EP0013240A1 - Common antenna for primary and secondary radar - Google Patents
Common antenna for primary and secondary radar Download PDFInfo
- Publication number
- EP0013240A1 EP0013240A1 EP79401063A EP79401063A EP0013240A1 EP 0013240 A1 EP0013240 A1 EP 0013240A1 EP 79401063 A EP79401063 A EP 79401063A EP 79401063 A EP79401063 A EP 79401063A EP 0013240 A1 EP0013240 A1 EP 0013240A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- reflector
- slots
- common antenna
- antenna according
- cavities
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005855 radiation Effects 0.000 claims abstract description 27
- 239000004744 fabric Substances 0.000 claims abstract description 6
- 230000010287 polarization Effects 0.000 claims abstract description 4
- 239000011521 glass Substances 0.000 claims abstract description 3
- 230000005284 excitation Effects 0.000 claims description 4
- 239000003365 glass fiber Substances 0.000 claims description 4
- 230000002238 attenuated effect Effects 0.000 claims description 3
- 239000004593 Epoxy Substances 0.000 claims description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052802 copper Inorganic materials 0.000 abstract description 2
- 239000010949 copper Substances 0.000 abstract description 2
- 239000003989 dielectric material Substances 0.000 abstract 2
- 230000001588 bifunctional effect Effects 0.000 abstract 1
- 239000003822 epoxy resin Substances 0.000 abstract 1
- 239000011152 fibreglass Substances 0.000 abstract 1
- 229920000647 polyepoxide Polymers 0.000 abstract 1
- 230000000153 supplemental effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 38
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 230000001960 triggered effect Effects 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/28—Combinations of substantially independent non-interacting antenna units or systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q25/00—Antennas or antenna systems providing at least two radiating patterns
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q25/00—Antennas or antenna systems providing at least two radiating patterns
- H01Q25/001—Crossed polarisation dual antennas
Definitions
- the present invention relates to a common antenna for primary radar and secondary radar.
- a primary radar antenna and a secondary radar antenna can be carried out in two different ways.
- the secondary radar antenna is distinct from the primary radar antenna; the antennas installed in this way are essentially of the "beam" type.
- the secondary radar antenna is integrated with the primary radar antenna, thus realizing a true dual-function primary radar and secondary radar antenna.
- a dual-function antenna for primary and secondary radars is generally constituted by a single mirror supplied in such a way that it is able to radiate energy in space in order to detect a target or an aircraft, this is what called the primary radar function, and also to send an interrogation signal to this aircraft, which has on board a transponder automatically sending its response, this is called the secondary radar function.
- control means comprising radiating elements acting on the reception of the interrogation by the interrogated answering machine and on the reception of the latter's response by the receiver concerned are added to the single antenna considered. which radiate according to an almost omnidirectional diagram whose level is such that it covers the secondary lobes of the diagram radiated by the main antenna.
- This arrangement makes it possible by comparison, made in the associated circuits, of the amplitude of the pulses received from the responder and those of control, to determine the pulse received in response to the interrogation by the main lobe.
- control means intended to produce this control diagram and which act on the emission of an interrogation signal and on the reception of a response signal from a target interrogated must be such as the gain of the control channels associated is greater than that of the interrogation and reception channels in the angular zones comprising secondary lobes of the directive interrogation diagram but much weaker in the direction of their main lobe.
- control means consist of radiating elements, wave radiators, whose radiation pattern is of the omni-directional type, placed either on the common mirror near the phase center or else at the part upper reflector; they can also consist of the source of emission of the interrogation signal supplied for a determined time to reveal a radiation diagram of the difference type whereas the diagram according to which the interrogation takes place is a diagram of the sum type.
- the radiation pattern of the control means does not fully play its role, either because it is not completely omnidirectional, or because certain high-level side lobes of the directive main diagram are not covered and also because in some cases, the main lobe itself, whose level is a little low, may be suffocated by the omnidirectional diagram.
- the control diagrams can be disturbed by certain exterior arrangements, such as the radomes under which the antennas are placed.
- the object of the invention is to remedy these drawbacks and to define means which optimize the diagram of the control channel of the secondary radar, without disturbing the operation of the primary radar.
- the antenna of the secondary radar is integrated into the reflector of the antenna of the primary radar and the interrogation function, the radiation pattern of which is directive, is provided with control means the radiation pattern of which is of the "difference" type.
- the transmission-reception source of the secondary radar is constituted by a linear network of slots associated with radiating cavities, arranged along a director, preferably over the entire opening of the reflector of the primary radar antenna, some number of slots of this network arranged symmetrically around the phase center of the secondary antenna, constituting the control channel.
- the slots are arranged on a horizontal director.
- the section of the primary radar antenna reflector can be circular, elliptical or rectangular.
- the primary radar detects aircraft in particular by their direction in relation to the radar and their distance, and the secondary radar interrogates them, answering machines provided for this purpose on board the aircraft, sending information to the interrogator on the ground. altitude, identity, speed, etc.
- the interrogation by the secondary radar of the aircraft being done in the direction of the aircraft detected by the primary radar, it is advantageous either to couple the antennas of the two radars, or to use only one and the same antenna capable of performing the two functions which have been defined.
- the primary radar-secondary radar system has drawbacks which affect its proper functioning and its performance.
- the radiation diagram of the secondary radar has, in addition to a main lobe which transmits the interrogation and receives the response from the aircraft questioned, secondary lobes the level of which may be sufficient for a responder to be triggered which may either belong to the aircraft really questioned, that is, to be the responder of another aircraft.
- the method which has been adopted consists in covering these lateral lobes by an omnidirectional diagram, created from so-called control elements which in fact are a separate antenna called control antenna, or also by a diagram of the so-called difference type , it can be created from the interrogation channel supplied adequately.
- a linear array is formed in the antenna reflector of the primary radar, along one of its guidelines passing through the phase center of the antenna to have a larger span. radiant slots.
- the choice of the director of the reflector depends on the plane of deposit determined for the propagation.
- the fact of having the network on one of the central guidelines of the reflector makes it possible to have a large number of slots therefore a good resolution.
- Each slot is associated with a cavity excited by an element, for example of the plunger or cross-bar type, in which the resonance phenomena of certain modes are created as well as well-known radiation phenomena.
- the integration of the secondary antenna in the reflector of the primary antenna has the advantage of avoiding an increase in the volume of the primary antenna, therefore of weight and wind resistance.
- the drive mechanism of the device remains relatively simple and of small volume, which is particularly convenient in weapon systems.
- FIG. 1 schematically represents a sectional view of a common antenna reflector 1 for primary and secondary radar, comprising a linear network 2 of radiating slots 2 . , i varying from 1 to n with n representing the total number of slots in the network.
- the slots are arranged along a direction D preferably over the entire opening of the reflector 1.
- the pitch h of the grating is of the order of 0.6 to 0.8 ⁇ in a preferred embodiment.
- the reflector 1 is made of dielectric 3 - glass mat impregnated with epoxy - covered by a fabric 4 of glass fibers carrying covered metallic wires 40 and 41 crossed. These wires are generally made of thin copper.
- each slot 2 i of the network 2 is produced a radiating cavity 5 .
- parallel with the same dielectric 3 as the reflector 1 covered in the same way by a fabric 4 of glass fibers carrying metallic wires.
- the polarizations of the sources of the primary and secondary antennas being perpendicular, the metal wires 40 and 41 are crossed over the entire surface of the reflector 1, and also inside the cavities 5 .
- the wires 40 arranged parallel to the director in the direction of the polarization chosen for the source of the primary antenna, horizontal in the example described.
- the diameter of the metal wires 40 and 41 is 12/100 mm and the distance between each wire is of the order of 1.5 mm.
- the covering of the metal wires with glass fibers allows the fabric to have a uniform elasticity.
- the cavities are filled with dielectric 3.
- the excitation elements 6 of these cavities 5. - of the plunger or cross-bar type - are inserted into the dielectric 3 filling the cavities and comprise a coaxial base 7 allowing adaptation between the cavities 5 . and the coaxial lines 8 which connect them to a power divider system 9 placed on the back of the reflector 1.
- This power divider 9, which may consist of distributors, is connected by a microwave link line to a conventional interrogator-receiver assembly , not shown in FIG. 1.
- the rear of the reflector is protected by a waterproof cover 10, made of dielectric 3.
- this control channel is equipped with one or more additional elements radiating towards the rear.
- These slots 11 are in number, reduced and placed in the cover 10, in the plane of symmetry of the reflector 1 containing the slots radiating towards the front.
- the cavities 12 associated with the slots 2 . and 11 are excited to give respectively a directional radiation diagram of the "sum” type for the interrogation-reception channel and a diagram of the "difference" type for the control channel.
- the slots of the control channel whether they radiate towards the front or towards the rear of the reflector 1, are divided into two equal groups, excited in phase opposition, thanks to phase shifters of ⁇ located in the power divider 9 .
- the terminals 130 and 140 of the phase shifter 15 are. starters.
- FIG. 3 gives the shape of the radiation diagram of the "sum” or “even” type of the interrogation channel of the secondary radar function, in the plane bearing identified by the abscissa axes 0 - bearing angle - and on the ordinate G - gain in dB. It has a width L at -3 dB of the main lobe 18 linked to the desired gain in the direction of the maximum radiation, also linked to levels of close side lobes 19 which are not very high and finally to a level of diffuse radiation, represented by the lobes 20 , as low as possible.
- FIG. 4 shows the overlap of a directive diagram I of the interrogation-reception channel by a diagram C of the difference type control channel.
- the axis of the crevice 21 of the difference diagram C is the same as that of the main lobe 18 of the sum diagram I.
- the side lobes 19 of the radiation diagram of the primary radar I are covered by the radiation diagram of the control channel C.
- a common antenna for primary and secondary radar has thus been described, the secondary radar function of which is integrated in the reflector of the antenna of the primary radar.
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Radar Systems Or Details Thereof (AREA)
- Aerials With Secondary Devices (AREA)
- Waveguide Aerials (AREA)
- Details Of Aerials (AREA)
- Support Of Aerials (AREA)
- Burglar Alarm Systems (AREA)
Abstract
Description
La présente invention concerne une antenne commune pour radar primaire et radar secondaire.The present invention relates to a common antenna for primary radar and secondary radar.
Fréquemment, dans une station radar, il est nécessaire d'associer plusieurs antennes dans le même site d'exploitation. Mais cette association pose le problème de la cohabitation de ces matériels dans un volume qui est, dans le cas de systèmes d'armes par exemple, extrêmement restreint. L'association d'une antenne de radar primaire et d'une antenne de radar secondaire peut être réalisée de deux manières différentes. D'une part l'antenne du radar secondaire est distincte de l'antenne du radar.primaire ; les antennes installées de cette façon sont essentiellement du type "poutre". D'autre part, l'antenne du radar secondaire est intégrée à l'antenne du radar primaire, réalisant ainsi une véritable antenne bi-fonction radar primaire et radar secondaire.Frequently, in a radar station, it is necessary to associate several antennas in the same operating site. But this association poses the problem of the coexistence of these materials in a volume which is, in the case of weapons systems for example, extremely limited. The association of a primary radar antenna and a secondary radar antenna can be carried out in two different ways. On the one hand, the secondary radar antenna is distinct from the primary radar antenna; the antennas installed in this way are essentially of the "beam" type. On the other hand, the secondary radar antenna is integrated with the primary radar antenna, thus realizing a true dual-function primary radar and secondary radar antenna.
Une antenne bi-fonction pour radars primaire et secondaire est constituée généralement par un miroir unique alimenté de façon telle qu'il est capable de rayonner de l'énergie dans l'espace aux fins de détecter une cible ou un aéronef, c'est ce qu'on appelle la fonction radar primaire, et également d'émettre un signal d'interrogation vers cet aéronef, qui possède à son bord un répondeur envoyant automatiquement sa réponse, c'est ce qu'on appelle la fonction radar secondaire.A dual-function antenna for primary and secondary radars is generally constituted by a single mirror supplied in such a way that it is able to radiate energy in space in order to detect a target or an aircraft, this is what called the primary radar function, and also to send an interrogation signal to this aircraft, which has on board a transponder automatically sending its response, this is called the secondary radar function.
Le faisceau rayonné véhiculant l'interrogation est directif, interrogeant dans la direction où l'aéronef a été détecté ; toutefois l'on s'est aperçu que le répondeur de l'aéronef interrogé pouvait être déclenché par les lobes secondaires du diagramme d'interrogation dont le niveau risque d'être relativement élevé par rapport à celui du lobe principal. Pour remédier à cet inconvénient on ajoute à l'antenne unique considérée, des moyens dits de contrôle comportant des éléments rayonnants agissant à la réception de l'interrogation par le répondeur interrogé et à la réception de la réponse de ce dernier par le récepteur concerné et qui rayonnent suivant un diagramme quasi omnidirectionnel dont le niveau est tel qu'il recouvre les lobes secondaires du diagramme rayonné par l'antenne principale.The radiated beam carrying the interrogation is directive, interrogating in the direction where the aircraft has been detected; however, it was found that the responder of the aircraft questioned could be triggered by the side lobes of the diagram interrogation whose level is likely to be relatively high compared to that of the main lobe. To remedy this drawback, so-called control means comprising radiating elements acting on the reception of the interrogation by the interrogated answering machine and on the reception of the latter's response by the receiver concerned are added to the single antenna considered. which radiate according to an almost omnidirectional diagram whose level is such that it covers the secondary lobes of the diagram radiated by the main antenna.
Cette disposition permet par comparaison, faite dans les circuits associés, de l'amplitude des impulsions reçues du répondeur et de celles de contrôle, de déterminer l'impulsion reçue en réponse à l'interrogation par le lobe principal.This arrangement makes it possible by comparison, made in the associated circuits, of the amplitude of the pulses received from the responder and those of control, to determine the pulse received in response to the interrogation by the main lobe.
Les moyens de contrôle destinés à réaliser ce diagramme de contrôle et qui agissent à l'émission d'un signal d'interrogation et à la réception d'un signal de réponse d'une cible interrogée doivent être tels que le gain des voies de contrôle associées soit supérieur à celui des voies interrogation et réception dans les zones angulaires comprenant des lobes secondaires du diagramme directif d'interrogation mais beaucoup plus faible dans la direction de leur lobe principal.The control means intended to produce this control diagram and which act on the emission of an interrogation signal and on the reception of a response signal from a target interrogated must be such as the gain of the control channels associated is greater than that of the interrogation and reception channels in the angular zones comprising secondary lobes of the directive interrogation diagram but much weaker in the direction of their main lobe.
Dans les réalisations actuelles, les moyens de contrôle consistent en des éléments rayonnants, des radiateurs d'onde, dont le diagramme de rayonnement est du type omni-directionnel, placés ou bien sur le miroir commun près du centre de phase ou bien à la partie supérieure du réflecteur ; ils peuvent consister également en.la source d'émission du signal d'interrogation alimentée pendant un temps déterminé pour faire apparaître un diagramme de rayonnement du type différence alors que le diagramme suivant lequel l'interrogation a lieu est un diagramme du type somme.In current embodiments, the control means consist of radiating elements, wave radiators, whose radiation pattern is of the omni-directional type, placed either on the common mirror near the phase center or else at the part upper reflector; they can also consist of the source of emission of the interrogation signal supplied for a determined time to reveal a radiation diagram of the difference type whereas the diagram according to which the interrogation takes place is a diagram of the sum type.
Cependant et malgré les précautions qui ont été prises, il apparaît que le diagramme de rayonnement des moyens de contrôle ne joue pas complètement son rôle, soit parce qu'il n'est pas totalement omnidirectionnel, soit parce que certains lobes secondaires de haut niveau du diagramme principal directif ne sont pas recouverts et aussi parce que dans certains cas, le lobe principal lui-même dont le niveau est un peu faible risque d'être étouffé par le diagramme omni- directionnel. De plus les diagrammes de contrôle sont perturbables par certains aménagements extérieurs comme par exemple les radomes sous lesquels les antennes sont placées.However, despite the precautions that have been taken, it appears that the radiation pattern of the control means does not fully play its role, either because it is not completely omnidirectional, or because certain high-level side lobes of the directive main diagram are not covered and also because in some cases, the main lobe itself, whose level is a little low, may be suffocated by the omnidirectional diagram. In addition, the control diagrams can be disturbed by certain exterior arrangements, such as the radomes under which the antennas are placed.
Enfin, tous ces éléments additionnels, comme les radiateurs d'onde, provoquent des phénomènes de masque de la source primaire dus à l'ombre créée par ces radiateurs sur la surface du miroir.Finally, all of these additional elements, such as wave radiators, cause phenomena of mask of the primary source due to the shadow created by these radiators on the surface of the mirror.
Le but de l'invention est de remédier à ces inconvénients et de définir des moyens qui optimisent le diagramme de la voie contrôle du radar secondaire, sans perturber le fonctionnement du radar primaire.The object of the invention is to remedy these drawbacks and to define means which optimize the diagram of the control channel of the secondary radar, without disturbing the operation of the primary radar.
Suiv-ant l'invention, l'antenne du radar secondaire est intégrée dans le réflecteur de l'antenne du radar primaire et la fonction interrogation, dont le diagramme de rayonnement est directif, est dotée de moyens de contrôle dont le diagramme de rayonnement est du type "différence".According to the invention, the antenna of the secondary radar is integrated into the reflector of the antenna of the primary radar and the interrogation function, the radiation pattern of which is directive, is provided with control means the radiation pattern of which is of the "difference" type.
Suivant l'invention également, la source d'émission-réception du radar secondaire est constituée par un réseau linéaire de fentes associées à des cavités rayonnantes, disposées le long d'une directrice, de préférence sur toute l'ouverture du réflecteur de l'antenne du radar primaire, un certain nombre de fentes de ce réseau disposées symétriquement autour du centre de phase de l'antenne secondaire, constituant la voie contrôle.Also according to the invention, the transmission-reception source of the secondary radar is constituted by a linear network of slots associated with radiating cavities, arranged along a director, preferably over the entire opening of the reflector of the primary radar antenna, some number of slots of this network arranged symmetrically around the phase center of the secondary antenna, constituting the control channel.
Pour avoir un diagramme directif optimal dans le plan horizontal, les fentes sont disposées sur une directrice horizontale. La section du réflecteur de l'antenne du radar primaire peut être circulaire, elliptique ou rectangulaire.To have an optimal directional diagram in the horizontal plane, the slots are arranged on a horizontal director. The section of the primary radar antenna reflector can be circular, elliptical or rectangular.
D'autres objets et avantages de l'invention seront mieux compris à l'aide de la description détaillée ci-dessous et des figures 1, 2, 3 et 4 qui représentent :
- - la figure 1, une coupe d'un réflecteur d'antenne commune par radars primaire et secondaire, selon l'invention ;
- - la figure 2, un diagramme schématique montrant la liaison entre un déphaseur 0-π et le diviseur de puissance, selon l'invention ;
- - la figure 3, la forme du diagramme de rayonnement de la voie interrogation-réception dans le plan gisement, de l'antenne bi-fonction selon l'invention ;
- - la figure 4, le recouvrement du diagramme de rayonnement de la voie interrogation-réception pai- 1- diagramme de rayonnement de la voie de contrôle.
- - Figure 1, a section of a common antenna reflector by primary and secondary radars, according to the invention;
- - Figure 2, a schematic diagram showing the connection between a 0-π phase shifter and the power divider, according to the invention;
- - Figure 3, the shape of the radiation diagram of the interrogation-reception path in the reservoir plane, of the dual-function antenna according to the invention;
- - Figure 4, the overlap of the radiation pattern of the interrogation-reception path pa- 1- radiation pattern of the control channel.
Dans la surveillance de l'espace principalement aux approches d'aérodromes, l'avantage de la combinaison d'un radar dit primaire et d'un radar dit secondaire, n'est plus à démontrer. Le radar primaire détecte des aéronefs en particulier par leur direction par rapport au radar et leur distance, et le radar secondaire les interroge, des répondeurs prévus à cet effet à bord des aéronefs, envoyant au sol, à l'interrogateur, des informations concernant leur altitude, leur identité, leur vitesse, etc... L'interrogation par le radar secondaire des aéronefs se faisant dans la direction de l'aéronef détecté par le radar primaire, on a,intérêt, soit à coupler les antennes des deux radars, soit à n'utiliser qu'une seule et même antenne capable de remplir les deux fonctions qui ont été définies. Cependant comme cela a été exprimé dans l'introduction, le système radar primaire-radar secondaire présente des inconvénients qui nuisent à son bon fonctionnement et à son rendement. En particulier, le diagramme de rayonnement du radar secondaire présente outre un lobe principal qui transmet l'interrogation et reçoit la réponse de l'aéronef interrogé, des lobes secondaires dont le niveau peut être suffisant pour qu'un répondeur soit déclenché qui peut soit appartenir à l'aéronef vraiment interrogé, soit être le répondeur d'un autre aéronef.In space surveillance, mainly on approaches to aerodromes, the advantage of combining a so-called primary and a so-called secondary radar is no longer to be demonstrated. The primary radar detects aircraft in particular by their direction in relation to the radar and their distance, and the secondary radar interrogates them, answering machines provided for this purpose on board the aircraft, sending information to the interrogator on the ground. altitude, identity, speed, etc. The interrogation by the secondary radar of the aircraft being done in the direction of the aircraft detected by the primary radar, it is advantageous either to couple the antennas of the two radars, or to use only one and the same antenna capable of performing the two functions which have been defined. However, as expressed in the introduction, the primary radar-secondary radar system has drawbacks which affect its proper functioning and its performance. In particular, the radiation diagram of the secondary radar has, in addition to a main lobe which transmits the interrogation and receives the response from the aircraft questioned, secondary lobes the level of which may be sufficient for a responder to be triggered which may either belong to the aircraft really questioned, that is, to be the responder of another aircraft.
Dans ce cas, des erreurs peuvent s'en suivre dont les conséquences risquent d'être dangereuses.In this case, errors may follow, the consequences of which may be dangerous.
On a alors cherché à remédier à ces inconvénients, en essayant de supprimer les lobes secondaires ou latéraux du diagramme d'interrogation ; la méthode qui a été adoptée consiste à recouvrir ces lobes latéraux par un diagramme du genre omnidirectionnel, créé à partir d'éléments dits de contrôle qui en fait sont une antenne séparée appelée antenne de contrôle, ou également par un diagramme du type dit en différence, celui-ci pouvant être créé à partir de la voie interrogation alimentée de façon adéquate.We then sought to remedy these drawbacks, by trying to remove the secondary or lateral lobes from the interrogation diagram; the method which has been adopted consists in covering these lateral lobes by an omnidirectional diagram, created from so-called control elements which in fact are a separate antenna called control antenna, or also by a diagram of the so-called difference type , it can be created from the interrogation channel supplied adequately.
Ces mesures ne sont toutefois pas suffisantes et par exemple dans le cas d'un recouvrement des lobes latéraux du diagramme d'interrogation par un diagramme omnidirectionnel, ce recouvrement est imparfait, dû souvent à des causes extérieures, radome, etc...These measures are however not sufficient and for example in the case of an overlap of the side lobes of the interrogation diagram by an omnidirectional diagram, this overlap is imperfect, often due to external causes, radome, etc.
On cherche alors à former d'une part un diagramme de rayonnement interrogation-réception du type "somme" ou "pair" et d'autre part un diagramme de rayonnement de la voie contrôle du type "différence" ou "impair". L'avantage principal de ce type d'éclairement impair réside dans le fait que l'axe de la crevasse du diagramme différence se conserve en site, donnant ainsi un meilleur centrage de l'arc d'interrogation et, en principe, une stabilité accrue de ce dernier le long de la couverture en site. Au delà de la zone centrale du diagramme de rayonnement, le problème de recouvrement des lobes latéraux du diagramme de rayonnement du radar primaire est résolu en composant judicieusement les lois d'amplitude et de phase des éléments rayonnants.We then seek to form on the one hand a interrogation-reception radiation diagram of the "sum" or "even" type and on the other hand a radiation diagram of the control channel of the "difference" or "odd" type. The main advantage of this type of odd illumination lies in the fact that the axis of the crevice of the difference diagram is preserved in elevation, thus giving better centering of the interrogation arc and, in principle, increased stability. of the latter along the site coverage. Beyond the central area of the radiation pattern, the problem of overlapping the side lobes of the radiation pattern of the primary radar is resolved by judiciously composing the laws of amplitude and phase of the radiating elements.
Pour ce faire, suivant l'invention, on forme dans le réflecteur de l'antenne du radar primaire, le long d'une de ses directrices passant par le centre de phase de l'antenne pour avoir une plus grande envergure, un réseau linéaire de fentes rayonnantes. Le choix de la directrice du réflecteur dépend du plan de gisement déterminé pour la propagation. Le fait de disposer le réseau sur une des directrices centrales du réflecteur permet d'avoir un grand nombre de fentes donc une bonne résolution.To do this, according to the invention, a linear array is formed in the antenna reflector of the primary radar, along one of its guidelines passing through the phase center of the antenna to have a larger span. radiant slots. The choice of the director of the reflector depends on the plane of deposit determined for the propagation. The fact of having the network on one of the central guidelines of the reflector makes it possible to have a large number of slots therefore a good resolution.
Chaque fente est associée à une cavité excitée par un élément par exemple du type plongeur ou cross-bar, dans laquelle sont créés les phénomènes de résonnance de certains modes ainsi que des phénomènes de rayonnement bien connus. Une excitation adéquate de l'ensemble des fentes rayonnantes du réseau pour la voie interrogation réception suivant une loi de phase paire et une loi atténuée en amplitude, telle que la loi gaussienne, permet d'obtenir d'un diagramme de rayonnement du type "somme" et une excitation d'un certain nombre de fentes, réparties symétriquement autour du centre de phase, suivant une loi de phase impaire, permet d'obtenir un diagramme de rayonnement du type "différence" pour la voie de contrôle.Each slot is associated with a cavity excited by an element, for example of the plunger or cross-bar type, in which the resonance phenomena of certain modes are created as well as well-known radiation phenomena. An adequate excitation of all the radiating slots of the network for the reception interrogation channel according to an even phase law and a law attenuated in amplitude, such as the Gaussian law, makes it possible to obtain a radiation diagram of the "sum" type. "and an excitation from a number of symmetrical slots tracing around the phase center, according to an odd phase law, makes it possible to obtain a radiation diagram of the "difference" type for the control channel.
L'intégration de l'antenne secondaire dans le réflecteur de l'antenne primaire présente l'avantage d'éviter une augmentation du volume de l'antenne primaire, donc de poids et de prise au vent. Le mécanisme d'entraînement du dispositif reste relativement simple et de faible volume, ce qui est particulièrement commode dans les systèmes d'armes.The integration of the secondary antenna in the reflector of the primary antenna has the advantage of avoiding an increase in the volume of the primary antenna, therefore of weight and wind resistance. The drive mechanism of the device remains relatively simple and of small volume, which is particularly convenient in weapon systems.
La figure 1 représente schématiquement une vue en coupe d'un réflecteur 1 d'antenne commune pour radar primaire et secondaire, comportant un réseau 2 linéaire de fentes rayonnantes 2., i variant de 1 à n avec n représentant le nombre total de fentes du réseau. Les fentes sont disposées le long d'une direction D de préférence sur toute l'ouverture du réflecteur 1. Le pas h du réseau est de l'ordre de 0,6 à 0,8 λ dans une réalisation préférentielle. Le réflecteur 1 est réalisé en diélectrique 3 - du mat de verre imprégné d'époxy - recouvert par un tissu 4 de fibres de verre porteur de fils métalliques guipés 40 et 41 croisés. Ces fils sont en général en cuivre de faible épaisseur.FIG. 1 schematically represents a sectional view of a common antenna reflector 1 for primary and secondary radar, comprising a
Derrière chaque fente 2i du réseau 2 est réalisée une cavité rayonnante 5. paraléllépipédique, à partir du même diélectrique 3 que le réflecteur 1 recouvert de la même manière par un tissu 4 de fibres de verre porteur de fils métalliques. Les polarisations des sources des antennes primaire et secondaire étant perpendiculaires, les fils métalliques 40 et 41 sont croisés sur toute la superficie du réflecteur 1, et également à l'intérieur des cavités 5., alors que devant les fentes il n'y a que les fils 40 disposés parallèlement à la directrice, suivant la direction de la polarisation choisie pour la source de l'antenne primaire, horizontale dans l'exemple décrit.Behind each
- Pour une fréquence d'émission de 104 MHz par exemple, le diamètre des fils métalliques 40 et 41 est de 12/100 mm et la distance entre chaque fil est de l'ordre de 1,5 mm.- For a transmission frequency of 104 MHz for example, the diameter of the
Le guipage des fils métalliques par des fibres de verre permet au tissu d'avoir une élasticité homogène.The covering of the metal wires with glass fibers allows the fabric to have a uniform elasticity.
Pour diminuer le volume des cavités 5. et constituer un ensemble monolithique de réalisation simple, les cavités sont remplies de diélectrique 3. Les éléments excitateurs 6 de ces cavités 5. - du type plongeur ou cross-bar - sont insérés dans le diélectrique 3 remplissant les cavités et comportent une embase coaxiale 7 permettant l'adaptation entre les cavités 5. et les lignes coaxiales 8 qui les relient à un système diviseur de puissance 9 placé au dos du réflecteur 1. Ce diviseur de puissance 9, pouvant être constitué par des répartiteurs, est connecté par une ligne de liaison hyperfréquence à un ensemble interrogateur-récepteur classique, non représenté sur la figure 1. L'arrière du réflecteur est protégé par un capot 10 étanche, réalisé en diélectrique 3.To reduce the volume of the cavities 5. and constitute a monolithic assembly of simple construction, the cavities are filled with dielectric 3. The
S'il s'avère que le diagramme de la voie contrôle donné par les fentes 2i du réseau, rayonnant vers l'avant, n'assure pas le recouvrement correct de la partie arrière du diagramme directif de la voie d'interrogation, cette voie contrôle est dotée d'un ou plusieurs éléments supplémentaires rayonnant vers l'arrière. Cela pourra éventuellement être une ou plusieurs fentes 11 formées dans le diélectrique du capot 10 derrière lesquelles sont réalisées des cavités 12, constituées de la même manière que les cavités 5i rayonnant vers l'avant du réflecteur 1. Ces fentes 11 sont en nombre, réduit et placées dans le capot 10, dans le plan de symétrie du réflecteur 1 contenant les fentes rayonnant vers l'avant.If it turns out that the diagram of the control channel given by the
Comme on l'a vu précédemment, c'est par l'intermédiaire du diviseur de puissance 9 que les cavités 12 associées aux fentes 2. et 11 sont excitées pour donner respectivement un diagramme de rayonnement directif du type "somme" pour la voie interrogation-réception et un diagramme du type "différence" pour la voie contrôle. Les fentes de la voie contrôle, qu'elles rayonnent vers l'avant ou vers l'arrière du réflecteur 1, sont réparties en deux groupes égaux, excités en opposition de phase, grâce à des déphaseurs de π situés dans le diviseur de puissance 9.As we have seen previously, it is through the power divider 9 that the
Comme le montre la figure 2 représentant un déphaseur 0-π hybride 15, les deux sorties 13 et 14 du déphaseur 15, en opposition de phase, sont reliées aux voies 16 et 17 du répartiteur de puissance 9, ces deux dernières voies alimentant les deux groupes de fentes 2. de la voie contrôle.As shown in Figure 2 representing a 0-π
Les bornes 130 et 140 du déphaseur 15 sont des. entrées.The terminals 130 and 140 of the
La figure 3 donne la forme du diagramme de rayonnement du type "somme" ou "pair" de la voie interrogation de la fonction radar secondaire, dans le plan gisement repéré par les axes d'abscisse 0 - angle de gisement - et d'ordonnée G - gain en dB. Il présente une largeur L à -3 dB du lobe principal 18 liée au gain désiré dans la direction du rayonnement maximal, liée aussi à des niveaux de lobes latéraux proches 19 peu élevés et enfin à un niveau de rayonnement diffus, représenté par les lobes 20, le plus faible possible.FIG. 3 gives the shape of the radiation diagram of the "sum" or "even" type of the interrogation channel of the secondary radar function, in the plane bearing identified by the abscissa axes 0 - bearing angle - and on the ordinate G - gain in dB. It has a width L at -3 dB of the
Ces caractéristiques doivent être tenues non seulement dans le plan contenant la direction du rayonnement maximal, mais encore conservées dans toute l'ouverture en site du volume d'exploitation. Dans de telles conditions, il sera plus aisé d'assurer le recouvrement de ce diagramme par celui de la voie contrôle.These characteristics must be maintained not only in the plane containing the direction of the maximum radiation, but also preserved throughout the opening in site of the operating volume. In such conditions, it will be easier to ensure that this diagram is overlapped by that of the control channel.
La figure 4 montre le recouvrement d'un diagramme directif I de la voie interrogation-réception par un diagramme C de la voie contrôle du type différence. L'axe de la crevasse 21 du diagramme différence C est le même que celui du lobe principal 18 du diagramme somme I. Les lobes latéraux 19 du diagramme de rayonnement du radar primaire I sont recouverts par le diagramme de rayonnement de la voie contrôle C.FIG. 4 shows the overlap of a directive diagram I of the interrogation-reception channel by a diagram C of the difference type control channel. The axis of the
On a ainsi décrit une antenne commune pour radar primaire et radar secondaire dont la fonction radar secondaire est intégrée dans le réflecteur de l'antenne du radar primaire.A common antenna for primary and secondary radar has thus been described, the secondary radar function of which is integrated in the reflector of the antenna of the primary radar.
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT79401063T ATE1686T1 (en) | 1978-12-27 | 1979-12-21 | COMMON ANTENNA FOR PRIMARY AND SECONDARY RADAR. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR7836484 | 1978-12-27 | ||
FR7836484A FR2445629A1 (en) | 1978-12-27 | 1978-12-27 | COMMON ANTENNA FOR PRIMARY RADAR AND SECONDARY RADAR |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0013240A1 true EP0013240A1 (en) | 1980-07-09 |
EP0013240B1 EP0013240B1 (en) | 1982-10-20 |
Family
ID=9216582
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP79401063A Expired EP0013240B1 (en) | 1978-12-27 | 1979-12-21 | Common antenna for primary and secondary radar |
Country Status (8)
Country | Link |
---|---|
US (1) | US4284991A (en) |
EP (1) | EP0013240B1 (en) |
JP (1) | JPS6034070B2 (en) |
AT (1) | ATE1686T1 (en) |
DE (1) | DE2963910D1 (en) |
DK (1) | DK549779A (en) |
FR (1) | FR2445629A1 (en) |
NO (1) | NO794240L (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0021193A1 (en) * | 1979-06-14 | 1981-01-07 | CONTRAVES ITALIANA S.p.A. | Combined antenna system |
EP0033676A1 (en) * | 1980-01-28 | 1981-08-12 | Thomson-Csf | Common antenna for primary radar and secondary radar |
EP0053512A1 (en) * | 1980-12-03 | 1982-06-09 | The Marconi Company Limited | Secondary radar antenna |
EP0057538A2 (en) * | 1981-01-29 | 1982-08-11 | Kabushiki Kaisha Toshiba | Antenna device |
FR2510265A1 (en) * | 1981-07-24 | 1983-01-28 | Biolley Alain | Sighting device for rangefinder and angular displacement meter - has single support containing independent visible and IR optics and EM optics |
EP0237110A1 (en) * | 1986-03-05 | 1987-09-16 | THORN EMI Electronics Limited | Direction-finding antenna system |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8501225D0 (en) * | 1985-01-17 | 1985-02-20 | Cossor Electronics Ltd | Antenna |
US4833485A (en) * | 1985-05-17 | 1989-05-23 | The Marconi Company Limited | Radar antenna array |
US4907008A (en) * | 1988-04-01 | 1990-03-06 | Andrew Corporation | Antenna for transmitting circularly polarized television signals |
US6225955B1 (en) * | 1995-06-30 | 2001-05-01 | The United States Of America As Represented By The Secretary Of The Army | Dual-mode, common-aperture antenna system |
WO1997032360A1 (en) * | 1996-02-27 | 1997-09-04 | Thomson Consumer Electronics, Inc. | Combination satellite and vhf/uhf receiving antenna |
US7126553B1 (en) * | 2003-10-02 | 2006-10-24 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Deployable antenna |
US20070080455A1 (en) * | 2005-10-11 | 2007-04-12 | International Business Machines Corporation | Semiconductors and methods of making |
US7863183B2 (en) * | 2006-01-18 | 2011-01-04 | International Business Machines Corporation | Method for fabricating last level copper-to-C4 connection with interfacial cap structure |
US7532163B2 (en) * | 2007-02-13 | 2009-05-12 | Raytheon Company | Conformal electronically scanned phased array antenna and communication system for helmets and other platforms |
US10318903B2 (en) | 2016-05-06 | 2019-06-11 | General Electric Company | Constrained cash computing system to optimally schedule aircraft repair capacity with closed loop dynamic physical state and asset utilization attainment control |
CN111684659B (en) | 2018-02-09 | 2022-07-05 | 京瓷Avx元器件公司 | Tubular phased array antenna |
WO2020033000A2 (en) | 2018-02-09 | 2020-02-13 | Avx Corporation | Dome-shaped phased array antenna |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH328923A (en) * | 1955-05-18 | 1958-03-31 | Standard Telephon & Radio Ag | Antenna monitoring device |
US3550135A (en) * | 1967-03-22 | 1970-12-22 | Hollandse Signaalapparaten Bv | Dual beam parabolic antenna |
FR2284997A1 (en) * | 1974-09-13 | 1976-04-09 | Thomson Csf | COMMON ANTENNA FOR PRIMARY RADAR AND SECONDARY RADAR WITH INTERROGATION CONTROL MEANS |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3039098A (en) * | 1959-09-21 | 1962-06-12 | Hughes Aircraft Co | Finite focus wave energy antenna array |
US3701158A (en) * | 1970-01-22 | 1972-10-24 | Motorola Inc | Dual mode wave energy transducer device |
-
1978
- 1978-12-27 FR FR7836484A patent/FR2445629A1/en active Granted
-
1979
- 1979-12-20 US US06/105,733 patent/US4284991A/en not_active Expired - Lifetime
- 1979-12-21 DK DK549779A patent/DK549779A/en not_active Application Discontinuation
- 1979-12-21 NO NO794240A patent/NO794240L/en unknown
- 1979-12-21 AT AT79401063T patent/ATE1686T1/en not_active IP Right Cessation
- 1979-12-21 DE DE7979401063T patent/DE2963910D1/en not_active Expired
- 1979-12-21 EP EP79401063A patent/EP0013240B1/en not_active Expired
- 1979-12-26 JP JP54170182A patent/JPS6034070B2/en not_active Expired
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH328923A (en) * | 1955-05-18 | 1958-03-31 | Standard Telephon & Radio Ag | Antenna monitoring device |
US3550135A (en) * | 1967-03-22 | 1970-12-22 | Hollandse Signaalapparaten Bv | Dual beam parabolic antenna |
FR2284997A1 (en) * | 1974-09-13 | 1976-04-09 | Thomson Csf | COMMON ANTENNA FOR PRIMARY RADAR AND SECONDARY RADAR WITH INTERROGATION CONTROL MEANS |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0021193A1 (en) * | 1979-06-14 | 1981-01-07 | CONTRAVES ITALIANA S.p.A. | Combined antenna system |
EP0033676A1 (en) * | 1980-01-28 | 1981-08-12 | Thomson-Csf | Common antenna for primary radar and secondary radar |
EP0053512A1 (en) * | 1980-12-03 | 1982-06-09 | The Marconi Company Limited | Secondary radar antenna |
EP0057538A2 (en) * | 1981-01-29 | 1982-08-11 | Kabushiki Kaisha Toshiba | Antenna device |
EP0057538A3 (en) * | 1981-01-29 | 1982-12-01 | Tokyo Shibaura Denki Kabushiki Kaisha | Antenna device |
FR2510265A1 (en) * | 1981-07-24 | 1983-01-28 | Biolley Alain | Sighting device for rangefinder and angular displacement meter - has single support containing independent visible and IR optics and EM optics |
EP0237110A1 (en) * | 1986-03-05 | 1987-09-16 | THORN EMI Electronics Limited | Direction-finding antenna system |
Also Published As
Publication number | Publication date |
---|---|
FR2445629A1 (en) | 1980-07-25 |
DK549779A (en) | 1980-06-28 |
NO794240L (en) | 1980-06-30 |
JPS5590876A (en) | 1980-07-09 |
FR2445629B1 (en) | 1982-06-18 |
ATE1686T1 (en) | 1982-11-15 |
JPS6034070B2 (en) | 1985-08-06 |
DE2963910D1 (en) | 1982-11-25 |
US4284991A (en) | 1981-08-18 |
EP0013240B1 (en) | 1982-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0013240B1 (en) | Common antenna for primary and secondary radar | |
EP0457880B1 (en) | Airborne iff antenna with switchable multiple diagrams | |
EP0374008B1 (en) | Over the whole spherical space electronically scanning antenna with random and reduced three-dimensional distribution of the antenna elements | |
EP1568104B1 (en) | Multiple-beam antenna with photonic bandgap material | |
EP0239069B1 (en) | Printed-circuit antenna array | |
FR2944153A1 (en) | PILLBOX TYPE PARALLEL PLATE MULTILAYER ANTENNA AND CORRESPONDING ANTENNA SYSTEM | |
FR2652453A1 (en) | COAXIAL ANTENNA HAVING A PROGRESSIVE WAVE POWER TYPE. | |
FR2625616A1 (en) | FLAT ANTENNA | |
FR2575607A1 (en) | HIGH FREQUENCY ANTENNA SYSTEM | |
EP0899814A1 (en) | Radiating structure | |
FR2496347A1 (en) | HIGH FREQUENCY OMNIDIRECTIONAL NAVIGATION SYSTEM ANTENNA | |
FR2626980A1 (en) | SECONDARY RADAR TRANSPONDER | |
EP1554777B1 (en) | Multibeam antenna with photonic bandgap material | |
EP0018878A1 (en) | Airborne IFF system having a radar and an interrogation antenna | |
FR2677491A1 (en) | BIPOLARIZED ELEMENTARY HYPERFREQUENCY ANTENNA. | |
EP1181744B1 (en) | Vertical polarisation antenna | |
FR2861898A1 (en) | MICROWAVE ANTENNA | |
EP0033676B1 (en) | Common antenna for primary radar and secondary radar | |
EP0520908B1 (en) | Linear antenna array | |
FR2854737A1 (en) | Earth communications geostationary satellite multiple beam antenna having focal point radiation pattern and photonic band gap material outer surface with periodicity default providing narrow pass band | |
WO1992017915A1 (en) | Omnidirectionnal printed cylindrical antenna and marine radar transponder using such antennas | |
FR2958086A1 (en) | Radiating element i.e. multi-layered microstrip patch, for e.g. single pole electronic scanning antenna array, has plate whose points are respectively connected to source and grounded for obtaining radiation, in one position of switch | |
FR2590081A1 (en) | LINEAR POLARIZED GRID REFLECTING ANTENNA WITH IMPROVED TRANSVERSE POLARIZATION PERFORMANCE | |
FR2703190A1 (en) | Radiant structure with variable directivity. | |
EP0088681B1 (en) | Dual-reflector antenna with incorporated polarizer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH DE GB IT LU NL SE |
|
17P | Request for examination filed | ||
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH DE GB IT LU NL SE |
|
REF | Corresponds to: |
Ref document number: 1686 Country of ref document: AT Date of ref document: 19821115 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 2963910 Country of ref document: DE Date of ref document: 19821125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19821231 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 19830922 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19840930 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19841022 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19841123 Year of fee payment: 6 Ref country code: CH Payment date: 19841123 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19841129 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19841231 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Effective date: 19851221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19851222 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Effective date: 19851231 Ref country code: BE Effective date: 19851231 |
|
BERE | Be: lapsed |
Owner name: THOMSON-CSF Effective date: 19851231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19860701 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee | ||
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19860902 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19881118 |
|
EUG | Se: european patent has lapsed |
Ref document number: 79401063.7 Effective date: 19860902 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |