EP0296929B1 - Ligne de transmission hyperfréquence de type symétrique et à deux conducteurs coplanaires - Google Patents

Ligne de transmission hyperfréquence de type symétrique et à deux conducteurs coplanaires Download PDF

Info

Publication number
EP0296929B1
EP0296929B1 EP88401429A EP88401429A EP0296929B1 EP 0296929 B1 EP0296929 B1 EP 0296929B1 EP 88401429 A EP88401429 A EP 88401429A EP 88401429 A EP88401429 A EP 88401429A EP 0296929 B1 EP0296929 B1 EP 0296929B1
Authority
EP
European Patent Office
Prior art keywords
strip
narrow
conductor
transmission line
microwave transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88401429A
Other languages
German (de)
English (en)
Other versions
EP0296929A1 (fr
Inventor
Luc Rivière
Alain Carenco
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0296929A1 publication Critical patent/EP0296929A1/fr
Application granted granted Critical
Publication of EP0296929B1 publication Critical patent/EP0296929B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves

Definitions

  • the present invention relates to improvements to microwave transmission lines comprising two parallel and coplanar flat conductive tapes.
  • a symmetrical line is formed by two linear metal strips having equal widths W and arranged parallel to each other at a predetermined distance G on a non-conductive substrate.
  • An asymmetrical line consists of a first conductor in the form of a narrow flat metallic strip having a small width W, and of a second conductor in the form of a wide longitudinal conductive plane having a width 1 clearly greater than W and arranged parallel to the narrow conductive tape at a distance G therefrom on the same type of substrate.
  • the symmetrical line For a given characteristic line impedance, the symmetrical line requires a ratio W / G, strip width over width of the gap between conductors, greater than that of the asymmetrical line. As a result, the symmetrical line has ribbons wider than that of the asymmetrical line and / or a narrower gap than that of the asymmetrical line. This dimensional characteristic of the symmetrical line is thus advantageous in that it uses less resistant conductive tapes, while reducing the line width.
  • the symmetrical line is very often chosen when it is necessary to ensure symmetry of the electric and / or magnetic fields of the microwave wave which propagates in the line.
  • a coaxial connector includes a slender central internal conductor having a small diameter and a cylindrical external conductor having a larger diameter and, therefore, provides an asymmetrical conductor structure.
  • the differences in geometric shapes of the connector and the symmetrical line thus cause connection difficulties. These difficulties are in practice resolved by providing, at the end of the line to be connected, a small, substantially rectangular extremal conductive plane connected coplanarly with the end of one of the linear ribbons and constituting with the end of the other ribbon. a flat asymmetrical line portion.
  • the extremal conductive plane is welded laterally to the external cylindrical conductor of the coaxial connector, and the projecting end of the internal conductor of the connector is welded to the end of said other strip of the line.
  • the second drawback of the symmetrical line consists of the appearance of relatively low parasitic frequencies of longitudinal resonance which limit the useful frequency band of the symmetrical line. Longitudinal resonances are by definition lower than transverse resonances which are in the range of very high frequencies. An experimental analysis of resonance shows that part of the microwave energy is neither transmitted nor reflected, but is radiated. Indeed, a symmetrical line has natural frequencies for which a standing wave can form and constitute a source of radiation.
  • the present invention aims to provide a microwave transmission line of the symmetrical line type with two narrow coplanar and parallel ribbons, offering the advantages of the symmetrical lines according to the prior art without the drawbacks of these, particularly with regard to the limitations due to frequencies. of resonance.
  • a line according to the invention offers a useful frequency band significantly higher than a symmetrical line according to the prior art, for identical dimensions relating to the conductive tapes.
  • a symmetrical type microwave transmission line comprising a first conductor in the form of a first flat narrow conductive tape extending over the entire length of the line and having first and second ends, and a second flat conductor coplanar with the first conductor, said second conductor comprising a second flat narrow conductive strip extending parallel to the first narrow strip between the first and second ends of the first narrow strip, and first and second substantially rectangular end planar conductors, connected to the ends of the second narrow strip, and having sides substantially parallel to the first and second ends of the first narrow strip, respectively, is characterized in that the second conductor comprises a wide longitudinal flat conductive strip extending coplanarly and parallel to the first and second narrow strips over the entire length of the line, said wide conductive tape having ends connected to the first and second end plane conductors respectively so as to form in the second flat conductor a resonant cavity delimited by longitudinal sides of the second narrow tape and of the wide tape and by transverse sides opposite the planar conductors extremals.
  • the constitution of the resonant cavity by the presence of the wide longitudinal conductive ribbon connecting the ends of the second narrow ribbon through the small extremal planar conductors makes it possible to offer longitudinal resonance frequencies significantly higher than those of a symmetrical line only with two ribbons close conductors. Indeed, the appearance of standing waves at small resonant frequencies of the symmetrical line with only two ribbons is prevented when the dimensions of the cavity are suitably chosen.
  • the distance between the longitudinal wide ribbon and the second narrow ribbon defining the width of the cavity is chosen to be relatively large compared to the geometric characteristics of the line composed by the two narrow ribbons, namely the widths of the narrow ribbons and the width of the gap between these two ribbons. Under these conditions, the presence of the wide longitudinal conductive tape does not disturbs the characteristic impedance of the symmetrical line only negligibly.
  • the cavity is then divided into one or more sub-cavities by intermediate conductive tapes connected transversely to the second narrow ribbon and to the wide longitudinal ribbon.
  • the short circuits produced by the extreme planar conductors between the second narrow ribbon and the wide ribbon contribute to producing, with the ends of the first narrow ribbon, two end sections of asymmetrical line facilitating the connection of the transmission line to connectors. coaxial.
  • a microwave transmission line comprises a first flat conductor 1 and a second flat conductor 2 which are fixed coplanarly on a plate of non-conductive material 3 such as a dielectric substrate.
  • the conductors 1 and 2 are for example conductive ribbons screen printed on the wafer 3 and having the same thickness.
  • the first conductor 1 consists only of a narrow linear strip 11 having a uniform width W1.
  • the second conductor 2 consists of a narrow linear strip 21 which has a width W2 and which is parallel to the conductive strip 11, two rectangular transverse and extremal planes 22 and 23, and a longitudinal rectangular plane or wide parallel strip 24 with narrow ribbons 11 and 21.
  • the four elements 21 to 24 making up the conductor 2 are delimited by hatching in FIG. 1 in order to differentiate them, although they form a one-piece conductor.
  • the ribbon 21 thus extends parallel to the ribbon 11 over the major part L of the length of the microwave line, in order to form a symmetrical line when the widths W1 and W2 are equal or substantially equal.
  • the distance G between the two strips 11 and 21 is of the same order of magnitude as the widths W1 and W2 and, in general, less than said widths.
  • the extremal planes 22 and 23 have short sides 221 and 231 substantially parallel to the ends 12 and 13 of the first strip 11 and separated from these by interstices having widths g2 and g3 greater than the width G, so that the transitions between the ribbon 21 and the planes 22 and 23 provide recesses 212 and 213.
  • the widths l2 and l3 of the extremal planes 22 and 23 are significantly greater than those W1 and W2 of the ribbons 11 and 12 in order to form sections of asymmetrical line at the ends of the microwave line. These two sections make it possible to connect the symmetrical line 11 + 21 to connection connectors for coaxial lines.
  • the pairs of dimensions g2 and l2, and g3 and l3 which may be different, are adapted as a function of the characteristic impedances and therefore of the dimensions of the coaxial lines to be connected respectively.
  • such a connector 4 to be connected to the end of the line comprising the plane 22 conventionally comprises a metallic central conductor 41, an metallic external cylindrical conductor 42 which is connected to the ground, and an insulator 43 filling the inside the conductor 42 around the internal conductor 41.
  • One end 411 of the internal conductor 41 projects from a base face 44 of the connector 4 and is brazed collinearly on the corresponding end 12 of the first strip 11.
  • a edge 222 of the extremal plane 22 perpendicular to the ribbon 11 is applied against the connection face 4 and is welded to the external conductor 42 to be grounded.
  • the microwave line also comprises the wide and longitudinal rectangular conductive plane 24 having a predetermined width l4.
  • the plane 24 has a long side 241 which is parallel and opposite to a longitudinal side 211 of the second narrow strip 21 and which has ends 242 and 243 constituting second short longitudinal sides of the end conductive planes 22 and 23.
  • the earth conductor 2 appears a flat rectangular cavity 25 whose long sides are the opposite sides 211 and 241 of the strip 21 and the longitudinal plane 24 and whose short sides are large opposite sides opposite 223 and 233 of the extreme planes 22 and 23.
  • the length of the cavity 25 is equal to L, that is to say substantially less than that of the microwave line.
  • the length L for a predetermined width D of the cavity defines a longitudinal resonance frequency of the cavity which inhibits any lower standing wave frequency due to the initial symmetrical line resonance 11 + 21.
  • the cavity 25 thus behaves like a real low-pass filter whose cutoff frequency is equal to the lowest resonant frequency of the cavity.
  • the length of the cavity L is subdivided into N preferably identical sub-cavities 251 to 25 N each having a length substantially equal to L / N.
  • an intermediate narrow "wall" is provided consisting of a short transverse conductive strip 26 n which is perpendicular to the strips narrow longitudinal 21 and to the longitudinal flat ribbon 24 and connected to them.
  • the N-1 transverse ribbons 261 to 26 N-1 of length D are thin and have a width t equal to or less than those W1 and W2 of the ribbons 11 and 12.
  • Each transverse ribbon plays a role analogous to a shunt inductance between the conductors 21 and 24.
  • the number N and the dimensions, length L / N and width D, of the sub-cavities 251 to 25 N are chosen so as to ensure the best filtering of the low resonance frequencies, that is to say parasitic longitudinal resonances of the symmetrical line.
  • the integer N can be selected so that the smallest resonant frequency of each of the sub-cavities is greater than the maximum frequency of the useful band of the signals to be transmitted.
  • the lengths of the sub-cavities are different, or more generally the dimensions of the sub-cavities are different in order to select resonant frequencies and therefore predetermined cut-off frequencies.
  • the microwave line behaves like a low-pass filter having a cutoff frequency equal to the smaller of the two resonant frequencies of the two sub-cavities 251 and 252 which is associated with the longer of the sub-cavities.
  • the results of comparative measurements are presented below between a symmetrical line 11 + 21 + 22 + 23 of known type, on the one hand, and two lines according to the invention comprising elements 11, 21, 22 and 23 identical to that of the symmetrical line and a longitudinal conductive plane of earth 24.
  • the dielectric material used 3 was lithium niobate Li Nb O3.
  • the characteristic impedance of the balanced line is equal to 50 Ohms.
  • the measurements were made in the frequency band between 10 MHz and 6 GHz.
  • the first longitudinal resonance appears around 1 GHz.
  • the first longitudinal resonance only appears at 2.5 GHz.
  • the first one longitudinal resonance of the line L2 with two sub-cavities is twice greater and is equal to approximately 5 GHz.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Waveguides (AREA)

Description

  • La présente invention concerne des perfectionnements aux lignes de transmission hyperfréquence comprenant deux rubans conducteurs plats parallèles et coplanaires.
  • De telles lignes de transmission couramment utilisées sont classées en deux types, celles dites lignes symétriques et celles dites lignes asymétriques. Une ligne symétrique est constituée par deux rubans métalliques linéaires ayant des largeurs égales W et disposés parallèlement l'un à l'autre à une distance prédéterminée G sur un substrat non conducteur. Une ligne asymétrique est constituée d'un premier conducteur sous la forme d'un ruban métallique plat étroit ayant une petite largeur W, et d'un second conducteur sous la forme d'un plan conducteur longitudinal large ayant une largeur 1 nettement plus grande que W et disposé parallèlement au ruban conducteur étroit à une distance G de celui-ci sur le même type de substrat.
  • Pour une impédance caractéristique de ligne donnée, la ligne symétrique nécessite un rapport W/G, largeur de ruban sur largeur de l'interstice entre conducteurs, supérieur à celui de la ligne asymétrique. Il en résulte que la ligne symétrique a des rubans plus larges que celui de la ligne asymétrique et/ou un interstice moins large que celui de la ligne asymétrique. Cette caractéristique dimensionnelle de la ligne symétrique est ainsi avantageuse en ce qu'elle met en oeuvre des rubans conducteurs moins résistants, tout en réduisant la largeur de ligne. La ligne symétrique est bien souvent choisie lorsqu'il est nécessaire d'assurer une symétrie des champs électriques et/ou magnétiques de l'onde hyperfréquence qui se propage dans la ligne.
  • Cependant, deux inconvénients majeurs inhérents à la connexion de la ligne et aux résonances propres de la ligne sont à considérer lors de l'utilisation d'une ligne symétrique.
  • En général, l'utilisation de la ligne symétrique exige des liaisons des extrémités de la ligne et des composants hyperfréquences extérieurs tels que source hyperfréquence, charge, sonde, par l'intermédiaire de connecteurs coaxiaux, miniatures ou subminiatures. Comme il est connu, un tel connecteur coaxial comprend un conducteur interne central longiligne ayant un faible diamètre et un conducteur externe cylindrique ayant un plus grand diamètre et, par conséquent, offre une structure de conducteur asymétrique. Les différences de formes géométriques du connecteur et de la ligne symétrique engendrent ainsi des difficultés de connexion. Ces difficultés sont en pratique résolues en prévoyant, à l'extrémité de la ligne à connecter, un petit plan conducteur extrémal sensiblement rectangulaire relié coplanairement à l'extrémité de l'un des rubans linéaires et constituant avec l'extrémité de l'autre ruban une portion de ligne asymétrique plane. Le plan conducteur extrémal est soudé latéralement au conducteur cylindrique externe du connecteur coaxial, et l'extrémité saillante du conducteur interne du connecteur est soudée sur l'extrémité dudit autre ruban de la ligne.
  • Le second inconvénient de la ligne symétrique consiste en l'apparition de fréquences parasites de résonance longitudinale relativement basses qui limitent la bande de fréquence utile de la ligne symétrique. Les résonances longitudinales sont par définition inférieures aux résonances transversales qui sont dans la gamme des très hautes fréquences. Une analyse expérimentale de la résonance montre qu'une partie de l'énergie hyperfréquence n'est ni transmise, ni réfléchie, mais est rayonnée. En effet, une ligne symétrique possède des fréquences naturelles pour lesquelles une onde stationnaire peut se former et constituer une source de rayonnement.
  • La présente invention vise à fournir une ligne de transmission hyperfréquence du type ligne symétrique à deux rubans étroits coplanaires et parallèles, offrant les avantages des lignes symétriques selon la technique antérieure sans les inconvénients de celles-ci particulièrement en ce qui concerne les limitations dues aux fréquences de résonance. En d'autres termes, une ligne selon l'invention offre une bande de fréquence utile nettement plus élevée qu'une ligne symétrique selon la technique antérieure, pour des dimensions identiques relatives aux rubans conducteurs.
  • A cette fin, une ligne de transmission hyperfréquence de type symétrique comprenant
        un premier conducteur sous la forme d'un premier ruban conducteur étroit plat s'étendant sur toute la longueur de la ligne et ayant des première et seconde extrémités, et
        un second conducteur plat coplanaire au premier conducteur, ledit second conducteur comprenant
        un second ruban conducteur étroit plat s'étendant parallèlement au premier ruban étroit entre les première et seconde extrémités du premier ruban étroit, et
        des premier et second conducteurs plans extrémaux sensiblement rectangulaires, reliés aux extrémités du second ruban étroit, et ayant des côtés sensiblement parallèles aux première et seconde extrémités du premier ruban étroit, respectivement,
        est caractérisée en ce que le second conducteur comprend un ruban conducteur plan large longitudinal s'étendant coplanairement et parallèlement aux premier et second rubans étroits sur toute la longueur de la ligne,
        ledit ruban conducteur large ayant des extrémités reliées aux premier et second conducteurs plans extrémaux respectivement afin de former dans le second conducteur plat une cavité résonnante délimitée par des côtés longitudinaux du second ruban étroit et du ruban large et par des côtés transversaux en regard des conducteurs plans extrémaux.
  • La constitution de la cavité résonnante par la présence du ruban conducteur large longitudinal reliant les extrémités du second ruban étroit à travers les petits conducteurs plans extrémaux permet d'offrir des fréquences de résonance longitudinale nettement supérieures à celles d'une ligne symétrique seulement à deux rubans étroits conducteurs. En effet, l'apparition d'ondes stationnaires à des fréquences de résonance petites de la ligne symétrique à deux rubans seulement est empêchée lorsque les dimensions de la cavité sont convenablement choisies.
  • En particulier, la distance entre le ruban large longitudinal et le second ruban étroit définissant la largeur de la cavité est choisie relativement grande par rapport aux caractéristiques géométriques de la ligne composée par les deux rubans étroits, savoir les largeurs des rubans étroits et la largeur de l'interstice entre ces deux rubans. Dans ces conditions, la présence du ruban conducteur large longitudinal ne perturbe l'impédance caractéristique de la ligne symétrique que de manière négligeable.
  • Si l'on désire élever la première fréquence de coupure de la ligne de transmission, la cavité est alors partagée en une ou plusieurs sous-cavités par des rubans conducteurs intermédiaires reliés transversalement au second ruban étroit et au ruban large longitudinal.
  • Par ailleurs, les courts-circuits réalisés par les conducteurs plans extrémaux entre le second ruban étroit et le ruban large contribuent à réaliser avec les extrémités du premier ruban étroit, deux tronçons extrêmes de ligne asymétrique facilitant la connexion de la ligne de transmission à des connecteurs coaxiaux.
  • D'autres avantages et caractéristiques de l'invention apparaîtront plus clairement à la lecture de la description suivante de plusieurs lignes de transmission selon l'invention en référence aux dessins annexés correspondants dans lesquels :
    • la Fig. 1 est une vue de dessus d'une ligne de transmission hyperfréquence ayant une longue cavité résonnante;
    • la Fig. 2 est une vue de côté de la ligne de la Fig. 1;
    • la Fig. 3 est une vue de dessus d'une extrémité de la ligne de la Fig. 1 reliée à un connecteur coaxial;
    • la Fig. 4 est une vue de côté de l'extrémité de ligne et du connecteur coaxial;
    • la Fig. 5 est une vue de dessus d'une seconde ligne de transmission hyperfréquence ayant plusieurs sous-cavités résonnantes; et
    • la Fig. 6 est une vue de dessus d'une troisième ligne de transmission hyperfréquence ayant deux sous-cavités résonnantes et des dimensions de rubans plans conducteurs identiques à ceux de la ligne de la Fig. 1.
  • En référence aux Figs. 1 et 2, une ligne de transmission hyperfréquence comprend un premier conducteur plat 1 et un second conducteur plat 2 qui sont fixés coplanairement sur une plaquette en matériau non conducteur 3 telle que substrat diélectrique. Les conducteurs 1 et 2 sont par exemple des rubans conducteurs sérigraphiés sur la plaquette 3 et ayant la même épaisseur.
  • Le premier conducteur 1 est constitué uniquement d'un ruban étroit linéaire 11 ayant une largeur uniforme W₁.
  • Le second conducteur 2 est constitué d'un ruban étroit linéaire 21 qui a une largeur W₂ et qui est parallèle au ruban conducteur 11, de deux plans rectangulaires transversaux et extrémaux 22 et 23, et d'un plan rectangulaire longitudinal ou ruban large 24 parallèle aux rubans étroits 11 et 21. Les quatre éléments 21 à 24 composant le conducteur 2 sont délimités par des hachures dans la Fig. 1 afin de les différencier, bien qu'ils forment un conducteur monobloc.
  • Le ruban 21 s'étend ainsi parallèlement au ruban 11 sur la majeure partie L de la longueur de la ligne hyperfréquence, afin de former une ligne symétrique lorsque les largeurs W₁ et W₂ sont égales ou sensiblement égales. La distance G entre les deux rubans 11 et 21 est du même ordre de grandeur que les largeurs W₁ et W₂ et, en général, inférieure auxdites largeurs.
  • Les plans extrémaux 22 et 23 ont des petits côtés 221 et 231 sensiblement parallèles aux extrémités 12 et 13 du premier ruban 11 et séparés de celles-ci par des interstices ayant des largeurs g₂ et g₃ supérieures à la largeur G, si bien que les transitions entre le ruban 21 et les plans 22 et 23 offrent des décrochements 212 et 213. Les largeurs l₂ et l₃ des plans extrémaux 22 et 23 sont nettement plus grandes que celles W₁ et W₂ des rubans 11 et 12 afin de former des tronçons de ligne asymétrique aux extrémités de la ligne hyperfréquence. Ces deux tronçons permettent de connecter la ligne symétrique 11 + 21 à des raccords de connexion de lignes coaxiales. En particulier, les couples de dimensions g₂ et l₂, et g₃ et l₃ qui peuvent être différents, sont adaptés en fonction des impédances caractéristiques et donc des dimensions des lignes coaxiales à connecter respectivement.
  • Comme montré aux Figs. 3 et 4, un tel raccord 4 à connecter à l'extrémité de la ligne comprenant le plan 22, comporte classiquement un conducteur central métallique 41, un conducteur cylindrique externe métallique 42 qui est relié à la terre, et un isolant 43 emplissant l'intérieur du conducteur 42 autour du conducteur interne 41. Une extrémité 411 du conducteur interne 41 saille d'une face de base 44 du raccord 4 et est brasée colinéairement sur l'extrémité correspondante 12 du premier ruban 11. Un chant 222 du plan extrémal 22 perpendiculaire au ruban 11 est appliqué contre la face de raccord 4 et est soudé au conducteur externe 42 pour être mis à la terre.
  • Les rubans 11 et 21 et les plans conducteurs extrémaux 22 et 23, sans le plan conducteur 24, constituent ensemble une ligne hyperfréquence connue du type à rubans coplanaires symétriques (11 et 21) et extrémités asymétriques (11 et 22; 13 et 23).
  • Selon l'invention, la ligne hyperfréquence comprend également le plan conducteur rectangulaire large et longitudinal 24 ayant une largeur prédéterminée l₄. Le plan 24 a un grand côté 241 qui est parallèle et en vis-à-vis à un côté longitudinal 211 du second ruban étroit 21 et qui présente des extrémités 242 et 243 constituant des seconds petits côtés longitudinaux des plans conducteurs extrémaux 22 et 23. Ainsi, dans le conducteur de terre 2 apparaît une cavité plate rectangulaire 25 dont les grands côtés sont les côtés en vis-à-vis 211 et 241 du ruban 21 et du plan longitudinal 24 et dont les petits côtés sont des grands côtés en vis-à-vis 223 et 233 des plans extrémaux 22 et 23.
  • La longueur de la cavité 25 est égale à L, c'est-à-dire sensiblement inférieure à celle de la ligne hyperfréquence. La longueur L pour une largeur prédéterminée D de la cavité définit une fréquence de résonance longitudinale de la cavité qui inhibe toute fréquence d'onde stationnaire inférieure due à la résonance de ligne symétrique initiale 11 + 21. La cavité 25 se comporte ainsi comme un véritable filtre passe-bas dont la fréquence de coupure est égale à la plus petite fréquence de résonance de la cavité.
  • Comme montré à la Fig. 5, si l'on désire augmenter la fréquence de coupure afin d'éliminer d'autres fréquences de résonance longitudinale de la ligne symétrique, la longueur de la cavité L est subdivisée en N sous-cavités de préférence identiques 25₁ à 25N ayant chacun une longueur sensiblement égale à L/N. Entre deux sous-cavités adjacentes, par exemple 25n et 25n+1, où n est un indice variant de 1 à N, est prévue une "paroi" étroite intermédiaire constituée par un court ruban conducteur transversal 26n qui est perpendiculaire aux ruban longitudinal étroit 21 et au ruban plan longitudinal 24 et relié à ceux-ci. Les N-1 rubans transversaux 26₁ à 26N-1 de longueur D sont minces et ont une largeur t égale ou inférieure à celles W₁ et W₂ des rubans 11 et 12. Chaque ruban transversal joue un rôle analogue à une inductance shunt entre les conducteurs 21 et 24.
  • Le nombre N et les dimensions, longueur L/N et largeur D, des sous-cavités 25₁ à 25N sont choisis de manière à assurer le meilleur filtrage des fréquences basses de résonance, c'est-à-dire des résonances longitudinales parasites de la ligne symétrique. En pratique, pour une largeur D prédéterminée et une longueur L prédéterminée, on peut sélectionner le nombre entier N afin que la plus petite fréquence de résonance de chacune des sous-cavités soit supérieure à la fréquence maximale de la bande utile des signaux à transmettre.
  • Cependant, selon d'autres variantes, les longueurs des sous-cavités sont différentes, ou plus généralement les dimensions des sous-cavités sont différentes afin de sélectionner des fréquences de résonance et donc des fréquences de coupure prédéterminées. Par exemple, seulement avec une seule paroi 26₁ et deux sous-cavités 25₁ et 25₂ ayant des longueurs quelque peu différentes, la ligne hyperfréquence se comporte comme un filtre passe-bas ayant une fréquence de coupure égale à la plus petite des deux fréquences de résonance des deux sous-cavités 25₁ et 25₂ qui est associée à la plus longue des sous-cavités.
  • A titre d'exemple pratique sont présentés ci-après les résultats de mesures comparatives entre une ligne symétrique 11 + 21 + 22 +23 de type connu, d'une part, et deux lignes selon l'invention comprenant des éléments 11, 21, 22 et 23 identiques à celle de la ligne symétrique et un plan conducteur longitudinal de terre 24. L'une, L₁, des deux lignes selon l'invention ne comporte qu'une grande cavité 25 comme montré à la Fig. 1, tandis que la seconde ligne L₂ selon l'invention comporte un ruban mince intermédiaire 26₁ séparant la cavité 25 en N = 2 sous-cavités identiques 25₁ et 25₂, comme montré à la Fig. 6. Le matériau diélectrique utilisé 3 était du niobate de lithium Li Nb O₃. L'impédance caractéristique de la ligne symétrique est égale à 50 Ohms. Les dimensions étaient les suivantes : L = 14 mm, W₁ = W₂ = 80 µm, G = 50 µm, g₂ = g₃ = 135 µm; D ≃ 1₂ = 1₃ = 1 mm; t = 30 µm; et l₄ = 1 mm. Les mesures ont été effectuées dans la bande de fréquence entre 10 MHz et 6 GHz.
  • Pour la ligne symétrique 11 + 21 + 22 + 23 selon la technique antérieure et sans plan de terre 24, la première résonance longitudinale apparaît vers 1 GHz.Pour la ligne L₁ selon l'invention, la première résonance longitudinale n'apparaît plus qu'à 2,5 GHz. La première résonance longitudinale de la ligne L₂ à deux sous-cavités est deux fois supérieure et est égale à environ 5 GHz.

Claims (9)

1. Ligne de transmission hyperfréquence de type symétrique comprenant
   un premier conducteur (1) sous la forme d'un premier ruban conducteur étroit plat (11) s'étendant sur toute la longueur de la ligne et ayant des première et seconde extrémités (12, 13), et
   un second conducteur plat (2) coplanaire au premier conducteur (1), ledit second conducteur comprenant
   un second ruban conducteur étroit plat (21) s'étendant parallèlement au premier ruban étroit (11) entre les première et seconde extrémités (12, 13) du premier ruban étroit, et
   des premier et second conducteurs plans extrémaux (22, 23) sensiblement rectangulaires, reliés aux extrémités du second ruban étroit (21), et ayant des côtés (221, 231) sensiblement parallèles aux premiere et seconde extrémités (12, 13) du premier ruban étroit, respectivement,
   caractérisée en ce que le second conducteur (2) comprend un ruban conducteur plan large longitudinal (24) s'étendant coplanairement et parallèlement aux premier et second rubans étroits (11, 21) sur toute la longueur de la ligne,
   ledit ruban conducteur large (24) ayant des extrémités (242, 243) reliées aux premier et second conducteurs plans extrémaux (22, 23) respectivement afin de former dans le second conducteur plat une cavité résonnante (25) délimitée par des côtés longitudinaux (211, 249) du second ruban étroit (21) et du ruban large (24) et par des côtés transversaux en regard (223, 233) des conducteurs plans extrémaux (22, 23).
2. Ligne de transmission hyperfréquence conforme à la revendication 1, caractérisée en ce que le second conducteur plat (2) comprend un ruban conducteur intermédiaire (26₁) relié transversalement au second ruban étroit (21) et au ruban large (24) afin de partager ladite cavité (25) en deux sous-cavités résonnantes (25₁, 25₂).
3. Ligne de transmission hyperfréquence conforme à la revendication 1, caractérisée en ce que le second conducteur plat (2) comprend plusieurs rubans conducteurs intermédiaires (26₁ à 26N-1) reliés transversalement au second ruban étroit (21) et au ruban large (24) afin de partager ladite cavité (25) en plusieurs sous-cavités résonnantes (25₁ à 25N).
4. Ligne de transmission hyperfréquence conforme à la revendication 1, caractérisée en ce que la plus petite fréquence de résonance longitudinale de la cavité (25) est supérieure à la bande de fréquence utile de signaux à transmettre par ladite ligne.
5. Ligne de transmission hyperfréquence conforme à la revendication 2 ou 3, caractérisée en ce que la plus petite fréquence de résonance longitudinale des sous-cavités (25₁ et 25₂; 25₁ à 25N) est supérieure à la bande de fréquence utile des signaux à transmettre par ladite ligne.
6. Ligne de transmission hyperfréquence conforme à l'une quelconque des revendications 2, 3 et 5, caractérisée en ce que les sous-cavités (25₁, 25₂; 25₁ à 25N) sont identiques.
7. Ligne de transmission hyperfréquence conforme à l'une quelconque des revendications 2, 3, 5 et 6, caractérisée en ce qu'un conducteur intermédiaire (26₁ à 26N-1) a une largeur (t) inférieure aux largeurs (W₁, W₂) des premier et second rubans (11, 21).
8. Ligne de transmission hyperfréquence conforme à l'une quelconque des revendications 1 à 7, caractérisée en ce que le ruban large (24) et la cavité (25) ont des largeurs (l₄, D) sensiblement égales.
9. Ligne de transmission hyperfréquence conforme à l'une quelconque des revendications 1 à 8, caractérisée en ce que la largeur (G) de l'interstice longitudinal s'étendant entre les premier et second rubans étroits (11, 21) et les largeurs (W₁, W₂) des premier et second rubans étroits (11, 21) sont nettement inférieures à la largeur (D) de la cavité (25).
EP88401429A 1987-06-22 1988-06-10 Ligne de transmission hyperfréquence de type symétrique et à deux conducteurs coplanaires Expired - Lifetime EP0296929B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8708729 1987-06-22
FR8708729A FR2616973B1 (fr) 1987-06-22 1987-06-22 Ligne de transmission hyperfrequence a deux conducteurs coplanaires

Publications (2)

Publication Number Publication Date
EP0296929A1 EP0296929A1 (fr) 1988-12-28
EP0296929B1 true EP0296929B1 (fr) 1992-04-29

Family

ID=9352343

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88401429A Expired - Lifetime EP0296929B1 (fr) 1987-06-22 1988-06-10 Ligne de transmission hyperfréquence de type symétrique et à deux conducteurs coplanaires

Country Status (5)

Country Link
US (1) US4871988A (fr)
EP (1) EP0296929B1 (fr)
JP (1) JPS6422101A (fr)
DE (1) DE3870519D1 (fr)
FR (1) FR2616973B1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL9400165A (nl) * 1994-02-03 1995-09-01 Hollandse Signaalapparaten Bv Transmissielijnnetwerk.
JP5089502B2 (ja) * 2008-06-26 2012-12-05 三菱電機株式会社 ブランチラインカプラおよびウィルキンソン分配回路
CN113555652A (zh) * 2021-07-02 2021-10-26 中国船舶重工集团公司第七二四研究所 一种微波信号连接器平动应力释放结构及其装配方法
CN114188691B (zh) * 2021-11-30 2023-02-24 赛莱克斯微系统科技(北京)有限公司 一种空气芯微同轴传输线的制造方法及生物传感器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2205250A (en) * 1936-04-29 1940-06-18 Rca Corp Radio and other high frequency feeder arrangements
US3573670A (en) * 1969-03-21 1971-04-06 Ibm High-speed impedance-compensated circuits
US3573674A (en) * 1969-04-30 1971-04-06 Us Navy Tailored response microwave filter
US3688225A (en) * 1969-05-21 1972-08-29 Us Army Slot-line
USRE27755E (en) * 1971-10-14 1973-09-11 Cheng paul wen
US3846721A (en) * 1973-08-08 1974-11-05 Amp Inc Transmission line balun
US4233579A (en) * 1979-06-06 1980-11-11 Bell Telephone Laboratories, Incorporated Technique for suppressing spurious resonances in strip transmission line circuits
US4591812A (en) * 1982-11-22 1986-05-27 Communications Satellite Corporation Coplanar waveguide quadrature hybrid having symmetrical coupling conductors for eliminating spurious modes

Also Published As

Publication number Publication date
FR2616973A1 (fr) 1988-12-23
EP0296929A1 (fr) 1988-12-28
DE3870519D1 (de) 1992-06-04
FR2616973B1 (fr) 1989-07-07
US4871988A (en) 1989-10-03
JPS6422101A (en) 1989-01-25

Similar Documents

Publication Publication Date Title
EP0013222B1 (fr) Déphaseur hyperfréquence à diodes et antenne à balayage électronique comportant un tel déphaseur
EP2510574B1 (fr) Dispositif de transition hyperfréquence entre une ligne à micro-ruban et un guide d'onde rectangulaire
EP0117178B1 (fr) Filtre hyperfréquence à résonateurs linéaires
EP0243289A1 (fr) Antenne plaque à double polarisations croisées
EP0145597A2 (fr) Antenne périodique plane
EP0667984B1 (fr) Antenne fil-plaque monopolaire
EP0354117B1 (fr) Transducteur piézoélectrique pour générer des ondes de volume
FR2578104A1 (fr) Filtre passe-bande pour hyperfrequences
FR3095303A1 (fr) Ecran polariseur a cellule(s) polarisante(s) radiofrequence(s) large bande
EP0387955A1 (fr) Boîtier pour circuit intégré hyperfréquences
EP0296929B1 (fr) Ligne de transmission hyperfréquence de type symétrique et à deux conducteurs coplanaires
EP0023873B1 (fr) Limiteur passif de puissance à semi-conducteurs réalisé sur des lignes à structure plane, et circuit hyperfréquence utilisant un tel limiteur
EP0044758B1 (fr) Dispositif de terminaison d'une ligne de transmission, en hyperfréquence, à taux d'ondes stationnaires minimal
EP0335788B1 (fr) Circuit déphaseur hyperfréquence
EP0101369A1 (fr) Filtre passe-bande à résonateurs diélectriques, présentant un couplage négatif entre résonateurs
EP0031275B1 (fr) Fenêtre hyperfréquence et guide d'onde comportant une telle fenêtre
EP0649571B1 (fr) Filtre passe-bande a resonateurs couples
EP0223673A1 (fr) Dispositif de couplage entre une ligne à ondes de surface électromagnétiques et une ligne microbande extérieure
EP0018261B1 (fr) Guide d'onde à large bande à double polarisation
EP0983616B1 (fr) Procede et dispositif pour connecter deux elements millimetriques
BE512584A (fr)
EP0283396A1 (fr) Jonction entre une ligne triplaque et une ligne microruban, et applications
FR3049775B1 (fr) Antenne v/uhf a rayonnement omnidirectionnel et balayant une large bande frequentielle
WO2002047264A1 (fr) Filtres a ondes acoustiques de surface a symetrie optimisee
FR2828014A1 (fr) Antenne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB NL

17P Request for examination filed

Effective date: 19881230

17Q First examination report despatched

Effective date: 19910705

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19920429

REF Corresponds to:

Ref document number: 3870519

Country of ref document: DE

Date of ref document: 19920604

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950518

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950704

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960610

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970301