EP0017139B1 - Procédé pour le revêtement électrolytique et l'honage mécanique simultanés de surfaces d'une pièce en un métal léger - Google Patents

Procédé pour le revêtement électrolytique et l'honage mécanique simultanés de surfaces d'une pièce en un métal léger Download PDF

Info

Publication number
EP0017139B1
EP0017139B1 EP80101569A EP80101569A EP0017139B1 EP 0017139 B1 EP0017139 B1 EP 0017139B1 EP 80101569 A EP80101569 A EP 80101569A EP 80101569 A EP80101569 A EP 80101569A EP 0017139 B1 EP0017139 B1 EP 0017139B1
Authority
EP
European Patent Office
Prior art keywords
honing
coating
layer
process according
adjusted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80101569A
Other languages
German (de)
English (en)
Other versions
EP0017139A1 (fr
Inventor
Wolfgang Bässler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institut fuer Werkzeugmaschinen und Betriebstechnik KIT
Mahle GmbH
Original Assignee
Institut fuer Werkzeugmaschinen und Betriebstechnik KIT
Mahle GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut fuer Werkzeugmaschinen und Betriebstechnik KIT, Mahle GmbH filed Critical Institut fuer Werkzeugmaschinen und Betriebstechnik KIT
Publication of EP0017139A1 publication Critical patent/EP0017139A1/fr
Application granted granted Critical
Publication of EP0017139B1 publication Critical patent/EP0017139B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/22Electroplating combined with mechanical treatment during the deposition

Definitions

  • the invention relates to a method for the simultaneous galvanic coating and mechanical honing of surfaces of a light metal workpiece according to the preamble of claim 1, as is known for example from an article in the magazine "Products Finishing", 1974, pp. 48-57.
  • the simultaneous galvanic coating and mechanical honing of mostly hollow cylindrical surfaces is generally referred to in the professional world as honing molds.
  • the advantages of this method lie in a layered structure of the layer to be applied and in a faster structure of this layer compared to a purely galvanic coating, because the surface is continuously ground and honed with honing stones.
  • DE-PS 2 029 646 and DE-OS 2 237 834 in relation to the prior art.
  • a thin base layer must first be applied in an independent upstream process step before the simultaneous galvanic coating and mechanical honing, to which the actual layer can then only be applied by honing.
  • a zincate precoating is proposed in the above-mentioned literature reference in order to achieve good adhesion for the actual layer to be applied in the honing process.
  • the object of the invention is to demonstrate a method which makes it possible to produce the required base layer with as little effort as possible.
  • this object is achieved by the characterizing features of claim 1.
  • the application of the required base layer is combined with the process step of simultaneous galvanic coating and mechanical honing in such a way that the base layer is applied in the honing machine itself and with the same electrolyte liquid, so that pre-coating in an additional device separate from the honing machine is unnecessary.
  • a honing machine 5 is indicated with an arrangement for the defined accommodation of a light metal workpiece 1 and a spindle head, which carries a rotatable and up and down movable honing stick 18, at the lower end of which a cylindrical electrode 6 with several is arranged from surface lines of the electrode cylinder honing stones 3.
  • the honing stones are adjustable in the radial direction, for which purpose a pull rod 17 is arranged axially movably in the interior of the honing stick and the electrode.
  • a pressure cone 16 is attached to spread or press the honing stones at the lower end of the pull rod, which cone interacts with an inclined surface on the underside of the honing stones.
  • the honing stones which are also bevelled on the upper side, work in a spreading sense with a cone that is fixed inside the electrode.
  • the honing stones can be contracted inwards, for example, by the force of a spring, not shown.
  • the electrode and the honing stones can oscillate within certain limits to compensate for small position inaccuracies, for which purpose at least one joint is attached in the honing stick, which is not shown here, however. This entire arrangement is known per se, which is why this is shown here only schematically in simplified form.
  • the light metal workpiece 1 is attached concentrically around the electrode with the honing stones, the surface of which is to be coated in the illustrated embodiment is a hollow cylinder.
  • the light metal workpiece is not only held in a defined manner in relation to the electrode within the honing machine, but it is also liquid-tight in a closed circuit 4 for electrolyte liquid speed 19 included. For this reason, a liquid space is formed below and above the workpiece, sealing off from the outside, into and through which the honing stick and the electrode can be moved axially.
  • the annular working gap 14 formed between the electrode 6 and the surface 2 to be coated is arranged vertically in the honing machine.
  • the liquid circuit 4 - as indicated by flow arrows - flows through in such a way that the working gap 14 is flowed through in a falling manner over its entire length (flow arrow 15).
  • the electrolyte liquid emerging at the bottom of the working gap is collected in a liquid space and returned via a line to a collecting container in which particles mechanically torn off by the honing stones can settle.
  • the forced circulation of the liquid in the specified direction of circulation is ensured by a circulation pump 13.
  • the pump output can be regulated in order to be able to adjust the throughput speed of the electrolyte liquid through the working gap to optimal speed values.
  • thermometer 11 is arranged in the collecting container receiving the electrolyte liquid, which thermometer acts via a temperature monitoring device 20 on a heating source 12 fed by electrical current. If the temperature of the electrolyte liquid drops below a set value that can be set on the temperature monitoring device 20, the electrolyte liquid is heated up again to the required set value via the heating source 12 and then automatically switched off again.
  • a DC voltage source 7 is also arranged in the overall arrangement, the positive pole of which is connected to the electrode 6 and the negative pole of which is connected to the light metal workpiece 1. It is therefore necessary that at least the electrode 6 is arranged within the honing machine in an electrically insulated manner. To monitor the current density within the working gap 14, an ammeter 10 is switched on in the circuit.
  • the bore of an aluminum workpiece was provided with a chrome layer.
  • the aluminum material was called AL si 12 Cu Mg Ni; the chromium was deposited from an electrolyte liquid of the usual composition.
  • the surface to be coated was pretreated in detergent, lye and acid to remove grease and oxide layers. The light metal workpiece pretreated in this way was then inserted into a honing machine known per se and shown schematically in FIG. 1.
  • the honing stones 3 are lifted off the surface to be coated, but the honing spindle and the electrode 6 rotate and are moved up and down in order not to obtain any shadow images of the honing stones on the surface to be coated.
  • the precoating step is naturally carried out with the same electrolyte liquid 19 as the subsequent main coating during honing.
  • the other parameters of the process design during the precoating step are largely the same as compared to the subsequent honing. This initially applies to the gap width a of the working gap 14 between the electrode 6 and the surface 2 to be coated, which is optimally in the range of approximately 1 to 2.5 mm. This measure takes into account the desire for the smallest possible gap.
  • the curvature of the surfaces to be coated increases the current density with decreasing gap width, which has a favorable effect on the deposition rate.
  • the gap width becomes smaller, the budiness of the electrodeposited layer increases, which is undesirable.
  • the given value of 1 to 2.5 mm represents a usable compromise value between the two opposing demands for the highest possible current density and the lowest possible budiness.
  • the flow geometry of the electrolyte forced through the working gap is the same as in the pre-coating step subsequent honing molds. Instead of a flow flowing along the entire length, an ascending flow or a simultaneously falling and rising flow when the electrolyte liquid is fed in or out at a medium height of the working gap would also be conceivable. It turns out, however, that the smallest roundness and cylindricity errors can be achieved with a flow falling over the entire length of the working gap.
  • the delivery rate of the circulating pump 13 within the liquid circuit 4 is set such that a flow rate of electrolyte liquid through the working gap of approximately 2.5 to 3 m at least during the precoating step, but preferably also during honing / sec results.
  • a flow rate of electrolyte liquid through the working gap of approximately 2.5 to 3 m at least during the precoating step, but preferably also during honing / sec results.
  • An increase in the flow rate above 2.5 to 3 m / sec does not increase the deposition speed, but the formation of the layer surface is more uniform at higher speeds.
  • Electrolyte temperatures in the range of about 55 ° C are common. It has been shown that at temperatures in the range from approximately 30 to 40 ° C., in particular approximately 35 ° C., a lower roughness of the applied layer, a better current efficiency and faster layer growth can be achieved. For this reason, a temperature control for the electrolyte liquid is provided in the schematic structure shown in FIG. 1.
  • the electrolyte liquid must be artificially and automatically cooled down by the temperature control by means of a cooling coil 21, which is indicated by dash-dotted lines in the collecting container will.
  • a cooling coil 21 which is indicated by dash-dotted lines in the collecting container.
  • two separate collecting tanks for electrolyte liquid with separate temperature controls would have to be provided.
  • the return line from the honing machine and the suction port of the circulating pump would each have to be equipped with a changeover valve and with a branch line into each of the collecting tanks.
  • the surface is - as I said - constantly electrically activated and smoothed. Because of this, high current densities can be permitted without the risk of wild bud growth, which cause rapid layer growth.
  • high current densities in the range of approximately 250 to 750 A / dm 2 can also be permitted in the same way during the precoating step. In this way, 20 gm / min of chromium can be deposited with optimal coordination of the process sequence.
  • the thickness b of the - first - layer 8 applied during the precoating step should be dimensioned so strongly that after the honing stones have been placed on this first layer, they cannot reach the underlying material with certainty. It has been shown in the honing of surfaces on light metal workpieces that the honing stones roughen the surface, which is initially still uncoated, very strongly, which is an obstacle to an orderly and smooth layer structure. Such roughening of the base material by the honing stones is to be avoided by the first layer. A layer thickness of approximately 40 ⁇ m for the first layer 8 will certainly be sufficient for this. This layer is thus also significantly smaller than the second layer 9 with the dimension a, which is applied during the honing.
  • the specified layer thickness of about 40 11 m is also chosen with a view to the fact that there is a layer thickness that is certainly bearing even at the thinnest points.
  • a precoating time of about 2 minutes may be sufficient.
  • the honing stones 3 are turned on by means of the pull rod 17.
  • the honing stick 18 performs an axial stroke H which is adjustable during the rotation. It has been shown that the macro errors on the surface to be coated are smallest after coating if the honing stone lift H is as large as possible.
  • the contact pressure for the honing stones should also be set optimally.
  • the layer thickness growth is higher at low contact pressures of the honing stones; the achievable surface is also smoother. At higher contact pressures, however, smaller macro errors and better adhesion of the layer can be achieved. Values that can be determined empirically can represent a good compromise between the opposing demands.
  • a nickel layer could also be applied instead of a chromium layer, which of course presupposes the use of a different electrolyte liquid.
  • a zincate layer must be applied in a separate process step before the application of a nickel layer in a precoating step in order to achieve sufficient adhesion.
  • the precoating in the honing machine is without applied honing stones make sense because the zincate layer can also be removed relatively quickly with honing stones applied immediately.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)

Claims (9)

1. Procédé pour le revêtement électrolytique et l'honage mécanique simultanés de surfaces d'une pièce en un métal léger dans une machine de formage par honage dont le circuit de l'électrolyte est guidé, une première couche étant appliquée par électrolyse avant ledit revêtement électrolytique et ledit honage mécanique simultanés, procédé caractérisé par le fait que l'étape de revêtement préalable est également exécutée dans ladite machine de formage par honage, cependant sans aucune intervention des pierres d'honage, le même électrolyte étant utilisé pour le dépôt des deux couches.
2. Procédé selon la revendication 1, caractérisé par le fait que l'épaisseur (b) de la première couche est réglée plus petite ou sensiblement égale à l'épaisseur (c) de la seconde couche.
3. Procédé selon l'une des revendications 1 et 2, caractérisé par le fait que l'intensité du courant est réglée, lors de l'étape de revêtement préalable, à une valeur sensiblement identique à celle qu'elle présente lors du revêtement électrolytique et de l'honage mécanique simultanés.
4. Procédé selon l'une des revendications 1 à 3, caractérisé par le fait que la température du liquide électrolytique est réglée à entre 30 et 40° C, de préférence à environ 35° C.
5. Procédé selon l'une des revendicaticns 1 à 4, caractérisé par le fait que l'intervalle, formé entre l'électrode et la surface de la pièce en métal léger à revêtir et parcouru par l'électrolyte, est réglé à entre 1 et 2,5 mm.
6. Procédé selon l'une des revendications 1 à 5, caractérisé par le fait que la vitesse de l'électrolyte dans l'intervalle est réglée, au moins lors de la phase de revêtement préalable, mais de préférence aussi lors du revêtement électrolytique et de l'honage mécanique simultanés, à au moins 2,5 à 3 m/sec., de préférence à entre 5 et 6 m/sec.
7. Procédé selon l'une des revendications 1 à 6, caractérisé par le fait que l'intensité du courant, au moins lors de la phase de revêtement préalable, mais également de préférence pendant le revêtement électrolytique et l'honage mécanique simultanés, est réglée à entre 250 et 750 A/dm2.
8. Procédé selon l'une des revendications 1 à 7, caractérisé par le fait que la première couche est appliquée avec une épaisseur de 20 à 50, de préférence d'environ 40 um.
9. Procédé selon l'une des revendications 1 à 8, caractérisé par le fait que le revêtement préalable dure environ 2 minutes.
EP80101569A 1979-03-27 1980-03-25 Procédé pour le revêtement électrolytique et l'honage mécanique simultanés de surfaces d'une pièce en un métal léger Expired EP0017139B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2911979 1979-03-27
DE2911979A DE2911979C2 (de) 1979-03-27 1979-03-27 Verfahren zum gleichzeitigen galvanischen Beschichten und mechanischen Honen von Oberflächen eines Leichtmetallwerkstückes

Publications (2)

Publication Number Publication Date
EP0017139A1 EP0017139A1 (fr) 1980-10-15
EP0017139B1 true EP0017139B1 (fr) 1983-01-19

Family

ID=6066537

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80101569A Expired EP0017139B1 (fr) 1979-03-27 1980-03-25 Procédé pour le revêtement électrolytique et l'honage mécanique simultanés de surfaces d'une pièce en un métal léger

Country Status (3)

Country Link
US (1) US4274925A (fr)
EP (1) EP0017139B1 (fr)
DE (1) DE2911979C2 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3243733A1 (de) * 1982-11-26 1984-05-30 Nagel Maschinen- und Werkzeugfabrik GmbH, 7440 Nürtingen Vorrichtung zum honen von kleinteilen
US4853099A (en) * 1988-03-28 1989-08-01 Sifco Industries, Inc. Selective electroplating apparatus
US5002649A (en) * 1988-03-28 1991-03-26 Sifco Industries, Inc. Selective stripping apparatus
US4931150A (en) * 1988-03-28 1990-06-05 Sifco Industries, Inc. Selective electroplating apparatus and method of using same
DE19506656B4 (de) * 1995-02-25 2007-04-19 Audi Ag Verfahren zur Keramisierung von Leichtmetalloberflächen
AU7124496A (en) * 1995-09-30 1997-04-28 Zhiwei Du Method and apparatus for processing of precision parts by using electrolyte
JP4868577B2 (ja) * 2006-03-28 2012-02-01 独立行政法人理化学研究所 Elidホーニング装置及び方法
DE102006051719A1 (de) * 2006-10-30 2008-05-08 Daimler Ag Verfahren zur Bearbeitung einer beschichteten Reibkontaktfläche aus elektrisch leitfähigem Material und Elektrode zur elektrochemischen Bearbeitung
JP4980758B2 (ja) * 2007-03-22 2012-07-18 富士重工業株式会社 シリンダボア内周面のホーニング加工方法及びホーニング加工装置
GB201314054D0 (en) * 2013-08-06 2013-09-18 Saudi Internat Petrochemical Company Method
TWI838438B (zh) * 2018-12-11 2024-04-11 德商德國艾托特克公司 鉻或鉻合金層之沉積方法及電鍍裝置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3022232A (en) * 1958-05-26 1962-02-20 Caterpillar Tractor Co Method and apparatus for simultaneously plating and lapping
US3769181A (en) * 1971-07-21 1973-10-30 Richardson Chemical Co Method of simultaneously electroplating and machining a metal surface
US3751346A (en) * 1971-08-16 1973-08-07 Micromatic Ind Inc Combined plating and honing method and apparatus
US3922207A (en) * 1974-05-31 1975-11-25 United Technologies Corp Method for plating articles with particles in a metal matrix

Also Published As

Publication number Publication date
DE2911979B1 (de) 1980-07-17
US4274925A (en) 1981-06-23
EP0017139A1 (fr) 1980-10-15
DE2911979C2 (de) 1981-04-30

Similar Documents

Publication Publication Date Title
DE3741421C2 (de) Galvanoformungs-Verfahren
EP0017139B1 (fr) Procédé pour le revêtement électrolytique et l'honage mécanique simultanés de surfaces d'une pièce en un métal léger
DE19953318B4 (de) Chromplattierte Teile und Chromplattierungsverfahren
DE3142739C2 (de) Vorrichtung zur elektrolytischen Oberflächenbehandlung von mechanischen Teilen, insbesondere von Zylindern von Verbrennungsmotoren
EP0169984B1 (fr) Procédé pour la fabrication des surfaces de glissement cylindres en fonte grise d'une machine à piston
DE3334916C2 (fr)
DE3631980C2 (fr)
DE102017128341A1 (de) Verfahren zum honen von hochporösen zylinderlaufbuchsen
CH597374A5 (en) Aircraft engine cylinder assembly plating method
DE69221852T2 (de) Herstellung von schichten durch zerstäubung
DE659103C (de) Elektroplattierungsvorrichtung
DE2439870A1 (de) Kompositionsrotorgehaeuse mit abnuetzungsbestaendigem ueberzug
CH692350A5 (de) Spinnrotor für eine Offenend-Spinnmaschine und Verfahren zu seiner Beschichtung.
DE1204491B (de) Verfahren und Vorrichtung zum galvanischen Abscheiden eines Feststoffteilchen enthaltenden Metallueberzugs aus einem kontinuierlich umlaufenden Bad
DE4116686C2 (de) Verfahren und Vorrichtung zur Herstellung von Gleitflächen
DE69602373T2 (de) Herstellung von schleifwerkzeugen
EP0987350A2 (fr) Procédé et dipositif pour l'application d'une couche en phosphate sur des pièces
DE102013221375A1 (de) Verfahren zur Herstellung einer beschichteten Bohrungsfläche, insbesondere einer Zylinderbohrung
DE2029646C3 (de) Verfahren und Vorrichtung zum Honen
DE1957031A1 (de) Verfahren zum Herstellen von Zinnschichten der Zinnlegierungsschichten auf Draht aus Kupfer oder Kupferlegierungen durch Feuerverzinnen und Vorrichtung zur Durchfuehrung des Verfahrens
WO1995002486A1 (fr) Procede permettant de produire des pistons, des tiges de piston, ainsi que des cylindres pour unites hydrauliques et pneumatiques
DE2033565A1 (de) Verfahren zum Überziehen eines eisen haltigen Metallbandes
DE2824770C2 (de) Verfahren zum Erzeugen von Schrägen an Schlitzkanten von Hubkolbenmaschinen- Zylindern
DE2548414A1 (de) Verfahren und vorrichtung zur elektrophoretischen beschichtung von gegenstaenden
EP0028805A1 (fr) Procédé de restauration d'un tube de lingotière usagé pour la coulée continue

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): FR GB IT NL

17P Request for examination filed

Effective date: 19810226

ITF It: translation for a ep patent filed

Owner name: STUDIO MASSARI S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): FR GB IT NL

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19840102

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19870331

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19890325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19891001

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19891130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT