EP0013240A1 - Antenne commune pour radar primaire et radar secondaire - Google Patents

Antenne commune pour radar primaire et radar secondaire Download PDF

Info

Publication number
EP0013240A1
EP0013240A1 EP79401063A EP79401063A EP0013240A1 EP 0013240 A1 EP0013240 A1 EP 0013240A1 EP 79401063 A EP79401063 A EP 79401063A EP 79401063 A EP79401063 A EP 79401063A EP 0013240 A1 EP0013240 A1 EP 0013240A1
Authority
EP
European Patent Office
Prior art keywords
reflector
slots
common antenna
antenna according
cavities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP79401063A
Other languages
German (de)
English (en)
Other versions
EP0013240B1 (fr
Inventor
Albert Dupressoir
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Priority to AT79401063T priority Critical patent/ATE1686T1/de
Publication of EP0013240A1 publication Critical patent/EP0013240A1/fr
Application granted granted Critical
Publication of EP0013240B1 publication Critical patent/EP0013240B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/001Crossed polarisation dual antennas

Definitions

  • the present invention relates to a common antenna for primary radar and secondary radar.
  • a primary radar antenna and a secondary radar antenna can be carried out in two different ways.
  • the secondary radar antenna is distinct from the primary radar antenna; the antennas installed in this way are essentially of the "beam" type.
  • the secondary radar antenna is integrated with the primary radar antenna, thus realizing a true dual-function primary radar and secondary radar antenna.
  • a dual-function antenna for primary and secondary radars is generally constituted by a single mirror supplied in such a way that it is able to radiate energy in space in order to detect a target or an aircraft, this is what called the primary radar function, and also to send an interrogation signal to this aircraft, which has on board a transponder automatically sending its response, this is called the secondary radar function.
  • control means comprising radiating elements acting on the reception of the interrogation by the interrogated answering machine and on the reception of the latter's response by the receiver concerned are added to the single antenna considered. which radiate according to an almost omnidirectional diagram whose level is such that it covers the secondary lobes of the diagram radiated by the main antenna.
  • This arrangement makes it possible by comparison, made in the associated circuits, of the amplitude of the pulses received from the responder and those of control, to determine the pulse received in response to the interrogation by the main lobe.
  • control means intended to produce this control diagram and which act on the emission of an interrogation signal and on the reception of a response signal from a target interrogated must be such as the gain of the control channels associated is greater than that of the interrogation and reception channels in the angular zones comprising secondary lobes of the directive interrogation diagram but much weaker in the direction of their main lobe.
  • control means consist of radiating elements, wave radiators, whose radiation pattern is of the omni-directional type, placed either on the common mirror near the phase center or else at the part upper reflector; they can also consist of the source of emission of the interrogation signal supplied for a determined time to reveal a radiation diagram of the difference type whereas the diagram according to which the interrogation takes place is a diagram of the sum type.
  • the radiation pattern of the control means does not fully play its role, either because it is not completely omnidirectional, or because certain high-level side lobes of the directive main diagram are not covered and also because in some cases, the main lobe itself, whose level is a little low, may be suffocated by the omnidirectional diagram.
  • the control diagrams can be disturbed by certain exterior arrangements, such as the radomes under which the antennas are placed.
  • the object of the invention is to remedy these drawbacks and to define means which optimize the diagram of the control channel of the secondary radar, without disturbing the operation of the primary radar.
  • the antenna of the secondary radar is integrated into the reflector of the antenna of the primary radar and the interrogation function, the radiation pattern of which is directive, is provided with control means the radiation pattern of which is of the "difference" type.
  • the transmission-reception source of the secondary radar is constituted by a linear network of slots associated with radiating cavities, arranged along a director, preferably over the entire opening of the reflector of the primary radar antenna, some number of slots of this network arranged symmetrically around the phase center of the secondary antenna, constituting the control channel.
  • the slots are arranged on a horizontal director.
  • the section of the primary radar antenna reflector can be circular, elliptical or rectangular.
  • the primary radar detects aircraft in particular by their direction in relation to the radar and their distance, and the secondary radar interrogates them, answering machines provided for this purpose on board the aircraft, sending information to the interrogator on the ground. altitude, identity, speed, etc.
  • the interrogation by the secondary radar of the aircraft being done in the direction of the aircraft detected by the primary radar, it is advantageous either to couple the antennas of the two radars, or to use only one and the same antenna capable of performing the two functions which have been defined.
  • the primary radar-secondary radar system has drawbacks which affect its proper functioning and its performance.
  • the radiation diagram of the secondary radar has, in addition to a main lobe which transmits the interrogation and receives the response from the aircraft questioned, secondary lobes the level of which may be sufficient for a responder to be triggered which may either belong to the aircraft really questioned, that is, to be the responder of another aircraft.
  • the method which has been adopted consists in covering these lateral lobes by an omnidirectional diagram, created from so-called control elements which in fact are a separate antenna called control antenna, or also by a diagram of the so-called difference type , it can be created from the interrogation channel supplied adequately.
  • a linear array is formed in the antenna reflector of the primary radar, along one of its guidelines passing through the phase center of the antenna to have a larger span. radiant slots.
  • the choice of the director of the reflector depends on the plane of deposit determined for the propagation.
  • the fact of having the network on one of the central guidelines of the reflector makes it possible to have a large number of slots therefore a good resolution.
  • Each slot is associated with a cavity excited by an element, for example of the plunger or cross-bar type, in which the resonance phenomena of certain modes are created as well as well-known radiation phenomena.
  • the integration of the secondary antenna in the reflector of the primary antenna has the advantage of avoiding an increase in the volume of the primary antenna, therefore of weight and wind resistance.
  • the drive mechanism of the device remains relatively simple and of small volume, which is particularly convenient in weapon systems.
  • FIG. 1 schematically represents a sectional view of a common antenna reflector 1 for primary and secondary radar, comprising a linear network 2 of radiating slots 2 . , i varying from 1 to n with n representing the total number of slots in the network.
  • the slots are arranged along a direction D preferably over the entire opening of the reflector 1.
  • the pitch h of the grating is of the order of 0.6 to 0.8 ⁇ in a preferred embodiment.
  • the reflector 1 is made of dielectric 3 - glass mat impregnated with epoxy - covered by a fabric 4 of glass fibers carrying covered metallic wires 40 and 41 crossed. These wires are generally made of thin copper.
  • each slot 2 i of the network 2 is produced a radiating cavity 5 .
  • parallel with the same dielectric 3 as the reflector 1 covered in the same way by a fabric 4 of glass fibers carrying metallic wires.
  • the polarizations of the sources of the primary and secondary antennas being perpendicular, the metal wires 40 and 41 are crossed over the entire surface of the reflector 1, and also inside the cavities 5 .
  • the wires 40 arranged parallel to the director in the direction of the polarization chosen for the source of the primary antenna, horizontal in the example described.
  • the diameter of the metal wires 40 and 41 is 12/100 mm and the distance between each wire is of the order of 1.5 mm.
  • the covering of the metal wires with glass fibers allows the fabric to have a uniform elasticity.
  • the cavities are filled with dielectric 3.
  • the excitation elements 6 of these cavities 5. - of the plunger or cross-bar type - are inserted into the dielectric 3 filling the cavities and comprise a coaxial base 7 allowing adaptation between the cavities 5 . and the coaxial lines 8 which connect them to a power divider system 9 placed on the back of the reflector 1.
  • This power divider 9, which may consist of distributors, is connected by a microwave link line to a conventional interrogator-receiver assembly , not shown in FIG. 1.
  • the rear of the reflector is protected by a waterproof cover 10, made of dielectric 3.
  • this control channel is equipped with one or more additional elements radiating towards the rear.
  • These slots 11 are in number, reduced and placed in the cover 10, in the plane of symmetry of the reflector 1 containing the slots radiating towards the front.
  • the cavities 12 associated with the slots 2 . and 11 are excited to give respectively a directional radiation diagram of the "sum” type for the interrogation-reception channel and a diagram of the "difference" type for the control channel.
  • the slots of the control channel whether they radiate towards the front or towards the rear of the reflector 1, are divided into two equal groups, excited in phase opposition, thanks to phase shifters of ⁇ located in the power divider 9 .
  • the terminals 130 and 140 of the phase shifter 15 are. starters.
  • FIG. 3 gives the shape of the radiation diagram of the "sum” or “even” type of the interrogation channel of the secondary radar function, in the plane bearing identified by the abscissa axes 0 - bearing angle - and on the ordinate G - gain in dB. It has a width L at -3 dB of the main lobe 18 linked to the desired gain in the direction of the maximum radiation, also linked to levels of close side lobes 19 which are not very high and finally to a level of diffuse radiation, represented by the lobes 20 , as low as possible.
  • FIG. 4 shows the overlap of a directive diagram I of the interrogation-reception channel by a diagram C of the difference type control channel.
  • the axis of the crevice 21 of the difference diagram C is the same as that of the main lobe 18 of the sum diagram I.
  • the side lobes 19 of the radiation diagram of the primary radar I are covered by the radiation diagram of the control channel C.
  • a common antenna for primary and secondary radar has thus been described, the secondary radar function of which is integrated in the reflector of the antenna of the primary radar.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)
  • Burglar Alarm Systems (AREA)
  • Support Of Aerials (AREA)

Abstract

Antenne commune pour radar primaire et radar secondaire, dont la fonction radar secondaire est intégrée dans le réflecteur unique (1). La fonction radar secondaire est réalisée à partir d'un réseau (2) linéaire de fentes (21) réparties le long d'une directirce passant par le centre de phase du réflecteur. La fonction radar secondaire comporte une voie contrôle réalisée à partir d'un certain nombre de fentes du réseau. Application aux radars primaires et secondaires.

Description

  • La présente invention concerne une antenne commune pour radar primaire et radar secondaire.
  • Fréquemment, dans une station radar, il est nécessaire d'associer plusieurs antennes dans le même site d'exploitation. Mais cette association pose le problème de la cohabitation de ces matériels dans un volume qui est, dans le cas de systèmes d'armes par exemple, extrêmement restreint. L'association d'une antenne de radar primaire et d'une antenne de radar secondaire peut être réalisée de deux manières différentes. D'une part l'antenne du radar secondaire est distincte de l'antenne du radar.primaire ; les antennes installées de cette façon sont essentiellement du type "poutre". D'autre part, l'antenne du radar secondaire est intégrée à l'antenne du radar primaire, réalisant ainsi une véritable antenne bi-fonction radar primaire et radar secondaire.
  • Une antenne bi-fonction pour radars primaire et secondaire est constituée généralement par un miroir unique alimenté de façon telle qu'il est capable de rayonner de l'énergie dans l'espace aux fins de détecter une cible ou un aéronef, c'est ce qu'on appelle la fonction radar primaire, et également d'émettre un signal d'interrogation vers cet aéronef, qui possède à son bord un répondeur envoyant automatiquement sa réponse, c'est ce qu'on appelle la fonction radar secondaire.
  • Le faisceau rayonné véhiculant l'interrogation est directif, interrogeant dans la direction où l'aéronef a été détecté ; toutefois l'on s'est aperçu que le répondeur de l'aéronef interrogé pouvait être déclenché par les lobes secondaires du diagramme d'interrogation dont le niveau risque d'être relativement élevé par rapport à celui du lobe principal. Pour remédier à cet inconvénient on ajoute à l'antenne unique considérée, des moyens dits de contrôle comportant des éléments rayonnants agissant à la réception de l'interrogation par le répondeur interrogé et à la réception de la réponse de ce dernier par le récepteur concerné et qui rayonnent suivant un diagramme quasi omnidirectionnel dont le niveau est tel qu'il recouvre les lobes secondaires du diagramme rayonné par l'antenne principale.
  • Cette disposition permet par comparaison, faite dans les circuits associés, de l'amplitude des impulsions reçues du répondeur et de celles de contrôle, de déterminer l'impulsion reçue en réponse à l'interrogation par le lobe principal.
  • Les moyens de contrôle destinés à réaliser ce diagramme de contrôle et qui agissent à l'émission d'un signal d'interrogation et à la réception d'un signal de réponse d'une cible interrogée doivent être tels que le gain des voies de contrôle associées soit supérieur à celui des voies interrogation et réception dans les zones angulaires comprenant des lobes secondaires du diagramme directif d'interrogation mais beaucoup plus faible dans la direction de leur lobe principal.
  • Dans les réalisations actuelles, les moyens de contrôle consistent en des éléments rayonnants, des radiateurs d'onde, dont le diagramme de rayonnement est du type omni-directionnel, placés ou bien sur le miroir commun près du centre de phase ou bien à la partie supérieure du réflecteur ; ils peuvent consister également en.la source d'émission du signal d'interrogation alimentée pendant un temps déterminé pour faire apparaître un diagramme de rayonnement du type différence alors que le diagramme suivant lequel l'interrogation a lieu est un diagramme du type somme.
  • Cependant et malgré les précautions qui ont été prises, il apparaît que le diagramme de rayonnement des moyens de contrôle ne joue pas complètement son rôle, soit parce qu'il n'est pas totalement omnidirectionnel, soit parce que certains lobes secondaires de haut niveau du diagramme principal directif ne sont pas recouverts et aussi parce que dans certains cas, le lobe principal lui-même dont le niveau est un peu faible risque d'être étouffé par le diagramme omni- directionnel. De plus les diagrammes de contrôle sont perturbables par certains aménagements extérieurs comme par exemple les radomes sous lesquels les antennes sont placées.
  • Enfin, tous ces éléments additionnels, comme les radiateurs d'onde, provoquent des phénomènes de masque de la source primaire dus à l'ombre créée par ces radiateurs sur la surface du miroir.
  • Le but de l'invention est de remédier à ces inconvénients et de définir des moyens qui optimisent le diagramme de la voie contrôle du radar secondaire, sans perturber le fonctionnement du radar primaire.
  • Suiv-ant l'invention, l'antenne du radar secondaire est intégrée dans le réflecteur de l'antenne du radar primaire et la fonction interrogation, dont le diagramme de rayonnement est directif, est dotée de moyens de contrôle dont le diagramme de rayonnement est du type "différence".
  • Suivant l'invention également, la source d'émission-réception du radar secondaire est constituée par un réseau linéaire de fentes associées à des cavités rayonnantes, disposées le long d'une directrice, de préférence sur toute l'ouverture du réflecteur de l'antenne du radar primaire, un certain nombre de fentes de ce réseau disposées symétriquement autour du centre de phase de l'antenne secondaire, constituant la voie contrôle.
  • Pour avoir un diagramme directif optimal dans le plan horizontal, les fentes sont disposées sur une directrice horizontale. La section du réflecteur de l'antenne du radar primaire peut être circulaire, elliptique ou rectangulaire.
  • D'autres objets et avantages de l'invention seront mieux compris à l'aide de la description détaillée ci-dessous et des figures 1, 2, 3 et 4 qui représentent :
    • - la figure 1, une coupe d'un réflecteur d'antenne commune par radars primaire et secondaire, selon l'invention ;
    • - la figure 2, un diagramme schématique montrant la liaison entre un déphaseur 0-π et le diviseur de puissance, selon l'invention ;
    • - la figure 3, la forme du diagramme de rayonnement de la voie interrogation-réception dans le plan gisement, de l'antenne bi-fonction selon l'invention ;
    • - la figure 4, le recouvrement du diagramme de rayonnement de la voie interrogation-réception pai- 1- diagramme de rayonnement de la voie de contrôle.
  • Dans la surveillance de l'espace principalement aux approches d'aérodromes, l'avantage de la combinaison d'un radar dit primaire et d'un radar dit secondaire, n'est plus à démontrer. Le radar primaire détecte des aéronefs en particulier par leur direction par rapport au radar et leur distance, et le radar secondaire les interroge, des répondeurs prévus à cet effet à bord des aéronefs, envoyant au sol, à l'interrogateur, des informations concernant leur altitude, leur identité, leur vitesse, etc... L'interrogation par le radar secondaire des aéronefs se faisant dans la direction de l'aéronef détecté par le radar primaire, on a,intérêt, soit à coupler les antennes des deux radars, soit à n'utiliser qu'une seule et même antenne capable de remplir les deux fonctions qui ont été définies. Cependant comme cela a été exprimé dans l'introduction, le système radar primaire-radar secondaire présente des inconvénients qui nuisent à son bon fonctionnement et à son rendement. En particulier, le diagramme de rayonnement du radar secondaire présente outre un lobe principal qui transmet l'interrogation et reçoit la réponse de l'aéronef interrogé, des lobes secondaires dont le niveau peut être suffisant pour qu'un répondeur soit déclenché qui peut soit appartenir à l'aéronef vraiment interrogé, soit être le répondeur d'un autre aéronef.
  • Dans ce cas, des erreurs peuvent s'en suivre dont les conséquences risquent d'être dangereuses.
  • On a alors cherché à remédier à ces inconvénients, en essayant de supprimer les lobes secondaires ou latéraux du diagramme d'interrogation ; la méthode qui a été adoptée consiste à recouvrir ces lobes latéraux par un diagramme du genre omnidirectionnel, créé à partir d'éléments dits de contrôle qui en fait sont une antenne séparée appelée antenne de contrôle, ou également par un diagramme du type dit en différence, celui-ci pouvant être créé à partir de la voie interrogation alimentée de façon adéquate.
  • Ces mesures ne sont toutefois pas suffisantes et par exemple dans le cas d'un recouvrement des lobes latéraux du diagramme d'interrogation par un diagramme omnidirectionnel, ce recouvrement est imparfait, dû souvent à des causes extérieures, radome, etc...
  • On cherche alors à former d'une part un diagramme de rayonnement interrogation-réception du type "somme" ou "pair" et d'autre part un diagramme de rayonnement de la voie contrôle du type "différence" ou "impair". L'avantage principal de ce type d'éclairement impair réside dans le fait que l'axe de la crevasse du diagramme différence se conserve en site, donnant ainsi un meilleur centrage de l'arc d'interrogation et, en principe, une stabilité accrue de ce dernier le long de la couverture en site. Au delà de la zone centrale du diagramme de rayonnement, le problème de recouvrement des lobes latéraux du diagramme de rayonnement du radar primaire est résolu en composant judicieusement les lois d'amplitude et de phase des éléments rayonnants.
  • Pour ce faire, suivant l'invention, on forme dans le réflecteur de l'antenne du radar primaire, le long d'une de ses directrices passant par le centre de phase de l'antenne pour avoir une plus grande envergure, un réseau linéaire de fentes rayonnantes. Le choix de la directrice du réflecteur dépend du plan de gisement déterminé pour la propagation. Le fait de disposer le réseau sur une des directrices centrales du réflecteur permet d'avoir un grand nombre de fentes donc une bonne résolution.
  • Chaque fente est associée à une cavité excitée par un élément par exemple du type plongeur ou cross-bar, dans laquelle sont créés les phénomènes de résonnance de certains modes ainsi que des phénomènes de rayonnement bien connus. Une excitation adéquate de l'ensemble des fentes rayonnantes du réseau pour la voie interrogation réception suivant une loi de phase paire et une loi atténuée en amplitude, telle que la loi gaussienne, permet d'obtenir d'un diagramme de rayonnement du type "somme" et une excitation d'un certain nombre de fentes, réparties symétriquement autour du centre de phase, suivant une loi de phase impaire, permet d'obtenir un diagramme de rayonnement du type "différence" pour la voie de contrôle.
  • L'intégration de l'antenne secondaire dans le réflecteur de l'antenne primaire présente l'avantage d'éviter une augmentation du volume de l'antenne primaire, donc de poids et de prise au vent. Le mécanisme d'entraînement du dispositif reste relativement simple et de faible volume, ce qui est particulièrement commode dans les systèmes d'armes.
  • La figure 1 représente schématiquement une vue en coupe d'un réflecteur 1 d'antenne commune pour radar primaire et secondaire, comportant un réseau 2 linéaire de fentes rayonnantes 2., i variant de 1 à n avec n représentant le nombre total de fentes du réseau. Les fentes sont disposées le long d'une direction D de préférence sur toute l'ouverture du réflecteur 1. Le pas h du réseau est de l'ordre de 0,6 à 0,8 λ dans une réalisation préférentielle. Le réflecteur 1 est réalisé en diélectrique 3 - du mat de verre imprégné d'époxy - recouvert par un tissu 4 de fibres de verre porteur de fils métalliques guipés 40 et 41 croisés. Ces fils sont en général en cuivre de faible épaisseur.
  • Derrière chaque fente 2i du réseau 2 est réalisée une cavité rayonnante 5. paraléllépipédique, à partir du même diélectrique 3 que le réflecteur 1 recouvert de la même manière par un tissu 4 de fibres de verre porteur de fils métalliques. Les polarisations des sources des antennes primaire et secondaire étant perpendiculaires, les fils métalliques 40 et 41 sont croisés sur toute la superficie du réflecteur 1, et également à l'intérieur des cavités 5., alors que devant les fentes il n'y a que les fils 40 disposés parallèlement à la directrice, suivant la direction de la polarisation choisie pour la source de l'antenne primaire, horizontale dans l'exemple décrit.
  • - Pour une fréquence d'émission de 104 MHz par exemple, le diamètre des fils métalliques 40 et 41 est de 12/100 mm et la distance entre chaque fil est de l'ordre de 1,5 mm.
  • Le guipage des fils métalliques par des fibres de verre permet au tissu d'avoir une élasticité homogène.
  • Pour diminuer le volume des cavités 5. et constituer un ensemble monolithique de réalisation simple, les cavités sont remplies de diélectrique 3. Les éléments excitateurs 6 de ces cavités 5. - du type plongeur ou cross-bar - sont insérés dans le diélectrique 3 remplissant les cavités et comportent une embase coaxiale 7 permettant l'adaptation entre les cavités 5. et les lignes coaxiales 8 qui les relient à un système diviseur de puissance 9 placé au dos du réflecteur 1. Ce diviseur de puissance 9, pouvant être constitué par des répartiteurs, est connecté par une ligne de liaison hyperfréquence à un ensemble interrogateur-récepteur classique, non représenté sur la figure 1. L'arrière du réflecteur est protégé par un capot 10 étanche, réalisé en diélectrique 3.
  • S'il s'avère que le diagramme de la voie contrôle donné par les fentes 2i du réseau, rayonnant vers l'avant, n'assure pas le recouvrement correct de la partie arrière du diagramme directif de la voie d'interrogation, cette voie contrôle est dotée d'un ou plusieurs éléments supplémentaires rayonnant vers l'arrière. Cela pourra éventuellement être une ou plusieurs fentes 11 formées dans le diélectrique du capot 10 derrière lesquelles sont réalisées des cavités 12, constituées de la même manière que les cavités 5i rayonnant vers l'avant du réflecteur 1. Ces fentes 11 sont en nombre, réduit et placées dans le capot 10, dans le plan de symétrie du réflecteur 1 contenant les fentes rayonnant vers l'avant.
  • Comme on l'a vu précédemment, c'est par l'intermédiaire du diviseur de puissance 9 que les cavités 12 associées aux fentes 2. et 11 sont excitées pour donner respectivement un diagramme de rayonnement directif du type "somme" pour la voie interrogation-réception et un diagramme du type "différence" pour la voie contrôle. Les fentes de la voie contrôle, qu'elles rayonnent vers l'avant ou vers l'arrière du réflecteur 1, sont réparties en deux groupes égaux, excités en opposition de phase, grâce à des déphaseurs de π situés dans le diviseur de puissance 9.
  • Comme le montre la figure 2 représentant un déphaseur 0-π hybride 15, les deux sorties 13 et 14 du déphaseur 15, en opposition de phase, sont reliées aux voies 16 et 17 du répartiteur de puissance 9, ces deux dernières voies alimentant les deux groupes de fentes 2. de la voie contrôle.
  • Les bornes 130 et 140 du déphaseur 15 sont des. entrées.
  • La figure 3 donne la forme du diagramme de rayonnement du type "somme" ou "pair" de la voie interrogation de la fonction radar secondaire, dans le plan gisement repéré par les axes d'abscisse 0 - angle de gisement - et d'ordonnée G - gain en dB. Il présente une largeur L à -3 dB du lobe principal 18 liée au gain désiré dans la direction du rayonnement maximal, liée aussi à des niveaux de lobes latéraux proches 19 peu élevés et enfin à un niveau de rayonnement diffus, représenté par les lobes 20, le plus faible possible.
  • Ces caractéristiques doivent être tenues non seulement dans le plan contenant la direction du rayonnement maximal, mais encore conservées dans toute l'ouverture en site du volume d'exploitation. Dans de telles conditions, il sera plus aisé d'assurer le recouvrement de ce diagramme par celui de la voie contrôle.
  • La figure 4 montre le recouvrement d'un diagramme directif I de la voie interrogation-réception par un diagramme C de la voie contrôle du type différence. L'axe de la crevasse 21 du diagramme différence C est le même que celui du lobe principal 18 du diagramme somme I. Les lobes latéraux 19 du diagramme de rayonnement du radar primaire I sont recouverts par le diagramme de rayonnement de la voie contrôle C.
  • On a ainsi décrit une antenne commune pour radar primaire et radar secondaire dont la fonction radar secondaire est intégrée dans le réflecteur de l'antenne du radar primaire.

Claims (17)

1. Antenne commune pour radar primaire et radar secondaire comportant un réflecteur unique illuminé par une source primaire jouant le rôle de source d'émission-réception de la fonction du radar primaire et une source alimentant la voie interrogation du radar secondaire, caractérisée par le fait que la source associée à la fonction radar secondaire est constituée par un réseau linéaire de fentes (2.) formé dans le réflecteur (1) le long d'une directrice (D), chaque fente étant associée à une cavité rayonnante (5i) comportant des moyens d'excitation.
2. Antenne commune suivant la revendication 1, caractérisée par le fait que la directrice le long de laquelle le réseau linéaire de fentes est formé passe par le centre de phase de l'antenne.
3. Antenne commune suivant l'une des revendications 1 ou 2, caractérisée par le fait que la voie directive d'interrogation-réception de la fonction radar secondaire comporte une voie dite de contrôle comprenant comme éléments dits de contrôle un certain nombre de fentes (2i), associées à des cavités (5.) rayonnantes, du réseau linéaire, situées à proximité et symétriquement de part et d'autre du centre de phase de l'antenne.
4. Antenne commune suivant la revendication 3, caractérisée par le fait que le diagramme de rayonnement de la voie interrogation-réception du radar secondaire est du type "somme" ou "pair".
5. Antenne commune suivant la revendication 3, caractérisée par le fait que le diagramme de rayonnement de la voie contrôle du radar secondaire est du type "différence" ou "impair".
6. Antenne commune suivant la revendication 4, caractérisée par le fait que les deux groupes de fentes (2i) symétriquement réparties autour du centre de phase de l'antenne, constituant la voie interrogation-réception du radar secondaire, sont excités suivant une loi atténuée en amplitude et une loi de phase paire.
7. Antenne commune suivant la revendication 6, caractérisée par le fait que la loi atténuée en amplitude est une loi gaussienne.
8. Antenne commune suivant la revendication 5, caractérisée par le fait que les deux groupes de fentes (2i), symétriquement réparties autour du centre de phase de l'antenne, constituant la voie de contrôle du radar secondaire, sont excités en opposition de phase.
9. Antenne commune selon la revendication 1, caractérisée par le fait que le réflecteur (1) et les cavités (5i) associées aux fentes (2i) sont réalisées à partir d'un diélectrique (3) recouvert par un tissu (4) de fibres de verre porteur de fils métalliques guipés (40-41), ces fils métalliques étant croisés sur toute la superficie du réflecteur et à l'intérieur des cavités, excepté devant les fentes où ils sont disposés suivant la direction de polarisation de la source du radar primaire.
10. Antenne commune selon la revendication 9, caractérisée par le fait que le diélectrique (3) est du mat de verre imprégné d'époxy.
11. Antenne commune selon la revendication 9, caractérisée par le fait que les cavités (5i) associées aux fentes (2i) sont remplies du même diélectrique (3) que celui servant à la réalisation du réflecteur (1).
12. Antenne commune selon la revendication 11, caractérisée par le fait que les cavités (5i) associées aux fentes (2i) sont excitées par des éléments (6), du type plongeur ou cross-bar, insérés dans le diélectrique remplissant les cavités.
13. Antenne commune selon la revendication 12, caractérisée par le fait que les éléments excitateurs (6) des cavités (5) ont une embase coaxiale (7).
14. Antenne commune suivant la revendication 13, caractérisée par le fait que les moyens excitateurs (6) des cavités (5.) sont reliées par des lignes coaxiales (8) à un diviseur de puissance (9) plaqué au dos du réflecteur (1).
15. Antenne commune, suivant l'une des revendications 1 à 14, caractérisée par le fait que l'arrière du réflecteur est protégé par un capot étanche (10), réalisé à partir du même diélectrique (3) que le réflecteur (1).
16. Antenne commune suivant l'une des revendications 1 à 15, caractérisée par le fait que la voie contrôle du radar secondaire peut comporter un ou plusieurs éléments (11) rayonnant vers l'arrière du réflecteur (1) et placés dans le plan de symétrie du réflecteur (1) contenant les fentes (2i) rayonnant vers l'avant.
17. Antenne commune suivant la revendication 16, caractérisée par le fait que les éléments rayonnants supplémentaires de la voie contrôle sont une ou plusieurs fentes (11) insérées dans le capot arrière (10) associées à des cavités rayonnantes (12), réalisées et alimentées de la même manière que les fentes (21) associées aux cavités (5i) insérées dans le réflecteur (1).
EP79401063A 1978-12-27 1979-12-21 Antenne commune pour radar primaire et radar secondaire Expired EP0013240B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT79401063T ATE1686T1 (de) 1978-12-27 1979-12-21 Gemeinsame antenne fuer primaer- und sekundaerradar.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR7836484A FR2445629A1 (fr) 1978-12-27 1978-12-27 Antenne commune pour radar primaire et radar secondaire
FR7836484 1978-12-27

Publications (2)

Publication Number Publication Date
EP0013240A1 true EP0013240A1 (fr) 1980-07-09
EP0013240B1 EP0013240B1 (fr) 1982-10-20

Family

ID=9216582

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79401063A Expired EP0013240B1 (fr) 1978-12-27 1979-12-21 Antenne commune pour radar primaire et radar secondaire

Country Status (8)

Country Link
US (1) US4284991A (fr)
EP (1) EP0013240B1 (fr)
JP (1) JPS6034070B2 (fr)
AT (1) ATE1686T1 (fr)
DE (1) DE2963910D1 (fr)
DK (1) DK549779A (fr)
FR (1) FR2445629A1 (fr)
NO (1) NO794240L (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0021193A1 (fr) * 1979-06-14 1981-01-07 CONTRAVES ITALIANA S.p.A. Système d'antennes combiné
EP0033676A1 (fr) * 1980-01-28 1981-08-12 Thomson-Csf Antenne commune pour radar primaire et radar secondaire
EP0053512A1 (fr) * 1980-12-03 1982-06-09 The Marconi Company Limited Antenne de radar secondaire
EP0057538A2 (fr) * 1981-01-29 1982-08-11 Kabushiki Kaisha Toshiba Dispositif d'antenne
FR2510265A1 (fr) * 1981-07-24 1983-01-28 Biolley Alain Dispositif de visee pour telemetrie et ecartometrie
EP0237110A1 (fr) * 1986-03-05 1987-09-16 THORN EMI Electronics Limited Système d'antenne radiogoniométrique

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8501225D0 (en) * 1985-01-17 1985-02-20 Cossor Electronics Ltd Antenna
US4833485A (en) * 1985-05-17 1989-05-23 The Marconi Company Limited Radar antenna array
US4907008A (en) * 1988-04-01 1990-03-06 Andrew Corporation Antenna for transmitting circularly polarized television signals
US6225955B1 (en) * 1995-06-30 2001-05-01 The United States Of America As Represented By The Secretary Of The Army Dual-mode, common-aperture antenna system
WO1997032359A1 (fr) * 1996-02-27 1997-09-04 Thomson Consumer Electronics, Inc. Antenne noeud papillon pliee
US7126553B1 (en) * 2003-10-02 2006-10-24 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Deployable antenna
US20070080455A1 (en) * 2005-10-11 2007-04-12 International Business Machines Corporation Semiconductors and methods of making
US7863183B2 (en) * 2006-01-18 2011-01-04 International Business Machines Corporation Method for fabricating last level copper-to-C4 connection with interfacial cap structure
US7532163B2 (en) * 2007-02-13 2009-05-12 Raytheon Company Conformal electronically scanned phased array antenna and communication system for helmets and other platforms
US20170323239A1 (en) 2016-05-06 2017-11-09 General Electric Company Constrained time computing control system to simulate and optimize aircraft operations with dynamic thermodynamic state and asset utilization attainment
CN111684659B (zh) 2018-02-09 2022-07-05 京瓷Avx元器件公司 管状相控阵天线
CN111699593B (zh) 2018-02-09 2022-07-05 京瓷Avx元器件公司 圆顶形相控阵天线

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH328923A (de) * 1955-05-18 1958-03-31 Standard Telephon & Radio Ag Antennen-Überwachungsvorrichtung
US3550135A (en) * 1967-03-22 1970-12-22 Hollandse Signaalapparaten Bv Dual beam parabolic antenna
FR2284997A1 (fr) * 1974-09-13 1976-04-09 Thomson Csf Antenne commune pour radar primaire et radar secondaire avec moyens de controle de l'interrogation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3039098A (en) * 1959-09-21 1962-06-12 Hughes Aircraft Co Finite focus wave energy antenna array
US3701158A (en) * 1970-01-22 1972-10-24 Motorola Inc Dual mode wave energy transducer device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH328923A (de) * 1955-05-18 1958-03-31 Standard Telephon & Radio Ag Antennen-Überwachungsvorrichtung
US3550135A (en) * 1967-03-22 1970-12-22 Hollandse Signaalapparaten Bv Dual beam parabolic antenna
FR2284997A1 (fr) * 1974-09-13 1976-04-09 Thomson Csf Antenne commune pour radar primaire et radar secondaire avec moyens de controle de l'interrogation

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0021193A1 (fr) * 1979-06-14 1981-01-07 CONTRAVES ITALIANA S.p.A. Système d'antennes combiné
EP0033676A1 (fr) * 1980-01-28 1981-08-12 Thomson-Csf Antenne commune pour radar primaire et radar secondaire
EP0053512A1 (fr) * 1980-12-03 1982-06-09 The Marconi Company Limited Antenne de radar secondaire
EP0057538A2 (fr) * 1981-01-29 1982-08-11 Kabushiki Kaisha Toshiba Dispositif d'antenne
EP0057538A3 (en) * 1981-01-29 1982-12-01 Tokyo Shibaura Denki Kabushiki Kaisha Antenna device
FR2510265A1 (fr) * 1981-07-24 1983-01-28 Biolley Alain Dispositif de visee pour telemetrie et ecartometrie
EP0237110A1 (fr) * 1986-03-05 1987-09-16 THORN EMI Electronics Limited Système d'antenne radiogoniométrique

Also Published As

Publication number Publication date
JPS5590876A (en) 1980-07-09
FR2445629A1 (fr) 1980-07-25
JPS6034070B2 (ja) 1985-08-06
ATE1686T1 (de) 1982-11-15
FR2445629B1 (fr) 1982-06-18
NO794240L (no) 1980-06-30
EP0013240B1 (fr) 1982-10-20
DK549779A (da) 1980-06-28
US4284991A (en) 1981-08-18
DE2963910D1 (en) 1982-11-25

Similar Documents

Publication Publication Date Title
EP0013240B1 (fr) Antenne commune pour radar primaire et radar secondaire
EP0457880B1 (fr) Antenne iff aeroportee a diagrammes multiples commutables
EP0374008B1 (fr) Antenne à couverture tridimensionnelle et balayage électronique, du type réseau volumique raréfié aléatoire
EP1568104B1 (fr) Antenne multi-faisceaux a materiau bip
EP0239069B1 (fr) Antenne réseau sur circuit imprimé
FR2944153A1 (fr) Antenne multicouche a plans paralleles, de type pillbox, et systeme d'antenne correspondant
FR2625616A1 (fr) Antenne plane
FR2652453A1 (fr) Antenne coaxiale a fentes du type a alimentation a ondes progressives.
FR2930079A1 (fr) Capteur de rayonnement, notamment pour radar
FR2626980A1 (fr) Transpondeur de radar secondaire
EP1554777B1 (fr) Antenne a materiau bip multi-faisceaux
EP0018878A1 (fr) Système interrogateur aéroporté comprenant une antenne radar et une antenne d'interrogation
FR2677491A1 (fr) Antenne hyperfrequence elementaire bipolarisee.
EP1181744B1 (fr) Antenne a polarisation verticale
FR2629920A1 (fr) Filtre spatial adaptatif hyperfrequence fonctionnant a la reflexion et son procede de mise en oeuvre
EP0033676B1 (fr) Antenne commune pour radar primaire et radar secondaire
FR2861898A1 (fr) Antenne a micro-ondes
EP0520908B1 (fr) Antenne réseau linéaire
FR2854737A1 (fr) Antenne a materiau bip multi-faisceaux et/ou multi- frequences et systeme mettant en oeuvre ces antennes.
WO1992017915A1 (fr) Antenne cylindrique imprimee omnidirectionnelle et repondeur radar maritime utilisant de telles antennes
FR2958086A1 (fr) Element rayonnant de type pave double mode a couverture angulaire etendue, utilisable en reseau
FR2590081A1 (fr) Antenne a reflecteurs a grilles polarisees lineairement avec de meilleures performances de polarisation transversale
EP0991135A1 (fr) Antenne sélective à commutation en fréquence
FR2703190A1 (fr) Structure rayonnante à directivité variable.
EP0088681B1 (fr) Antenne à double réflecteur à transformateur de polarisation incorporé

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE GB IT LU NL SE

17P Request for examination filed
ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE GB IT LU NL SE

REF Corresponds to:

Ref document number: 1686

Country of ref document: AT

Date of ref document: 19821115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 2963910

Country of ref document: DE

Date of ref document: 19821125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19821231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19830922

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19840930

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19841022

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19841123

Year of fee payment: 6

Ref country code: CH

Payment date: 19841123

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19841129

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19841231

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19851221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19851222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19851231

Ref country code: BE

Effective date: 19851231

BERE Be: lapsed

Owner name: THOMSON-CSF

Effective date: 19851231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19860701

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19860902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881118

EUG Se: european patent has lapsed

Ref document number: 79401063.7

Effective date: 19860902

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT