EP0025461A1 - Element zur Übertragung von Zugkräften und Verwendung desselben als Tragorgan für Freileitungskabel - Google Patents

Element zur Übertragung von Zugkräften und Verwendung desselben als Tragorgan für Freileitungskabel Download PDF

Info

Publication number
EP0025461A1
EP0025461A1 EP79104839A EP79104839A EP0025461A1 EP 0025461 A1 EP0025461 A1 EP 0025461A1 EP 79104839 A EP79104839 A EP 79104839A EP 79104839 A EP79104839 A EP 79104839A EP 0025461 A1 EP0025461 A1 EP 0025461A1
Authority
EP
European Patent Office
Prior art keywords
fibers
element according
fiber bundle
tensile strength
clamping sleeve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP79104839A
Other languages
English (en)
French (fr)
Other versions
EP0025461B1 (de
Inventor
Othmar Voser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kupferdraht-Isolierwerk AG Wildegg
Kupferdraht Isolierwerk AG
Original Assignee
Kupferdraht-Isolierwerk AG Wildegg
Kupferdraht Isolierwerk AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kupferdraht-Isolierwerk AG Wildegg, Kupferdraht Isolierwerk AG filed Critical Kupferdraht-Isolierwerk AG Wildegg
Priority to AT79104839T priority Critical patent/ATE4734T1/de
Publication of EP0025461A1 publication Critical patent/EP0025461A1/de
Application granted granted Critical
Publication of EP0025461B1 publication Critical patent/EP0025461B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/16Ropes or cables with an enveloping sheathing or inlays of rubber or plastics
    • D07B1/162Ropes or cables with an enveloping sheathing or inlays of rubber or plastics characterised by a plastic or rubber enveloping sheathing
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/01Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural macromolecular compounds or derivatives thereof
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/02Ropes built-up from fibrous or filamentary material, e.g. of vegetable origin, of animal origin, regenerated cellulose, plastics
    • D07B1/025Ropes built-up from fibrous or filamentary material, e.g. of vegetable origin, of animal origin, regenerated cellulose, plastics comprising high modulus, or high tenacity, polymer filaments or fibres, e.g. liquid-crystal polymers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B5/00Making ropes or cables from special materials or of particular form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • H01B7/182Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring comprising synthetic filaments
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/20Organic high polymers
    • D07B2205/2046Polyamides, e.g. nylons
    • D07B2205/205Aramides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2927Rod, strand, filament or fiber including structurally defined particulate matter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/294Coated or with bond, impregnation or core including metal or compound thereof [excluding glass, ceramic and asbestos]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/294Coated or with bond, impregnation or core including metal or compound thereof [excluding glass, ceramic and asbestos]
    • Y10T428/2942Plural coatings
    • Y10T428/2947Synthetic resin or polymer in plural coatings, each of different type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2964Artificial fiber or filament
    • Y10T428/2967Synthetic resin or polymer
    • Y10T428/2969Polyamide, polyimide or polyester
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2971Impregnation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2973Particular cross section
    • Y10T428/2976Longitudinally varying
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2973Particular cross section
    • Y10T428/2978Surface characteristic

Definitions

  • the invention relates to an element for transmitting tensile forces with a plurality of synthetic fibers having a smooth fiber surface of over 200 kg / mm 2 tensile strength and an elastic modulus of over 3000 kg / mm 2 and an elongation at break of less than 10%, which reduce the due to their smooth fiber surface, the risk of slipping at points of attack of power transmission means are soaked at least over part of their total length with a material connecting the fibers and increasing the coefficient of friction on the outer surface of the fiber composite.
  • An element of this type is known, for example, from the information leaflet "Kevlar 49, Technical Information, Bulletin No. K-1, June 1974" of the Du Pont de Nemours Company, page 3, panel II and section B. It is a kind of rope, but the fibers forming the element are not stranded, but are arranged parallel to each other in a strand-like manner and soaked with an epoxy resin, and the epoxy resin has been cured by the heat treatment at about 180 ° C.
  • This known element which was only produced for experimental purposes - namely to measure the achievable tensile strength of solo elements - is relatively stiff and is not suitable in this form as a "pull rope" because it breaks relatively easily at bending points.
  • the reason for this is that, like most other curable synthetic resins, epoxy resins break in the cured state even at relatively low bending stresses such as glass, and the notch effect that occurs at such break points then leads to the successive tearing of the fibers bridging the break point from the outside of the element leads to the inside.
  • clamping sleeve would have to exert a pressure of several tons per square centimeter on the element or the fiber bundle with a length corresponding to ten times the diameter of the fiber bundle , so with tensile loads the tensile strength of the element can be fully exploited.
  • Such high pressures cannot be achieved with clamping sleeves, because even a sleeve made of duralumin with an extremely high wall thickness corresponding to half the inside diameter of the sleeve would already have reached its tensile strength limit at an internal pressure of five tons per square centimeter, i.e.
  • the invention was therefore based on the object of using an element of the type mentioned which can be used as a traction rope create, which offers satisfactory solutions both for the problem of power transmission and for the flexibility problem and thus opens up the possibility of producing a traction rope from the synthetic fibers mentioned, in which the tensile strength of the synthetic fibers can be fully utilized and which therefore means that the tensile forces are significantly higher than a steel cable of the same effective cross-section is permitted.
  • this is achieved in the case of an element of the type mentioned at the outset in that the material with which the fibers are impregnated has a powder which disintegrates into a powder in the stress region when the pressure and / or bending stress exceeds the fracture limit of the material for the stress in question Material is.
  • this material completely excludes the occurrence of notch effects in places where the material breaks due to bending stresses of the element, because the material does not break like glass at such places but especially in the pressure areas of the bend breaks into powder and thus the leverage ceases, which in the event of breakage like glass leads to the successive tearing of the fibers bridging the breakage from the outside of the element inwards.
  • the second is the disintegration of the material into powder in areas very high pressure stress is also of crucial importance for the power transmission in the end areas of the element, because, as shown above using the example of a clamping sleeve as a power transmission means, an extraordinarily high pressure must be exerted on the fiber bundle in the power transmission areas, so that the material in question is applied in the power transmission areas Powder disintegrates. From a microscopic point of view, this powder consists of small crystals, mostly single crystals, which are dimensionally stable even at the highest pressures.
  • Said material in the present element is preferably a resin which disintegrates into powder when subjected to pressure and / or bending stress beyond its breaking limit.
  • Resins with this special property have hitherto only been found among the resins which consist entirely or at least predominantly of natural resin, which, however, does not exclude that a targeted development could also lead to a synthetic resin which also has this special property.
  • such a disintegration into powder under the action of pressure must presuppose that a large number of subsequently growing single crystals are formed during the formation of the resin, which in turn necessitates the presence of crystal nuclei, while synthetic resins generally arise from polymerization and thus a completely different one Have educational mechanism.
  • rosin primarily has the property of disintegrating into powder under the action of pressure, to a particularly pronounced extent.
  • the material with which the synthetic fibers are impregnated consists of rosin.
  • the synthetic fibers suitably consist of plastic, preferably of an organic polymer.
  • the plastic from which the synthetic fibers are made can be particularly advantageously an aromatic polyamide, as described in the above-mentioned information, the fibers preferably having a tensile strength of at least 250 kg / mm 2 , an elastic modulus of at least 10,000 kg / mm 2 and an elongation at break have less than 3%.
  • the synthetic fibers are preferably arranged parallel to one another in a strand-like manner.
  • This has the advantage that undesirable expansion of the element is largely excluded and, for example in the case of horizontally tensioned elements, the sag resulting from temperature changes can be kept to a minimum.
  • this type of arrangement is also the most favorable for limit loads on the element that are close to the tensile strength limit of the synthetic fibers and, for a given diameter of the element or the fiber bundle, gives the highest effective cross-section or the highest number of fibers and thus the highest load capacity, and finally results in this arrangement of the fibers in any case in the present element in clamping members such as Clamping sleeves etc. also the highest coefficient of static friction.
  • the relatively low elongation at break of the synthetic fibers is too low for the specific application of the element, then it is more advantageous if the synthetic fibers are stranded to increase the elasticity of the element.
  • two points at different distances from the fiber ends are expediently connected to one another in at least one of its two end regions, with the formation of a loop, which is preferably placed around a round or thimble eyelet, by means of a clamping member, and the impregnation of the fibers extends at least beyond that of the Fiber ends further away.
  • the fibers of the present element are preferably impregnated with said material along their entire length.
  • the clamping members provided to form the loops at the ends of the present element expediently comprise at least one clamping sleeve, the edges of which are rounded at the exit points of the fibers.
  • the rounding of the sleeve edges at the exit points of the fibers has the advantage that the sleeve edges cannot cut into the fiber bundle. Because inside the sleeve, the cross-section of the fiber bundle is somewhat smaller than outside the sleeve due to the high pressure of the sleeve on the fiber bundle, where the fiber bundle is not under pressure stands, and therefore the outer fibers of the fiber bundle are bent outwards at the point of exit of the fibers from the sleeve around the sleeve edge.
  • the pressure of the clamping sleeve on the fiber bundle cannot be made high enough to be able to exclude with certainty that the end of the fiber bundle slips out of the clamping sleeve before the tensile strength of the fibers is reached, If the fiber bundle end slips out of the clamping sleeve and the tensile force on the fiber bundle end is exceeded according to a certain limit value, the end loop of the present element, formed by means of the clamping sleeve, is wrapped around a round eyelet with several windings the element acting tensile force are transmitted directly to the round eye, so that the effective tensile force on the clamping sleeve is reduced accordingly.
  • the round eyelet can advantageously be combined with a thimble in such a way that the loop parts located between the clamping sleeve and the round eyelet are also guided through the thimble combined with the round eyelet.
  • the present element can advantageously be provided with a protective sheath, preferably made of polyurethane, which surrounds the fibers.
  • a protective sheath is of considerable advantage because in this case it additionally holds the fiber bundle together.
  • the fiber bundle is soaked along its entire length with the said material, it is also held together by this material, but at the bending points of the element, the cohesion of the fiber bundle naturally goes through the said material lost that this material disintegrates into powder there, especially when subjected to frequent bending loads, such as with a swinging rope.
  • the protective sheath then also holds the fiber bundle together at such points and, in addition, counteracts too strong bends of the element from the outset.
  • the protective sheath can also contribute to increasing the maximum tensile force that can be transmitted to the fiber bundle at a clamping point.
  • the material of the protective jacket is resistant enough to be able to withstand the forces transmitted from the crystals to the inner wall of the jacket even under the highest tensile loads on the element, but this can easily be achieved by suitable selection of the material used for the protective jacket.
  • the invention further relates to a use of the present element as a support member for an overhead line cable, the element and the cable being surrounded by a common protective element connecting the element and the cable, which preferably has two mutually closed channels for the fibers of the element on the one hand and the Wires of the cable on the other hand forms.
  • the present element has decisive advantages over the steel cables previously used for the same purpose, because it has a higher tensile strength and a lower elongation than a steel cable of the same diameter, and because of the lower elongation, its sagging is less than that of a steel cable and the hitherto given risk of breakage on the cable hangers both when using steel cables due to corrosion in the area of the clamping sleeves holding the end loops together and when using unimpregnated ropes from the synthetic fibers mentioned as a result of the fiber bundle ends sliding out of the clamping sleeves holding the end loops together conditions is completely eliminated by using the present element.
  • strands are arranged in parallel to one another 3 from aromatic polyamide with a tensile strength of 300 kg / mm 2 , a modulus of elasticity of 13400 kg / mm 2 , an elongation at break of 2.6% and a specific weight of 1.45 g / cm 3 impregnated with rosin and a protective jacket 4 surrounded by polyurethane, which also surrounds the wires 5 of the overhead line cable 1 and thus connects the cable 1 and the element 2 with each other.
  • aromatic polyamide with a tensile strength of 300 kg / mm 2 , a modulus of elasticity of 13400 kg / mm 2 , an elongation at break of 2.6% and a specific weight of 1.45 g / cm 3 impregnated with rosin and a protective jacket 4 surrounded by polyurethane, which also surrounds the wires 5 of the overhead line cable 1 and thus connects the cable 1 and the element 2 with each other.
  • the protective jacket 4 forms two channels 6 and 7, which are closed off from one another, for the fibers 3 of the element 2 on the one hand and the wires 5 of the cable 1 on the other hand.
  • the part 8 of the protective jacket 4 forming the channel 6 and surrounding the synthetic fibers 3 is connected in one piece to the part 9 of the protective jacket 4 forming the channel 7 and surrounding the wires 5 by the bridge-like part 10 of the protective jacket 4.
  • this connecting bridge 10 between the element 2 and the cable 1 is cut open over a length which is at least sufficient to form loops, at the end 11 of the cut expediently a clamp or other cable and element not shown in FIG.
  • the fiber bundle consisting of the fibers 3 has 106500 denier, which corresponds to an effective fiber cross section of 8.15 mm 2.
  • the diameter of the fiber bundle formed by the fibers 3 is approximately 3.4 mm when the fibers are completely compressed.
  • the effective fiber cross section of 8.15 mm 2 and the tensile strength of the fibers of 300 kg / mm 2 result in a load limit or breaking limit of 2445 kg for the fiber bundle, however, multiple loads of element 2 with a tensile force of 2500 kg had neither Breakage of the element 2 or of the fiber bundle formed by the fibers 3 still results in the end 14 of the element 2 slipping out of the clamping sleeve 13.
  • the clamping sleeve 13 has a length of 75 mm and an outer diameter after compression of about 8 mm and was pressed together with a force of 30 tons.
  • the part 8 of the protective jacket 4 surrounding the fibers 3 has a wall thickness of approx. 1 mm, which, however, has been reduced by at least half within the clamping sleeve 13.
  • the impregnation of the fiber bundle formed from the fibers 3 with Rosin was obtained by pulling the fiber bundle through a bath of rosin dissolved in ether before the sheathing and then drying or curing it at elevated temperature, taking precautions to ensure that all the fibers of the fiber bundle were in their entirety in the bath Rosin solution and that unnecessary solution of fibers was stripped off, for example by pulling the fiber bundle out of the bath through a calibration nozzle.
  • Alcohol was also sometimes used as a solvent for the rosin, but in this case the drying or curing process takes a little longer than when using ether.
  • the fiber bundle slips out of the clamping sleeve as soon as the specific load on the element caused by the curve "natural resin impregnation" for the clamping concerned sleeve length exceeds the specified load capacity.
  • the specific load on the element is the ratio of the tensile force acting on the loop held together by the clamping sleeve to the effective fiber cross section of the fiber bundle corresponding to the sum of the cross sections of all the fibers of the fiber bundle.
  • this effect means that when the fiber bundle and full use of the tensile strength of the fiber bundle is not possible if the fiber bundle is not impregnated, because the fiber bundle slips out of the clamping sleeve before the tensile strength or the breaking point of the fibers is reached as the element becomes more stressed.
  • the diagram shown in FIG. 3 applies to a pressure of the clamping sleeve on the fiber bundle of 18 kg / mm 2 that remains the same for all clamping sleeve lengths.
  • the values read from the curves increase in the ratio of the higher pressure value to 18 kg / mm 2 . If the pressure of the clamping sleeve on the fiber bundle is lower than 18 kg / mm 2 , the values that can be read from the curves decrease correspondingly in the ratio of the lower pressure value to 18 kg / mm 2 .
  • the average coefficient of friction between the clamping sleeve and the fiber bundle results from the diagram shown in FIG. 0.435 for natural resin impregnation, 0.28 for synthetic resin impregnation and 0.15 for unimpregnated fiber bundles.

Abstract

Die modernen Kunstfasern aus aromatischen Polyamiden haben eine außerordentlich hohe Zugfestigkeit und würden sich daher sehr gut für hochbelastbare Seile eignen, wenn man ihre Zugfestigkeit voll ausnützen könnte. Wegen der glatten Faseroberfläche dieser Kunstfasern macht aber die Übertragung entsprechend hoher Zugkräfte auf solche Kunstfaserseile große Schwierigkeiten, denn aus Klemmhülsen und anderen auf Haftreibung beruhenden Kraftübertragungsmitteln rutschen sie vor Erreichen ihrer Reißfestigkeit heraus, und Versuche mit kunstharzgetränkten Seilen führten zwar zu den gewünschten Kraftübertragungseigenschaften, jedoch unter Verlust der für Seile unverzichtbaren Flexibilität. Dieses Problem wurde dadurch gelöst, daß zur Tränkung ein Material verwendet wird, das bei die Bruchgrenze des Materials überschreitenden Druck- und/oder Biegebeanspruchungen im Beanspruchungsbereich in Pulver zerfällt. Besonders geeignet hierfür sind Naturharze, insbesondere Kolophonium. Das Diagramm in Fig. 3 zeigt die spezifische Belastbarkeit solcher Kunstfaserseile in Abhängigkeit vom Verhältnis der Klemmhülsenlänge zum Faserbündeldurchmesser für ungetränkte, kunstharzgetränkte und naturharzgetränkte Seile und verdeutlicht, daß von den gezeigten Beispielen nur die Naturharztränkung eine volle Ausnützung der Zugfestigkeit der Fasern zuläßt.

Description

  • Die Erfindung bezieht sich auf ein Element zur Uebertragung von Zugkräften mit einer Vielzahl von eine glatte Faseroberfläche aufweisenden Kunstfasern von über 200 kg/mm2 Zugfestigkeit und einem über 3000 kg/mm2 liegenden Elastizitätsmodul sowie einer unter 10% liegenden Bruchdehnung, welche zur Verminderung der durch ihre glatte Faseroberfläche bedingten Rutschgefahr an Angriffsstellen von Kraftübertragungsmitteln zumindest auf einem Teil ihrer Gesamtlänge mit einem die Fasern verbindenden und den Reibungskoeffizienten an der Aussenfläche des Faserverbundes erhöhenden Material getränkt sind.
  • Ein Element dieser Art ist beispielsweise aus der Informationsschrift "Kevlar 49, Technische Information, Bulletin Nr. K-1, Juni 1974" der Du Pont de Nemours Company, Seite 3, Tafel II und Abschnitt B, bekannt. Es handelt sich dabei um eine Art Seil, wobei die das Element bildenden Fasern jedoch nicht verseilt sondern strangartig parallel zueinander angeordnet und mit einem Epoxidharz getränkt sind und das Epoxidharz nach der Tränkung durch Temperaturbehandlung bei ca. 180°C ausgehärtet wurde.
  • Dieses bekannte Element, das nur zu Versuchszwecken - nämlich zur Messung der erreichbaren Zugfestigkeit soloher Elemente - hergestellt wurde, ist aber verhältnismässig steif und eignet sich in dieser Form nicht als "Zugseil", weil es an Biegungsstellen verhältnismässig leicht bricht. Der Grund dafür liegt darin, dass Epoxidharze ebenso wie die meisten anderen aushärtbaren Kunstharze im ausgehärteten Zustand schon bei relativ geringen Biegebeanspruchungen wie Glas brechen und die an solchen Bruchstellen auftretende Kerbwirkung dann innert kurzem zum sukzessiven Zerreissen der die Bruchstelle überbrückenden Fasern von der Aussenseite des Elementes her nach innen zu führt.
  • Bei diesem bekannten Element war somit nur das Problem der Kraftübertragung auf das Element, nicht aber das Problem der für eine Verwendung des Elementes als "Zugseil" erforderlichen Flexibilität des Elementes gelöst.
  • Die alleinige Lösung des Problemes der Flexibilität ohne gleichzeitige Lösung des Problemes der Kraftübertragung andererseits bereitet auch keine Schwierigkeiten, weil zur alleinigen Lösung des Flexibilitätsproblemes nur die besagte Tränkung der Fasern des Elementes mit dem dieselben verbindenden und den Reibungskoeffizienten an der Aussenfläche des Faserverbundes erhöhenden Material weggelassen werden müsste.
  • Wenn man aber die Tränkung weglässt, dann wird die Kraftübertragung auf das Element zu einem ausserordentlich schwierigen Problem, weil dann die Kraftübertragung auf die einzelnen Fasern des Elementes durch Haftreibung der Fasern aneinander sowie Haftreibung der das Faserbündel umschliessenden Mittel an den äusseren Fasern des Faserbündels erfolgen müsste und zur Erzielung von der hohen Zugfestigkeit der Fasern entsprechenden Reibungskräften wegen der glatten Faseroberfläche bzw. wegen des geringen Reibungskoeffizienten derselben ein ausserordentlich hoher Druck der an der Aussenseite des Elementes angreifenden Kraftübertragungsmittel auf das Faserbündel erforderlich wäre. Wenn man beispielsweise am Ende eines solchen ungetränkten Elementes mittels einer Klemmhülse eine z.B. um eine Seilkausche gelegte Schlaufe bilden wollte, dann müsste die Klemmhülse bei einer dem zehnfachen Durchmesser des Faserbündels entsprechenden Länge einen Druck von mehreren Tonnen pro Quadratzentimeter auf das Element bzw. das Faserbündel ausüben, damit bei Zugbelastungen des Elementes die Zugfestigkeit desselben voll ausgenützt werden kann. Solche hohen Drücke lassen sich aber mit Klemmhülsen nicht erreichen, denn selbst eine Hülse aus Duraluminium mit einer extrem hohen, dem halben Innendurchmesser der Hülse entsprechenden Wandstärke wäre bei einem Innendruck von fünf Tonnen pro Quadratzentimeter bereits an ihrer Zugfestigkeitsgrenze angelangt, d.h. sie würde bei Ueberschreitung dieses Innendruckes aufplatzen, und es dürfte natürlich klar sein, dass man beim Zusammenpressen einer Klemmhülse keinen Klemmdruck erreichen kann, der nach Beendigung des Zusammenpressens die Klemmhülse aufsprengt, sondern dass der maximal erreichbare Klemmdruck weit unter dem zum Aufsprengen der Klemmhülse erforderlichen Innendruck liegt. Da sich somit der erforderliche Druck auf das Faserbündel von mehreren Tonnen pro Quadratzentimeter mit der Klemmhülse nicht erreichen lässt, rutscht das Faserbündel bei Zugbelastung des Elementes aus der Klemmhülse heraus, bevor die Zugfestigkeit der Fasern erreicht ist, d.h. die Zugfestigkeit eines Elementes mit ungetränkten Fasern wird nicht durch die Zugfestigkeit der Fasern sondern durch den maximal von den an der Aussenseite des Elementes angreifenden Kraftübertragungsmitteln auf das Faserbündel ausübbaren Druck bestimmt und liegt in der Regel weit unter der Zugfestigkeit der Fasern, häufig sogar nur bei einem Fünftel bis einem Zehntel derselben. Damit ist aber der Vorteil der hohen Zugfestigkeit, den diese Kunstfasern bieten, zunichte gemacht, denn Zugseile mit nur einem Fünftel oder Zehntel der Zugfestigkeit dieser Kunstfasen lassen sich auch aus anderen Materialien herstellen, und zwar mit geringerem technischen Aufwand und ohne die durch den niedrigen Reibungskoeffizienten der Kunstfasern verursachten Schwierigkeiten.
  • Trotz intensiver Bemühungen der auf diesem Gebiet tätigen Fachleute in den letzten Jahren ist es jedoch bisher noch nicht gelungen, ein als Zugseil verwendbares Element der eingangs genannten Art zu schaffen, bei dem sowohl das Problem der Kraftübertragung auf das Element als auch das Problem der erforderlichen Flexibilität des Elementes befriedigend gelöst wären. Das obengenannte bekannte Element löst zwar das Kraftübertragungsproblem, schliesst aber eine Lösung des Flexibilitätsproblemes aus. Die aus der gleichen Informationsschrift wie dieses Element bekannten Seile aus den genannten Kunstfasern (siehe S. 12, Abb. 17) andererseits lösen das Flexibilitätsproblem, schliessen aber - da sie keine Tränkung aufweisen - aus den oben erläuterten Gründen eine befriedigende Lösung des Kraftübertragungsproblems aus. Eine Synthese beider Lösung gen, z.B. in Form einer Tränkung der Kunstfasern mit einem anderen Material als bei dem bekannten Element, ist bisher noch nicht gefunden worden.
  • Der Erfindung lag daher die Aufgabe zugrunde, ein als Zugseil verwendbares Element der eingangs genannten Art zu schaffen, das sowohl für das Problem der Kraftübertragung als auch für das Flexibilitätsproblem befriedigende Lösungen bietet und damit die Möglichkeit eröffnet, aus den genannten Kunstfasern ein Zugseil herzustellen, bei dem die Zugfestigkeit der Kunstfasern voll ausgenützt werden kann und das daher die Uebertragung wesentlich höherer Zugkräfte als ein Stahlseil von gleichem effektivem Querschnitt gestattet.
  • Erfindungsgemäss wird das bei einem Element der eingangs genannten Art dadurch erreicht, dass das Material, mit dem die Fasern getränkt sind, ein bei einer Druck- und/oder Biegebeanspruchung, die die Bruchgrenze des Materials für die betreffende Beanspruchung überschreitet, im Beanspruchungsbereich in Pulver zerfallendes Material ist.
  • Die Verwendung eines solchen Materials zur Tränkung der Fasern hat zwei entscheidende Vorteile: Zunächst einmal schliesst dieses Material das Auftreten von Kerbwirkungen an Stellen, an denen das Material infolge von Biegebeanspruchungen des Elementes bricht, vollständig aus, weil das Material an solchen Stellen nicht wie Glas bricht sondern besonders in den Druckbereichen der Biegungsstelle zu Pulver zerfällt und damit die Hebelwirkung wegfällt, die bei einem Bruch wie bei Glas zum sukzessiven Zerreissen der die Bruchstelle überbrückenden Fasern von der Aussenseite des Elementes her nach innen zu führt. Zum zweiten ist der Zerfall des Materials zu Pulver in Bereichen sehr hoher Druckbeanspruchung aber auch für die Kraftübertragung in den Endbereichen des Elementes von entscheidender Bedeutung, denn wie oben am Beispiel einer Klemmhülse als Kraftübertragungsmittel gezeigt muss in den Kraftübertragungsbereichen ein ausserordentlich hoher Druck auf das Faserbündel ausgeübt werden, so dass das besagte Material in den Kraftübertragungsbereichen zu Pulver zerfällt. Dieses Pulver besteht, mikroskopisch betrachtet, aus kleinen Kristallen, grösstenteils Einkristallen,die auch bei höchsten Drücken formbeständig sind.Da das Faserbündel gleichmässig mit dem besagten Material getränkt ist, füllen die in den Kraftübertragungsbereichen durch den Zerfall des Materials zu Pulver entstandenen Kristalle die Zwischenräume zwischen den einzelnen Fasern des Faserbündels nahezu vollständig aus und übertragen daher den von aussen auf das Faserbündel einwirkenden-Druck auf jede einzelne Faser, wobei sie infolge ihrer auch bei höchsten Drücken noch vorhandenen Formbeständigkeit mit ihren Kristallkanten gegen die einzelnen Fasern gedrückt werden. Dadurch wird jedoch der Reibungskoeffizient zwischen den einzelnen Fasern und, da das gleiche natürlich auch für die äusseren Fasern des Faserbündels gilt, auch der Reibungskoeffizient zwischen der Aussenseite des Faserbündels und den dasselbe umschliessenden Mitteln ganz beträchtlich erhöht, und zwar auf wesentlich höhere Werte, als sie bei mit druckbeständigem Material getränkten Fasern erreichbar wären. Das liegt hauptsächlich daran, dass druckbeständige Materialien sowohl an den einzelnen Fasern wie auch an der Aussenseite des Faserbündels im wesentlichen glatte Oberflächen bilden, während die mit ihren Kristallkanten gegen die einzelnen Fasern gedrückten Kristalle sich bei einer Zugbelastung der Fasern sozusagen ineinander verkeilen und damit praktisch umso stärker gegen die zwischen ihnen liegenden Fasern drücken,je grösser die Zugbelastung wird.
  • Vorzugsweise ist das besagte Material bei dem vorliegenden Element ein bei Druck- und/oder Biegebeanspruchung über seine Bruchgrenze hinaus in Pulver zerfallendes Harz. Harze mit dieser besonderen Eigenschaft sind bisher nur unter den vollständig oder zumindest zum überwiegenden Teil aus natürlichem Harz bestehenden Harzen zu finden, was jedoch nicht ausschliesst, dass eine gezielte Entwicklung unter Umständen auch zu einem Kunstharz führen könnte, das ebenfalls diese besondere Eigenschaft aufweist. Allerdings dürfte ein solcher Zerfall in Pulver unter Druckeinwirkung zur Voraussetzung haben, dass bei der Bildung des Harzes gleichzeitig eine Vielzahl von anschliessend zusammenwachsenden Einkristallen entstehen, was wiederum das Vorhandensein von Kristallkeimen bedingt, während Kunstharze in der Regel ja durch Polymerisation entstehen und somit einen ganz anderen Bildungsmechanismus haben.
  • Unter den natürlichen Harzen besitzt in erster Linie Kolophonium die Eigenschaft, unter Druckeinwirkung zu Pulver zu zerfallen, in besonders ausgeprägtem Masse.
  • Bei der bevorzugten Ausbildungsform des vorliegenden Elementes besteht daher das Material, mit dem die Kunstfasern getränkt sind, aus Kolophonium.
  • Die Kunstfasern bestehen bei dem vorliegenden Element zweckmässig aus Kunststoff, vorzugsweise aus einem organischen Polymeren. Mit besonderem Vorteil kann der Kunststoff, aus dem die Kunstfasern bestehen, wie in der obengenannten Informationsschrift beschrieben ein aromatisches Polyamid sein, wobei die Fasern vorzugsweise eine Zugfestigkeit von mindestens 250 kg/mm2, einen Elastizitätsmodul von mindestens 10000 kg/mm2 und eine Bruchdehnung unter 3% haben.
  • Die Kunstfasern sind bei dem vorliegenden Element vorzugsweise strangartig parallel zueinander angeordnet. Das hat den Vorteil, dass unerwünschte Dehnungen des Elementes weitgehend ausgeschlossen werden und z.B. bei horizontal gespannten Elementen die sich bei Temperaturänderungen ergebende Durchhängung auf ein Minimum beschränkt werden kann. Ausserdem ist diese Art der Anordnung auch für nahe der Zugfestigkeitsgrenze der Kunstfasern liegende Grenzbelastungen des Elementes am günstigsten und ergibt bei vorgegebenem Durchmesser des Elementes bzw. des Faserbündels den höchsten effektiven Querschnitt bzw. die höchste Faseranzahl und damit die höchste Belastbarkeit, und schliesslich ergibt sich bei dieser Anordnung der Fasern jedenfalls beim vorliegenden Element in Klemmorganen wie Klemmhülsen usw. auch der höchste Haftreibungskoeffizient. Wenn jedoch die relativ geringe Bruchdehnung der Kunstfasern für den speziellen Anwendungsfall des Elementes zu gering ist, dann ist es vorteilhafter, wenn die Kunstfasern zur Erhöhung der Dehnbarkeit des Elementes verseilt sind.
  • Zur Kraftübertragung sind bei dem vorliegenden Element zweckmässig in mindestens einem seiner beiden Endbereiche zwei von den Faserenden verschieden weit entfernte Stellen unter Bildung einer vorzugsweise um eine runde oder kauschenförmige Oese gelegten Schlaufe mittels eines Klemmorgans miteinander verbunden und die Tränkung der Fasern reicht mindestens über die von den Faserenden weiter entfernte Stelle hinaus. Vorzugsweise sind jedoch die Fasern des vorliegenden Elementes auf ihrer gesamten Länge mit dem besagten Material getränkt.
  • Die zur Bildung der Schlaufen an den Enden des vorliegenden Elementes vorgesehenen Klemmorgane umfassen zweckmässig mindestens eine Klemmhülse, deren Ränder an den Austrittsstellen der Fasern abgerundet sind. Die Abrundung der Hülsenränder an den Austrittsstellen der Fasern hat den Vorteil, dass die Hülsenränder nicht in das Faserbündel einschneiden können. Denn innerhalb der Hülse ist der Querschnitt des Faserbündels infolge des hohen Druckes der Hülse auf das Faserbündel um einiges geringer als ausserhalb der Hülse, wo das Faserbündel nicht unter Druck steht, und daher werden die äusseren Fasern des Faserbündels an der Austrittsstelle der Fasern aus der Hülse um den Hülsenrand nach aussen gebogen. Da die Fasern nun bei Zugbelastung des Elements gespannt sind, kann ein scharfkantiger Hülsenrand an der Austrittsstelle der Fasern aus der Hülse ohne weiteres in die äusseren Fasern einschneiden, was dann zunächst zum Bruch dieser äusseren Fasern und bei sehr starker Zugbelastung des Elementes wegen der mit dem Bruch der äusseren Fasern verbundenen Verminderung des tragenden Querschnitts des Faserbündels in der Folge zum Bruch des gesamten Faserbündels an dieser Stelle führen kann. Der Bruch der äusseren Fasern an solchen Einschnittsstellen scharfkantiger Hülsenränder wird in der Praxis noch dadurch beschleunigt, dass ein im Freien gespanntes Seil durch den Wind ja in Schwingungen versetzt wird und ein Knotenpunkt dieser Schwingungen in der Regel an einer Uebergangsstelle von einem auf zwei Seile und damit an einer mittels einer Klemmhülse gebildeten Endschlaufe an der Austrittsstelle des Seiles aus der 'Klemmhülse liegt und das Seil in einem solchen Knotenpunkt der Seilschwingungen ständig hin und her gebogen wird.
  • Wenn im übrigen der Druck der Klemmhülse auf das Faserbündel nicht hoch genug gemacht werden kann, um mit Sicherheit ein Herausrutschen des Faserbündelendes aus der Klemmhül vor Erreichen der Zugfestigkeit der Fasern ausschliessen zu können, dann kann die bei Ueberschrei--tung eines bestimmten Grenzwertes ein solches Herausrutschen des Faserbündelendes aus der Klemmhülse bewirkende Zugkraft auf das Faserbündelende dadurch vermindert werden, dass die mittels der Klemmhülse gebildete Endschlaufe des vorliegenden Elementes mit mehreren Windungen um eine Rundöse gelegt wird.Dadurch kann ein nicht unbeachtlicher Teil der insgesamt auf das Element wirkenden Zugkraft direkt auf die Rundöse übertragen werden, so dass die an der Klemmhülse wirksame Zugkraft entsprechend reduziert wird. Die Rundöse kann dabei vorteilhaft derart mit einer Seilkausche kombiniert sein, dass auch die zwischen Klemmhülse und Rundöse gelegenen Schlaufenteile durch die mit der Rundöse kombinierte Seilkausche geführt sind.
  • Vorteilhaft kann das vorliegende Element zum Schutz gegen Witterungseinflüsse und andere äussere Einwirkungen mit einem die Fasern umschliessenden Schutzmantel, vorzugsweise aus Polyurethan, versehen sein. Insbesondere bei der Ausbildungsform des vorliegenden Elements mit strangartig parallel zueinander angeordneten Fasern ist ein solcher Schutzmantel von wesentlichem Vorteil, weil er in diesem Fall zusätzlich noch das Faserbündel zusammenhält. Zwar wird natürlich das Faserbündel im Falle, dass es auf seiner gesamten Länge mit dem besagten Material getränkt ist, auch durch dieses Material zusammengehalten, aber an Biegungsstellen des Elementes geht der Zusammenhalt des Faserbündels durch das besagte Material natürlich dadurch verloren, dass dieses Material dort insbesondere bei häufiger Biegungsbelastung wie z.B. bei einem schwingenden Seil zu Pulver zerfällt. Der Schutzmantel hält dann auch an solchen Stellen das Faserbündel noch zusammen und wirkt im übrigen schon von vornherein allzu starken Biegungen des Elementes entgegen. Bei dem vorliegenden Element kann der Schutzmantel ausserdem zur Erhöhung der maximal an einer Klemmstelle auf das Faserbündel übertragbaren Zugkraft beitragen. Denn wenn eine Klemmhülse nicht unmittelbar auf das Faserbündel sondern auf einen das Faserbündel umschliessenden Schutzmantel aufgebracht wird, dann ist der für diese maximal übertragbare Zugkraft massgebende Reibungskoeffizient nicht mehr der Reibungskoeffizient zwischen Faserbündel und Klemmhülse sondern der Reibungskoeffizient zwischen Faserbündel und Schutzmantel, und beim vorliegenden Element ist der Reibungskoeffizient zwischen Faserbündel und Schutzmantel in der Regel höher als der Reibungskoeffizient zwischen dem Faserbündel und einer direkt darauf aufgebrachten Klemmhülse, weil die das Pulver bildenden Kristalle, in die das zur Tränkung der Fasern verwendete Material unter der Einwirkung des hohen Druckes innerhalb einer Klemmhülse zerfällt, bei Zugbelastung des Elementes und dem sich damit ergebenden, oben schon erläuterten Verkeilen der Kristalle ineinander mit ihren Kristallkanten an .der Innenwand des Schutzmantels einen besseren Halt als an der metallischen Innenwand der Klemmhülse finden. Voraussetzung ist allerdings, dass das Material des Schutzmantels widerstandsfähig genug ist, um den von den Kristallen auf die Mantelinnenwand übertragenen Kräften auch bei höchsten Zugbelastungen des Elements noch standhalten zu können, was aber durch geeignete Materialauswahl des für den Schutzmantel verwendeten Materials ohne weiteres erreichbar ist.
  • Die Erfindung bezieht sich weiter auf eine Verwendung des vorliegenden Elementes als Tragorgan für ein Freileitungskabel, wobei das Element und das Kabel von einem gemeinsamen, Element und Kabel miteinander verbindenden Schutzmantel umschlossen sind, der vorzugsweise zwei gegeneinander abgeschlossene Kanäle für die Fasern des Elements einerseits und die Drähte des Kabels andererseits bildet. In diesem Anwendungsbereich bringt das vorliegende Element entscheidende Vorteile gegenüber den bisher zum gleichen Zweck verwendeten Stahlseilen mit sich, weil es eine höhere Zugfestigkeit.und eine geringere Dehnung als ein Stahlseil gleichen Durchmessers hat, infolge der geringeren Dehnung auch seine Durchhängung geringer als bei einem Stahlseil ist und die bisher sowohl bei der Verwendung von Stahlseilen infolge von Korrosion im Bereich der die Endschlaufen zusammenhaltenden Klemmhülsen als auch bei Verwendung von ungetränkten Seilen aus den genannten Kunstfasern infolge Herausrutschens der Faserbündelenden aus den die Endschlaufen zusammenhaltenden Klemmhülsen noch gegebene Bruchgefahr an den Seilaufhängungen durch Verwendung des vorliegenden Elementes vollständig behoben ist.
  • Anhand der nachstehenden Figuren ist die Erfindung im folgenden an Ausführungsbeispielen näher erläutert. Es zeigen
    • Fig. 1 ein Endstück eines als Tragorgan für ein Freileitungskabel verwendeten und mit diesem kombinierten Elementes nach der Erfindung mit einer mittels einer Klemmhülse zusammengehaltenen Endschlaufe zum Aufhängen des Freileitungskabels
    • Fig. 2 einen Querschnitt durch die in Fig. 1 gezeigte Kombination in der Schnittebene I - I
    • Fig. 3 ein Diagramm der spezifischen Belastbarkeit eines Ausführungsbeispieles des vorliegenden Elementes mit Naturharztränkung der Kunstfasern in Abhängigkeit von dem Verhältnis der Länge der die Endschlaufe zusammenhaltenden Klemmhülse zum Faserbündeldurchmesser mit zum Vergleich eingezeichneten entsprechenden Kurven von einem Element der eingangs genannten Art mit Kunstharztränkung der Fasern und einem solchen Element mit ungetränkten Fasern.
  • Bei dem in Fig. 1'dargestellten Endstück eines als Tragorgan für ein Freileitungskabel 1 verwendeten Elementes 2 sind strangartig parallel zueinander angeordnete Kunstfasern 3 aus aromatischem Polyamid mit einer Zugfestigkeit von 300 kg/mm2, einem Elastizitätsmodul von 13400 kg/mm2, einer Bruchdehnung von 2,6 % und einem spezifischen Gewicht von 1,45 g/cm3 mit Kolophonium getränkt und von einem Schutzmantel 4 aus Polyurethan umgeben, der auch die Drähte 5 des Freileitungskabels 1 umschliesst und so das Kabel 1 und das Element 2 miteinander verbindet. Wie aus dem in Fig. 2 gezeigten Querschnitt des durch den Schutzmantel 4 mit dem Kabel 1 verbundenen Elementes 2 ersichtlich bildet der Sohutzmantel 4 zwei gegeneinander abgeschlossene Kanäle 6 und 7 für die Fasern 3 des Elements 2 einerseits und die Drähte 5 des Kabels 1 andererseits. Der den Kanal 6 bildende, die Kunstfasern 3 umgebende Teil 8 des Schutzmantels 4 ist dabei mit dem den Kanal 7 bildenden, die Drähte 5 umgebenden Teil 9 des Schutzmantels 4 einstückig durch den brückenartigen Teil 10 des Schutzmantels 4 verbunden. Bei dem in Fig. 1 gezeigten Endstück ist diese Verbindungsbrücke 10 zwischen dem Element 2 und dem Kabel 1 über eine mindestens zur Schlaufenbildung ausreichende Länge aufgeschnitten, wobei am Ende 11 des Schnittes zweckmässig eine in Fig. 1 nicht gezeigte Schelle oder andere, Kabel und Element umschliessende und dadurch fest miteinander verbindende Mittel zur Verhinderung eines weiteren Aufreissens der Brücke 10 über das Ende 11 des Schnittes hinaus vorgesehen sind. Mit dem durch das Aufschneiden der Verbindungsbrücke 10 gebildeten freien Ende des Elementes 2 wird die zum Aufhängen des Freileitungskabels dienende Schlaufe 12 gebildet, die durch die Klemmhülse 13 zusammengehalten wird. Der Abstand zwischen der Klemmhülse 13 und dem Schnittende 11 ist in der Regel wesentlich grösser als in der Zeichnung dargestellt, aber die Länge der Schlaufe 12 passt in ihren Proportionen zu den Durchmessern des Elements 2 und des Kabels 1.
  • Das aus den Fasern 3 bestehende Faserbündel hat 106500 Denier,was einem effektiven Faserquerschnitt von 8,15 mm2 entspricht.Der Durchmesser des von den Fasern 3 gebildeten Faserbündels beträgt bei vollständig zusammengeprssten Fasern ca. 3,4 mm. Aus dem effektiven Faserquerschnitt von 8,15 mm2 und der Zugfestigkeit der Fasern von 300 kg/mm2 ergibt sich für das Faserbündel eine Belastungsgrenze bzw. Bruchgrenze von 2445 kg, jedoch hatten mehrfache Belastungen des Elementes 2 mit einer Zugkraft von 2500 kg weder einen Bruch des Elementes 2 bzw. des von den Fasern 3 gebildeten Faserbündels noch ein Herausrutschen des Endes 14 des Elementes 2 aus der Klemmhülse 13 zur Folge. Die Klemmhülse 13 hat eine Länge von 75 mm und einen Aussendurchmesser nach dem Zusammenpressen von ca. 8 mm und wurde mit einer Kraft von 30 Tonnen zusammengepresst. Der die Fasern 3 umgebende Teil 8 des Schutzmantels 4 hat eine Wandstärke von ca. 1 mm, die aber innerhalb der Klemmhülse 13 mindestens um die Hälfte reduziert wurde. Die Tränkung des aus den Fasern 3 gebildeten Faserbündels mit Kolophonium wurde dadurch erzielt, dass das Faserbündel vor der Ummantelung durch ein Bad von in Aether gelösten Kolophonium gezogen und anschliessend bei erhöhter Temperatur getrocknet bzw. ausgehärtet wurde.Dabei wurden Vorkehrungen getroffen, dass in dem Bad alle Fasern des Faserbündels auf ihrer gesamten Länge von der Kolophoniumlösung benetzt wurden und dass überflüssige Lösung von Fasern abgestreift wurde, z.B. indem das Faserbündel durch eine Kalibrierdüse aus dem Bad herausgezogen wurde. Als Lösungsmittel für das Kolophonium wurde teilweise auch Alkohol verwendet, jedoch dauert in diesem Fall der Trocknungs- bzw. Aushärtungsprozess etwas länger als bei der Verwendung von Aether. Es ist im übrigen auch möglich, das Faserbündel durch eine Kolophoniumschmelze zu ziehen, da die Fasern Temperaturen oberhalb des Schmelzpunktes von Kolophonium ohne weiteres aushalten, allerdings macht in diesem Fall.die gleichmässige Benetzung aller Fasern des Faserbündels und auch das Abstreifen der überflüssigen Schmelze gewisse Schwierigkeiten.
  • Praktische Experimente mit dem in den Figuren 1 und 2 gezeigten Freileitungskabel haben ergeben, dass die Aufhängung des Kabels an dem vorliegenden Element allen auftretenden Anforderungen gerecht wird. Das gilt sowohl für Zugfestigkeit und Witterungsbeständigkeit wie auch für aussergewöhnliche Belastungen wie Schwingungen der Freileitung durch starken Wind, Vereisung der Freileitung usw. Bei diesen Experimenten waren die Schlaufen 12 mit Seilkauschen versehen. Untersuchungen an diesen Freileitungen nach den Experimenten haben gezeigt, dass das Kolophonium im Bereich des Schnittendes 11, in den Bereichen beiderseits der Klemmhülse 13 sowie innerhalb der Klemmhülse 13 und im Bereich des Schlaufenbogens 15 der Schlaufe 12 in Pulver zerfallen war, was auf starke Druck- und Biegebeanspruchungen des Faserbündels in diesen Bereichen schliessen lässt. Jedoch waren auch in diesen Bereichen keine stärkeren Abnutzungserscheinungen wie Faserbrüohe usw. festzustellen.
  • In Fig. 3 ist zum Vergleich in einem Diagramm noch die spezifische Belastbarkeit in Abhängigkeit vom Verhältnis Klemmhülsenlänge/Faserbündeldurchmesser für das vorliegende Element mit Naturharztränkung der Fasern (Kolophoniumtränkung) sowie für ein Element der eingangs genannten Art mit Kunstharztränkung der Fasern und für ein solches Element mit ungetränkten Fasern dargestellt. Aus diesem Diagramm ist ersichtlich, dass bei Naturharztränkung der Fasern, also beim vorliegenden Element,bei Klemmhülsenlängen von mehr als dem zehnfachen des Faserbündeldurchmessers die spezifische Belastbarkeit des Elements nur noch von der Zugfestigkeit des Faserbündels abhängt und die Gefahr eines Herausrutschens des Faserbündelendes aus der Klemmhülse nicht mehr besteht. Bei geringeren Klemmhülsenlängen rutscht das Faserbündel aus der Klemmhülse heraus, sobald die spezifische Belastung des Elementes die durch die Kurve "Naturharztränkung" bei der betreffenden Klemmhülsenlänge gegebene spezifische Belastbarkeit überschreitet. Als spezifische Belastung des Elementes ist dabei das Verhältnis der an der durch die Klemmhülse zusammengehal-' tenen Schlaufe angreifenden Zugkraft zu dem der Summe der Querschnitte sämtlicher Fasern des Faserbündels entsprechen effektiven Faserquerschnitt des Faserbündels bezeichnet.
  • Der Vergleich der Kurve "Naturharztränkung" mit den Kurven "Kunstharztränkung" und "keine Tränkung" zeigt, dass der mittlere Reibungskoeffizient zwischen Klemmhülse und Faserbündel in dem dargestellten Bereich der Klemmhülsenlänge bei Naturharztränkung des Faserbündels etwa dreimal so hoch wie bei ungetränktem Faserbündel und bei Kunstharztränkung des Faserbündels etwa doppelt so hoch wie bei ungetränktem Faserbündel ist. Bei grösseren Klemmhülsenlängen als dem zehnfachen Faserbündeldurchmesser stimmen diese Relationen nicht mehr, weil die Kurven, wie aus dem Diagramm in Fig. 3 ersichtlich, nicht geradlinig sondern gekrümmt sind und aus bisher noch nicht zweifelsfrei geklärten Gründen bei sehr grossen Klemmhülsenlängen einem Grenzwert zustreben, der nur bei Naturharztränkung des Faserbündels oberhalb der Bruchgrenze der Fasern, bei Kunstharztränkung des Faserbündels und bei ungetränktem Faserbündel jedoch unterhalb der Bruchgrenze der Fasern liegt. Dieser bisher noch nicht genau geklärte Effekt hat jedoch zur Folge, dass bei Kunstharztränkung des Faserbündels und bei ungetränktem Faserbündel eine volle Ausnutzung der Zugfestigkeit des Faserbündels nicht möglich ist, weil das Faserbündel bei steigender Belastung des Elementes noch vor Erreichen der Zugfestigkeit bzw. der Bruchgrenze der Fasern aus der Klemmhülse herausrutscht.
  • Das in Fig. 3 gezeigte Diagramm gilt für einen bei allen Klemmhülsenlängen gleichbleibenden Druck der Klemmhülse auf das Faserbündel von 18 kg/mm2. Bei höheren Druckwerten, die aber jedenfalls mit Aluminiumklemmhülsen kaum zu erreichen sind, erhöhen sich die aus den Kurven ablesbaren Werte im Verhältnis des höheren Druckwertes zu 18 kg/mm2. Bei niedrigeren Werten des Druckes der Klemmhülse auf das Faserbündel als 18 kg/mm2 verringern sich die aus den Kurven ablesbaren Werte entsprechend im Verhältnis niedrigeren Druckwertes zu 18 kg/mm2.
  • Die mittleren Reibungskoeffizienten zwischen Klemmhülse und Faserbündel ergeben sich aus dem in Fig. gezeigten Diagramm zu 0,435 für Naturharztränkung, 0,28 für Kunstharztränkung und 0,15 für ungetränkte Faserbündel.
  • Zu dem Diagramm in Fig. 3 ist ferner noch zu erwähnen, dass bei Verwendung von Klemmhülsen mit abgerundeten Rändern an den Austrittsstellen des Faserbündels im Diagramm für die Klemmhülsenlänge nur die tragende Länge der Klemmhülse einzusetzen ist, dass also die Breiten der Randbereiche mit abgerundeten Rändern von Klemmhülsenlänge abzuziehen ist. Es ist weiter in Bezug auf kunstharzgetränkte Faserbündel darauf hinzuweisen, dass es bei diesen trotz der Tatsache, dass-die Kurve für Kunstharztränkung in diesem Diagramm einem unter der Bruchgrenze der Fasern liegenden Grenzwert zustrebt, beim Belastungsversuch zum Zerreissen des Faserbündels vorm Herausrutschen desselben aus der Klemmhülse kommen kann, und zwar insbesondere am Schlaufenbogen und bei scharfkantigen Klemmhülsen an den Austrittsstellen des Faserbündels aus der Klemmhülse, jedoch liegt in solchen Fällen die spezifische Belastung im Moment des Zerreissens unter der spezifischen Belastbarkeit bzw. der Bruchgrenze der Fasern. Die Gründe hierfür sind die gleichen wie eingangs im Zusammenhang mit der bekannten Epoxidharztränkung erläutert.
  • Abschliessend sei noch bemerkt,dass bei den Zugbelastungsversuchen zur Erstellung des in Fig. 3 gezeigten Diagramms Faserbündel mit 21300 Denier aus strangartig parallel zueinander angeordneten Fasern aus aromatischem Polyamid mit einer Zugfestigkeit von 300 kg/mm2, einem Elastizitätsmo- ' dul von 13400 kg/mm2, einer Bruchdehnung von 2,6% und einem spezifischen Gewicht von 1,45 g/cm3 verwendet wurden, dass der Faserbündeldurchmesser bei zusammengepresstem Faserbündel ca. 1,5 mm und der effektive Faserquerschnitt der Faserbündel ca. 1,65 mm2 war, und dass die verwendeten Faserbündel mit je einer mittels einer Klemmhülse zusammengehaltenen Endschlaufe an beiden Enden versehen und nicht ummantelt waren.

Claims (13)

1. Element zur Uebertragung von Zugkräften mit einer Vielzahl von eine glatte Faseroberfläche aufweisenden Kunstfasern von über 200 kg/mm2 Zugfestigkeit und einem über 3000 kg/mm2 liegenden Elastizitätsmodul sowie einer unter 10% liegenden Bruchdehnung, welche zur Verminderung der durch ihre glatte Faseroberfläche bedingten Rutschgefahr an Angriffsstellen von Kraftübertragungsmitteln zumindest auf einem Teil ihrer Gesamtlänge mit einem die Fasern verbindenden und den Reibungskoeffizienten an der Aussenfläche des Faserverbundes erhöhenden Material getränkt sind, dadurch gekennzeichnet, dass das Material, mit dem die Fasern getränkt sind, ein bei einer Druck- und/oder Biegebeanspruchung, die die Bruchgrenze des Materials für die betreffende Beanspruchung überschreitet, im Beanspruchungsbereich in Pulver zerfallendes Material ist.
2. Element nach Anspruch 1, dadurch gekennzeichnet, dass das Material ein bei Druck- und/oder Biegebeanspruchung über seine Bruchgrenze hinaus in Pulver zerfallendes Harz ist.
3. Element nach Anspruch 2, dadurch gekennzeichnet, dass das Harz vollständig oder zumindest zum überwiegenden Teil aus natürlichem Harz besteht.
4. Element nach Anspruch 3, dadurch gekennzeichnet, dass das natürliche Harz Kolophonium ist.
5. Element nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Kunstfasern aus einem Kunststoff, vorzugsweise aus einem organischen Polymeren, bestehen.
6. Element nach Anspruch 5, dadurch gekennzeichnet, dass der Kunststoff ein aromatisches Polyamid ist und die Fasern vorzugsweise eine Zugfestigkeit von mindestens 250 kg/mm2, einen Elastizitätsmodul von mindestens 10000 kg/mm2 und eine Bruchdehnung unter 3% haben.
7. Element nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Kunstfasern strangartig parallel zueinander angeordnet sind.
8. Element nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Kunstfasern verseilt sind.
9. Element nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass in mindestens einem seiner beiden Endbereiche zwei von den Faserenden verschieden weit entfernte Stellen unter Bildung einer vorzugsweise um eine runde oder kauschenförmige 0ese gelegten Schlaufe mittels eines Klemmorgans miteinander verbunden sind und die Tränkung der Fasern mindestens über die von den Faserenden weiter entfernte Stelle hinausreicht.
10. Element nach Anspruch 9, dadurch gekennzeichnet,dass das Klemmorgan mindestens eine Klemmhülse umfasst, deren Ränder an den Austrittsstellen der Fasern abgerundet sind.
11. Element nach Anspruch 9 oder 10,dadurch gekennzeichnet, dass die Schlaufe mit mehreren Windungen um eine Rundöse gelegt ist.
12. Element nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass es zum Schutz gegen Witterungseinflüsse und andere äussere Einwirkungen mit einem die Fasern umschliessenden Schutzmantel, vorzugsweise aus Polyurethan, versehen ist.
13. Verwendung eines Elementes nach einem der Ansprüche 1 bis 12 als Tragorgan für ein Freileitungskabel,dadurch gekennzeichnet, dass das Element und das Kabel von einem gemeinsamen, Element und Kabel miteinander verbindenden Schutzmantel umschlossen sind, der vorzugsweise zwei gegeneinander abgeschlossene Kanäle für die Fasern des Elements einerseits und die Drähte des Kabels andererseits bildet.
EP79104839A 1979-09-18 1979-12-03 Element zur Übertragung von Zugkräften und Verwendung desselben als Tragorgan für Freileitungskabel Expired EP0025461B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT79104839T ATE4734T1 (de) 1979-09-18 1979-12-03 Element zur uebertragung von zugkraeften und verwendung desselben als tragorgan fuer freileitungskabel.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH844479 1979-09-18
CH8444/79 1979-09-18

Publications (2)

Publication Number Publication Date
EP0025461A1 true EP0025461A1 (de) 1981-03-25
EP0025461B1 EP0025461B1 (de) 1983-09-21

Family

ID=4340447

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79104839A Expired EP0025461B1 (de) 1979-09-18 1979-12-03 Element zur Übertragung von Zugkräften und Verwendung desselben als Tragorgan für Freileitungskabel

Country Status (7)

Country Link
US (2) US4438293A (de)
EP (1) EP0025461B1 (de)
AT (1) ATE4734T1 (de)
CA (1) CA1134598A (de)
DE (1) DE2966209D1 (de)
FI (1) FI67927C (de)
NO (1) NO802758L (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997040228A1 (de) * 1996-04-22 1997-10-30 Luethy Helmut Beschichtungsmittel für schläger mit saitenbespannung
CN107317295A (zh) * 2017-08-29 2017-11-03 徐州海伦哲专用车辆股份有限公司 一种电源车主馈出电缆终端接头护套

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4508317A (en) * 1982-02-05 1985-04-02 Conti Allen C Tape and method for measuring and/or pulling cable
US4763983A (en) * 1986-12-31 1988-08-16 Sumitomo Electric Research Triangle, Inc. Optical transmission cable with messenger
US5043037A (en) * 1989-11-22 1991-08-27 Sumitomo Electric Fiber Optics Corporation Method for making high strain aerial fiber optic cable
US5209439A (en) * 1992-03-11 1993-05-11 Diamond Communication Products, Inc. Drop wire clamp
US6015953A (en) * 1994-03-11 2000-01-18 Tohoku Electric Power Co., Inc. Tension clamp for stranded conductor
US5678609A (en) * 1995-03-06 1997-10-21 Arnco Corporation Aerial duct with ribbed liner
ATE248503T1 (de) * 1996-01-25 2003-09-15 Ppi Corp Pty Ltd Rohr mit einem längsverstärkungsglied das eine längspannung erlaubt
US6648279B1 (en) 2000-11-28 2003-11-18 Allied Bolt, Inc. Drop wire clamp and method for securing drop wire
FI119234B (fi) * 2002-01-09 2008-09-15 Kone Corp Hissi
MY136077A (en) * 2002-11-05 2008-08-29 Inventio Ag Drive-capable support or traction means and method for production thereof
ATE324493T1 (de) * 2002-12-13 2006-05-15 S I C Milano S R L Seilanker und herstellungsverfahren
US7594642B2 (en) * 2005-06-09 2009-09-29 Donald Butler Curchod High load connection system
IL171198A (en) * 2005-09-29 2009-08-03 Shiltex Ltd Complex cable
US8203074B2 (en) * 2006-10-25 2012-06-19 Advanced Technology Holdings Ltd. Messenger supported overhead cable for electrical transmission
US9056656B2 (en) 2008-07-18 2015-06-16 Thomas W. Fields Mooring loop
US8932435B2 (en) 2011-08-12 2015-01-13 Harris Corporation Hydrocarbon resource processing device including radio frequency applicator and related methods
US8960285B2 (en) 2011-11-01 2015-02-24 Harris Corporation Method of processing a hydrocarbon resource including supplying RF energy using an extended well portion
WO2013163094A1 (en) * 2012-04-24 2013-10-31 Fields Thomas W Mooring loop
IL295082A (en) * 2020-03-13 2022-09-01 Galactic Co Llc Control cables and composite stabilizer cables for aircraft applications and methods of their manufacture
US11597476B2 (en) 2020-08-25 2023-03-07 Thomas W. Fields Controlled failure point for a rope or mooring loop and method of use thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB454240A (en) * 1935-03-25 1936-09-25 Ici Ltd Improvements in the treatment of cellulosic textile fabrics
US2775860A (en) * 1951-03-28 1957-01-01 Owens Corning Fiberglass Corp Twine
DE2436356A1 (de) * 1973-08-01 1975-02-13 Cordes Europ France Montreuil Verfahren und einrichtung zur herstellung von seilen
US3911785A (en) * 1974-01-18 1975-10-14 Wall Ind Inc Parallel yarn rope
US3973385A (en) * 1975-05-05 1976-08-10 Consolidated Products Corporation Electromechanical cable
US4095404A (en) * 1975-10-09 1978-06-20 Hitco Method of manufacturing a high-strength, polyurethane-impregnated polyamide cable
GB2001796A (en) * 1977-07-26 1979-02-07 Ericsson Telefon Ab L M Cable
DE2433099C3 (de) * 1974-07-10 1979-08-16 Felten & Guilleaume Carlswerk Ag, 5000 Koeln Elektrisches Kabel mit zugaufnehmenden Elementen aus hochfesten Kunststoffäden

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2331840A (en) * 1940-10-12 1943-10-12 Hercules Powder Co Ltd Textile fiber and method of producing
US2348552A (en) * 1941-03-27 1944-05-09 Hercules Powder Co Ltd Textile fiber and method of producing
US2561487A (en) * 1948-07-15 1951-07-24 Bailhe George Cable mooring pennant
US2819988A (en) * 1955-06-02 1958-01-14 American Viscose Corp Regenerated cellulose cordage
NO117374B (de) * 1965-04-27 1969-08-04 Standard Tel Kabelfab As
US3498038A (en) * 1966-07-11 1970-03-03 Owens Corning Fiberglass Corp Tensile members,apparatus and method for production
CA1024228A (en) * 1975-07-11 1978-01-10 Friedrich K. Levacher Electric cables with tension-supporting elements
US4202164A (en) * 1978-11-06 1980-05-13 Amsted Industries Incorporated Lubricated plastic impregnated aramid fiber rope

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB454240A (en) * 1935-03-25 1936-09-25 Ici Ltd Improvements in the treatment of cellulosic textile fabrics
US2775860A (en) * 1951-03-28 1957-01-01 Owens Corning Fiberglass Corp Twine
DE2436356A1 (de) * 1973-08-01 1975-02-13 Cordes Europ France Montreuil Verfahren und einrichtung zur herstellung von seilen
US3911785A (en) * 1974-01-18 1975-10-14 Wall Ind Inc Parallel yarn rope
DE2433099C3 (de) * 1974-07-10 1979-08-16 Felten & Guilleaume Carlswerk Ag, 5000 Koeln Elektrisches Kabel mit zugaufnehmenden Elementen aus hochfesten Kunststoffäden
US3973385A (en) * 1975-05-05 1976-08-10 Consolidated Products Corporation Electromechanical cable
US4095404A (en) * 1975-10-09 1978-06-20 Hitco Method of manufacturing a high-strength, polyurethane-impregnated polyamide cable
GB2001796A (en) * 1977-07-26 1979-02-07 Ericsson Telefon Ab L M Cable

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RESEARCH DISCLOSURE, Band 123, Juli 1974, Seite 14 "Resin-impregnated strands" * Insgesamt * *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997040228A1 (de) * 1996-04-22 1997-10-30 Luethy Helmut Beschichtungsmittel für schläger mit saitenbespannung
CN107317295A (zh) * 2017-08-29 2017-11-03 徐州海伦哲专用车辆股份有限公司 一种电源车主馈出电缆终端接头护套
CN107317295B (zh) * 2017-08-29 2022-10-04 徐州海伦哲专用车辆股份有限公司 一种电源车主馈出电缆终端接头护套

Also Published As

Publication number Publication date
NO802758L (no) 1981-03-19
DE2966209D1 (en) 1983-10-27
ATE4734T1 (de) 1983-10-15
FI67927C (fi) 1985-06-10
EP0025461B1 (de) 1983-09-21
FI802909A (fi) 1981-03-19
US4650715A (en) 1987-03-17
CA1134598A (en) 1982-11-02
FI67927B (fi) 1985-02-28
US4438293A (en) 1984-03-20

Similar Documents

Publication Publication Date Title
EP0025461B1 (de) Element zur Übertragung von Zugkräften und Verwendung desselben als Tragorgan für Freileitungskabel
EP0054784B1 (de) Freileitungskabel mit Zugentlastungsmitteln
DE2525067C2 (de) Kabel mit einem Bündel optischer Fasern
DE69730442T2 (de) Optisches nachrichtenkabel
DE3024310A1 (de) Optisches kabel und verfahren zu seiner herstellung
DE7705379U1 (de) Optisches nachrichtenkabel
DE2339676C3 (de) Hochspannungs-Freileitungsseil zur elektrischen Energieübertragung sowie Verfahren zu dessen Herstellung
EP0072423B1 (de) Optisches Nachrichtenkabel
DE2522866A1 (de) Verbindungsklemme fuer zugglieder aus faserverstaerktem kunststoff
DE3214603A1 (de) Optisches faser-uebertragungskabel und verfahren zu dessen herstellung
DE2723659A1 (de) Nachrichtenkabel aus lichtwellenleitern
DE2512830B2 (de) Fernsehkamerakabel mit Lichtleitfasern
DE2709106A1 (de) Optisches kabel
DE3837285C2 (de)
EP0456899B1 (de) LWL-Luftkabel für grosse Spannfeldlängen
DE3037289C2 (de) Optisches Luftkabel
EP0677759A1 (de) Lichtwellenleiterkabel mit zug- und stauchfesten Bündeladern
DE3826323C1 (de)
DE69812768T2 (de) Anordnung einer Luftkabel und Zugklemme
EP0425915B1 (de) Optisches Kabel
EP0395839B1 (de) Optische Ader
DE3009406C2 (de) Schnur als Verstärkungselement für Kabel und Verfahren zu ihrer Herstellung
DE202020104449U1 (de) Presspolster, Verwendung und Laminierpresse
DE3310003C2 (de)
DE4034812C1 (en) Rigid optical=fibre cable - has strain relief elements of low modular aramid allowing overhead suspension and providing protection against projectiles

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LU NL SE

17P Request for examination filed

Effective date: 19810406

ITF It: translation for a ep patent filed

Owner name: STUDIO CONS. BREVETTUALE S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LU NL SE

REF Corresponds to:

Ref document number: 4734

Country of ref document: AT

Date of ref document: 19831015

Kind code of ref document: T

REF Corresponds to:

Ref document number: 2966209

Country of ref document: DE

Date of ref document: 19831027

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19831116

Year of fee payment: 5

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19831231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19841109

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19841211

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19841231

Year of fee payment: 6

Ref country code: BE

Payment date: 19841231

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19861230

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19871231

Year of fee payment: 9

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19891203

Ref country code: AT

Effective date: 19891203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19891204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19891231

BERE Be: lapsed

Owner name: KUPFERDRAHT-ISOLIERWERK A.G. WILDEGG

Effective date: 19891231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19900701

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19900831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19900901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 79104839.0

Effective date: 19900830

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19951229

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19961231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL