  • This arm 36 has a bore 37 which is engaged on the end of the crankshaft, so that one can angularly move the arm 36 around the axis v v1 of the crankshaft.
  • the angular displacement of the arm 36 causes an angular displacement around the axis v v1 of the ring gear 22 and the pinion 24.
  • the pinion 24 rolls on the pinion 25 and pivots around the axis u u1, which drives the satellite 21 rotating around its axis.
  • the cycloidal trajectory of the crankpin 20 pivots around its center and at the same time, a variation of the phase shift between the alternating movements of the two pistons, which modifies the relative positions of the two pistons and has the effect of allowing '' adjust the minimum volume of the combustion chamber.
  • the arm 36 carries a second bore 38, in which is housed a bearing 39 supporting the pinion 24 and bearings 40 serving as axial stops.
  • the device comprises means for adjusting the angular position of the arm 36.
  • these means can be constituted by screws
  • the screws 41 are replaced by hydraulic jacks mounted in opposition, so that one pushes the arm, while the other brakes the movement of the arm.
  • the jacks which control the two movable arms 36 symmetrical with respect to the axis x x1 are coupled so that the angular displacements of the two arms are equal.
  • FIG. 3 is a geometric figure which represents the hypocycloidal trajectory T with three vertices traversed by the center of the crankpins 20.
  • the vertical axis x x1 represents the projection of the axis of a cylinder.
  • This figure shows two positions 19 and 19 'of the rods, 34, 34' of the rod foot which moves on the axis x x1 and 20, 20 'of the rod head.
  • the primitive circle of the toothing of a toothed ring 22 of radius R and of center 0 and the primitive circle of the toothing of a satellite pinion 21 of center 0 'and of radius have also been shown.
  • the distance 0 0 ′ corresponds to the eccentricity of the bore 35 relative to the axis u u1 of the drive pinion 24a and represents the half stroke of the hollow piston.
  • the hypocycloid T has a vertex on the x x1 axis which corresponds to the top dead center of the hollow piston.
  • the curve T is symmetrical with respect to the axis x x1 and it can be seen that during all the time when the connecting rod head traverses the side of the hypocycloid perpendicular to the axis x x1, the hollow piston remains substantially at bottom dead center.
  • the skirt 7 of the hollow piston 6 has lights 26 visible in Figure 2 and the engine block 1 is traversed by exhaust pipes 27 which are in the vertical alignment of the lights, so that when the lights 26 are placed opposite the exhaust pipes 27 consequently the movement of the hollow piston, the combustion chamber 10 is exhausted.
  • the skirt 7 of the hollow piston 6 has a light 28 visible in FIG. 2 which is located near the head 8 of the piston and the body 1 carries a fuel injector 29 which can be connected to an injection pump or else be a electromagnetic injector.
  • the injector 28 injects fuel: petrol or diesel. It is located on the path of the light 28 parallel to the axis x x1 and at the moment when the light 28 is placed opposite the injector, a dose of fuel is injected directly into the combustion chamber 10.
  • the injector 29 can inject into the mixing chamber 11 before the mixture is introduced into the combustion chamber.
  • the engine can also include two injectors: an idle injector which injects directly into the combustion chamber 10 and a normal speed injector, which injects into the mixing chamber 11.
  • a gasoline engine according to the invention comprises, in each cylinder, a spark plug 42 carried by the disc 8.
  • This spark plug is housed in an insulating sheath 42a and extended by a conductive rod 42b which are housed in a well 43 which passes through the cylinder head 13, so that the rod 42b and the sleeve 42a slide in the well 43 when the hollow piston moves.
  • the sheath 42a is for example made of polytetrafluoroethylene.
  • the rod 42b slides in a conductive sheath 43a which is isolated from the cylinder head by an insulating sheath 43b and which is connected on a wire 43c which connects it to the ignition distributor which controls the ignition at the moment when the compression of the combustible mixture is maximum. .
  • the zero angle corresponds to the top dead center of piston 2.
  • the diagram shows the piston strokes on the ordinate.
  • the sinusoid S1 represents the displacements of the upper face of the axial piston 2.
  • the curve S2 represents the displacements of the lower face of the valve 9 which equips the hollow piston and the curve S3 represents the displacements of the upper face of the disc 8 which constitutes the upper face of the hollow piston.
  • the duration of a cycle is the same for the two pistons whose movements are synchronized.
  • This diagram also shows the variable position of the light 26, the fixed position of the exhaust duct 27, the fixed position of the duct 15 and the level of the lower edge 16a of the movable flap 16.
  • the upper horizontal line 12 represents the level of the lower face of the valve 12. It can be seen in this diagram that the paths S2 and S3, which are obviously parallel to each other, have at the bottom point, a substantially horizontal level which corresponds to the path by the crank pin 20 of the hypocycloid portion which is substantially perpendicular to the vertical axis x x1.
  • the passages in top dead center of the piston 2 and of the hollow piston 6 are phase shifted by an angle ⁇ which is equal to 75 ° in the case of the figure, the hollow piston 6 being ahead of the axial piston 2
  • the phase shift ⁇ can vary between 50 ° and 100 °.
  • the distance a between the two pistons is minimum, the volume of the compression chamber is also minimum and the relative position of the two pistons at this time as well as the position of the lower edge 16a of the sliding flap 16 determine the rate compression and allow to vary the relaxation ratio.
  • the stroke of the hollow piston is equal to about two thirds of the stroke of the axial piston 2.
  • this ratio may vary depending on the type of engine desired.
  • FIG 6 is an unhooked section of Figure 1 along VI-VI.
  • This figure shows a top view of the disc 8 comprising three oblong openings, in an arc, 8a for air passage which are closed by an annular valve 9 visible through the recesses 8a.
  • the section of the openings 8a is large, of the order of a third to half the section of the chamber 10.
  • the plates 30 which are partly fitted into the skirt of the hollow piston and whose two vertical edges are cut in the shape of triangular points which are engaged in triangular slides 31 cut in the body 1.
  • FIGS. 7 to 14 are schematic figures which represent different positions occupied successively during a revolution of the crankshaft by the two pistons 2 and 6. The operation of an engine according to the The invention will be explained with reference to these figures. It will be seen that the four times of an internal combustion engine take place during a single revolution of the crankshaft, since two times can take place simultaneously in two separate chambers: the intake chamber 11 and the combustion chamber 10 Therefore, an engine according to the invention is a so-called simultaneous time engine.
  • FIG. 7 corresponds to the top dead center of the axial piston 2 which has a delayed phase shift by an angle ⁇ which is equal to 75 ° in the case of the figure.
  • FIG. 7 corresponds to the leftmost point of the diagram in FIG. 5.
  • the positions corresponding to FIGS. 7 to 14 have been identified on the lower line of FIG. 5.
  • the fresh air intake phase in the intake chamber 11 begins after the hollow piston 6 has passed top dead center where the volume of the chamber 11 is zero.
  • the intake phase continues throughout the time when the hollow piston moves between the top dead center and the bottom dead center, that is to say occupies the successive positions shown in FIGS. 7 to 12.
  • valve 12 opens automatically as soon as the vacuum reaches a threshold determined by the calibration springs and lets fresh air in. in room 11 ( Figure 10).
  • FIG. 11 represents the moment when the top of the hollow piston 6 arrives at the lower edge 16a of the movable flap 16. At this moment, air enters the intake chamber 11 through the conduit 15, the pressure in the chamber 11 becomes equal to atmospheric pressure and the valve 12 closes automatically.
  • This combination of a valve 12 and a sliding flap 16 makes it possible to limit the value of the vacuum in the chamber 11 during the intake phase while controlling the quantity of air admitted.
  • Figures 12 to 15 show the dosing phases of the combustion air.
  • FIG. 12 corresponds to the passage of the hollow piston at level 16a during the upward movement of the piston. At this time, the communication of the chamber 11 with the conduit 15 is closed and the level 16a therefore determines the volume of air which is trapped in the intake chamber and which will be sent entirely to the combustion chamber.
  • FIG. 14 also corresponds to the position of the hollow piston 6 for which the exhaust ports 26 begin to be located opposite the exhaust duct 27. The fresh air which enters the combustion chamber 10 sweeps the burnt gases which escape through the lights 26 and this scanning continues until the piston 2 closes the openings 26 ( Figure 8).
  • FIG. 8 represents a position in which the piston 2 masks the openings 26.
  • the volume of the chamber 10 decreases rapidly because the piston 2 goes up and the hollow piston 6 - goes down.
  • the air contained in chamber 10 is compressed quickly.
  • FIG. 9 represents the instant when the light 28 is located opposite the injector 29 and when the fuel is injected into the chamber 10.
  • FIGS 10 and 11 show the continuation of the compression phase.
  • Figure 10 corresponds to the passage of the piston 2 through the high point which does not correspond to the maximum compression ratio.
  • Figure 11 corresponds to the moment when the speeds of. two pistons are directed in the same direction and are equal.
  • the volume of the chamber 30 is then minimum and this volume determines the compression ratio.
  • combustion begins either by self-ignition in the case of a diesel engine, or under the effect of a spark which bursts at this moment between the electrodes of the spark plug 42.
  • FIG. 12 corresponds to the passage of the hollow piston 6 through the bottom dead center.
  • the thrust of the gases exerts a driving torque both on the piston 2 which descends and on the hollow piston 6 which rises.
  • the epicyclic gear driving the hollow piston transmits the torque to the crankshaft motor exerted by the hollow piston.
  • Figure 13 corresponds to the passage of the piston 2 through the bottom dead center.
  • FIG. 7 corresponds to a phase where the head of the hollow piston 6 arrives substantially at the level of the cylinder head with a very small dead space, so that all the air trapped in the chamber 11 passes into the expansion chamber 10.
  • FIG. 8 represents a position in which the compression of the fresh air begins for a new cycle.
  • the motors according to the invention have the advantage of making it possible to precisely dose the quantity of air admitted which varies linearly with the height of the lower edge of the sliding shutter which is moved to adapt the power of the motor to the power required.
  • the control of the metering of fuel injected with the metering of air is easy to perform since it suffices to vary the quantity of fuel delivered by the injector in proportion to the position of the flap.
  • the motors according to the invention can be adapted to provide this power under the best performance conditions.
  • Another advantage of the motors according to the invention lies in the fact that the compression ratio can be adjusted by rotating the cycloidal path T around its center and by varying the phase shift ⁇ between the alternating movements of the two pistons. This adjustment is obtained by rotating the arm 36 around the axis of the crankshaft and the position of the arm can be controlled by the position of the intake flap 16 so as to always obtain the same compression ratio.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

Moteur thermique a combustion interne et a injection comportant dans chaque cylindre, un piston axial relie par une bielle a un vilebrequin et un piston creux (6) qui est dispose coaxialement autour du piston axial et qui est entraine en translation par des biellettes (19) articulees sur des manetons (20) qui sont entraines par un train d'engrenage cycloidal comportant un satellite (21), une couronne dentee planetaire (22) et deux pignons (24 et 25), ce dernier etant cale sur le vilebrequin. La tete (8) du piston creux separe une chambre de combustion (10) d'une chambre d'admission (11) et comporte des ouvertures (8a) obturees par un clapet annulaire (9) s'ouvrant automatiquement vers l'interieur de la chambre (10).

Description

Moteur thermique à combustion interne et à injection.
La présente invention a pour objet des moteurs thermiques à combustion interne et à injection.
Les moteurs selon l'invention sont du type comportant au moins un cylindre dans lequel se déplace un piston qui est relié à un vilebrequin par une bielle.
On connaît les moteurs à quatre temps dans lesquels les phases successives d' admission,de compression, de détente et d'échappement ont lieu au cours de deux rotations successives du vilebrequin. Dans les moteurs à quatre temps connus, le rendement énergétique dépend de divers facteurs et il n'est pas possible d'optimaliser le rendement par suite des interférences dues à l'agencement des organes du moteur.
Un objectif de l'inventon est de procurer des moteurs thermiques d'un nouveau type afin de permettre d'améliorer les conditions de remplissage des cylindres, d'améliorer le rendement thermique, d'adapter le taux de compression à la puissance demandée, de déterminer avec précision le dosage du carburant en fonction du volume d'air admis réellement dans la chambre de combustion et d'adapter les variations volumêtriques de la chambre de détente afin de prolonger la détente-et d'utiliser une plus grande partie de l'énergie dégagée par lacombustion.
Un autre objectif de l'invention est de procurer des moteurs thermiques à quatre temps comportant une chambre d'admiss„ion d'air séparée de la chambre de combustion et de détente, de sorte qu'il est possible d'adapter séparément la structure de chaque chambre à sa fonction et qu'il devient possible de produire une combustion au cours de chaque tour du vilebrequin.
Les moteurs selon l'invention sont du type connu comportant dans chaque cylindre un piston axial qui est relié à un vilebrequin par une bielle.
Les objectifs de l'invention sont atteints au moyen de mo- teurs dans lesquels chaque cylindre comporte un deuxième piston creux, qui est disposé coaxialement autour du piston axial, qui est déplacé d'un mouvement alternatif synchronisé et déphasé par rapport au mouve- ment alternatif du piston axial et qui comporte une jupe cylindrique dans laquelle se déplace le piston axial, un disque évidê placé en travers d'une extrémité de ladite jupe et un clapet qui obture les ouvertures dudit disque et qui s'ouvre automatiquement vers l'intérieur dudit piston creux.
Les pistons creux sont entraînés par deux biellettes diamétralement opposées qui sont articulées chacune sur un maneton qui parcourt une trajectoire cycloïdale. De préférence, cette trajec- toire cycloïdale est une cycloïde trilobée à trois sommets.
Chacune des biellettes est entraînée par un train d'engrenage cycloïdal qui comporte :
- une couronne dentée planétaire fixe;
- un pignon satellite qui roule sur ladite couronne dentée et qui porte un maneton excentré autour duquel la tête de ladite biellette est articulée et un palier coaxial audit pignon satellite;
- un premier pignon d'entraînement en rotation dudit pignon satellite qui est coaxial avec ladite couronne dentée et qui porte un alésage excentré dans lequel ledit palier est engagé et tourne librement;
- et un deuxième pignon calé sur le vilebrequin qui entraîne le premier pignon à une vitesse synchronisée avec celle du vilebrequin.
Selon un mode de réalisation préférentiel, la couronne dentée planétaire est fixée sur un biras qui porte un alésage qui est engagé coaxialement sur le vilebrequin, de telle sorte qu'on peut déplacer angulairement ladite couronne dentée et ledit premier pignon autour de l'axe du vilebrequin, ce qui fait tourner ladite trajectoire cycloïdale autour de son centre et fait varier le déphasage entre les mouvements alternatifs du premier piston et du piston creux.
Un moteur selon l'invention comporte,en outre, des moyens tels que des vis ou des vérins hydrauliques pour ajuster la position angulaire du bras qui porte la couronne dentée planétaire. Le pied de chacune des biellettes est articulée sur uncoulisseau qui est constitué par une plaquette emboîtée dans un méplat taillé dans la face externe de la jupe dudit piston creux, laquelle plaquette coulisse dans deux glissières parallèles à l'axe commun aux deux pistons. Chaque cylindre comporte une chambre de combustion et de détente et une chambre d'admission, de volume variable, qui sont séparées par la tête dudit piston creux.
L'extrémité de chaque cylindre opposée au vilebrequin est obturée par une culasse comportant des conduits d'admission d'air qui sont obturés par un clapet automatique qui s'ouvre vers l'intérieur de la chambre d'admission et la chambre d'admission comporte au moins une lumière latérale qui est obturée par un volet qui coulisse parallèlement à l'axe du cylindre et qui comporte des moyens pour ajuster sa position.
L'invention a pour résultat de nouveaux moteurs thermiques à combustion interne et à injection. L'injection de carburant a lieu directement dans la chambre de combustion et/ou dans la chambre d'admission d'air.
Les moteurs selon l'invention présentent de nombreux avantages liés à la présence dans chaque cylindre d'un deuxième piston creux qui enveloppe le piston axial et qui est entraîné d'un mouvement alternatif synchronisé avec le mouvement alternatif du piston axial, mais déphasé par rapport à celui-ci.
Un premier avantage tient au fait que chaque cylindre est divisé en deux chambres de volume variable, qui sont séparées par le piston creux. Une de ces chambres sert de chambre d'admission d'air tandis que l'autre sert de chambre de combustion et de détente. Il en résulte que les phases d'admission et de dosage d'air peuvent avoir lieu simultanément avec les phases de compression, détente et échappement et qu'il devient possible d'obtenir un moteur à quatre temps comportant une phase de combustion et de détente et donc un temps moteur au cours de chaque tour de vilebrequin. Un autre avantage réside dans le fait que l'on peut doser facilement le volume d'air admis au cours de chaque cycle en faisant varier la hauteur du bord inférieur d'un volet coulissant qui obture une lumière d'entrée d'air dans la chambre d'admission. Le volume admis varie linéairement avec la position du volet. On peut asser- vir linéairement le débit de l'injecteur de carburant à la position duvolet et obtenir ainsi un mélange d'air et de carburant dans des proportions qui restent sensiblement constantes quel que soit le régime du moteur. On obtient ainsi facilement un réglage du mélange combustible bien plus précis que celui qui est réalisé par les systèmes à dépression, du type carburateur, et également plus précis que celui obtenu dans les moteurs à injection de type connu,d'où une économie de carburant.
Un autre avantage réside dans le fait que la chambre de combustion qui est délimitée par deux pistons permet d'obtenir un rapport de compression indépendant du rapport de détente., alors que sur les moteurs à piston, ces deux rapports sont forcément égaux.
Il en résulte que l'on peut construire des moteurs à essence ayant des rapports de détente supérieurs à 10, car on n'est plus limité par les risques de détonation du carburant et les moteurs à essence selon l'invention ont donc un meilleur rendement. Un autre avantage important réside dans le fait que la compression maxima et l'allumage ont lieu non plus au point mort haut du piston axial ou même avant passage par le point mort haut en cas d'avance à l'allumage, mais après que le piston axial a déjà fran chi le point mort haut et à un moment où le piston axial a déjà pris une certaine vitesse et où les deux pistons se déplacent dans le même sens. La vitesse de détente est donc plus élevée au début de la détente et une plus grande partie de l'énergie est utilisée pour produire du travail mécanique au début de la détente ce qui a pour effet de réduire la température du moteur et donc de faciliter le refroidissement et aussi de réduire les pertes de calories dissipées dans les circuits de refroidissement et donc d'améliorer le rendement On a calculé que la température moyenne pendant la détente serait de l'ordre de 2.000°K pour un moteur selon l'invention contre 2.300°K pour un moteur à quatre temps de mêmes dimensions.
Un autre avantage des moteurs selon l'invention réside dans le fait que l'on peut faire varier le volume minima de la chambre de détente et donc le rapport de compression et le rapport de détente en faisant pivoter autour de l'axe du vilebrequin le bras qui porte les trains d'engrenage cycloïdaux, ce qui permet d'adapter ces rapports au remplissage du moteur et d'améliorer le rendement.
Un autre avantage des moteurs selon l'invention réside dans le fait que le volume de la chambre de détente continue à croître après que le piston axial a franchi le point mort bas du fait que le piston creux remonte avec une vitesse supérieure à celle du piston axial. Il en résulte un rapport de détente plus élevé. Le couple résistant qui s'exerce sur le piston axial pendant le début de la remon- tée est compensé par un couple moteur qui est exercé à ce moment du cycle par le piston creux.
Le couple moteur moyen d'un moteur selon l'invention ayant même course et même alésage qu'un moteur à quatre temps est multiplié par un facteur égal à environ 1 ,5 .
Un moteur selon l'invention est un moteur sans soupapes commandées. L'admission d'air dans la chambre d'admission et dans la chambre de combustion ont lieu automatiquement à travers des clapets automatiques et l'échappement a lieu également automatiquement par des lumières latérales de la jupe du piston creux.
Les sections de passage des clapets tarés d'un moteur selon l'invention peuvent être nettement supérieures à celles des soupapes qui équipent les moteurs à quatre temps car il n'y a pas sur une même culasse une soupape d'échappement juxtaposée à une soupape d'admission. D'autre part, la durée de remplissage de la chambre d'admission s'étend sur une fraction de cycle qui est de l'ordre de 280° contre 180° environ pour un moteur à quatre temps. Il en résulte que le remplissage du cylindre en air de combustion reste bon même à des régimes de fonctionnement élevé de l'ordre de 8.000 tours minute.
La description suivante se réfère aux dessins annexés qui représentent, sans aucun caractère limitatif, un exemple de réalisation d'un moteur selon l'invention.
Les figures 1 et 2 sont des coupes axiales du moteur per- pendiculaires l'une à l'autre. La figure 1 est parallèle à l'axe du vilebrequin et la figure 2 est perpendiculaire à cet axe.
La figure 3 est une figure géométrique qui représente la trajectoire hypocycloïdale du maneton entraînant le piston creux.
La figure 4 est un diagramme qui représente les courses des pistons en fonction du temps.
La figure 5 est une vue en perspective du train d'engrenage cycloïdal entraînant le piston creux.
La figure 6 est une coupe selon VI-VI perpendiculaire à l'axe des pistons. Les figures 7 à 14 sont des vues montrant les positions successives des pistons au cours d'un cycle.
Les figures 1 et 2 représentent à titre d'exemple un moteur à combustion interne à un seul cylindre mais bien entendu, un moteur selon l'invention peut comporter plusieurs cylindres. Le moteur comporte un bloc moteur 1 qui,dans l'exemple représenté, est le bloc d'un moteur à refroidissement par eau comportant des évidements la dans lesquels circule un liquide de refroidissement. Bien entendu, un moteur selon l'invention pourrait être refroidi par air.
Le bloc moteur 1 délimite une cavité cylindrique d'axe x x1 dans laquelle un. piston 2 se déplace d'un mouvement alternatif parallèle à l'axe x x1. Le piston axial 2 est relié par une bielle 3 à un maneton 4a d'un vilebrequin d'axe v v' . Le vilebre quin porte un volant d'inertie 5 et un pignon 5a d'entraînement d auxiliaires, pompe à huile, à eau, dynamo etc.... Toute cette partie d'un moteur à pistons est bien connue et il est inutile de la décrire en détails. Un moteur selon l'invention est un moteur à injection directe du carburant par des injecteurs dans le cylindre. Ce peut être un moteur à injection d'essence ou un moteur diesel.
Un moteur selon l'invention comporte, dans chaque cylindre, un deuxième piston creux 6,comportantune jupe cylindrique 7 qui entoure le piston axial 2, lequel se déplace donc à l'intérieur de la jupe 7 comme à l'intérieur d'un cylindre. Le piston 2 comporte des joints et des segments 2a qui assurent l'êtanchëïté du conta glissant entre le piston 2 et la jupe 7.
La jupe 7 comporte également des joints et des segments 7a qui assurent l'étanchéïté entre le piston creux 6 et le cylindr 1. La tête du piston creux, qui est située à l'extrémité opposée au vilebrequin, est constituée par un disque ëvidé 8. Le disque 8 comporte des ouvertures d'admission d'air 8a. Le piston creux 6 comporte, en outre, un clapet automatique 9 qui obture ou démasque les ouvertures 8a. Selon un mode de réalisation préférentiel, le clapet automa tique 9 a la forme d'un anneau plat auquel sont fixées des tiges de guidage 9b, qui sont engagées dans des évidements du disque 8. Chacun de ces évidements contient un ressort taré 9a qui s'appuie sur le disque 8 et sur l'extrémité d'une tige 9b et qui maintient le clapet appuyé contre son siège. Lorsque la pression qui s'exerce sur face supérieure de l'anneau plat devient supérieure à la pression sur la face inférieure d'une quantité supérieure à un seuil déterminé par le tarage des ressorts, le clapet 9 s'ouvre automatiquement ver l'intérieur du piston creux. Le piston axial 2 et le piston creux 6 délimitent entre eux une chambre cylindrique 10 de volume variable, qui est la chambre de combustion et de détente du mélange combustible.
Le piston creux 6 délimite avec les parois du cylindre et avec la culasse 13 une chambre de volume variable 11 qui est une chambre d'admission d'air.
L'extrémité du cylindre est obturée par une culasse 13 comportant des conduits d'admission 13a qui communiquent avec l'extérieur.
Les évidements 13a sont obturés par un clapet automatique 12 qui est un anneau plat, du même type que le clapet 9, qui est maintenu appliqué sur son siège par des ressorts tarés 12a et qui s'ouvre automatiquement vers l'intérieur de la chambre 11 lorsque la dépression dans celle-ci atteint un seuil qui est déterminé par les ressorts tarés 12a.
La chambre d'admission 11 comporte, en outre, une ou plusieurs lumières latérales 14 qui la font communiquer avec un conduit 15 qui communique avec l'atmosphère. Les lumières 14 sont disposées de telle sorte qu'elles soient entièrement démasquées quand le piston creux 6 est au point mort bas. Un volet 16 qui coulisse parallèlement à l'axe x x1 obture plus ou moins les lumières 14 selon sa position.
La position du bord inférieur 16a du volet 16 définit le volume d'air qui est emprisonné dans la chambre 11 lorsque le piston creux remonte et qui est ensuite transféré entièrement dans la chambre de combustion lorsque le piston creux balaye entièrement la chambre d'admission. Le volume d'air admis au cours de chaque cycle varie linéairement en fonction de la position du volet 16. Le moteur comporte des moyens de réglage de la position du volet 16. Sur les moteurs fixes, à régime permanent, ces moyens sont constitués par exemple, comme le représente la figure 1, par une tige filetée 17 qui est vissée dans un alésage fileté traversant le volet 16 parallèlement à l'axe x x1. Un bouton molleté 17a permet de faire tourner la tige filetée qui est prolongée par une tige de guidage 17b. La tige filetée 17 peut être remplacée par tout autre moyen équivalent permettant de déplacer le volet 16 parallèlement à l'axe x x1 du cylindre.
Sur les moteurs de véhicules, le volet 16 est relié par une tringlerie ou par un câble à un organe de commande du type pédale, tirette, manette ou levier, qui permet de faire varier l'admission d'air en fonction de la puissance requise du moteur. Le volet coulissant 16 remplit une fonction analogue à celle du volet pivotant d'un carburateur.
Le piston creux 6 se déplace à l'intérieur du cylindre d'un mouvement alternatif qui est synchronisé avec celui du piston axial 2 et qui est déphasé par rapport à celui-ci. La figure 5 est une vue en perspective éclatée d'un des deux trains d'engrenages cycloïdaux qui entraînent le piston creux 6 et qui sont symétriques par rapport à x x1.
On décrira ci-après un seul de ces deux trains d'engrenages
Dans la jupe 7 du piston creux, sont taillés deux méplats diamétralement opposés. Un coulisseau, constitué par une plaquette 30 est emboîté dans chacun de ces méplats. Les bords verticaux du coulisseau 30, qui ont une forme de pointe triangulaire, coulissent dans deux glissières 31 parallèles à l'axe x x1. On a représenté une seule glissière sur la figure 5 pour la clarté du dessin. Chaque coulisseau comporte un alésage 33 dans lequel est articulé le pied 34 d'une biellette 19. Le coulisseau 30 a pour effet de supporter la composante tangentielle de la poussée de la biellette qu'il transfère aux glissières afin d'éviter des risques de déformation de la jupe du piston creux La biellette 19 est articulée sur un maneton 20 qui est entraîné par un train d'engrenage cycloïdal. Chaque maneton 20 est porté par un pignon 21 qui engrène avec la denture d'une couronne dentée fixe 22 d'axe u u1.
L'axe y y1 du maneton 20 est excentré d'une longueur e par rapport à l'axe z zl du pignon 21 qui le porte, de sorte que lorsque le pignon roule autour de la couronne dentée, le centre du maneton parcourt une trajectoire cycloïdale ou trochoïdale.
Dans l'exemple préférentiel représenté, la denture de la couronne dentée 22 est intérieure et le pignon satellite 21 roule à l'intérieur de la couronne planétaire. Le rapport entre le rayon R de la couronne dentée et le rayon r du pignon satellite est égal à 3 de sorte que le centre du maneton décrit une hypocycloïde trilobée, d'allure triangulaire curviligne, ayant trois sommets.
En variante, la denture de la couronne dentée 22 pourrait être externe et le pignon satellite pourrait alors rouler à l'extérieur de la couronne dentée et parcourir alors une trajectoire ëpicy- cloïdale à trois sommets également d'allure triangulaire curviligne.
Chaque pignon satellite porte un palier 23 coaxial avec le pignon.
Chaque pignon satellite est entraîné en rotation autour de l'axe u u1 de la couronne dentée en synchronisme avec le vilebrequin et cet entraînement en rotation provoque le roulement du pignon satellite sur la denture de la couronne dentée, de telle sorte que le centre du maneton 20 parcourt entièrement la trajectoire cycloïdale chaque fois que le vilebrequin fait un tour.
L'entraînement en rotation du pignon satellite autour de l'axe u u1 est obtenu au moyen d'un premier pignon d'entraînement 24, coaxial avec la couronne dentée 22, qui est lui-même entraîné en rotation, directement ou par un ou plusieurs pignons intermédiaires, par un deuxième pignon 25 calé sur le vilebrequin 4. Le rapport d'entraînement est tel que le pignon 24 tourne à la même vitesse que le vilebrequin. Chaque pignon 24 porte un alésage excentré 35 dans lequel est engagé le palier 23 coaxial avec le pignon satellite, lequel palier peut pivoter librement dans cet alésage.
L'excentration de l'alésage 35 correspond à la distance R-r entre l'axe z z1 du pignon satellite de rayon r et l'axe u u1 de la couronne dentée de rayon R.
Le pignon 24 pourrait être remplacé par un bras d'entraînement de longueur R-r qui serait entraîné en rotation autour de l'axe u u1 en synchronisme avec le vilebrequin.
Chaque mécanisme d'entraînement du piston creux comporte un bras ou balancier 36 sur lequel la couronne dentée 22 est fixée. Ce bras 36 comporte un alésage 37 qui est engagé sur l'extrémité du vilebrequin, de telle sorte que l'on peut déplacer angulairement le bras 36 autour de l'axe v v1 du vilebrequin. Le déplacement angulaire du bras 36 entraîne un déplacement angulaire autour de l'axe v v1 de la couronne dentée 22 et du pignon 24. Le pignon 24 roule sur le pignon 25 et pivote autour de l'axe u u1, ce qui entraîne le satellite 21 en rotation autour de son axe. Il en résulte que la trajectoire cycloïdale du maneton 20 pivote autour de son centre et en même temps, une variation du déphasage entre les mouve- ments alternatifs des deux pistons, ce qui modifie les positions relatives des deux pistons et a pour effet de permettre d'ajuster le volume minimum de la chambre de combustion.
Le bras 36 porte un deuxième alésage 38, dans lequel se loge un palier 39 supportant le pignon 24 et des roulements 40 servant de butées axiales.
Le dispositif comporte des moyens pour ajuster la position angulaire du bras 36. Dans le cas d'un moteur fixe qui travaille à un régime uniforme, ces moyens peuvent être constitués par des vis
41. Dans le cas d'un moteur de véhicule qui doit fournir des puissances variables, les vis 41 sont remplacées par des vérins hydrauliques montés en opposition, de telle sorte que l'un pousse le bras, tandis que l'autre freine le déplacement du bras. Bien entendu, dans ce cas, les vérins qui commandent les deux bras mobiles 36 symétriques par rapport à l'axe x x1 sont couplés de telle sorte que les déplacements angulaires des deux bras soient égaux.
La figure 3 est une figure géométrique qui représente la trajectoire T hypocycloïdale à trois sommets parcourue par le centre des manetons 20. L'axe vertical x x1 représente la projection de l'axe d'un cylindre. On a représenté sur cette figure deux positions 19 et 19' des biellettes, 34, 34' du pied de biellette qui se déplace sur l'axe x x1 et 20, 20' de la tête de biellette. On a également représenté le cercle primitif de la denture d'une couronne dentée 22 de rayon R et de centre 0 et le cercle primitif de la denture d'un pignon satellite 21 de centre 0' et de rayon On a également représenté sur cette figure l'excentricité e entre le centre du maneton 20 et le centre 0' du satellite et le cercle C parcouru par le centre 0' lorsque le satellite roule sur la couronne dentée. La distance 0 0' correspond à l'excentration de l'alésage 35 par rapport à l'axe u u1 du pignon d'entraînement 24a et représente la demi course du piston creux.
L'hypocycloïde T a un sommet sur l'axe x x1 qui correspond au point mort haut du piston creux. Dans l'exemple représenté, la courbe T est symétrique par rapport à l'axe x x1 et on voit que pendant tout le temps où la tête de bielle parcourt le coté de l'hypocycloïde perpendiculaire à l'axe x x1, le piston creux reste sensiblement au point mort bas. En faisant pivoter le bras 36 autour de l'axe du vilebrequin, on peut faire pivoter légèrement la courbe T autour de son centre 0 qui se déplace lui-même légèrement.
La jupe 7 du piston creux 6 comporte des lumières 26 visibles sur la figure 2 et le bloc moteur 1 est traversé par des conduits d'échappement 27 qui se situent dans l'alignement vertical des lumières, de telle sorte que lorsque les lumières 26 sont placées en regard des conduits d'échappement 27 par suite du mouvement du piston creux, la chambre de combustion 10 est mise à l'échappement.
La jupe 7 du piston creux 6 comporte une lumière 28 visible sur la figure 2 qui est située à proximité de la tête 8 du piston et le corps 1 porte un injecteur de combustible 29 qui peut être relié à une pompe à injection ou bien être un injecteur électromagnétique. L'injecteur 28 injecte du carburant : essence ou gaz-oil. Il est situé sur la trajectoire de la lumière 28 parallèle à l'axe x x1 et au moment où la lumière 28 se trouve placée en regard de l'injecteur, une dose de carburant est injectée directement dans la chambre de combustion 10. En variante, l'injecteur 29 peut injecter dans la chambre de mélange 11 avant l'introduction du mélange dans la chambre de combustion.
Le moteur peut également comporter deux injecteurs : un injecteur de ralenti qui injecte direcement dans la chambre de combustion 10 et un injecteur de régime normal, qui injecte dans la chambre de mélange 11.
Un moteur à essence selon l'invention comporte, dans chaque cylindre, une bougie 42 portée par le disque 8. Cette bougie est logée dans un fourreau isolant 42a et prolongée par une tige conductrice 42b qui sont logés dans un puits 43 qui traverse la culasse 13, de sorte que la tige 42b et le fourreau 42a coulissent dans le puits 43 lorsque le piston creux se déplace.
Le fourreau 42a est par exemple en polytétrafluoréthylène. La tige 42b coulisse dans un fourreau conducteur 43a qui est isolé de la culasse par un fourreau isolant 43b et qui est connecté sur un fil 43c qui le relie au distributeur d'allumage qui commandel'allumage au moment où la compression du mélange combustible est maxima.
La figure 4 est un diagramme qui représente en abscisses t et l'angle θ = ω.t du vilebrequin exprimé en degrés, ω étant la vitesse angulaire du vilebrequin. L'angle zéro correspond au point mort haut du piston 2. Le diagramme représente en ordonnées les courses des pistons. La sinusoïde S1 représente les déplacements de la face supérieure du piston axial 2. La courbe S2 représente les déplacements de la face inférieure du clapet 9 qui équipe le piston creux et la courbe S3 représente les déplacements de la face supérieure du disque 8 qui constitue la face supérieure du piston creux.
La durée d'un cycle est la même pour les deux pistons dont les mouvements sont synchronisés.
On a également représenté sur ce diagramme la position variable de la lumière 26, la position fixe du conduit d'échappement 27, la position fixe du conduit 15 et le niveau du bord inférieur 16a du volet mobile 16.
La ligne horizontale supérieure 12 représente le niveau de la face inférieure du clapet 12. On voit sur ce diagramme que les trajectoires S2 et S3, qui sont évidemment parallèles entre elles, présentent au point bas, un palier sensiblement horizontal qui corres pond au parcours par le maneton 20 de la portion d'hypocycloïde qui est sensiblement perpendicualire à l'axe vertical x x1.
On voit également que les passages au point mort haut du piston 2 et du piston creux 6 sont déphasés d'un angle ø qui est égal à 75° dans le cas de la figure, le piston creux 6 étant en avance sur le piston axial 2. Le déphasage ø peut varier entre 50° et 100°. On voit également qu'après le passage par le point mort haut du piston 2, les deux pistons se déplacent tous deux dans le même sens vers le bas à des vitesses différentes. Lorsque le piston 2 vient de franchir le point mort haut sa vitesse est faible et le piston creux va plus vite jusqu'à un moment où les deux vitesses sont égales. A ce moment là, la distance a entre les deux pistons est minima, le volume de la chambre de compression est également minimum et la position relative des deux pistons à cet instant ainsi que la position du bord inférieur 16a du volet coulissant 16 déterminent le taux de compression et permettent de faire varier le rapport dedétente.
On voit sur la figure 4 que dans l'exemple représenté, la course du piston creux est égale à environ deux tiers de la course du piston axial 2. Bien entendu ce rapport pourra varier selon le type de moteur désiré.
La figure 6 est une coupe décrochée de la figure 1 selon VI-VI. On voit sur cette figure une vue de dessus du disque 8 comportant trois ouvertures oblongues, en arc de cercle, 8a de passage d'air qui sont obturées par un clapet annulaire 9 visible à travers les évidements 8a. On voit également trois tiges de guidage 9b du clapet 9. La section des ouvertures 8a est importante, de l'ordre du tiers à la moitié de la section de la chambre 10. On voit également l'injecteur de carburant 29. On voit aussi une section du volet coulissant 16 et de la tige de guidage 17b de celui-ci. On voit aussi les plaquettes 30 qui sont emboîtées en partie dans la jupe du piston creux et dont les deux bords verticaux sont découpés en forme de pointes triangulaires qui sont engagées dans des glissières triangulaires 31 taillées dans le corps 1. On voit également les biellettes 19 qui s'articulent sur les plaquettes 30. Une pièce d'usure 44 est placée entre chaque biellette et le corps du moteur. Les pièces d'usure 44 sont également visibles sur la figure 1. Les figures 7 à 14 sont des figures schématiques qui représentent différentes positions occupées successivement pendant un tour du vilebrequin par les deux pistons 2 et 6. Le fonctionnement d'un moteur selon l'invention va être expliqué en se référant à ces figures. On verra que les quatre temps d'un moteur à explosion ont lieu au cours d'un seul tour du vilebrequin, du fait que deux temps peuvent avoir lieu simultanément dans deux chambres séparées : la chambre d'admission 11 et la chambre de combustion 10. De ce fait, un moteur selon l'invention est un moteur dit à temps simultanés. On a représenté sur les figures 7 à 14 en traits pleins forts, le piston axial 2, la bielle 3 et le trajet circulaire 4 de la tête de la bielle 3 et on a représenté en pointillés une biellette 19, la trajectoire hypocycloïdale trilobée T de la tête de la biellette 19 et le piston creux 6. Les petits ronds blancs représentent l'air de combustion et les ronds pointillés représentent les gaz brûlés.
On part de la figure 7 qui correspond au point mort haut du piston axial 2 qui présente un déphasage en retard d'un angle ø qui est égal à 75° dans le cas de la figure.
La figure 7 correspond au point le plus à gauche du diagramme de la figure 5.On a repéré sur la ligne inférieure de la figure 5, les positions correspondant aux figures 7 à 14.
Nous examinerons d'abord ce qui se passe dans la chambre d'admission 11 située entre le piston 2 et le piston creux 6. La phase d'admission d'air frais dans la chambre d'admission 11 commence après que le piston creux 6 a franchi le point mort haut où le volume de la chambre 11 est nul. La phase d'admission se poursuit pendant tout le temps où le piston creux se déplace entre le point mort haut et le point mort bas, c'est-à-dire occupe les positions suc cessives représentées sur les figures 7 à 12.
Sous l ' effet de la dépression qui est créée dans la chambre 11 par le mouvement du piston creux, le clapet 12 s'ouvre automati quement dès que la dépression atteint un seuil déterminé par les ressorts de tarage et laisse pénétrer de l'air frais dans la chambre 11 (figure 10).
La figure 11 représente le moment où le sommet du piston creux 6 arrive au niveau du bord inférieur 16a du volet mobile 16. A ce moment, de l'air pénètre dans la chambre d'admission 11 par le conduit 15, la pression dans la chambre 11 devient égale à la pres sion atmosphérique et le clapet 12 se ferme automatiquement. Cette combinaison d'un clapet 12 et d'un volet coulissant 16 permet de limiter la valeur de la dépression dans la chambre 11 pendant la phase d'admission tout en dosant la quantité d'air admis. Les figures 12 à 15 représentent les phases de dosage- de l'air de combustion. La figure 12 correspond au passage du piston creux au niveau 16a pendant le mouvement de remontée du piston. A ce moment là, la communication de la chambre 11 avec le conduit 15 est fermée et le niveau 16a détermine donc le volume d'air qui est emprisonné dans la chambre d'admission et qui sera envoyé entièrement dans la chambre de combustion. On voit donc qu'en faisant coulisser le volet 16, on modifie le niveau 16a et on détermine le volume d'air de combustion admis pendant chaque cycle qui varie linéairement avec la positon du volet 16. Entre les positions représentées sur les figures 13 et 14 l'air emprisonné dans la chambre 11 est comprimé jusqu'à la position -représentée sur la figure 14 où la pression dans la chambre 11 dépasse la pression dans la chambre de combustion 10 et où le clapet 9 s'ouvre automatiquement. La figure 14 correspond également à la position du piston creux 6 pour laquelle les lumières d'échappement 26 commencent à se trouver en regard du conduit d'échappement 27. L'air frais qui pénètre dans la chambre de combustion 10 balaye les gaz brûlés qui s'échappent à travers les lumières 26 et ce balayage se poursuit jusqu'à ce que le piston 2 vienne obturer les lumières 26 (figure 8).
On a décrit les phases d'admission et dosage de l'air de combustion qui ont lieu au cours d'un cycle dans la chambre d'admission 11.
On va décrire ci-après les phases qui ont lieu simultanément dans la chambre de combustion 10 en se reportant à la figure 7 qui correspond à la fin du balayage des gaz brûlés.
La figure 8 représente une postion dans laquelle le piston 2 masque les lumières 26. Le volume de la chambre 10 décroît rapidement car le piston 2 monte et le piston creux 6 - descend. L'air contenu dans la chambre 10 est comprimé rapidement.
La figure 9 représente l'instant où la lumière 28 se trouve en face de l'injecteur 29 et où l'on injecte le carburant dans la chambre 10.
Les figures 10 et 11 représentent la suite de la phase de compression.
La figure 10 correspond au passage du piston 2 par le point haut qui ne correspond pas au taux de compression maximum. La figure 11 correspond au moment où les vitesses des. deux pistons sont dirigées dans le même sens et sont égales. Le volume de la chambre 30 est alors minimum et ce volume détermine le taux de compression. A cet instant, la combustion commence soit par autoallumage dans le cas d'un moteur diesel, soit sous l'effet d'une êtincelle qui éclate à ce moment entre les électrodes de la bougie 42.
La phase comprise entre les figures 11 et 14 correspond à la détente du mélange combustible. Pendant cette phase, les deux pistons 2 et 6 transmettent au vilebrequin un couple moteur ou résistant et le couple final résulte de l'addition de ces deux couples.
Pendant la phase comprise entre les figures 11 et 12, lapoussée des gaz exerce un couple moteur sur le piston 2 et un couple résistant sur le piston 6. La figure 12 correspond au passage du piston creux 6 par le point mort bas. Pendant la phase comprise entre les figures 12 et 13, la poussée des gaz exerce un couple moteur à la fois sur le piston 2 qui descend et sur le piston creux 6 qui remonte. L'engrenage ëpicycloïdal entraînant le piston creux transmet au vilebrequin le couple moteur exercé par le piston creux.
La figure 13 correspond au passage du piston 2 par le point mort bas.
Pendant la phase comprise entre les figures 13 et 14, les deux pistons remontent et le volume de la chambre 10 continue à augmenter jusqu'à ce que les vitesses des deux pistons soient égales (figure 14). La détente des gaz se poursuit donc même après le passage dupiston 2 par le point mort bas en exerçant un couple moteur sur le piston creux qui compense le couple résistant s'exerçant sur le piston 2. La lumière 26 est disposée sur le piston creux 6 de telle sorte qu'elle commence à être en regard du conduit d'échappement 27 lorsque le volume de la chambre 10 est maximum (figure 14). L'échappement commence à ce moment là, en même temps que le clapet 9 s'ouvre et que l'air frais commence à balayer les gaz brûlés et le balayage se poursuit pendant les phases comprises entre les figures 14, 7 et 8.
La figure 7 correspond à une phase où la tête du piston creux 6 arrive sensiblement au niveau de la culasse avec un espace mort très faible, de sorte que tout l'air emprisonné dans la chambre 11 passe dans la chambre de détente 10.
La figure 8 représente une position dans laquelle commence la compression de l'air frais pour un nouveau cycle.
Des calculs théoriques montrent qu'un moteur selon l'invention ayant un diamètre de piston axial de 73 mm, un diamètre de pis- ton creux de 84 mm, un rayon de vilebrequin de 38,5 mm, une longueur de bielle de 129 mm, un rayon du bras d'entraînement du satellite de 23,1 mm, une longueur de biellettes de 68,3 mm, une excentricité de maneton de 3,8 mm, un volume maximum admissible par la chambre d'admission de 224 cm , un taux de compression de 9,5, un déphasage ø = 75° entre les mouvements des deux pistons et un rapport volumétrique de détente de 15,17 développe au cours d'un cycle un couple moteur moyen de 6,63 m.Kg, que la température moyenne au cours de la détente est de 2.015°K et que le rendement thermique, compte tenu des rapports volumêtriques de détente mis en jeu, est égal à 0,59. A titre de comparaison, pour un moteur à quatre temps ayant même diamètre, même course de piston et même taux de compression, on obtient un couple moteur moyen sur deux tours de 4,12 m.Kg, une température moyenne pendant la détente de 2.338°K et un rendement thermique de 0,52.
Les moteurs selon l'invention présentent l'avantage de permettre de doser avec précision la quantité d'air admis qui varie linéairement avec la hauteur du bord inférieur du volet coulis- sant que l'on déplace pour adapter la puissance du moteur à la puissance requise. Il en résulte que l'asservissement du dosage de carburant injecté au dosage de l'air est facile à réaliser puisqu'il suf- fig de faire varier la quantité de carburant délivrée par l'injecteur proportionnellement à la position du volet. Ainsi, quelle que soit la puissance requise, les moteurs selon l'invention peuvent être adaptés à fournir cette puissance dans les meilleures conditions de rendement. Un autre avantage des moteurs selon l'invention réside dans le fait que l'on peut ajuster le taux de compression en faisant pivoter la trajectoire cycloïdale T autour de son centre et en faisant varier le déphasage ø entre les mouvements alternatifs des deux pistons. Cet ajustement s'obtient en faisant pivoter le bras 36 autour de l'axe du vilebrequin et on peut asservir la position du bras à la position du volet d'admission 16 de façon à toujours obtenir un même taux de compression.

Claims

Revendications de brevet.
1 - Moteur thermique à combustion interne et à injection du type comportant au moins un cylindre (1) et un piston (2) axial qui est relié à un vilebrequin (4) par une bielle (3), caractérisé en ce que chaque cylindre (1) comporte un deuxième piston creux (6) qui est disposé coaxialement autour du piston axial, qui est déplacé d'.un mouvement alternatif, synchronisé et déphasé par rapport au mouvement alternatif du piston axial, et qui comporte une jupe cylindrique (7) dans laquelle se déplace le piston axial (2), un disque évidé (8) placé en travers d'une extrémité (7a) de ladite jupe et un clapet (9) qui obture les ouvertures (8a) dudit disque et qui s'ouvre automatiquement vers l'intérieur dudit piston creux. 2 - Moteur selon la revendication 1, caractérisé en ce que lesdits pistons creux sont entraînés en translation par deux biellettes (19) diamétralement opposées, qui sont articulées chacune sur un maneton (20) qui parcourt une trajectoire cycloïdale.
3 - Moteur selon la revendication 2, caractérisé en ce que ladite trajectoire cycloïdale est une cycloïde trilobée à trois sommets
4 - Moteur selon la revendication 2, caractérisé en ce que chacune desdites biellettes (19) est entraînée par un train d'engrenage cycloïdal qui comporte :
- une couronne dentée planétaire fixe (22); - un pignon satellite (21) qui roule sur ladite couronne dentée (22) et qui porte un maneton excentré (20) autour duquel la tête de ladite biellette est articulée et un palier (23) coaxial audit pignon satellite;
- un premier pignon (24) d'entraînement en rotation dudit pignon satellite (21) qui est coaxial avec ladite couronne dentée
(22) et qui porte un alésage excentré (25) dans lequel ledit palier (23) est engagé et tourne librement;
- et un deuxième pignon (25) calé sur le vilebrequin (4) qui entraîne, le premier pignon (25) à une vitesse synchronisée avec celle du vilebrequin. 5 - Moteur selon la revendication 4, caractérisé en ce que ladite couronne dentée planétaire (22) est fixée sur un bras (36) qui porte un alésage (37) qui est engagé coaxialement sur le vilebrequin (4), de telle sorte qu'on peut déplacer angulairement ladite couronne dentée (22) et ledit premier pignon (24) autour de l'axe du vilebrequin, ce qui fait tourner ladite trajectoire cycloïdale autour de son centre et fait va- rier le déphasage entre les mouvements alternatifs du premier piston (2) et du piston creux (6). 6 - Moteur selon la revendication 5, caractérisé en ce qu'il comporte des moyens tels que des vis ou des vérins hydrauliques pour ajuster la position angulaire dudit bras (36) . 7 - Moteur selon la revendication 2, caractérisé en ce que le pied de chacune desdites biellettes (19) est articulée sur un coulisseau qui est constitué par une plaquette (30) emboîtée dans un méplat taillé dans la face externe de la jupe (7) dudit piston creux, laquelle plaquette (30) coulisse dans deux glissières (31) parallèles à l'axe commun aux deux pistons.
8 - Moteur selon la revendication 1 , caractérisé en ce que chaque cylindre comporte une chambre de combustion et de détente (10) et une chambre d'admission (11) de volume variable qui sont séparées par la tête (8) dudit piston creux (6). 9 - Moteur selon la revendication 8, caractérisé en ce que l'extrémité de chaque cylindre qui est opposée au vilebrequin est obturée par une culasse (13) comportant des conduits d'admission d'air (13a), qui sont obturés par un clapet automatique (12) qui s'ouvre vers l'intérieur de la chambre d'admission et la chambre d'admission (11) comporte au moins une lumière latérale (14) qui est obturée par un volet (16) qui coulisse parallèlement à l'axe du cylindre et qui comporte des moyens (17) pour ajuster sa position. 10 - Moteur selon la revendication 1, caractérisé en ce que la jupe dudit piston creux comporte une lumière latérale (28) située à proximité de la tête du piston et le corps du moteur porte un injecteur (29) qui est situé dans l'alignement de ladite lumière parallèle à l'axe du cylindre.
EP80900775A 1979-05-07 1980-11-19 Moteur thermique a combustion interne et a injection Ceased EP0028225A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR7912364 1979-05-07
FR7912364A FR2456212A1 (fr) 1979-05-07 1979-05-07 Moteur thermique a temps simultanes

Publications (1)

Publication Number Publication Date
EP0028225A1 true EP0028225A1 (fr) 1981-05-13

Family

ID=9225490

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80900775A Ceased EP0028225A1 (fr) 1979-05-07 1980-11-19 Moteur thermique a combustion interne et a injection

Country Status (5)

Country Link
EP (1) EP0028225A1 (fr)
CA (1) CA1145265A (fr)
FR (1) FR2456212A1 (fr)
IT (1) IT1140845B (fr)
WO (1) WO1980002443A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7559298B2 (en) * 2006-04-18 2009-07-14 Cleeves Engines Inc. Internal combustion engine
NL2002283C2 (en) * 2008-12-03 2010-06-07 Var Motors Beheer B V Internal combustion engine.

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB215814A (en) * 1923-01-19 1924-05-19 Edward Henry Friend Improvements in or relating to internal combustion engines
GB297357A (en) * 1927-09-19 1929-04-25 British Continental Motors Ltd Improvement in means for actuating the sleeve valves of radial-cylinder internal combustion engine
US1865493A (en) * 1929-07-24 1932-07-05 Whitfield Johnson Motor Compan Internal combustion engine
GB562964A (en) * 1943-01-15 1944-07-24 William Quilter Improvements in two-stroke internal combustion engines
US2383432A (en) * 1944-01-18 1945-08-21 Joseph F Woods Internal-combustion engine
US3340858A (en) * 1964-11-13 1967-09-12 Gerin Jacques Jean-Marie Jules Thermal engine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8002443A1 *

Also Published As

Publication number Publication date
WO1980002443A1 (fr) 1980-11-13
FR2456212A1 (fr) 1980-12-05
IT1140845B (it) 1986-10-10
IT8021864A0 (it) 1980-05-07
FR2456212B1 (fr) 1982-11-19
CA1145265A (fr) 1983-04-26

Similar Documents

Publication Publication Date Title
EP2279332B1 (fr) Moteur a combustion interne
EP0104541B1 (fr) Procédé de transformation d'énergie thermique en énergie mécanique à l'aide d'un moteur à combustion ainsi que ce nouveau moteur
FR2561710A1 (fr) Moteur a combustion interne a deux temps et son cycle
EP0406079B1 (fr) Moteurs à deux temps à injection pneumatique et à restriction de debit dans au moins un conduit de transfert
EP0131000A1 (fr) Moteur a explosion.
FR2680402A1 (fr) Mecanisme de transformation reversible d'un mouvement de rotation uniforme en un mouvement rectiligne alternatif sinusouidal a course variable, et moteur comportant un tel mecanisme.
EP0028225A1 (fr) Moteur thermique a combustion interne et a injection
FR2842867A1 (fr) Actionneur hydraulique de soupapes pour moteurs a pistons
WO1995004877A2 (fr) Moteur thermique a combustion interne comportant au moins deux cylindres opposes
FR2655378A1 (fr) Systeme de moteur a 2 temps ayant 4 cycles.
FR2898383A1 (fr) Ensemble mecanique pour la realisation de machines telles que compresseurs, moteurs thermiques ou autres, dotees d'un cylindre et d'un piston
BE1005985A3 (fr) Dispositif pour distribution rotative.
BE1008009A3 (fr) Procede de distribution pour moteur a combustion interne et dispositif pour la mise en oeuvre de ce procede.
EP0019557A1 (fr) Moteur à combustion interne, à disque, sans vilebrequin et sans bielle
BE474762A (fr)
WO1988005861A1 (fr) Procede pour allumer par compression un melange gazeux dans un moteur a combustion interne, et moteur mettant en oeuvre ce procede
FR2671583A1 (fr) Moteur a explosion du type a barillet.
FR2566459A1 (fr) Procede d'amelioration du fonctionnement d'un moteur a combustion interne et moteur a combustion interne a fonctionnement ameliore et structure simplifiee
FR2613770A1 (fr) Moteur a combustion interne a deux temps
BE461564A (fr)
FR2730523A1 (fr) Perfectionnements aux moteurs
FR2801932A1 (fr) Procede et dispositif pour modifier et prendre en compte le taux de compression pour optimiser le fonctionnement des moteurs a pistons alternatifs
WO2015189530A1 (fr) Moteur a soupapes latérales perfectionne
BE402534A (fr)
FR2577617A1 (fr) Moteur a combustion interne avec pistons oscillants et force de reaction

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19801216

AK Designated contracting states

Designated state(s): AT CH DE FR GB NL SE

RBV Designated contracting states (corrected)

Designated state(s): AT CH DE FR GB LI NL SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 19831222