EP1067617B1 - Filtre passe-bande - Google Patents

Filtre passe-bande Download PDF

Info

Publication number
EP1067617B1
EP1067617B1 EP20000401804 EP00401804A EP1067617B1 EP 1067617 B1 EP1067617 B1 EP 1067617B1 EP 20000401804 EP20000401804 EP 20000401804 EP 00401804 A EP00401804 A EP 00401804A EP 1067617 B1 EP1067617 B1 EP 1067617B1
Authority
EP
European Patent Office
Prior art keywords
filter
filter according
rectangular
elementary
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP20000401804
Other languages
German (de)
English (en)
Other versions
EP1067617A1 (fr
Inventor
Clément THOMSON-CSF Tolant
Paul THOMSON-CSF Le Gall
Philippe THOMSON-CSF Eudeline
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP1067617A1 publication Critical patent/EP1067617A1/fr
Application granted granted Critical
Publication of EP1067617B1 publication Critical patent/EP1067617B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/202Coaxial filters

Definitions

  • the present invention relates to a bandpass filter. It applies in particular to microwave filters, for example narrow band, arranged at the output of a radar transmission chain. More generally, it applies to bandpass filters used in transmitters but also in receivers of electromagnetic systems.
  • Radars are partly characterized by their operating frequency band. The latter is chosen in particular according to the applications planned for the radar.
  • a signal emitted by a radar is produced from a low power microwave signal, generally created from a reference oscillator. This signal is then amplified through a transmission chain so as to obtain at the output of the radar a signal sufficiently powerful to reach a target and allow the latter to return an echo sufficiently powerful so that it can be detected by the chain of radar reception.
  • To obtain a pure microwave signal which is in the desired band it is necessary to place in the transmission chain a suitable bandpass filter. Like any microwave circuit located in a microwave transmission or reception chain, this bandpass filter must have a good adaptation characterized by a standing wave rate, this adaptation being associated with insertion losses.
  • the bandpass filter has characteristics specific to its function.
  • An important characteristic is notably the stiffness of its blanks, that is to say the frequency interval which separates the filter from a state passing to a state where it almost completely attenuates the waves. The smaller this interval, the greater the stiffness of the filter. The greater this stiffness, the more effective the filter.
  • Another important characteristic of this circuit is the power level accepted by the filter.
  • bandpass filters for radar transmission or reception chains which have good performance. These performances relate in particular to insertion losses, out-of-band rejection in particular at harmonic frequencies, the standing wave rate but also the stiffness of the filter as well as its power handling.
  • the document CH-A-245 847 describes a bandpass filter comprising low-pass and high-pass cells placed in series, constituted by inductive and capacitive elements.
  • the known structures do not allow good performance to be obtained in a small space.
  • An object of the invention is to allow the production of a bandpass filter which has both good microwave performance and which occupies a reduced volume.
  • the subject of the invention is a bandpass filter, characterized in that it comprises one or more elementary cells of the bandpass type placed in series, an elementary cell grouping together a network carrying out a low pass filtering an inductive section and a capacitive section in coaxial technology and a quarter-wave resonator in series exerting a high-pass filtering, placed in the middle of the capacitive section.
  • the main advantages of the invention are that it makes it possible to obtain a very good level of frequency rejection outside the passband, that it adapts to different frequency bands and that it is simple to implement. .
  • FIG. 1 illustrates by way of indication the function of a band-pass filter in a system of axes whose ordinate axis represents the level of attenuation A, for example in dB, and whose abscissa axis represents the frequencies f.
  • the stiffness of the filter is characterized by the frequency interval ⁇ f 1 which characterizes the transition from the maximum attenuation state 1 to the passing state corresponding to the passing state 2. The latter corresponds to a substantially zero attenuation, corresponding to the residual insertion losses.
  • the stiffness is also characterized by the frequency interval ⁇ f 2 corresponding to the passage from the on state 2 to the maximum attenuation state 1.
  • the two intervals ⁇ f 1 , ⁇ f 2 are for example substantially equal.
  • the effectiveness of the filter is linked to its stiffness.
  • a bandpass filter is all the more effective the greater its stiffness, that is to say that the intervals ⁇ f 1 , ⁇ f 2 are low.
  • FIG. 2 shows a possible embodiment of a filter according to the invention.
  • This filter comprises a propagation structure of coaxial type 1 of length L.
  • FIG. 2 shows the whole of this structure according to a longitudinal section passing through the center.
  • the filter according to the invention comprises a succession of identical elementary cells 10 arranged in series and fitting into each other.
  • FIG. 3 illustrates an elementary cell 10, by the same sectional view as that of FIG. 2.
  • This cell comprises an elementary filtering network of the low-pass type which has symmetry of revolution about an axis of symmetry 31.
  • This low-pass network is composed of two sections 32, 33 of respective radii R 1 , R 2 representing respectively the inductance L 0 and the filtering capacity C 0 .
  • the elementary capacitance C 0 of the cell 10 is obtained mechanically by the spacing between the section of large radius R 2 and the metal sheath 34 of the coaxial structure.
  • the elementary inductance L 0 is obtained by the length of the section 32. This gives an equivalent diagram as shown in FIG. 4.
  • the elementary capacitance C 0 is connected between the metal sheath 34 and the section 33 of large radius R 2 , the elementary inductance L 0 is a function of the length I e of the section of small radius R 1 .
  • FIG. 5 illustrates by a first curve 51, in solid line, the filtering function relating to this cell, in the same system of axes as that of FIG. 1. Waves having a frequency greater than a frequency close to the frequency of previous cut f H are attenuated by cell L 0 , C 0 .
  • ⁇ Gc being the guided wavelength associated with the central frequency of the useful band of the final filter.
  • This resonator turns into a short circuit for microwave waves. Outside the band, the impedance brought back by the resonator is no longer a short circuit, which creates a mismatch which is characterized by filtering of low frequencies.
  • the role of this section is in particular to create the bottom flank of the filter. Waves having a frequency lower than the frequency f B are attenuated. On the contrary, waves having a frequency higher than f B encounter a short circuit.
  • the rings 35 for example slightly protrude from capacitive sections and are then held by a sheath 36, made of insulating dielectric material of small thickness.
  • FIG. 4b illustrates the equivalent electrical diagram of an elementary cell, taking into account the effect of the resonator.
  • a first filter comprises an inductance L 0 connected to a capacitor C 0/2 which itself is also connected to the potential of the external conductor 34.
  • L r and C r are the inductance and the capacitance of the low-pass filter illustrated by FIG. 4a, and L r , C r are the inductance and the capacity corresponding to the resonator 35.
  • the resonator 35 need not extend from the central conductor 33 to the sheath 36 or the external conductor 34. However, to ensure good mechanical strength of the assembly, it is preferable that the transformer impedance occupies the entire interior space.
  • a filtering function as illustrated in FIG. 5 and corresponding to an elementary filter 10 is not perfect, in particular insofar as its stiffness is low.
  • a filter according to the invention comprises several elementary filters 10 in series as illustrated in particular Figure 2.
  • the generic dimensions of the inductance and capacitance sections, as well as those of the resonator 35, which acts as an impedance transformer, are adjusted so that the pass band of the filter (f H -f B ) produced by a elementary cell 10 is for example centered on the central frequency of the useful band of the radar.
  • FIG. 6 shows, in a perspective view, another possible embodiment of a device according to the invention.
  • This embodiment completes, for example, the device as presented above.
  • the previous coaxial structure 1 is arranged inside a set 61 of rectangular waveguides 62.
  • This set consists for example of two parts, only one of which is represented in FIG. 6 for ease of presentation.
  • the rectangular waveguides 62 are substantially perpendicular to the axis 31 of the coaxial waveguide 1.
  • the rectangular waveguides 62 are for example machined from a block of metal. A part thus machined comprising a set of rectangular half-wave guides as illustrated in FIG. 6.
  • the complete guides 62 are then obtained by the superposition of the two parts.
  • a hollow in the shape of a half-cylinder is machined perpendicular to the rectangular waveguides 62 to place the coaxial structure 1.
  • the filter as illustrated in FIG. 6 shows that the rectangular waveguides 62 are arranged perpendicularly on either side of the coaxial waveguide 1 along a plane passing through the axis of symmetry 31 of the latter. Furthermore in FIG. 6, the rectangular guides 62 are open at their ends.
  • Figure 7 shows, in a sectional view in the plane of symmetry of the filter, that the ends of the rectangular waveguides 62 opposite the coaxial structure 1 are closed by microwave loads 71. All of the waveguides rectangular 62 closed by the microwave charges 71 make it possible in particular to optimize the performance of the filter outside of its pass band, that is to say of improving the level of attenuation outside this band. This set makes it possible in particular to trap the harmonics of high orders or other parasitic frequencies, outside of the pass band, which the filter attenuates insufficiently, compared with a very severe level of performance requested. As illustrated in FIG. 7, a rectangular waveguide 62 is coupled to each elementary filter cell 10, more precisely, a rectangular waveguide 62 is placed on each side of an elementary filter cell 10.
  • the harmonics not filtered by the coaxial filter structure as described in relation to FIGS. 2 and 3 are trapped in the rectangular waveguides 62.
  • the microwave load 71 in fact plays the role of a microwave absorbent. The frequencies thus absorbed are eliminated, and therefore filtered.
  • the passage of the harmonics, not sufficiently filtered by an elementary filtering cell 10, to its associated rectangular waveguides is done by microwave coupling.
  • the dimensions of the rectangular guides 62 are provided as a function of the frequencies to be attenuated and of the aforementioned coupling. This coupling takes place via the external conductor 34 of the coaxial structure 1 which is in contact with the walls 63 of the rectangular guides 62.
  • a microwave load 71 has a triangular shape, the point of which is oriented towards the inside of the guide, the triangle also being symmetrical with respect to the central axis 64 of the guide. This makes it possible in particular to optimize the absorption of the waves picked up by the guide.
  • a filter according to the invention has very good electrical performance while having a reduced bulk and a compact structure.
  • the invention advantageously applies to different types of frequency bands, it suffices to adapt it to a given band to dimension the coaxial structure on the one hand and possibly the rectangular guides on the other hand.
  • the invention is moreover simple to implement insofar as it does not require particularly complex components or structures.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

  • La présente invention concerne un filtre passe-bande. Elle s'applique notamment pour des filtres hyperfréquence, par exemple à bande étroite, disposés en sortie de chaîne d'émission d'un radar. Plus généralement, elle s'applique pour les filtres passe-bande utilisés dans des émetteurs mais aussi dans des récepteurs de systèmes électromagnétiques.
  • Les radars sont en partie caractérisés par leur bande de fréquence de fonctionnement. Cette dernière est choisie notamment en fonction des applications prévues pour le radar. Un signal émis par un radar est élaboré à partir d'un signal hyperfréquence de faible puissance, généralement créé à partir d'un oscillateur de référence. Ce signal est ensuite amplifié à travers une chaîne d'émission de façon à obtenir en sortie du radar un signal suffisamment puissant pour atteindre une cible et permettre à cette dernière de renvoyer un écho suffisamment puissant pour qu'il puisse être détecté par la chaîne de réception du radar. Pour obtenir un signal hyperfréquence pur qui se situe dans la bande souhaitée, il est nécessaire de placer dans la chaîne d'émission un filtre passe-bande adapté. Comme tout circuit hyperfréquence situé dans une chaîne d'émission ou de réception hyperfréquence, ce filtre passe-bande doit présenter une bonne adaptation caractérisée par un taux d'ondes stationnaires, cette adaptation étant associée à des pertes d'insertion. Par ailleurs, le filtre passe-bande présente des caractéristiques propres à sa fonction. Une caractéristique importante est notamment la raideur de ses flans, c'est-à-dire l'intervalle de fréquence qui sépare le filtre d'un état passant à un état où il atténue quasiment complètement les ondes. Plus cet intervalle est faible, plus la raideur du filtre est grande. Plus cette raideur est grande, plus le filtre est efficace. Le niveau de puissance accepté par le filtre constitue une autre caractéristique importante de ce circuit.
  • Il est connu de réaliser des filtres passe-bande pour des chaînes d'émission ou de réception radar qui présentent de bonnes performances. Ces performances concernent notamment les pertes d'insertion, la réjection hors bande notamment aux fréquences harmoniques, le taux d'onde stationnaire mais aussi la raideur du filtre ainsi que sa tenue en puissance. Le document CH-A-245 847 décrit un filtre passe - bande comportant des cellules passe-bas et passe-haut placées en série, constituées par des élements inductifs et capacitifs.
    Les structures connues ne permettent pas d'obtenir de bonnes performances dans un encombrement réduit. Un but de l'invention est de permettre la réalisation d'un filtre passe-bande qui présente à la fois de bonnes performances hyperfréquence et qui occupe un volume réduit. A cet effet, l'invention a pour objet un filtre passe-bande, caractérisé en ce qu'il comporte une ou plusieurs cellules élémentaires de type passe-bande placées en série, une cellule élémentaire regroupant un réseau exerçant un filtrage passe-bas composé d'un tronçon inductif et d'un tronçon capacitif en technologie coaxiale et un résonateur quart d'onde en série exerçant un filtrage passe-haut, placé au milieu du tronçon capacitif.
  • L'invention a pour principaux avantages qu'elle permet d'obtenir un très bon niveau de rejection des fréquences en dehors de la bande passante, qu'elle s'adapte à différentes bandes de fréquence et qu'elle est simple à mettre en oeuvre.
  • D'autres caractéristiques et avantages de l'invention apparaîtront à l'aide de la description qui suit faite en regard de dessins annexés qui représentent :
    • la figure 1, une illustration du gabarit d'un filtre passe-bande ;
    • la figure 2, un exemple de réalisation possible d'un filtre selon l'invention ;
    • la figure 3, une cellule élémentaire composant le filtre de la figure 2 ;
    • la figure 4a, un schéma électrique équivalent d'un tronçon élémentaire passe-bas ;
    • la figure 4b, un schéma électrique équivalent d'une cellule élémentaire passe-bande ;
    • la figure 5, un exemple de fonction de filtrage obtenue pour un filtre élémentaire passe-bande ;
    • les figures 6 et 7, un autre exemple de réalisation possible d'un filtre selon l'invention.
  • La figure 1 illustre à titre indicatif la fonction d'un filtre passe-bande dans un système d'axes dont l'axe des ordonnées représente le niveau d'atténuation A, par exemple en dB, et dont l'axe des abscisses représente les fréquences f. La raideur du filtre est caractérisée par l'intervalle de fréquence Δf1 qui caractérise le passage de l'état d'atténuation maximum 1 à l'état passant correspondant à l'état passant 2. Ce dernier correspond à une atténuation sensiblement nulle, correspondant aux pertes d'insertion résiduelles. La raideur est aussi caractérisée par l'intervalle de fréquence Δf2 correspondant au passage de l'état passant 2 à l'état d'atténuation maximum 1. Les deux intervalles Δf1, Δf2 sont par exemple sensiblement égaux. L'efficacité du filtre est liée à sa raideur. Un filtre passe-bande est d'autant plus efficace que sa raideur est grande, c'est-à-dire que les intervalles Δf1, Δf2 sont faibles.
  • La figure 2 présente un exemple de réalisation possible d'un filtre selon l'invention. Ce filtre comporte une structure de propagation de type coaxial 1 de longueur L. La figure 2 présente l'ensemble de cette structure selon une coupe longitudinale passant par le centre. Le filtre selon l'invention comporte une succession de cellules élémentaires 10 identiques disposées en série et s'emboîtant les unes dans les autres.
  • La figure 3 illustre une cellule élémentaire 10, par la même vue en coupe que celle de la figure 2. Cette cellule comporte un réseau de filtrage élémentaire de type passe-bas qui présente une symétrie de révolution autour d'un axe de symétrie 31. Ce réseau passe-bas est composé de deux tronçons 32, 33 de rayons respectifs R1, R2 différents représentant respectivement l'inductance L0 et la capacité C0 de filtrage. La capacité élémentaire C0 de la cellule 10 est obtenue mécaniquement par l'espacement entre le tronçon de grand rayon R2 et la gaine métallique 34 de la structure coaxiale. L'inductance élémentaire L0 est obtenue par la longueur du tronçon 32. Cela donne un schéma équivalent tel que représenté par la figure 4. La capacité élémentaire C0 est connectée entre la gaine métallique 34 et le tronçon 33 de grand rayon R2, l'inductance élémentaire L0 est fonction de la longueur Ie du tronçon de petit rayon R1.
  • La cellule élémentaire 10 L0, C0 réalise un filtrage des hautes fréquences, la fréquence de coupure fH étant donnée par la relation suivante, en l'absence de tout autre élément, notamment d'un résonateur qui va être décrit par la suite : f H = 1 L 0 C 0
  • La figure 5 illustre par une première courbe 51, en trait continu, la fonction de filtrage relative à cette cellule, dans le même système d'axes que celui de la figure 1. Les ondes ayant une fréquence supérieure à une fréquence proche de la fréquence de coupure précédente fH sont atténuées par la cellule L0, C0.
  • Une cellule élémentaire 10 comporte par ailleurs un résonateur quart d'onde 35, placé au milieu du tronçon capacitif 33. D'un point de vue mécanique, ce piège hyperfréquence est réalisé à l'aide d'une bague 35 en matériau isolant, pouvant être par exemple le matériau dénommé par la marque déposée Téflon, et dont la forme en coupe rappelle un double L. Cette forme est liée à la longueur importante du piège qu'il est nécessaire de replier à l'intérieur de la structure afin que le circuit ouvert puisse se transformer correctement en court-circuit au niveau du tronçon capacitif. Cette continuité électrique est assurée si la longueur Lp du piège est sensiblement égale au quart d'onde à la fréquence centrale de la bande de fréquence utile, soit : Lp = λ Gc /4
  • λGc étant la longueur d'onde guidée associée à la fréquence centrale de la bande utile du filtre final. Ce résonateur se transforme en un court-circuit pour les ondes hyperfréquence. En dehors de la bande, l'impédance ramenée par le résonateur n'est plus un court-circuit, ce qui créer une désadaptation qui se caractérise par un filtrage des basses fréquences. Ce tronçon a notamment pour rôle de créer le flanc bas du filtre. Les ondes ayant une fréquence inférieure à la fréquence fB sont atténuées. Au contraire, les ondes ayant une fréquence supérieure à fB rencontrent un court-circuit.
  • De manière à assurer le maintien mécanique de la structure globale, les bagues 35 dépassent par exemple légèrement des tronçons capacitifs et sont ensuite maintenus par une gaine 36, réalisée en matériau diélectrique isolant de faible épaisseur.
  • Par l'effet de l'élargissement du conducteur central, dont la fonction de filtrage est illustrée par la première courbe 51 et par l'effet du résonateur quart d'onde dont la réponse est illustrée par la deuxième courbe 52, un filtre élémentaire passe-bande est ainsi obtenu. Le filtre est passant entre la fréquence de coupure basse fB et la fréquence de coupure haute fH. La figure 4b illustre le schéma électrique équivalent d'une cellule élémentaire, prenant en compte l'effet du résonateur. Un premier filtre comporte une inductance L0 reliée à une capacité C0/2 elle-même reliée par ailleurs au potentiel du conducteur extérieur 34. En série avec ce filtre sont disposés une inductance Lr et une capacité Cr égale à C0/2, tous deux en série, relié à une capacité Cr reliée par ailleurs au potentiel du conducteur extérieur 34. L0, C0 sont l'inductance et la capacité du filtre passe-bas illustré par la figure 4a, et Lr, Cr sont l'inductance et la capacité correspondant au résonateur 35.
  • Il n'est pas nécessaire que le résonateur 35 se prolonge depuis le conducteur central 33 jusqu'à la gaine 36 ou le conducteur extérieur 34. Néanmoins, pour assurer une bonne tenue mécanique de l'ensemble, il est préférable que le transformateur d'impédance occupe tout l'espace intérieur. Un isolant électrique, par exemple du Téflon, occupe l'espace entre le conducteur central 12 et la gaine 36 ou le conducteur extérieur 34.
  • Une fonction de filtrage telle qu'illustrée par la figure 5 et correspondant à un filtre élémentaire 10 n'est pas parfaite dans la mesure notamment où sa raideur est faible. Pour obtenir un filtre qui s'approche le plus possible d'un filtre idéal, c'est-à-dire ayant la raideur la plus importante possible, un filtre selon l'invention comporte plusieurs filtres élémentaires 10 en série comme l'illustre notamment la figure 2.
  • Les dimensions génériques des tronçons d'inductance et de capacité, ainsi que celles du résonateur 35, qui fait fonction de transformateur d'impédance, sont réglées de façon à ce que la bande passante du filtre (fH-fB) réalisé par une cellule élémentaire 10 soit par exemple centré sur la fréquence centrale de la bande utile du radar.
  • La figure 6 présente, par une vue en perspective, un autre mode de réalisation possible d'un dispositif selon l'invention. Ce mode de réalisation complète par exemple le dispositif tel que présenté précédemment. Dans le mode de réalisation de la figure 6, la structure coaxiale précédente 1 est disposée à l'intérieur d'un ensemble 61 de guides d'ondes rectangulaires 62. Cet ensemble est par exemple constitué de deux parties, dont une seule est représentée en figure 6 pour des facilités de présentation. Les guides d'ondes rectangulaires 62 sont sensiblement perpendiculaires à l'axe 31 du guide d'onde coaxial 1. Les guides d'ondes rectangulaires 62 sont par exemple usinés dans un bloc de métal. Une partie ainsi usinée comportant un ensemble de demi-guides d'ondes rectangulaires comme l'illustre la figure 6. Les guides complets 62 sont alors obtenus par la superposition des deux parties. Dans chaque partie, un creux ayant la forme d'un demi-cylindre est usiné perpendiculairement aux guides d'ondes rectangulaires 62 pour placer la structure coaxiale 1. Le filtre tel qu'illustré par la figure 6 montre que les guides d'ondes rectangulaires 62 sont disposés perpendiculairement de part et d'autre du guide d'onde coaxial 1 selon un plan passant par l'axe de symétrie 31 de ce dernier. Par ailleurs sur la figure 6, les guides rectangulaires 62 sont ouverts à leurs extrémités.
  • La figure 7 montre, par une vue en coupe dans le plan de symétrie du filtre, que les extrémités des guides d'ondes rectangulaires 62 opposées à la structure coaxiale 1 sont fermées par des charges hyperfréquence 71. L'ensemble des guides d'ondes rectangulaires 62 fermés par les charges hyperfréquence 71 permettent notamment d'optimiser les performances du filtre en dehors de sa bande passante, c'est-à-dire d'améliorer le niveau d'atténuation en dehors de cette bande. Cet ensemble permet en particulier de piéger les harmoniques d'ordres élevés ou d'autres fréquences parasites, en dehors de la bande passante, que le filtre atténue insuffisamment, en regard d'un niveau de performance demandé très sévère. Comme l'illustre la figure 7, un guide d'onde rectangulaire 62 est couplé à chaque cellule élémentaire de filtrage 10, plus précisément, un guide d'onde rectangulaire 62 est placé de chaque côté d'une cellule de filtrage élémentaire 10. Les harmoniques non filtrées par la structure de filtre coaxial telle que décrite relativement aux figures 2 et 3 sont piégées dans les guides d'ondes rectangulaires 62. La charge hyperfréquence 71 joue en fait le rôle d'un absorbant hyperfréquence. Les fréquences ainsi absorbées sont éliminées, et donc filtrées. Le passage des harmoniques, non suffisamment filtrées par une cellule de filtrage élémentaire 10, à ses guides d'ondes rectangulaires associés se fait par couplage hyperfréquence. En particulier, les dimensions des guides rectangulaires 62 sont prévues en fonction des fréquences à atténuer et du couplage précité. Ce couplage se fait via le conducteur extérieur 34 de la structure coaxiale 1 qui est au contact des parois 63 des guides rectangulaires 62. De préférence, une charge hyperfréquence 71 a une forme triangulaire dont la pointe est orientée vers l'intérieur du guide, le triangle étant par ailleurs symétrique par rapport à l'axe central 64 du guide. Cela permet notamment d'optimiser l'absorption des ondes captées par le guide.
  • Un filtre selon l'invention présente de très bonnes performances électriques tout en présentant un encombrement réduit et une structure compacte. En particulier, de par sa structure de propagation en technologie coaxiale, ses pertes d'insertion sont très faibles. De plus, par sa structure additionnelle en guides d'ondes rectangulaires, il possède d'excellentes propriétés de rejection des fréquences harmoniques en dehors de sa bande passante.
  • L'invention s'applique avantageusement pour différents types de bandes de fréquences, il suffit pour l'adapter à une bande donnée de dimensionner en conséquence la structure coaxiale d'une part et éventuellement les guides rectangulaires d'autre part. L'invention est par ailleurs simple à mettre en oeuvre dans la mesure notamment où elle ne nécessite pas de composant ou de structures particulièrement complexes.

Claims (9)

  1. Filtre passe-bande, comportant une ou plusieurs cellules élémentaires (10) de type passe-bande placées en série, caracterisé en ce que chaque cellule élémentaire regroupe:
    - un réseau exerçant un filtrage passe-bas composé d'un tronçon inductif (32) et d'un tronçon capacitif (33) en structure coaxiale ;
    - et un résonateur quart d'onde (35) en série exerçant un filtrage passe-haut, placé au milieu du tronçon capacitif (33).
  2. Filtre selon la revendication 1, caractérisé en ce qu'un réseau passe-bas est composé d'un tronçon inductif (32) de diamètre R1 et d'un tronçon capacitif (33) de diamètre R2, R2 étant supérieur à R1.
  3. Filtre selon l'une quelconque des revendications précédentes, caractérisé en ce que le résonateur (35) a la forme d'une bague.
  4. Filtre selon la revendication 3, caractérisé en ce que le résonateur (35) a la forme d'un double L dans une vue en coupe passant par l'axe de symétrie (31) de la structure coaxiale.
  5. Filtre selon l'une quelconque des revendications précédentes, caractérisé en ce qu'une gaine (36), réalisée en un matériau isolant électriquement, est placée entre le résonateur quart d'onde (35) et le conducteur extérieur (34) de la structure coaxiale.
  6. Filtre selon l'une quelconque des revendications précédentes, caractérisé en ce que l'ensemble des cellules élémentaires (10) est disposé à l'intérieur d'un ensemble (61) de guides d'ondes rectangulaires (62) fermés par une charge hyperfréquence (71), les guides d'ondes rectangulaires (62) étant disposés perpendiculairement de part et d'autre des cellules élémentaires (10) selon un plan passant par leur axe de symétrie (31), les guides d'ondes rectangulaires captant des ondes de fréquences présentes en dehors de la bande passante du filtre.
  7. Filtre selon la revendication 6, caractérisé en ce que l'ensemble (61) des guides rectangulaires est constitué de deux parties, qui prennent les cellules élémentaires (10) en sandwich, les guides d'ondes rectangulaires (62) étant usinés dans un bloc de métal.
  8. Filtre selon l'une quelconque des revendications 6 ou 7, caractérisé en ce qu'un guide d'onde rectangulaire (62) est couplé à chaque cellule élémentaire de filtrage (10), de sorte qu'un guide d'onde rectangulaire (62) est placé de chaque côté d'une cellule élémentaire (10).
  9. Filtre selon l'une quelconque des revendications 6 à 8, caractérisé en ce qu'une charge hyperfréquence (71) a une forme triangulaire dont la pointe est orientée vers l'intérieur du guide rectangulaire, le triangle étant symétrique par rapport à l'axe central (64) du guide.
EP20000401804 1999-06-29 2000-06-23 Filtre passe-bande Expired - Lifetime EP1067617B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9908322A FR2795888B1 (fr) 1999-06-29 1999-06-29 Filtre passe-bande
FR9908322 1999-06-29

Publications (2)

Publication Number Publication Date
EP1067617A1 EP1067617A1 (fr) 2001-01-10
EP1067617B1 true EP1067617B1 (fr) 2003-09-10

Family

ID=9547447

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20000401804 Expired - Lifetime EP1067617B1 (fr) 1999-06-29 2000-06-23 Filtre passe-bande

Country Status (3)

Country Link
EP (1) EP1067617B1 (fr)
DE (1) DE60005094T2 (fr)
FR (1) FR2795888B1 (fr)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH245847A (de) * 1942-12-22 1946-11-30 Telefunken Gmbh Filter für Dezimeterwellen.
FR1344275A (fr) * 1962-07-03 1963-11-29 Thomson Houston Comp Francaise Filtres absorbeurs de signaux parasites

Also Published As

Publication number Publication date
DE60005094D1 (de) 2003-10-16
EP1067617A1 (fr) 2001-01-10
DE60005094T2 (de) 2004-04-15
FR2795888B1 (fr) 2001-09-21
FR2795888A1 (fr) 2001-01-05

Similar Documents

Publication Publication Date Title
EP0047203B1 (fr) Filtre hyperfréquence à résonateur diélectrique, accordable dans une grande largeur de bande
EP0014115B1 (fr) Oscillateur accordable hyperfréquence à ondes magnétostatiques
EP2195877B1 (fr) Coupleur-separateur d'emission-reception multibande a large bande de type omt pour antennes de telecommunications hyperfrequences
FR2578104A1 (fr) Filtre passe-bande pour hyperfrequences
EP0261634A1 (fr) Filtre à bande ajustable
FR2546340A1 (fr) Filtre hyperfrequence coupe-bande accordable, de type coaxial, a resonateurs dielectriques
EP0108003A1 (fr) Résonateurs bi-rubans et filtres réalisés à partir de ces résonateurs (11111)
FR2889358A1 (fr) Filtre a elimination de bande a micro-ondes pour multiplexeur de sortie
EP0467818A1 (fr) Elément de transition entre guides d'ondes électromagnétiques, notamment entre un guide d'ondes circulaire et un guide d'ondes coaxial
EP1067617B1 (fr) Filtre passe-bande
EP0015610A1 (fr) Filtre de réflexion de fréquence image en hyperfréquence et récepteur hyperfréquence comprenant un tel filtre
EP0031275B1 (fr) Fenêtre hyperfréquence et guide d'onde comportant une telle fenêtre
CA1074878A (fr) Transition hyperfrequence
EP0937310A1 (fr) Dispositif de filtrage a cavite metallique a inserts dielectriques
FR2509535A1 (fr) Filtre hyperfrequence comportant des troncons de lignes couples et des moyens de reglage
WO2007031639A1 (fr) Filtre a guide d'onde pour micro-ondes a parois non paralleles
EP0128798B1 (fr) Dispositif sélectif accordable à ondes magnétostatiques de volume
EP0430136A1 (fr) Filtre éliminateur de bande pour guide d'ondes hyperfréquences
FR2704983A1 (fr) Filtre passe-bande à lignes couplées court-circuitées.
EP0045242A1 (fr) Filtre passe-bande hyperfréquence réalisé en guide d'ondes
EP0326498A1 (fr) Circuit résonnant et filtre utilisant ce circuit
EP0520919B1 (fr) Dispositif de filtrage d'ondes électromagnétiques circulant dans un guide d'ondes à symétrie de révolution, à tronçons de guides d'ondes de filtrage rectangulaires insérés
EP0921587B1 (fr) Filtre hyperfréquence à flanc superieur raide
BE502149A (fr)
FR2652211A1 (fr) Resonateur hyperfrequence actif et filtre actif utilisant ce resonateur.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20010706

AKX Designation fees paid

Free format text: DE FR GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THALES

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 60005094

Country of ref document: DE

Date of ref document: 20031016

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20031221

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040614

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050608

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050616

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050622

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060623

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060630

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070103

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060623

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070623