EP0021335B1 - Dispositif électromagnétique pour actionner un élément d'impression - Google Patents

Dispositif électromagnétique pour actionner un élément d'impression Download PDF

Info

Publication number
EP0021335B1
EP0021335B1 EP80103387A EP80103387A EP0021335B1 EP 0021335 B1 EP0021335 B1 EP 0021335B1 EP 80103387 A EP80103387 A EP 80103387A EP 80103387 A EP80103387 A EP 80103387A EP 0021335 B1 EP0021335 B1 EP 0021335B1
Authority
EP
European Patent Office
Prior art keywords
ram
mechanism according
yoke
armature
operating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80103387A
Other languages
German (de)
English (en)
Other versions
EP0021335A1 (fr
Inventor
Armin Bohg
Kurt Hartmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19792926276 external-priority patent/DE2926276A1/de
Priority claimed from DE19803018407 external-priority patent/DE3018407A1/de
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Priority to AT80103387T priority Critical patent/ATE5243T1/de
Publication of EP0021335A1 publication Critical patent/EP0021335A1/fr
Application granted granted Critical
Publication of EP0021335B1 publication Critical patent/EP0021335B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J9/00Hammer-impression mechanisms
    • B41J9/02Hammers; Arrangements thereof
    • B41J9/127Mounting of hammers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J9/00Hammer-impression mechanisms
    • B41J9/26Means for operating hammers to effect impression
    • B41J9/38Electromagnetic means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/13Electromagnets; Actuators including electromagnets with armatures characterised by pulling-force characteristics

Definitions

  • the invention relates to a plunger drive for impact printers.
  • This tappet drive is said to be particularly suitable for use in hammer banks for mechanical high-speed printers.
  • the anchor-like movement element is called “tongue” in one embodiment and “plunger” in another.
  • the “tongue” does not consist predominantly of heavy soft magnetic material, but only of relatively narrow soft magnetic so-called anchor bars, which can be connected by non-magnetic light materials.
  • the “plunger” is intended to indicate a cylindrical movement element.
  • both the “tongue” and the (cylindrical) “plunger” should generally be covered by the term “plunger”, which in both cases is only distinguished by a different geometric shape.
  • Corresponding plungers are also present in the prior art known from US Pat. No. 4,014,258 and French Patent No. 1,364,614. However, these plungers had plunger coils and not two armature elements made of magnetizable material and are also dimensionally different in cross-section than the object of the invention.
  • FIG. 2 shows a schematic perspective illustration of an electromagnetic pressure tappet drive.
  • a tongue 18 movable in the direction of arrow D is arranged between two fixed yoke halves 25, 22.
  • the yoke halves 25 and 22 each consist of a magnetizable yoke 27 and 24, which is surrounded by coil turns 26 and 23, respectively.
  • the yokes can e.g. B. semicircular, semi-elliptical or U-shaped.
  • the yokes 27, 24 in the two yoke halves 25 and 22 are aligned in such a way that the yoke ends opposite each other in the yoke halves are aligned and form pole pairs.
  • the magnetic flux runs from a yoke over a work gap, in which the armature web is arranged, to the yoke of the other half of the yoke and from there via a further working gap back to the first yoke, so that the magnetic circuit from the two yokes and the two working columns located between the ends of the yokes.
  • the current flow in the excitation coils 26 and 23 takes place in such a way that the direction of current in the turns inside the two opposite yokes is the same and opposite to that in the turns outside the yokes. 2, the windings are indicated schematically in the front part of the illustration by a few wire loops, while in the rear part a corresponding sectional illustration of the wires has been selected.
  • the tongue 18, which is movably arranged in the direction of arrow D between the yoke halves 25 and 22, is expanded in the direction of the working gap to be much smaller than in its other two dimensions.
  • the body of the tongue 18 consists of a light, magnetically non-conductive material 19 and magnetically conductive, so-called anchor webs 20 and 21.
  • anchor webs are arranged in the tongue 18 so that they excite the yoke halves from a rest-starting position in the drawn between the yoke ends and thereby accelerated.
  • the tongue can then follow a further movement in the direction of arrow D.
  • the geometric design of the anchor webs 20 and 21 is essentially chosen so that their volume would fill approximately the space circumscribed between the ends of the yokes opposite. The associated advantages - increasing the efficiency - are described elsewhere.
  • a cuboid shape can be dispensed with in favor of a V-shaped configuration (see FIG. 1) seen in cross section.
  • FIG. 1A and 1B relate to a horizontal sectional illustration of the illustration shown in FIG. 2, with the restriction that the yokes have a semicircular shape.
  • the starting position is shown in FIG. 1A, and a position after the end of the acceleration phase for the tongue is shown in FIG. 1B.
  • 1A and 1B have the same reference numerals.
  • the two halves of the yoke are identified by 22 and 25, the semicircular yokes by 24 and 27.
  • the windings surrounding the yokes have the reference numbers 23 (right half of the yoke) and 26 (left half of the yoke).
  • the current in the inner part of the two magnet yokes is identified by the symbol provided for it to emerge from the plane of the drawing; the course of the current outside the two yokes is indicated by the symbol provided as entering the plane of the drawing.
  • the tongue identified by 18, which consists of the light, magnetically non-conductive parts 19 and the magnetically conductive anchor webs 21 and 20.
  • the excitation coils of the yoke halves are initially not excited.
  • the anchor webs 20 and 21 should be in front of the space which is formed between the corresponding ends of the yokes.
  • This size depends on the structural boundary conditions and on the means provided for storing the tongue or for returning the tongue to its initial position.
  • return springs (not shown) can be used: z.
  • FIG. 3 shows three pressure rams lying next to one another and arranged in a pressure ram bank 31.
  • the plungers are marked with 28, 29 and 30, they each consist of a hammer head and the adjoining tongue.
  • Each tongue is assigned a pair of yokes - consisting of two halves of the yoke.
  • the two yoke halves for the pressure plunger 29 consist of the yoke 29-3 in connection with the excitation winding 29-5 and the yoke 29-4 in connection with the excitation winding 29-6.
  • the yokes show a U-shaped course here.
  • the yoke halves of the pressure plunger 28 consist of the yoke 28-3 in connection with the excitation winding 28-5 and the yoke 28-4 in connection with the excitation winding 28-6.
  • the yoke halves are indicated by the yoke 30-3 in connection with the field winding 30-5 and the yoke 30-4 in connection with the field winding 30-6.
  • the yoke halves assigned to the tongue of a pressure tappet are aligned with one another.
  • the pairs of yokes of the adjacent plungers are offset from one another, so that there is a compact design with minimized ram spacing results.
  • the tongue of each pressure tappet 28, 29, 30 has corresponding anchor webs 28-1, 28-2; 29-1, 29-2; and 30-1, 30-2, which are accelerated when the excitation coils in the yoke halves are excited into the space between the ends of the yokes, resulting in a movement in the direction of action D for the imprint of a character.
  • FIG 4 three pressure rams 33, 34, 35 of a pressure ram bank are shown schematically.
  • Each pressure tappet in turn consists of a pressure tappet head with an associated tongue.
  • Several pairs of yokes are assigned to each anchor. So the plunger 34 z. B.
  • the anchor bars 34-1-2 and 34-1-4 are accelerated into the space between the ends of the yokes 34-1-1 and 34-1-3; The same applies to the other bars 34-2-2 and 34-2-4 in connection with the yokes 34-2-1 and 34-2-3 and the anchor bars 34-3-2 and 34-3-4 in connection with yokes 34-3-1 and 34-3-3.
  • the pairs of yokes of adjacent tappets are offset from one another, so that the distance between two adjacent pressure tappets is determined by the dimension of one half of the yoke including its assigned excitation coil.
  • the current directions in successive pairs of yokes of the same tappet are opposite each other. As a result, the magnetic flux occurring in the intermediate yoke half of the neighboring tappets is very low.
  • the yoke halves lying between two pressure tappets can be cast in a common plastic block 36, 37.
  • the holder of the tongues and the means for their resetting are conventional and are therefore not shown or described in detail.
  • a yoke half is shown, which is particularly suitable for simple manufacture and installation.
  • the U-shaped yoke 38 is surrounded by a foil coil 39 with the connections 40 and 41.
  • One half of the coil fills the space formed between the legs of the U-shaped yoke.
  • FIG. 6 shows a schematic perspective illustration of a special embodiment of a tongue 43 with an integrated print head 49.
  • the tongue 43 has a double-T-like profile with the cross-sectional areas 43-1, 45-1 and 44-1.
  • the anchor webs made of magnetically conductive material are identified with 45, 46 and 47.
  • the areas in between are filled with a light material made of magnetically non-conductive material.
  • the T-roof-shaped parts 43-1, 44-1 of the tongue serve to guide them laterally and vertically and to increase the lateral stability.
  • the tongue is provided at the front end with a plunger-shaped print hammer head 49, the cross-sectional representation of which can be seen in FIGS. 3 and 4.
  • FIG. 7 shows an arrangement known according to the prior art (German utility model 7432801).
  • This arrangement represents an electromagnet with a soft magnetic iron circuit separated by an air gap at its pole ends and a plunger armature. In its rest position, the armature projects into the working air gap and, when the electromagnet is excited, assumes a magnetically symmetrical working position between the aforementioned pole ends.
  • the pole ends 3 and 4 of the iron circle 1 forming the working air gap 5 are designed as two planes lying opposite one another and the armature 6 as a flat component made of ferromagnetic material which can be displaced between these surfaces.
  • the armature 6 is a flat part, the thickness of which corresponds approximately to the size of the working air gap between the pole pieces 3 and 4.
  • the anchor dimensions are much larger in the other two directions.
  • uncontrollable transverse forces inevitably result towards the pole pieces of the electromagnet, which prevent undisturbed movement in the desired direction of action.
  • it follows from the description of this utility model that when the armature is in the initial position - that is, before the start of the working phase - a substantial part of the armature is already between the pole pieces, so that the magnetic flux lines can pass through this part of the armature.
  • Fig. 8 is known from DE-AS 1 237 816 pressure ram drive for fast printers.
  • This electromagnetically actuated pressure tappet drive a number of pressure tappets lying closely next to one another are provided.
  • the armature 7, which can be moved in the direction D, is actuated by pressure magnets 12, 13 arranged on one side thereof.
  • the pole faces 14 and 15 of the pressure magnet yokes are offset from the pole faces of flux guide pieces 16, 17 in the armature in the rest position in the longitudinal direction.
  • the opposing pole faces 15, 14 of the magnetic yokes 12, 13 and the yokes 17, 16 located on the armature are inclined towards the writing point.
  • the pressure tappet is mounted in a manner known per se on leaf springs 8 and 9 without a pivot point.
  • the arrangement according to FIG. 8 has various disadvantages: When driving the pressure tappet, forces occur transversely to its direction of movement, which forces have to be absorbed by the armature bearing (leaf springs 8 and 9). These forces occurring transversely to the direction of movement of the armature only partially contribute to an armature acceleration in the effective direction
  • flux conductors 16 and 17, respectively which have a large mass, are provided in order to conduct the magnetic flux in the armature. This mass must be accelerated during a printing process, which contributes to a reduction in efficiency.
  • the special design of the flux guide pieces 16 and 17 in connection with the magnet yokes 12 and 13 assigned to them results in a stroke which is limited in the effective direction.
  • the acceleration stroke has a relatively large value due to the inclined pole faces, which prevents high efficiency.
  • the pressure tappet drive shown in FIGS. 1 to 6 is characterized by the following advantages:
  • the anchor bridge on the river line should only have a negligible proportion.
  • the magnetic flux runs essentially over the working gap between the ends of the yokes.
  • a negligible small part of the magnetic flux lines in the starting position of the pressure arrangement runs over the anchor webs.
  • the symmetrical arrangement of the yoke halves ensures that the so-called magnetic transverse forces in the direction of the yokes are zero in the first approximation, thereby avoiding friction losses and thus reducing the efficiency these influences is avoided.
  • Another significant advantage of the pressure ram drive according to the invention is the space-saving design.
  • the yokes are never larger than the excitation coil itself; in addition, the yoke halves are arranged on both sides of the pressure ram. In the case of pressure rams lying next to one another, their mutual spacing can be reduced by displacing the yoke halves assigned to the pressure rams so that the distance between two adjacent pressure rams is determined by the geometric dimension of a yoke half.
  • the small cross-section of the yokes minimizes eddy current and magnetic reversal losses, which contributes to a further increase in efficiency.
  • the low cost of materials for the yokes and the anchor bars makes it possible to use relatively expensive material for these parts.
  • the material expenditure for the formation of the anchor bars corresponds almost to the theoretical minimum:. -It is now possible for the first time to use only as much material (for the anchor bars) as is required to fill up the working air gap volume (mass optimization).
  • Anyone Flow line pieces in the armature can be dispensed with, flow parts of the armature being understood to mean those parts which carry a substantial part of the total magnetic flux in each position of the pressure tappet drive.
  • the embodiment of the arrangement according to FIG. 2 is aimed at a relatively flat design of the tongue.
  • Flat in this context means that the thickness of the tongue is much smaller than its width and length.
  • the cylinder-shaped tappet shaft is provided with the reference number 210.
  • the direction of action of the tappet shaft points in the direction of the arrow 1D.
  • the tappet shaft 210 is composed of anchor rings or anchor disks 220, 230, which are separated from one another by a spacer element 240.
  • the armature rings or armature disks 220 and 230 consist of magnetizable material.
  • a magnet yoke 250 that can be excited via a coil is provided for driving the plunger.
  • This magnetic yoke 250 consists of two U-shaped yoke halves with the legs (pole pieces) 260, 270 or 118, 119 and the base 290 or 280.
  • the base is connected to two pole pieces in each case.
  • the pole pieces of the yoke halves face each other without contact.
  • Each pole piece is provided with a semicircular recess for receiving the plunger shaft 210.
  • the tappet shaft 210 moves in this recess in the direction of the arrow 1D (or in the opposite direction).
  • the outer ends of the pole pieces surrounding the plunger shaft 210 are chamfered on the side facing away from the plunger (113A, 113B, 114A, 114B).
  • the base (coil core) 290 carries a partial winding 110. For reasons of clarity, the illustration of a further partial winding on the coil core 280 has been omitted.
  • the armature rings 220, 230 (armature disks) of the plunger shaft 210 (which are in the non-excited state of the arrangement immediately in front of the working gaps 111, 112) are drawn into the working gap, which results in a corresponding acceleration of the plunger shaft in the direction of the arrow 1D.
  • the armature disks must be made of magnetizable material.
  • the ram acceleration is more efficient the more the magnetic flux closes from one pole shoe to the other via the armature disks 220 and 230 and does not run towards the pole shoe without passing through the armature ring. For the latter reason, the pole shoes are chamfered at the edges (113A, 113B, 114A, 114B).
  • Tappet drive can consist of several magnet yokes arranged one behind the other in the direction of the tappet shaft. With such an arrangement, adjacent coil cores (280/117 and 290/115) would act together on a pair of pole shoes (270 and 119). To achieve full acceleration when the magnetic yoke is excited Maintaining force on the plunger shaft (210) in the direction of arrow 10, special attention must be paid to the winding direction of the windings seated on the individual coil cores. The winding direction is opposite from coil core to coil core (290/115). This is the only way to ensure that the magnetic flux in the pair of pole shoes 270 and 119 common to two adjacent coil cores is not canceled out. The winding direction of the partial coil 110 for the coil core 290 and the partial coil 116 for the coil core 115 is opposite. The same applies to the winding direction of the sub-coils, not shown, for the coil cores 280 and 117.
  • FIGS. 10, 11 and 12 relate to a practical embodiment of a pressure tappet drive unit 130 which is intended for use in line printers. To explain their mode of operation, reference is also made in particular to the illustrations in FIGS. 10 and 11. 10, 11 and 12, the same parts are identified by the same reference numerals.
  • FIG. 10 serves in particular to illustrate the magnetic flux in the individual magnet yokes arranged one behind the other
  • FIG. 11 shows an exploded view of various individual parts of the pressure tappet drive unit 130 for information on assembling this arrangement. It serves for a better understanding if, when a reference number is given, the corresponding part not only in Fig. 11, but - if available - also in the fig. 10 and 12 is considered.
  • the plunger shaft runs inside the magnetic coil system 159 in a recess provided therefor.
  • the frame 131 is continued in two frame arms 145 and 146.
  • the end of the tappet shaft 134 remote from the pressure projects in this space between the two frame arms 145 and 146.
  • the end of the tappet shaft 134 is provided with an elongated hole 158 for receiving a spring wire 135 which is fastened on one side to one of the frame arms 146.
  • This attachment is provided by a bracket 137 which can be adjusted with a screw in the frame 131 and by means of which the spring force of the spring wire 135 can also be adjusted.
  • the spring wire 135 protrudes through an elongated hole 139 of the frame arm 146 and is connected at point 136 to the tab 137 arranged on the outside of the frame 131.
  • the spring wire 135 can be fastened at point 136 either by welding, gluing or other conventional measures.
  • the tab 137 is provided at its end remote from the point 136 with a cutout 161 which, when the screw 138 is loosened, allows the tab to be displaced parallel to the axial direction of the push-rod stem in order to make a corresponding adjustment of the spring force of the spring wire 135.
  • the tab 137 is connected to the pressure frame 131 by the screw 138.
  • the task of the spring wire 135 is to bring the pressure tappet 132 back after the printing process has been completed and to secure the tappet against rotation.
  • the frame 131 there are furthermore two connecting pins 140 and 141 electrically insulated from the frame for connecting the coil of the magnetic coil system 159.
  • the connection pins have not been connected to the ends of the sub-windings 150 and 151 which are connected to one another.
  • the magnet coil system 159 is composed of a total of 6 electromagnetic circuits arranged in series according to FIG. 9. As already mentioned, in such a series, two adjacent electromagnetic circuits have a pair of pole shoes in common. To explain further details of the magnetic coil system 159, reference is first made to the illustration in FIG. 11.
  • the pole shoes are designed such that, in the assembled state of the magnetic coil system, the pressure tappet shaft 134 is arranged to be movable between them.
  • the plunger shaft 134 is guided in the frame bores 143 and 144 and in the guide bores of the non-magnetizable guide pieces 152, 153, 154, 155, 156, 157.
  • These guide pieces are each arranged within a single magnetic yoke circuit so that their bores are aligned with the bores 143 and 144 in the frame 131.
  • the magnetic coil system is cast in plastic and is arranged in a recess 142 in the frame 131.
  • the coil consists of two interconnected partial windings 150 and 151.
  • the winding can be applied to the cores for the individual coil combs in a simple manner (which was not the case with an arrangement according to FIG. 2).
  • the pressure plunger 132 provided for this system is to be inserted into the guide opening which has been kept open for this purpose.
  • the pressure tappet consists of a number of armature disks 134/1, 134/2, 134/3, 134/4, 134/5, 134/6, 134/7 corresponding to the pole shoe pairs made of magnetizable material.
  • FIG. 10 shows a schematic sectional illustration of the parts of the upper and lower coil combs 147 and 160 which are decisive for the magnetic flux within the individual yoke circles as shown in FIG. 12.
  • the sectional plane lies parallel to the frame surface and leads through the axis of the pressure plunger 134.
  • the comb back are marked with 148 and 149 respectively.
  • the individual comb teeth (pole shoes) with 148/1 to 148/7 and 149/1 to 149/7.
  • only the lower partial winding 150 with the winding sections 150/1 to 150/6 is indicated. It can be seen that the winding direction of successive winding sections alternates with one another so that the magnetic fluxes of adjacent yoke circles in the pair of pole shoes common to these yoke circles do not cancel each other out.
  • 13A and 13B show different possibilities for the manufacture and assembly of the pressure ram.
  • the individual armature disks 134A and the spacer elements 162 to be arranged between them are screwed onto a common tappet shaft liner 163, which is designed as a threaded pin. All parts can be glued together. If the ram is subsequently ground, a very high accuracy of the ram diameter can be achieved.
  • the armature plates 134A and the spacer elements 162 must have very small length tolerances in order to ensure an exact spacing of the individual armature plates 134A. However, an exact armature plate division is a prerequisite for good efficiency.
  • the tappet shaft core 164 as well as the anchor rings 134B are made of the same magnetizable material. It is important for the effectiveness of the arrangement that the diameter of the tappet shaft core is relatively small compared to the diameter of the armature discs 134B, since the Tappet shaft core in an undesirable magnetic flux line has a small, if any, share. From the point of view of optimal effectiveness, the space between the armature disks should consist entirely of non-magnetizable material. Such a requirement can, however, be waived for manufacturing reasons if the disadvantage of a slight reduction in effectiveness is accepted.
  • suitable material pairing for the guide pieces 152 to 157 and the tappet shaft 134 the pressure tappet 134 can be smoothly run in the guide bores 143 and 144 without lubrication being required.
  • the plunger drive described above can be used in many ways, especially when it comes to the generation of forces, paths, impulses or kinetic energies or switching operations that are controlled by contacts to be actuated by the plunger.
  • the tongue-shaped compared to the cylindrical tappet drive has the advantage of better efficiency because the magnetic stray fields are lower.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnets (AREA)
  • Impact Printers (AREA)

Claims (22)

1. Dispositif d'actionnement comprenant au moins deux entrefers placés entre des pôles magnétiques, entrefers dans lesquels des armatures sont déplacées, suivant un sens axial, grâce à l'action exercée réciproquement par le champ magnétique dans l'entrefer actif et l'armature, l'ensemble du dispositif étant constitué, au moins, par une paire de deux demi-culasses (24, 27), déterminant entre-elles les entrefers, opposées et montées de façon sensiblement symétrique, dont les extrémités polaires se faisant face et constituant chacune une paire polaire forment des entrefers alignés et espacés l'un de l'autre dans la direction de déplacement des armatures (20,21) où est prévu, un poussoir (18), relié aux armatures, et pouvant se déplacer entre les entrefers dand la direction d'alignement des entrefers, caractérisé en ce que les deux demi-culasses concernées (24, 27) constituant un électro-aimant sont constituées d'un matériau magnétisable, et l'une au moins d'entre-elles est entourée d'un bobinage (23, 26) alimenté en courant électrique, en ce que le poussoir (18) a une section correspondant à la section de l'entrefer, dans la direction perpendiculaire à sa direction de déplacement, en ce que, chaque paire polaire de deux demi-culasses (24 et 27) opposées, est munie d'une marmature (20 et 21) en matérau magnétisable, et d'un élément intercalaire (19), placé entre les armatures et constitué d'un matériau essentiellement non magnétisable, de sorte que chaque entrefer est associé avec une armature dont le volume correspond à celui de l'entrefer en raison de sa forme géométrique, et que chaque armature (20, 21), vue dans la direction axiale, lorsque le poussoir (18) est à sa position d'origine et que l'électro-aimant n'est excité, est disposée à l'extérieur de l'entrefer correspondant et que lorsque la paire polaire de cet entrefer est excitée, l'armature rentre dans l'entrefer.
2. Dispositif suivant la revendication 1, caractérisé en ce que les armatures (20, 21) sont cubiques et en ce que leur dimension, dans la direction de déplacement (D) du poussoir, est de l'ordre de grandeur de la largeur de l'entrefer, et leur dimension, prise perpendiculairement à la direction de déplacement, est un multiple de la première dimension.
3. Dispositif suivant les revendications 1 et 2, caractérisé en ce que le poussoir (18) présente une forme plate dont les dimensions transversales par rapport à la direction de déplacement, sont inférieures à celles prises dans d'autres directions.
4. Dispositif suivant les revendications 1 et 2, caractérisé en ce que les deux demi-culasses (24, 27) ont une forme en U, semi-circulaire ou semi-elliptique.
5. Dispositif suivant la revendication 4, caractérisé en ce que les bobinages, entourant les demi-culasses (24, 27), sont formés de conducteurs en feuilles (39).
6. Dispositif suivant la revendication 1, caractérisé en ce que les armatures (20, 21) ont un profil en V, où le V va en s'ouvrant dans la direction de déplacement (D) du poussoir (18).
7. Dispositif suivant l'une quelconque des revendications 1 à 6, caractérisé en ce que, pour plusieurs poussoirs adjacents (33, 34, 35), correspondent, pour chaque poussoir (34) une ou plusieurs paires de demi-culasses (34-1-1, 34-1-3, 34-2-1, 34-2-3; 34-3-1, 34-3-3), qui sont décalées les unes par rapport aux autres, si bien que l'intervalle séparant les poussoirs est déterminé par les dimensions d'une demi-culasse (34-1-1) et par le bobinage (34-1-5) qui lui correspond.
8. Dispositif suivant la revendication 7, caractérisé en ce que les demi-culasses (34-1-1, 33-1-3, 34-2-1, 33-2-3, 34-3-1) placées entre deux poussoirs (33, 34) sont moulées dans un bloc en plastique (36), avec les bobinages qui leur correspondent (34-1-5, 33-1-6, 34-2-5, 33-2-6, 34-3-5).
9. Dispositif suivant la revendication 7, caractérisé en ce que ledit poussoir présente un profil semblable à celui d'un double T, dont les parties (43-1, 44-1), formant la barre du T, servent d'éléments-guides au poussoir (figure 6).
10. Dispositif suivant la revendication 1, caractérisé en ce que les extrémités polaires des demi-culasses se faisant face (260/290/270; 118/280/119) comportant des évidements de forme sensiblement semi-circulaire formant des entrefers (111, 112) sensiblement circulaires, en ce que le poussoir (210) a une forme approximativement cylindrique et que les armatures (220, 230) ont approximativement une forme de disque (figures 9-12).
11. Dispositif suivant la revendication 10, caractérisé en ce que le poussoir (210) est constitué par une tige filetée (163) servant de corps au poussoir, sur laquelle sont vissés des armatures (134A) en forme de disque et des pièces intercalaires cylindriques (162) séparant lesdites armatures (figure 13A).
12. Dispositif suivant la revendication 10, caractérisé en ce que, les armatures (134B) du poussoir (210), et le corps (164) du poussoir, sont en une seule pièce et que l'espace restant entre les armatures (134B) est rempli d'une matière plastique (165) (figure 138).
13. Dispositif suivant les revendications 4 et 10. comprenant des demi-culasses en U, caractérisé en ce que les bases (290, 280) des demi-culasses (260/270/290; 118/280/119), sont entourées chacune d'un bobinage.
14. Dispositif suivant la revendication 10 ou 13, caractérisé en ce que les extrémités polaires opposées des demi-culasses sont chanfreinées (113A, 113B, 114A, 114B) au niveau de leur bord extérieur axial.
15. Dispositif suivant une des revendications 10, 13 ou 14, caractérisé en ce que plusieurs paires de demi-culasses (148-1, 148-2/149-1, 149-2; 148-2, 148-3/149-2, 149-3, etc.); sont placées les unes derrière les autres, de sorte que deux demi-culasses contiguës ont une partie de culasse commune (148-2, 148-3) et qu'un poussoir d'impression (132) est commun à toutes les paires de demi-culasses.
16. Dispositif suivant la revendication 15, caractérisé en ce que toutes les demi-culasses contiguës comportent, chacune un enroulement partiel (150-1, 150-2, 150-3, 150-4, 150-5, 150-6, 151-6, 151-5, 151-4, 151-3, 151-2, 151-1) d'un bobinage (150, 151) qui est commun à toutes les demi-culasses et que les dits entroulements partiels des demi-culasses contiguës sont bobinés en sens opposé.
17. Dispositif suivant l'une quelconque des revendications 1 à 9 et 15 ou 16, caractérisé en ce que lesdites demi-culasses contiguës comportent un noyau de bobinagee (147, 160) en forme de dos de peigne continu (148, 149) comprenant des dents (148-1 à 148-7; 149-1 à 149-7) servant de pièces polaires.
18. Dispositif suivant les revendications 16 et 17, caractérisé en ce .que des noyaux de bobinagee opposés (147, 160), le bobinage (150, 151) et les pièces de guidage (152 à 157) du poussoir placées entre lesdits noyaux (147, 160), pièces servant au poussoir (132), sont moulées dans du plastique pour constituer un électroaimant.
19. Dispositif suivant la revendication 18, caractérisé en ce que l'électro-aimant est placé à l'intérieur d'un évidement (142) d'un bâti (131), plat et étroit, des moyens d'actionnement (130) du poussoir d'impression.
20. Dispositif suivant la revendication 19, caractérisé en ce que l'électro-aimant est collé au bâti (131) ou moulé avec lui dans du plastique.
21. Dispositif suivant la revendication 19 ou 20, caractérisé en ce que le poussoir (132) est guidé par deux trous (143,144) du bâti (131 ).
22. Dispositif suivant la revendication 21, caractérisé en ce que le poussoir (132), pour revenir de sa position de travail est munie à son extrémité éloignée du point d'impression, d'un évidement (158) permettant de recevoir un fil à ressort (135) fixé, sur un côté, à un montant du bâti (146).
EP80103387A 1979-06-29 1980-06-18 Dispositif électromagnétique pour actionner un élément d'impression Expired EP0021335B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT80103387T ATE5243T1 (de) 1979-06-29 1980-06-18 Elektromagnetische einrichtung fuer druckstoesselantrieb.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19792926276 DE2926276A1 (de) 1979-06-29 1979-06-29 Schneller elektromagnetischer druckhammerantrieb mit hohem wirkungsgrad
DE2926276 1979-06-29
DE3018407 1980-05-14
DE19803018407 DE3018407A1 (de) 1980-05-14 1980-05-14 Elektromagnetisch betaetigbarer stoesselantrieb, insbesondere fuer anschlagdrucker

Publications (2)

Publication Number Publication Date
EP0021335A1 EP0021335A1 (fr) 1981-01-07
EP0021335B1 true EP0021335B1 (fr) 1983-11-09

Family

ID=25779749

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80103387A Expired EP0021335B1 (fr) 1979-06-29 1980-06-18 Dispositif électromagnétique pour actionner un élément d'impression

Country Status (3)

Country Link
EP (1) EP0021335B1 (fr)
DE (1) DE3065513D1 (fr)
IT (1) IT1149983B (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE425068B (sv) * 1981-01-19 1982-08-30 Facit Ab Tryckverk
DE3114834A1 (de) * 1981-04-11 1982-11-04 Ibm Deutschland Gmbh, 7000 Stuttgart Elektromagnetischer stoesselantrieb
DE3148503C2 (de) * 1981-12-08 1983-11-17 Siemens AG, 1000 Berlin und 8000 München Tauchankermagnetsystems mit einem zusammengesetzten Anker hoher Vortriebskraft
EP0108159A1 (fr) * 1982-11-05 1984-05-16 Ibm Deutschland Gmbh Entraînement électromagnétique à mouvement de balancier, en particulier pour imprimantes à percussion
DE3479643D1 (en) * 1984-09-10 1989-10-12 Ibm Deutschland Print hammer bank of modular construction
DE3465931D1 (en) * 1984-10-04 1987-10-15 Ibm Deutschland Electromagnetic drive, in particular for an impact printer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1237816B (de) * 1963-08-24 1967-03-30 Ibm Deutschland Druckhammerantrieb fuer Schnelldrucker
DE7432801U (de) * 1975-03-27 Siemens Ag Elektromagnet mit Linearantrieb des Ankers

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL289885A (fr) * 1961-05-01
US4014258A (en) * 1975-08-29 1977-03-29 Wassermann Carl I High speed printing apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE7432801U (de) * 1975-03-27 Siemens Ag Elektromagnet mit Linearantrieb des Ankers
DE1237816B (de) * 1963-08-24 1967-03-30 Ibm Deutschland Druckhammerantrieb fuer Schnelldrucker

Also Published As

Publication number Publication date
IT8022955A0 (it) 1980-06-23
DE3065513D1 (en) 1983-12-15
IT1149983B (it) 1986-12-10
EP0021335A1 (fr) 1981-01-07

Similar Documents

Publication Publication Date Title
DE3215057C2 (de) Selbsthaltendes solenoid
DE2728629C2 (de) Elektromagnetvorrichtung
DE3334160C2 (de) Magnetventil
DE3334159A1 (de) Magnetventil
DE102016100417B4 (de) Elektromagnetischer Aktuator
EP0450288A2 (fr) Moteur électrique linéaire
DE2816555A1 (de) Magnetkreisanordnung fuer einen elektromagneten fuer einen mit einem permanentmagneten als anker
EP0293638B1 (fr) Tête d'impression à aiguilles avec électro-aimants à armature battante
DE1589914A1 (de) Rotierendes,elektromagnetisches Betaetigungselement
EP0021335B1 (fr) Dispositif électromagnétique pour actionner un élément d'impression
EP0748416B1 (fr) Commande électromagnétique d'une soupape dans un moteur a combustion interne
DE2258381A1 (de) 2.71 v.st.v.amerika 208569 bez: elektromagnetische betaetigungsvorrichtung mit einem beweglichen antriebsglied
EP0028314B1 (fr) Dispositif de déclenchement électromagnétique, en particulier pour l'actionnement de marteaux d'impression
EP0134827A1 (fr) Entraînement électromagnétique pour mouvements linéaires ou rotatifs continus et pas à pas
DE3028772C2 (de) Elektromagnetische Antriebseinrichtung
DE2306309C2 (de) Elektromagnetische Antriebseinrichtung für einen Schnelldrucker
DE1539922C3 (de) Dreistellungsmagnet
EP0063233B1 (fr) Elément d'actionnement électromagnétique
EP0127692B1 (fr) Elément d'actionnement électromagnétique
EP1869756B1 (fr) Actionneur lineaire
DE68924217T2 (de) Linearantrieb.
DE19906657A1 (de) Gaswechselventil mit elektromagnetischer Stelleinrichtung
DE3018407A1 (de) Elektromagnetisch betaetigbarer stoesselantrieb, insbesondere fuer anschlagdrucker
DE2926276A1 (de) Schneller elektromagnetischer druckhammerantrieb mit hohem wirkungsgrad
EP0216943A1 (fr) Dispositif d'actionnement électromagnétique notamment de marteaux d'impression

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB NL SE

17P Request for examination filed

Effective date: 19810312

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB LI NL SE

REF Corresponds to:

Ref document number: 5243

Country of ref document: AT

Date of ref document: 19831115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3065513

Country of ref document: DE

Date of ref document: 19831215

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19890529

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900516

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19900619

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19910528

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19910604

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19910618

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19910630

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19910925

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920619

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19920630

Ref country code: CH

Effective date: 19920630

Ref country code: BE

Effective date: 19920630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19920630

Year of fee payment: 13

BERE Be: lapsed

Owner name: INTERNATIONAL BUSINESS MACHINES CORP.

Effective date: 19920630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19930101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930226

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19930618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940301

EUG Se: european patent has lapsed

Ref document number: 80103387.9

Effective date: 19910206