EP0027445A4 - Oil cooled piston. - Google Patents

Oil cooled piston.

Info

Publication number
EP0027445A4
EP0027445A4 EP19790901340 EP79901340A EP0027445A4 EP 0027445 A4 EP0027445 A4 EP 0027445A4 EP 19790901340 EP19790901340 EP 19790901340 EP 79901340 A EP79901340 A EP 79901340A EP 0027445 A4 EP0027445 A4 EP 0027445A4
Authority
EP
European Patent Office
Prior art keywords
wall
annular
piston
fluid
ledge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19790901340
Other languages
German (de)
French (fr)
Other versions
EP0027445A1 (en
EP0027445B1 (en
Inventor
John K Amdall
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Caterpillar Inc
Original Assignee
Caterpillar Tractor Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Caterpillar Tractor Co filed Critical Caterpillar Tractor Co
Publication of EP0027445A4 publication Critical patent/EP0027445A4/en
Publication of EP0027445A1 publication Critical patent/EP0027445A1/en
Application granted granted Critical
Publication of EP0027445B1 publication Critical patent/EP0027445B1/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/06Arrangements for cooling pistons
    • F01P3/08Cooling of piston exterior only, e.g. by jets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/0015Multi-part pistons
    • F02F3/003Multi-part pistons the parts being connected by casting, brazing, welding or clamping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/16Pistons  having cooling means
    • F02F3/20Pistons  having cooling means the means being a fluid flowing through or along piston
    • F02F3/22Pistons  having cooling means the means being a fluid flowing through or along piston the fluid being liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/0015Multi-part pistons
    • F02F3/003Multi-part pistons the parts being connected by casting, brazing, welding or clamping
    • F02F2003/0061Multi-part pistons the parts being connected by casting, brazing, welding or clamping by welding

Definitions

  • This invention relates generally to expan- sible chamber devices and more particularly to pistons having lubricating means including chambers or pockets.
  • an oil cooled piston including a crown having inner and outer annular walls.
  • the walls define an annular groove including an annular opening.
  • the outer wall has an end surface adjacent the opening.
  • Means are provided for trapping fluid.
  • Such means includes a substan ⁇ tially annular ledge extending from the inner wall toward the outer wall terminating at a lip. The lip is spaced from the end surface.
  • a sloping surface on the ledge extends between the inner wall and the lip and is adjacent the annular opening.
  • FIGURE 1 is an enlarged cross-sectional view illustrating an embodiment of the present invention
  • FIGURE 2 is a bottom plan view taken along the line II-II of Figure 1;
  • FIGURE 3 is another enlarged cross-sectional view illustrating an embodiment of the present invention.
  • FIGURE 4 is a view taken along the line IV-IV of Figure 3;
  • FIGURE 5 is an enlarged partial cross-sectional view illustrating the preferred embodiment of this invention.
  • FIGURES 6-8 are enlarged partial cross-section- al views illustrating alternative embodiments of this invention.
  • FIGURES 9,10 are enlarged partial cross- sectional views illustrating a cooling oil spray during the piston stroke. Best Mode for Carrying Out the Invention
  • a piston is generally designated 10, Fig. 1, for reciprocating motion due to pin 12 and connecting rod 14 attached to piston boss 15 at one end 17 and to a crankshaft (not shown) at an opposite end in the well known manner. Also, a conventional cylinder liner 16 is provided for guiding the reciprocating action of piston 10.
  • Piston 10 includes an upper crown portion 18 and a lower skirt portion 20.
  • the lower skirt portion 20 is well known and includes partial skirts 20a, 20b.
  • Crown portion 18 includes inner and outer wall portions 22,24, respectively, defining an annular groove 26 closed at an upper end 28 and having an open ⁇ ing at a lower end 30.
  • Outer wall 24 includes conven ⁇ tional grooves 32 carrying compression rings 34.
  • An annular relief 36 is provided between rings 34 and a relief 38 is provided below rings 34 for carrying oil control ring 40.
  • Outer wall 24 terminates at end surface 42 just below oil control ring 40. Skirt portion 20 is just below end surface 42 and spaced therefrom by an opening 44. Inner wall 22 separates groove 26 from crown
  • Wall 22 extends downwardly past opening 44 to pin boss 15.
  • Piston 10 is preferably cast from iron to form a thin-walled, light-weight, one-piece unit.
  • upper dome portion 18 could be cast separately from lower skirt portion 20 and the portions could then be welded together at 19 by a brazing process if desired.
  • a conventional piston cooling jet 48 is fix ⁇ edly positioned adjacent lower skirt 20 for spraying a jet of fluid such as lubricating oil upwardly into annular groove 26 and cooling dome 46 as is known.
  • the jet, Figures 9, 10 constantly sprays the oil upwardly to the underside of the crown 18. The spray is directed so that when the piston is bottom dead center or when the reciprocating piston 10 is at its lowermost position relative to the fixed jet 48, the spray bathes and cools groove 26 which has become heated due to proximity to crown 18.
  • the spray bathes and cools dome 46 When the piston 10 is at top dead center, the spray bathes and cools dome 46. This momentary cooling is advantageous but does not continuously cool both the groove 26 and the dome 46.
  • An improved splash sill 50 is provided as a means for trapping oil.
  • Sill 50 is formed as a substantially annular ledge extending radially outwardly from inner wall 22 adjacent opening 44 and reaching toward outer wall 24.
  • Ledge or sill 50 also extends axially upwardly toward crown 18.
  • Ledge 50 terminates at lip portion 52 which is spaced from end surface 42.
  • the preferred configuration for ledge 50 is illustrated in Fig. 5.
  • a sloping upper surface 56 is provided on ledge 50.
  • Surface 56 may be of a substantially constant slope such as that shown in Figs. 5-7 or may be curved or cup-shaped such as is shown in Fig. 8.
  • Surface 56 provides ledge 50 with angular disposition relative to inner wall 22.
  • ledge 50 and wall 22 cooperate to form a trough-like fluid trap.
  • ledge 50 is most advantageously situated as described above, that is, extending outwardly from inner wall 22 and sloped upwardly toward crown 18. However, situated as such, ledge 50 is directly in the oil jet spray path extend ⁇ ing between jet 48 and groove 26.
  • ledge 50 includes a slot 60 as a means for permitting the pressurized stream to be directed past ledge 50 and into groove 26, see Figs. 2 and 4.
  • slot 60 is formed in duplicate (two slots 60, 180 de ⁇ grees diametrically opposed) for the purpose of pro ⁇ viding a piston which can be installed without concern as to the location of slot 60.
  • only one jet 48 is usually provided, only one slot 60 is required.
  • Piston 10 reciprocates downwardly to bottom dead center and jet 48 directs lubricating oil upwardly past ledge 50 via slot 60 into groove 26.
  • the oil bathes and momentarily cools groove 26, thereafter drains downwardly and is trapped by ledge 50 as piston 10 accelerates upwardly to its top dead center position where the oil then bathes the dome 46.
  • the foregoing has described an oil cooled piston having a ledge or splash sill which does not interfere with the spray of oil into the cooling groove and which better directs trapped oil back into the groove to supplement the spray.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

Substantial heat is generated at the crown portion (18) of a piston (10). Cooling fluid has been directed to cavities (46) in the underside of the crown (18). However, at critical points of the piston cycle, the fluid drains from the cavities due to the forces of gravity. An oil cooled piston (10) is provided which includes a fluid trap (50) adjacent the crown (18). Some of the cooling fluid is trapped as it drains and is retained to enhance cooling of the crown (18). The fluid trap (50) includes a slot (60) permitting a jet spray of lubricating oil to be directed past the trap (50) to the cavities adjacent the underside of the crown (18).

Description

Description
Oil Cooled Piston
Technical Field
This invention relates generally to expan- sible chamber devices and more particularly to pistons having lubricating means including chambers or pockets.
Background Art
In the past, lubricating oil has been sprayed upwardly into a cooling dome and an annular cooling groove adjacent the underside of the piston crown for the purpose of cooling. Also, a ledge or splash sill has been provided for trapping some of the oil and for directing the trapped oil back into the groove to supple¬ ment the oil spray. A problem exists in that the ledge is position¬ ed at the outer periphery of the piston which causes interference with the oil spray and which also causes poor directing of the trapped oil back into the groove. In view of the above, it would be advantageous to provide an oil cooled piston having a ledge or splash sill which does not interfere with the spray, which better directs trapped oil back into the groove and which overcomes the problems associated with the prior art.
Disclosure of Invention In one aspect of the present invention, the problems pertaining to the known prior art, as set forth above, are advantageously avoided by the present invention.
This is accomplished by providing an oil cooled piston including a crown having inner and outer annular walls. The walls define an annular groove including an annular opening. The outer wall has an end surface adjacent the opening. Means are provided for trapping fluid. Such means includes a substan¬ tially annular ledge extending from the inner wall toward the outer wall terminating at a lip. The lip is spaced from the end surface. A sloping surface on the ledge extends between the inner wall and the lip and is adjacent the annular opening.
The foregoing and other advantages will be- come apparent from the following detailed description of the invention when considered in conjunction with the accompanying drawings. It is to be expressly under¬ stood, however, that the drawings are not intended as a definition of the invention but are for the purpose of illustration only.
Brief Description of the Drawings
In the drawings :
FIGURE 1 is an enlarged cross-sectional view illustrating an embodiment of the present invention; FIGURE 2 is a bottom plan view taken along the line II-II of Figure 1;
FIGURE 3 is another enlarged cross-sectional view illustrating an embodiment of the present invention;
FIGURE 4 is a view taken along the line IV-IV of Figure 3;
FIGURE 5 is an enlarged partial cross-sectional view illustrating the preferred embodiment of this invention;
FIGURES 6-8 are enlarged partial cross-section- al views illustrating alternative embodiments of this invention; and
FIGURES 9,10 are enlarged partial cross- sectional views illustrating a cooling oil spray during the piston stroke. Best Mode for Carrying Out the Invention
A piston is generally designated 10, Fig. 1, for reciprocating motion due to pin 12 and connecting rod 14 attached to piston boss 15 at one end 17 and to a crankshaft (not shown) at an opposite end in the well known manner. Also, a conventional cylinder liner 16 is provided for guiding the reciprocating action of piston 10.
Piston 10 includes an upper crown portion 18 and a lower skirt portion 20. In this example, the lower skirt portion 20 is well known and includes partial skirts 20a, 20b.
Crown portion 18 includes inner and outer wall portions 22,24, respectively, defining an annular groove 26 closed at an upper end 28 and having an open¬ ing at a lower end 30. Outer wall 24 includes conven¬ tional grooves 32 carrying compression rings 34. An annular relief 36 is provided between rings 34 and a relief 38 is provided below rings 34 for carrying oil control ring 40.
Outer wall 24 terminates at end surface 42 just below oil control ring 40. Skirt portion 20 is just below end surface 42 and spaced therefrom by an opening 44. Inner wall 22 separates groove 26 from crown
18 and cooling dome 46. Wall 22 extends downwardly past opening 44 to pin boss 15.
Piston 10 is preferably cast from iron to form a thin-walled, light-weight, one-piece unit. However, upper dome portion 18 could be cast separately from lower skirt portion 20 and the portions could then be welded together at 19 by a brazing process if desired. A conventional piston cooling jet 48 is fix¬ edly positioned adjacent lower skirt 20 for spraying a jet of fluid such as lubricating oil upwardly into annular groove 26 and cooling dome 46 as is known. The jet, Figures 9, 10, constantly sprays the oil upwardly to the underside of the crown 18. The spray is directed so that when the piston is bottom dead center or when the reciprocating piston 10 is at its lowermost position relative to the fixed jet 48, the spray bathes and cools groove 26 which has become heated due to proximity to crown 18. When the piston 10 is at top dead center, the spray bathes and cools dome 46. This momentary cooling is advantageous but does not continuously cool both the groove 26 and the dome 46.
To enhance cooling, well known splash sills have been used to trap the oil as it drains downwardly and thereafter cause a secondary splash of trapped oil from the sill into the groove -26 as the piston 10 begins its downward stroke. An improved splash sill 50, Figs. 5-8, is provided as a means for trapping oil. Sill 50 is formed as a substantially annular ledge extending radially outwardly from inner wall 22 adjacent opening 44 and reaching toward outer wall 24. Ledge or sill 50 also extends axially upwardly toward crown 18. Ledge 50 terminates at lip portion 52 which is spaced from end surface 42. The preferred configuration for ledge 50 is illustrated in Fig. 5.
A sloping upper surface 56 is provided on ledge 50. Surface 56 may be of a substantially constant slope such as that shown in Figs. 5-7 or may be curved or cup-shaped such as is shown in Fig. 8. Surface 56 provides ledge 50 with angular disposition relative to inner wall 22. Thus, ledge 50 and wall 22 cooperate to form a trough-like fluid trap. In order to provide the" maximum cooling splash for bathing groove 26, it has been discovered according to this invention, that ledge 50 is most advantageously situated as described above, that is, extending outwardly from inner wall 22 and sloped upwardly toward crown 18. However, situated as such, ledge 50 is directly in the oil jet spray path extend¬ ing between jet 48 and groove 26. Advantageously, ledge 50 includes a slot 60 as a means for permitting the pressurized stream to be directed past ledge 50 and into groove 26, see Figs. 2 and 4. As illustrated, slot 60 is formed in duplicate (two slots 60, 180 de¬ grees diametrically opposed) for the purpose of pro¬ viding a piston which can be installed without concern as to the location of slot 60. However, since only one jet 48 is usually provided, only one slot 60 is required.
Industrial Applicability
Piston 10 reciprocates downwardly to bottom dead center and jet 48 directs lubricating oil upwardly past ledge 50 via slot 60 into groove 26. The oil bathes and momentarily cools groove 26, thereafter drains downwardly and is trapped by ledge 50 as piston 10 accelerates upwardly to its top dead center position where the oil then bathes the dome 46. As piston 10 begins to reverse direction at the top dead center position and reciprocates downward again, oil trapped between surface 56 and inner wall 22 tends to continue upwardly and is thus splashed into groove 26 thus supplementing the direct cooling from the jet spray which thereafter occurs when piston 10 once again reaches bottom dead center. The foregoing has described an oil cooled piston having a ledge or splash sill which does not interfere with the spray of oil into the cooling groove and which better directs trapped oil back into the groove to supplement the spray.
Other aspects, objects and advantages of this invention can be obtained from a study of the drawings, the disclosure and the appended claims.

Claims

1. An oil cooled piston (10) comprising: a crown portion (18) ; inner (22) and outer (24) annular walls connected to said crown portion (18) defining an annular groove (26) including an annular opening
(30) , said outer wall (24) having an end surface (42) adjacent said opening (30) ; and means for trapping fluid, said means being a substantially annular ledge (50) extending from said inner wall (22) toward said outer wall (24) terminating at a lip (52) spaced from said end surface (42) and having a sloping surface (56) between said inner wall (22) and said lip (52) , said sloping surface (56) being adjacent said annular opening (30) .
2. The piston of claim 1 including: a slot (60) extending through said- fluid trapping means (50) .
3. In an oil cooled piston (10) having inner (22) and outer (24) annular walls connected to a crown portion (18) , said walls defining an annular cooling groove (26) including an annular opening (30) , said outer wall (24) having an end surface (42) adjacent said opening (30) , the improvement comprising: means for trapping fluid and for directing trapped fluid into said annular groove (26) in re-' sponse to reciprocating motion of said piston, said means being a substantially annular ledge (50) extend¬ ing from said inner wall (22) toward said outer wall (24) terminating at a lip (52) spaced from said end surface (42) and having a sloping surface (56) ex¬ tending from said inner wall (22) to said lip (52) , said sloping surface (56) being angularly disposed with the inner wall (22)
__0 PI 4. An oil cooled piston (10) comprising: a crown portion (18) ; inner (22) and outer (24) annular walls con¬ nected to said crown portion (18) defining an annular groove (26) including an annular opening (30) , said outer wall (24) having an end surface (42) adjacent said opening (30) ; means for trapping fluid and for directing trapped fluid into said annular groove (26) in response to reciprocating motion of said piston, said means being a substantially annular ledge (50) extending from said inner wall (22) toward said outer wall (24) terminating at a lip (52) spaced from said end sur¬ face (42) and having a sloping surface (56) extending from said inner wail (22) to said lip (52) , said sloping surface (56) being angularly disposed with the inner wall (22) ; means (60) for permitting a pressurized stream of fluid to be directed past said ledge (50) to said annular groove (26) .
5. The piston of claim 4 wherein the means for permitting said fluid to be directed past said ledge (50) comprises at least one slot (60) formed in said ledge (50) .
6. The piston of claim 4 wherein said sloping surface (56) has a substantially constant slope.
7. In an oil cooled piston (10) operating in combination with a pressurized stream of cooling fluid directed toward a crown portion (18) of said piston (10) , and inner (22) and outer (24) walls connected to said crown portion (18) , said walls (22,24) defining an annular cooling groove (26) including an annular open¬ ing (30) , said outer wall (24) having an end surface (42) adjacent said opening (30) , the improvement prising: Clai 7 (continued)
means for trapping said fluid and for direct¬ ing said trapped fluid into said annular groove (26) in response to reciprocating motion of said piston, said means being a substantially annular ledge (50) extending from said inner wall (22) toward said outer wall (24) terminating at a lip (52) spaced from said end surface (42) and having a sloping surface (56) extending from said inner wall (22) to said lip (52) , said sloping surface (56) being angularly disposed with said inner wall (22) ; and means (60) for permitting said pressurized stream to be directed past said ledge (50) .
8. The piston of claim 7 wherein said means for permitting said pressurized stream comprises an opening (60) formed in .said ledge (50) .
9. An oil cooled piston (10) comprising: a crown portion (18) ; inner (22) and outer (24) annular walls connected to said crown (18) portion defining an annular groove (26) including an annular opening (30) , said outer wall (24) having an end surface (42) adja¬ cent said opening (30); means for trapping fluid, said means being a substantially annular ledge (50) extending from said inner wall (22) toward said outer wall (24) terminating at a lip (52) spaced from said end surface (42) and having a surface (56) between said inner wall (22) and said lip (52) , said surface (56) extending toward said crown (18) and being adjacent said annular opening (30) ; and means (60) for permitting a pressurized stream of fluid to be directed past said ledge (50) to said annular groove (26) .
EP79901340A 1979-04-23 1980-11-04 Oil cooled piston Expired EP0027445B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US1979/000259 WO1980002308A1 (en) 1979-04-23 1979-04-23 Oil cooled piston

Publications (3)

Publication Number Publication Date
EP0027445A4 true EP0027445A4 (en) 1981-02-20
EP0027445A1 EP0027445A1 (en) 1981-04-29
EP0027445B1 EP0027445B1 (en) 1983-07-20

Family

ID=22147567

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79901340A Expired EP0027445B1 (en) 1979-04-23 1980-11-04 Oil cooled piston

Country Status (4)

Country Link
EP (1) EP0027445B1 (en)
JP (1) JPS6329104B2 (en)
DE (1) DE2965895D1 (en)
WO (1) WO1980002308A1 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3508405A1 (en) * 1984-03-13 1985-10-03 Günter Elsbett Internal combustion engine with reduced noise and heat emission
DE3830033C2 (en) * 1987-11-30 1998-05-07 Mahle Gmbh Built, oil-cooled plunger for internal combustion engines
DE4331649A1 (en) * 1993-09-17 1995-03-23 Kloeckner Humboldt Deutz Ag Piston cooling of an internal combustion engine
DE4340891A1 (en) * 1993-12-01 1995-06-08 Mahle Gmbh Reciprocating pistons for internal combustion engines made in particular of light metal
US5839352A (en) * 1996-08-07 1998-11-24 Cummins Engine Company, Inc. Articulated piston
DE19758631B4 (en) * 1996-08-07 2006-08-03 Cummins Inc., Columbus Articulated piston for heavy duty diesel engines - has second longitudinal plane, perpendicular to the first to divide piston skirt into four quarters, one containing an inlet through which a cooling medium, can pass and impinge against the hollow cavity of the piston crown
US6260472B1 (en) * 1998-07-28 2001-07-17 Federal-Mogul World Wide, Inc. One-piece integral skirt piston and method of making the same
US6155157A (en) * 1998-10-06 2000-12-05 Caterpillar Inc. Method and apparatus for making a two piece unitary piston
DE19846152A1 (en) * 1998-10-07 2000-04-13 Mahle Gmbh Piston with piston base made of forged steel and a cooling channel
EP1268991B1 (en) * 2000-03-28 2006-07-05 Federal-Mogul Corporation Heavy duty piston having oil splash deflector
DE10064367B4 (en) * 2000-12-21 2005-02-17 Ks Kolbenschmidt Gmbh Piston with forged and welded pin bosses
US6526871B1 (en) * 2001-08-24 2003-03-04 Federal-Mogul World Wide, Inc. Monobloc piston for diesel engines
DE10244511A1 (en) * 2002-09-25 2004-04-15 Mahle Gmbh Multi-part cooled piston for an internal combustion engine
DE10244512A1 (en) * 2002-09-25 2004-04-15 Mahle Gmbh Multi-part cooled piston for an internal combustion engine
DE10322921A1 (en) * 2003-05-21 2004-12-16 Mahle Gmbh Method of manufacturing a one-piece piston for an internal combustion engine
DE10325917A1 (en) 2003-06-07 2005-03-31 Mahle Gmbh Piston for an internal combustion engine and casting process for its production
US7086354B2 (en) * 2003-10-29 2006-08-08 Deere & Company Cooling nozzle mounting arrangement
FR2896535B1 (en) * 2006-01-26 2008-05-02 Vianney Rabhi OIL PROJECTION COOLING AND LUBRICATION DEVICE FOR VARIABLE VOLUMETRIC RATIO ENGINE
US7918155B2 (en) * 2007-12-12 2011-04-05 Mahle International Gmbh Piston with a cooling gallery
US8065985B2 (en) 2009-05-04 2011-11-29 Federal-Mogul Corporation Piston having a central cooling gallery with a contoured flange
DE102013013962A1 (en) * 2013-08-23 2015-02-26 Mahle International Gmbh Assembly of a piston and a Anspritzdüse for an internal combustion engine
US10865734B2 (en) 2017-12-06 2020-12-15 Ai Alpine Us Bidco Inc Piston assembly with offset tight land profile
CN109838298B (en) * 2019-03-11 2021-02-23 潍柴动力股份有限公司 Control method and control system for piston cooling nozzle of commercial vehicle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2392238A1 (en) * 1977-05-25 1978-12-22 Schmidt Gmbh Karl PISTON

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR499517A (en) * 1918-01-19 1920-02-13 Marcel Billon Sealing device for piston rings of internal combustion engines
GB223333A (en) * 1923-07-28 1924-10-23 Beardmore William & Co Improvements in packing rings for pistons
FR640162A (en) * 1926-05-15 1928-07-07 Piston rings
FR762862A (en) * 1933-10-24 1934-04-19 Improvements to piston rings
GB617224A (en) * 1946-08-21 1949-02-02 Harry Ralph Ricardo Improvements in or relating to pistons
DE962298C (en) * 1953-02-22 1957-04-18 Kloeckner Humboldt Deutz Ag Sealing ring assembly for working pistons of internal combustion engines
GB776273A (en) * 1954-02-23 1957-06-05 Ruston & Hornsby Ltd Improvements in or relating to pistons for internal combustion engines
US3097855A (en) * 1959-06-26 1963-07-16 George H Allen Sealing arrangement
US3190273A (en) * 1964-01-03 1965-06-22 Continental Aviat & Eng Corp Piston for internal combustion engine
DE1476393A1 (en) * 1964-04-16 1969-04-24 Maschf Augsburg Nuernberg Ag Liquid-cooled piston
US3336844A (en) * 1964-08-25 1967-08-22 Cornet Andre Pistons for engines with a high thermal load
DE2140824C2 (en) * 1971-08-14 1983-06-01 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 8900 Augsburg Oil-cooled pistons for internal combustion engines
DE2543478C2 (en) * 1975-09-30 1983-01-05 Günter 8543 Hilpoltstein Elsbett Pistons for internal combustion engines, especially diesel engines
US4056044A (en) * 1975-11-12 1977-11-01 Caterpillar Tractor Co. Oil cooled piston
JPS5447937A (en) * 1977-09-24 1979-04-16 Izumi Jidoushiya Kougiyou Kk Builttup piston for cooling

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2392238A1 (en) * 1977-05-25 1978-12-22 Schmidt Gmbh Karl PISTON

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO8002308A1 *

Also Published As

Publication number Publication date
JPS6329104B2 (en) 1988-06-10
EP0027445A1 (en) 1981-04-29
EP0027445B1 (en) 1983-07-20
JPS56500419A (en) 1981-04-02
DE2965895D1 (en) 1983-08-25
WO1980002308A1 (en) 1980-10-30

Similar Documents

Publication Publication Date Title
US4286505A (en) Oil cooled piston
WO1980002308A1 (en) Oil cooled piston
US4056044A (en) Oil cooled piston
US5052280A (en) Coolable trunk piston for internal combustion engines
US4986167A (en) Articulated piston with a cooling recess having a preestablished volume therein
CA1089731A (en) Double orifice piston cooling nozzle for reciprocating engines
US6701875B2 (en) Internal combustion engine with piston cooling system and piston therefor
US5913960A (en) Pistons
EP1211405B1 (en) Two-piece piston assembly with skirt having pin bore oil ducts
KR20070033442A (en) Single piece cast steel monoblock piston
EP1268991B1 (en) Heavy duty piston having oil splash deflector
ES2079254A1 (en) Hermetic refrigeration compressor
JPS60192860A (en) Piston for internal-combustion engine
JP2019506567A (en) Cavityless piston with improved pocket cooling
US2865348A (en) Piston
US5839352A (en) Articulated piston
CA1126106A (en) Oil cooled piston
JPH0480227B2 (en)
US4895111A (en) Engine cooling system
US2572260A (en) Piston for internal-combustion engines
GB2261717A (en) Piston cooling
KR0178034B1 (en) Piston of internal combustion engine
KR0134001Y1 (en) Piston with oil reservoir
KR0171809B1 (en) Oil passage of cylinder block
KR19980047390A (en) Piston cooling device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19801107

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB

RBV Designated contracting states (corrected)

Designated state(s): DE GB

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REF Corresponds to:

Ref document number: 2965895

Country of ref document: DE

Date of ref document: 19830825

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: KLOECKNER-HUMBOLDT-DEUTZ AG

Effective date: 19840412

Opponent name: MAHLE GMBH

Effective date: 19840410

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19870924

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920312

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920331

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930423

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940101