EP0018261A1 - Guide d'onde à large bande à double polarisation - Google Patents

Guide d'onde à large bande à double polarisation Download PDF

Info

Publication number
EP0018261A1
EP0018261A1 EP80400448A EP80400448A EP0018261A1 EP 0018261 A1 EP0018261 A1 EP 0018261A1 EP 80400448 A EP80400448 A EP 80400448A EP 80400448 A EP80400448 A EP 80400448A EP 0018261 A1 EP0018261 A1 EP 0018261A1
Authority
EP
European Patent Office
Prior art keywords
waveguide
symmetry
section
order
respect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP80400448A
Other languages
German (de)
English (en)
Other versions
EP0018261B1 (fr
Inventor
Jacky Tourneur
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0018261A1 publication Critical patent/EP0018261A1/fr
Application granted granted Critical
Publication of EP0018261B1 publication Critical patent/EP0018261B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/16Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion
    • H01P1/161Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion sustaining two independent orthogonal modes, e.g. orthomode transducer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/06Coaxial lines

Definitions

  • the present invention relates to broadband microwave waveguides, allowing propagation under identical conditions of cutoff frequency and impedance of two electromagnetic waves of polarization, or direction of the electric field, orthogonal.
  • the modes known as TE and TM modes respectively transverse electrical and transverse magnetic.
  • Each propagation mode has a cutoff frequency below which propagation takes place with attenuation.
  • the field of use of a waveguide or bandwidth is the frequency range which separates the lowest cutoff frequency, called the fundamental mode, from the frequency next cutoff, called the first higher order mode. In this interval, the only possible propagation mode is that of the fundamental mode.
  • Bandwidth is defined by the ratio: where ⁇ c2 and ⁇ cl are the cutoff wavelengths of the fundamental mode and the first higher order mode.
  • the constraint of the double polarization imposes on the cross section of the guide to admit the longitudinal axis of the wave guide as an axis of symmetry of order 4n where n is any integer ⁇ 1, a symmetry of order 4n with respect to to this longitudinal axis being a symmetry such that a rotation around this same axis of the section of the waveguide by an angle of 2 ⁇ does not change the properties of the waveguide 4 n, the polarizations of this guide wave being globally unchanged.
  • a determined mode propagates only if there are the conditions necessary for its excitation, the TE 20 mode, asymmetrical mode, not appearing in a waveguide where conditions of symmetry of radio propagation are maintained, even beyond the TE20 mode cutoff frequency.
  • bending the guide capable of creating an asymmetry, causes the appearance of the TE 20 mode.
  • a guide can therefore only be used, outside of its bandwidth, under very specific conditions of mechanical and / or radio symmetry.
  • the present invention overcomes the aforementioned drawbacks and in particular to obtain bandwidths greater than 60%.
  • Another object of the present invention is the implementation of a double-polarized broadband waveguide, in which the width of the band is in direct relation to the geometric parameters of the waveguide.
  • the wide-band double polarization waveguide comprises: a waveguide of polygonal section having, with respect to a center of symmetry C, a symmetry of order 4n where n is any integer.
  • the broadband waveguide has inside the waveguide of polygonal section, on the one hand a plurality of conductive steps, the section of which determines with the polygonal section a propagation section of the waveguide.
  • Each of the steps is arranged on the internal face of the sides of the waveguide, according to a symmetry of order 4 with respect to this same center of symmetry.
  • the longitudinal plane of symmetry of each step is oriented in the propagation section of the waveguide, in the direction of the bisectors of the main axes of the waveguide.
  • the broadband waveguide comprises, on the other hand, a central conductive core whose section has, relative to this same center of symmetry, the same symmetry of order 4n.
  • the wide-band double polarization waveguide object of the invention, comprises a waveguide of polygonal section 1 having, with respect to a center of symmetry C, a symmetry of order 4n where n is an integer.
  • the waveguide according to the invention contains inside the waveguide of polygonal section a plurality of conductive steps 2, the section of which determines, with the polygonal section, a propagation section of the waveguide .
  • Each of the steps 2 is arranged on the internal face of the sides of the waveguide, according to a symmetry of order 4 with respect to the center of symmetry C.
  • the longitudinal plane of symmetry of each of the steps is oriented, in the propagation section of the waveguide, in the direction of the bisectors of the main axes of the waveguide.
  • the main axes of the waveguide are represented by the axes X'X, and Y'Y, their orientation corresponds respectively to the direction of the electric fields of the propagation modes TE 10 and TE 01 ' for the guide wave considered.
  • the longitudinal plane of symmetry of each step has not been shown so as not to overload the figure.
  • the waveguide comprises, on the other hand, inside the waveguide of polygonal section, a central conductive core 3, the section of which has with respect to the center of symmetry C the same symmetry of order 4n, the sections of the central conducting core and of the waveguide of polygonal section being homothetic with respect to this center of symmetry C.
  • the waveguide of polygonal section has a square section of side 2a.
  • This section presents, with respect to the center of symmetry C, a symmetry of order 4.
  • the waveguide comprises, inside each dihedral angle formed by two consecutive sides of the square section, a conductive step 2 of section also square on side W.
  • the four steps arranged in the section of the waveguide, at the end of the diagonals of this section, determine, with the square section of the waveguide, a section of propagation of the waveguide. having, with respect to this same center of symmetry C, a symmetry of order 4.
  • the waveguide of polygonal section comprises, on the other hand, a central conductive core 3 whose square section on the side 2k has, with respect to this same center of symmetry C, the same symmetry of order 4.
  • the diagonals of the square section of the waveguide l and the diagonals of the section of the central conductive core are combined.
  • FIGS. 2a and 2b The operation of the waveguide, object of the invention, is as follows taking into account FIGS. 2a and 2b in which FIG. 2a comprises a system of axes whose ordinates are graduated in standard cut-off frequency or ratio of the dimension of the guide, according to FIG. 1, at the cut-off wavelength of this same guide, the standardized cut-off frequency being noted , and whose abscissa are graduated in relation to the dimension of the side of the step W at the same dimension 2a of the waveguide.
  • FIG. 2a represents the variations in the cutoff frequencies of the higher order propagation modes such as the TE 11 , TM 11 , TE 201 and TE 10 modes. In the same way, FIG.
  • FIG. 2b represents, on a system of axes, respectively on the ordinate, the normalized cut-off frequencies of the waveguide, the ordinate axis being graduated in value of the ratio where 2a represents the dimension of the side of the square section of the waveguide, according to FIG. 1, and ⁇ c the corresponding cut-off wavelength, as a function of the ratio of the dimension of the central conducting core of square side section 2k related to this same dimension of the square section and side waveguide 2a.
  • FIG. 2b represents the different normalized cut-off frequencies for higher order modes such as TM 11 , TE 201 , TE 11 , and TE 10 .
  • FIG. 2a and 2b respectively show that, in the case of the square guide comprising the only steps inside each dihedral angle formed by two consecutive sides of the square section, the TM 11 mode limits the bandwidth as long as the ratio remains less than 0.22, the TE 201 mode becoming substantially the first parasitic mode for higher values of this ratio.
  • FIG. 2b shows that, in the case of the square section guide comprising a central core of also square section, the only higher order mode limiting the bandwidth is the TE 11 mode whose cut-off frequency depends little on the ratio k.
  • Figures 3a and 3b represent for different values of the ratio the variation of the normalized cut-off frequency , ratio of the half-dimension of the square section waveguide to the cut-off wavelength of the guide, depending on the ratio , dimension of the side of the section of the square step related to this same half-dimension a of the section of the waveguide.
  • the waveguide according to the invention makes it possible to obtain a higher bandwidth than that of the guides hitherto used to solve similar problems.
  • the bandwidth of the guide according to the invention a function of the reports and , reaches a value of 66% when these ratios have respectively a value of 0.5 and 0.26.
  • a first method allows a polynomial calculation of the field.
  • a second method allows for a longer but more expensive process to obtain more precise calculations.
  • a double-band wideband waveguide has thus been described which can be used in particular in any microwave circuit and in particular in broadband microwave connection circuits.

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Waveguide Aerials (AREA)

Abstract

Guide d'onde bande à double polarisation à large comnant un guide d'onde (1) de section polygonale présentant une symétrie d'ordre 4n par rapport à un centre de symétrie (C). Le guide d'onde est muni d'une pluralité de redans conducteurs (2) disposés sur la face interne des côtés du guide d'onde selon une symétrie d'ordre 4 par rapport au centre (C) et d'un noyau central conducteur (3) dont la section présente par rapport au centre (C) une même symétrie d'ordre 4n. Application aux circuits hyperfréquences de connexion.

Description

  • La présente invention est relative aux guides d'ondes hyperfréquences à large bande, permettant la propagation dans des conditions identiques de fréquence de coupure et d'impédance de deux ondes électromagnétiques de polarisation, ou direction du champ électrique, orthogonales.
  • Dans les guides d'ondes à large bande, c'est-à-dire les guides d'ondes utilisés sur une plage de fréquences supérieure à la bande passante normale du guide d'onde, l'apparition de modes de propagation parasites, notamment lors d'une utilisation de ces guides d'ondes dans une bande passante sensiblement supérieure à 30 % de la fréquence moyenne du guide d'onde, perturbe dangereusement le fonctionnement de ce dernier. En'"effet, dans un guide d'onde homogène, il existe une double infinité dénombrable de modes susceptibles de se propager : les modes dits modes TE et TM, respectivement transversaux électriques et transversaux magnétiques. Chaque mode de propagation possède une fréquence de coupure en dessous de laquelle la propagation s'effectue avec atténuation. Le domaine d'utilisation d'un guide d'onde ou bande passante est la plage de fréquences qui sépare la fréquence de coupure la plus basse, dite du mode fondamental, de la fréquence de coupure suivante, dite du premier mode d'ordre supérieur. Dans cet intervalle, le seul mode de propagation possible est celui du mode fondamental.
  • La bande passante est définie par le rapport :
    Figure imgb0001
    où λ c2 et λ cl sont les longueurs d'onde de coupure du mode fondamental et du premier mode d'ordre supérieur.
  • La contrainte de la double polarisation impose à la section transversale du guide d'admettre l'axe longitudinal du guide d'onde comme axe de symétrie d'ordre 4n où n est un entier quelconque ≥ 1, une symétrie d'ordre 4n par rapport à cet axe longitudinal étant une symétrie telle qu'une rotation autour de ce même axe de la section du guide d'onde d'un angle de 2 π ne change pas les propriétés du guide 4 n d'onde, les polarisations de ce guide d'onde étant globalement inchangées.
  • Cependant, un mode déterminé ne se propage que s'il existe les conditions nécessaires à son excitation, le mode TE20, mode dissymétrique, n'apparaissant pas dans un guide d'onde où sont maintenues des conditions de symétrie de propagation radioélectrique, même au-delà de la fréquence de coupure du mode TE20. Par contre, un coudage du guide, propre à créer une dissymétrie, provoque l'apparition du mode TE20. Un guide n'est donc utilisable, en dehors de sa bande passante, que dans des conditions très particulières de symétrie mécanique et/ou radioélectrique.
  • Différentes solutions ont été proposées, en vue de l'augmentation de la bande passante, sans provoquer l'apparition de modes parasites d'ordre supérieur Une solution consiste à ajouter à la structure du guide d'onde un redan, connu sous le vocable anglo- saxon de "ridge", n'a pas permis, dans le cas des guides de section circulaire ou carrée, d'obtenir un accroissement de bande passante aussi important que dans le cas du guide de section rectangulaire. De tels résultats ont été publiés ; notamment dans le cadre des études effectuées par M. H. CHEN, G. N. TSANDOULAS et F. G. WILLWERTH, intitulées "Modal Characteristics of quadruple-ridged circular and square waveguides", publiées dans la revue IEEE-Trans Microwave Theory Tech Vol MTT 22, pages 801 à 804, Août 1974.
  • Une autre solution, consistant à introduire des redans carrés dans les angles dièdres formés par les côtés d'un guide d'onde de section carrée, a permis d'obtenir une bande passante de 38 %, ce type de guide d'onde pouvant être utilisé sur un octave de bande, avec seulement un mode parasite TE20 désigné comme mode TE201 obtenu lorsque la dégénérescence entre le mode TE20 et le mode TE02 d'un guide carré est levée par l'adjonction de redans. Une telle solution a été publiée par H. J. STALZER, M. D. GREENMAN et F. G. WILLWERTH dans une publication intitulée "Modes of crossed rectangular waveguide" dans la revue IEEE-Trans Ant Propag - AP, March 1976.
  • Dans ces différentes solutions, l'adjonction de redans à des guides d'ondes de section carrée, octogonale, ou circulaire n'a jamais permis de dépasser une bande passante de 40 %.
  • Une autre solution consiste à adjoindre à des guides d'ondes de section rectangulaire un noyau central conducteur. Une telle solution a été décrite, notamment, dans l'article de L. GRUNER, intitulé "Higher order modes in rectangular waveguides" et publié dans la revue IEEE-Trans microwave theory tech (Corresp.) Vol MTT 15, pages 483 à 485, August 1967.
  • La présente invention permet de remédier aux inconvénients précités et notamment d'obtenir des bandes passantes supérieures à 60 %.
  • Un autre objet de la présente invention est la mise en oeuvre d'un guide d'onde à large bande à double polarisation, dans lequel la largeur de la bande est en relation directe des paramètres géométriques du guide d'onde.
  • Selon l'invention, le guide d'onde à large bande à double polarisation comprend : un guide d'onde de section polygonale présentant, par rapport à un centre de symétrie C, une symétrie d'ordre 4n où n est un entier quelconque. Le guide d'onde à large bande comporte à l'intérieur du guide d'onde de section polygonale, d'une part une pluralité de redans conducteurs dont la section détermine avec la section polygonale une section de propagation du guide d'onde. Chacun des redans est disposé sur la face interne des côtés du guide d'onde, selon une symétrie d'ordre 4 par rapport à ce même centre de symétrie. Le plan de symétrie longitudinal de chacun des redans est orient dans la section de propagation du guide d'onde, dans la direction des bissectrices des axes principaux du guide d'onde. Le guide d'onde à large bande comporte, d'autre part, un noyau central conducteur dont la sec tion présente, par rapport à ce même centre de symétrie, une même symétrie d'ordre 4n.
  • Le guide d'onde selon l'invention peut être ut: lisé dans tout système de connexion ou circuit hyperfréquence utilisé dans la transmission de signaux à large bande de fréquence. L'invention sera mieux com prise à l'aide de la description et des dessins ci-après où les cotes et proportions relatives des diff rents éléments n'ont pas été respectées, afin d'assu rer une meilleure compréhension de l'ensemble et dar lesquels,
    • - la figure 1 représente un guide d'onde à large bar à double polarisation, selon l'invention ;
    • - les figures 2a, 2b représentent respectivement la variation des fréquences de coupure, d'une part pou: un guide d'onde à redans diagonaux seul, et d'autre part, pour un guide d'onde à noyau central conducteur seul ;
    • - les figures 3a, 3b représentent la variation de la fréquence de coupure du guide d'onde, selon le mode de réalisation de l'invention, tel que représenté figure 1, en fonction des paramètres géométriques du mode de réalisation considéré ;
    • - les figures 4a et 4b représentent une vue de face d'une coupe, selon un plan orthogonal à l'axe longitudinal du guide d'onde du mode de réalisation de la figure 1, selon deux variantes de réalisation particulières.
  • Selon la figure 1, le guide d'onde à large bande à double polarisation, objet de l'invention, comprend un guide d'onde de section polygonale 1 présentant, par rapport à un centre de symétrie C, une symétrie d'ordre 4n où n est un entier quelconque. Le guide d'onde, selon l'invention, contient à l'intérieur du guide d'onde de section polygonale une pluralité de redans conducteurs 2, dont la section détermine, avec la section polygonale, une section de propagation du guide d'onde. Chacun des redans 2 est disposé sur la face interne des côtés du guide d'onde, selon une symétrie d'ordre 4 par rapport au centre de symétrie C. Le plan de symétrie longitudinal de chacun des redans est orienté, dans la section de propagation du guide d'onde, dans la direction des bissectrices des axes principaux du guide d'onde. Sur la figure 1, les axes principaux du guide d'onde sont représentés par les axes X'X, et Y'Y, leur orientation correspond respectivement à la direction des champs électriques des modes de propagation TE10 et TE01' pour le guide d'onde considéré. Sur la figure 1, le plan de symétrie longitudinal de chaque redan n'a pas été représenté afin de ne pas surcharger la figure. Le guide d'onde, selon l'invention, comporte, d'autre part, à l'intérieur du guide d'onde de section polygonale, un noyau central conducteur 3, dont la section présente par rapport au centre de symétrie C une même symétrie d'ordre 4n, les sections du noyau central conducteur et du guide d'onde de section polygonale étant homothétiques par rapport à ce centre de symétrie C.
  • Selon la figure 1, le guide d'onde de section polygonale a une section carrée de côté 2a. Cette section présente, par rapport au centre de symétrie C, une symétrie d'ordre 4. Le guide d'onde comporte, à l'intérieur de chaque angle dièdre formé par deux côtés consécutifs de la section carrée, un redan conducteur 2 de section également carrée de côté W. Les quatre redans disposés dans la section du guide d'onde, à l'extrémité des diagonales de cette section, déterminent, avec la section carrée du guide d'onde, une section de propagation du guide d'onde présentant, par rapport à ce même centre de symétrie C, une symétrie d'ordre 4. Selon l'invention, le guide d'onde de section polygonale comporte, d'autre part, un noyau central conducteur 3 dont la section carrée de côté 2k présente, par rapport à ce même centre de symétrie C, une même symétrie d'ordre 4. Ainsi, les diagonales de la section carrée du guide d'onde l et les diagonales de la section du noyau central conducteur sont confondues.
  • Le fonctionnement du guide d'onde, objet de l'invention, est le suivant compte tenu des figures 2a et 2b dans lesquelles la figure 2a comporte un sys" tème d'axes dont les ordonnées sont graduées en fréquence de coupure normalisée ou rapport de la dimension du guide, selon la figure 1, à la longueur d'ond de coupure de ce même guide, la fréquence de coupure normalisée étant notée
    Figure imgb0002
    , et dont les abscisses sont graduées en rapport de la dimension du côté du redan W à la même dimension 2a du guide d'onde. La figure 2a représente les variations des fréquences de coupure des modes de propagation d'ordre supérieur tels que les modes TE11, TM11, TE201 et TE10. De la même manière, la figure 2b représente, sur un système d'axes, respectivement en ordonnées, les fréquences de coupure normalisées du guide d'onde, l'axe d'ordonnées étant gradué en valeur du rapport
    Figure imgb0003
    où 2a représente la dimension du côté de la section carrée du guide d'onde, selon la figure 1, et λ c la longueur d'onde de coupure correspondante, en fonction du rapport de la dimension du noyau central conducteur de section carrée de côté 2k rapportée-à cette même dimension du guide d'onde de section carrée et de côté 2a. La figure 2b représente les différentes fréquences de coupure normalisées pour les modes d'ordre supérieur tels que TM11, TE201, TE11, et TE10. Les figures 2a et 2b montrent respectivement que, dans le cas du guide carré comportant les seuls redans à l'intérieur de chaque angle dièdre formé par deux côtés consécutifs de la section carrée, le mode TM11 limite la bande passante tant que le rapport
    Figure imgb0004
    reste inférieur à 0,22, le mode TE201 devenant sensiblement le premier mode parasite pour des valeurs supérieures de ce rapport. D'une autre manière, la figure 2b montre que, dans le cas du guide de section carrée comportant un noyau central de section également carrée, le seul mode d'ordre supérieur limitant la bande passante est le mode TE11 dont la fréquence de coupure dépend peu du rapport k . Selon a l'invention, l'utilisation simultanée des caractéristiques de propagation du guide seul comportant les redans, telles que représentées figure 2a, et des caractéristiques de propagation du guide de section carrée comportant un noyau central conducteur de section également carrée telles que représentées figure 2b, permet en particulier d'obtenir, ainsi que représenté figure 3a et figure 3b, une réjection vers les fréquences supérieures de la fréquence de coupure du mode TM11 et une variation parabolique en fonction du rapport
    Figure imgb0005
    de la fréquence de coupure pour le mode TE11. La bande passante du guide ainsi réalisé est fonction des rapports
    Figure imgb0006
    et
    Figure imgb0007
    , paramètres géométriques du guide selon l'invention. Pour une valeur
    Figure imgb0008
    déterminée, il existe un rapport
    Figure imgb0009
    optimal pour lequel la bande passante est maximum. La valeur de la bande passante BW obtenue par la mise en oeuvre d'un guide d'onde selon l'invention tel que représenté figure 1, est donnée dans le tableau suivant, en fonction des valeurs des rapports
    Figure imgb0010
    et
    Figure imgb0011
    .
    Figure imgb0012
  • Les figures 3a et 3b représentent pour différentes valeurs du rapport
    Figure imgb0013
    la variation de la fré- quence de coupure normalisée
    Figure imgb0014
    , rapport de la demi-dimension du guide d'onde de section carrée à la longueur d'onde de coupure du guide, en fonction du rapport
    Figure imgb0015
    , dimension du côté de la section du redan carré rapportée à cette même demi-dimension a de la section du guide d'onde.
  • Le guide d'onde selon l'invention permet d'obtenir une bande passante plus importante que celle des guides jusqu'alors utilisés pour résoudre des problèmes analogues. La bande passante du guide suivant l'invention, fonction des rapports
    Figure imgb0016
    et
    Figure imgb0017
    , atteint une valeur de 66 % lorsque ces rapports ont pour valeur respective 0,5 et 0,26.
  • Selon la figure 4a, le guide d'onde, objet de l'invention, comporte en outre une pluralité d'entretoises 4 de matériau diélectrique. Ces entretoises permettent de maintenir en position le noyau central conducteur. Selon une variante de réalisation représentée figure 4b, le guide d'onde selon l'invention comporte à l'intérieur du guide une mousse de matériau diélectrique 5 permettant de maintenir en position le noyau central conducteur. Tout mode de réalisation dans lequel un système de maintien du noyau central conducteur est utilisé ne sort pas du cadre de la présente invention. A titre d'exemple, les fréquences de coupure principales d'un guide, pour lesquelles les dimensions respectives étaient a = 20 mm,
    • Figure imgb0018
      = 0,3,
      Figure imgb0019
      = 0,5, ont été pour le mode TE10 :
    • Fc (TE10) = 5,588 GHz, pour le mode TE11 :
    • Fc (TE11) = 11,300 GHz, pour le mode TE201 :
    • Fc (TE201) = 10,808 GHz. Pour des valeurs de paramètres déterminés, valeur des rapports
      Figure imgb0020
      et
      Figure imgb0021
      , le pro- blème de la recherche des fréquences de coupure des modes du guide d'onde se résume à la résolution de l'équation de HELMHOLTZ à deux dimensions dans la section transversale du guide. Deux méthodes peuvent être de préférence utilisées.
  • Une première méthode, la méthode de RAYLEIGH-RITZ, permet un calcul polynômial du champ. Une deuxième méthode, méthode par éléments finis, permet par un processus plus long mais plus coûteux d'obtenir des calculs plus précis. On a ainsi décrit un guide d'onde à large bande à double polarisation utilisable en particulier dans tout circuit hyperfréquence et notamment dans les circuits de connexion hyperfréquences à large bande.

Claims (7)

1. Guide d'onde à large bande à double polarisation, comprenant un guide d'onde de section polygonale présentant, par rapport à un centre de symétrie C, une symétrie d'ordre 4n où n est un entier quelconque, caractérisé en ce qu'il comporte à l'intérieur du guide d'onde de section polygonale, d'une part, une pluralité de redans conducteurs dont la section détermine avec la section polygonale une section de propagation du guide d'onde, chacun des redans étant disposé sur la face interne des côtés du guide d'onde, selon une symétrie d'ordre 4 par rapport à ce même centre de symétrie, le plan de symétrie longitudinal de chacun des redans étant orienté, dans la section de propagation du guide d'onde, dans la direction des bissectrices des axes principaux du guide d'onde, et, d'autre part, un noyau central conducteur dont la section présente, par rapport à ce même centre de symétrie, une même symétrie d'ordre 4n.
2. Guide d'onde selon la revendication 1, caractérisé en ce que le guide d'onde de section polygonale a une section carrée de côté 2a présentant, par rapport au centre de symétrie, une symétrie d'ordre quatre, le guide d'onde comportant, d'une part, à l'intérieur de chaque angle dièdre formé par deux côtés consécutifs de la section carrée, un redan conducteur diagonal de section carrée et de côté W déterminant, avec la section carrée du guide d'onde, une section de propagation du guide d'onde présentant, par rapport à ce même centre de symétrie, une symétrie d'ordre quatre, et, d'autre part un noyau central conducteur dont la section carrée de-côté 2k présente, par rapport à ce même centre de symétrie, une symétrie d'ordre quatre.
3. Guide d'onde selon la revendication 2, caractérisé en ce que le rapport de la dimension du côté du redan W, rapportée à la demi-dimension a de la section carrée du guide d'onde, a une valeur comprise entre 0,2 et 0,36, soit 0,2 ≤
Figure imgb0022
≤ 0,36.
4. Guide d'onde selon la revendication 2, caractérisé en ce que le rapport de la dimension du côté de la section du noyau central 2k, rapportée à la dimension 2a de la section carrée du guide d'onde, a une valeur comprise entre 0,2 et 0,6, soit 0,2 ≤
Figure imgb0023
≤ 0,6. a
5. Guide d'onde selon l'une des revendications 2 à 4, caractérisé en ce qu'il comporte une pluralité d'entretoises de matériau diélectrique permettant de maintenir en position le noyau central conducteur.
6. Guide d'onde selon l'une des revendications 2 à 4, caractérisé en ce qu'il comporte une mousse de matériau diélectrique permettant de maintenir en position le noyau central conducteur.
7. Circuit hyperfréquence de connexion à large bande comportant un guide d'onde selon l'une des revendications précédentes.
EP80400448A 1979-04-13 1980-04-03 Guide d'onde à large bande à double polarisation Expired EP0018261B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR7909493 1979-04-13
FR7909493A FR2454188A1 (fr) 1979-04-13 1979-04-13 Guide d'onde a large bande a double polarisation et circuit hyperfrequence comportant un tel guide d'onde

Publications (2)

Publication Number Publication Date
EP0018261A1 true EP0018261A1 (fr) 1980-10-29
EP0018261B1 EP0018261B1 (fr) 1984-03-14

Family

ID=9224337

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80400448A Expired EP0018261B1 (fr) 1979-04-13 1980-04-03 Guide d'onde à large bande à double polarisation

Country Status (4)

Country Link
US (1) US4303900A (fr)
EP (1) EP0018261B1 (fr)
DE (1) DE3066913D1 (fr)
FR (1) FR2454188A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4523160A (en) * 1983-05-02 1985-06-11 George Ploussios Waveguide polarizer having conductive and dielectric loading slabs to alter polarization of waves
US4904966A (en) * 1987-09-24 1990-02-27 The United States Of America As Represented By The Secretary Of The Navy Suspended substrate elliptic rat-race coupler
US7061445B2 (en) * 2003-08-26 2006-06-13 Andrew Corporation Multiband/multichannel wireless feeder approach
US9178282B2 (en) * 2004-07-14 2015-11-03 William Marsh Rice University Method for coupling terahertz pulses into a coaxial waveguide
US7531803B2 (en) * 2006-07-14 2009-05-12 William Marsh Rice University Method and system for transmitting terahertz pulses

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1013338B (de) * 1952-12-27 1957-08-08 Pintsch Electro Gmbh Innenleiter, insbesondere fuer UKW-Leitungen, mit vergroesserter elektrischer Laenge
US3150333A (en) * 1960-02-01 1964-09-22 Airtron Division Of Litton Pre Coupling orthogonal polarizations in a common square waveguide with modes in individual waveguides
FR2113962A1 (fr) * 1970-11-11 1972-06-30 Licentia Gmbh
FR2116441A1 (fr) * 1970-12-03 1972-07-13 Licentia Gmbh
FR2294554A1 (fr) * 1974-12-10 1976-07-09 Thomson Csf Ligne coaxiale de section rectangulaire, application aux oscillateurs a mode anormal
US4035598A (en) * 1974-10-22 1977-07-12 Johannes Menschner Maschinenfabrik Gmbh & Co. Kg. Apparatus for thermally treating polymeric workpieces with microwave energy

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3002163A (en) * 1960-01-08 1961-09-26 Polytechnic Inst Brooklyn Mode coupler for circular waveguides
US3569870A (en) * 1968-08-21 1971-03-09 Rca Corp Feed system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1013338B (de) * 1952-12-27 1957-08-08 Pintsch Electro Gmbh Innenleiter, insbesondere fuer UKW-Leitungen, mit vergroesserter elektrischer Laenge
US3150333A (en) * 1960-02-01 1964-09-22 Airtron Division Of Litton Pre Coupling orthogonal polarizations in a common square waveguide with modes in individual waveguides
FR2113962A1 (fr) * 1970-11-11 1972-06-30 Licentia Gmbh
FR2116441A1 (fr) * 1970-12-03 1972-07-13 Licentia Gmbh
US4035598A (en) * 1974-10-22 1977-07-12 Johannes Menschner Maschinenfabrik Gmbh & Co. Kg. Apparatus for thermally treating polymeric workpieces with microwave energy
FR2294554A1 (fr) * 1974-12-10 1976-07-09 Thomson Csf Ligne coaxiale de section rectangulaire, application aux oscillateurs a mode anormal

Also Published As

Publication number Publication date
FR2454188A1 (fr) 1980-11-07
FR2454188B1 (fr) 1983-03-11
US4303900A (en) 1981-12-01
EP0018261B1 (fr) 1984-03-14
DE3066913D1 (en) 1984-04-19

Similar Documents

Publication Publication Date Title
EP3547450B1 (fr) Element rayonnant a polarisation circulaire mettant en oeuvre une resonance dans une cavite de fabry perot
EP0426972B1 (fr) Antenne plane
FR2489605A1 (fr) Filtre hyperfrequence a resonateur dielectrique, accordable dans une grande largeur de bande, et circuit comportant un tel filtre
EP2195877B1 (fr) Coupleur-separateur d'emission-reception multibande a large bande de type omt pour antennes de telecommunications hyperfrequences
FR2578104A1 (fr) Filtre passe-bande pour hyperfrequences
EP0108003B1 (fr) Résonateurs bi-rubans et filtres réalisés à partir de ces résonateurs (11111)
EP2658032B1 (fr) Cornet d'antenne à grille corruguée
EP0018261B1 (fr) Guide d'onde à large bande à double polarisation
FR2889358A1 (fr) Filtre a elimination de bande a micro-ondes pour multiplexeur de sortie
EP0467818B1 (fr) Elément de transition entre guides d'ondes électromagnétiques, notamment entre un guide d'ondes circulaire et un guide d'ondes coaxial
FR2582449A1 (fr) Dispositif diplexeur de polarisations a large bande et antenne associee a un radar ou a un dispositif de contre-mesure comportant un tel dispositif
EP0075498B1 (fr) Filtre à cavités, présentant un couplage entre cavités non adjacentes
EP0296929B1 (fr) Ligne de transmission hyperfréquence de type symétrique et à deux conducteurs coplanaires
Saleh An adjustable quasi-optical bandpass filter-Part II: Practical considerations
EP0223673A1 (fr) Dispositif de couplage entre une ligne à ondes de surface électromagnétiques et une ligne microbande extérieure
EP0430136A1 (fr) Filtre éliminateur de bande pour guide d'ondes hyperfréquences
EP0192186B1 (fr) Duplexeur de polarisations
EP0520919B1 (fr) Dispositif de filtrage d'ondes électromagnétiques circulant dans un guide d'ondes à symétrie de révolution, à tronçons de guides d'ondes de filtrage rectangulaires insérés
WO2024047573A1 (fr) Jonction orthomode à six ports
EP0738022A1 (fr) Filtre passe-bande à cavités, à structure en peigne et radioaltimètre équipé d'un filtre d'entrée de ce type
EP0232901B1 (fr) Dispositif répartiteur de puissance dans un guide d'ondes fonctionnant en polarisation linéaire
FR2546672A1 (fr) Dispositif selectif accordable a ondes magnetostatiques de volume
EP1067617B1 (fr) Filtre passe-bande
FR3134659A1 (fr) Dispositif de contrôle de faisceaux électromagnétiques RF selon leur bande de fréquence et procédé de fabrication
FR3131105A1 (fr) Antenne élémentaire de type micro-ruban et antenne réseau améliorées

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE GB IT NL SE

17P Request for examination filed

Effective date: 19801112

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE GB IT NL SE

REF Corresponds to:

Ref document number: 3066913

Country of ref document: DE

Date of ref document: 19840419

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900331

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19900404

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19900405

Year of fee payment: 11

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19900430

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19910403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19910404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19911101

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19920201

EUG Se: european patent has lapsed

Ref document number: 80400448.9

Effective date: 19911108