WO1992017915A1 - Omnidirectionnal printed cylindrical antenna and marine radar transponder using such antennas - Google Patents

Omnidirectionnal printed cylindrical antenna and marine radar transponder using such antennas Download PDF

Info

Publication number
WO1992017915A1
WO1992017915A1 PCT/FR1992/000263 FR9200263W WO9217915A1 WO 1992017915 A1 WO1992017915 A1 WO 1992017915A1 FR 9200263 W FR9200263 W FR 9200263W WO 9217915 A1 WO9217915 A1 WO 9217915A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
sub
supply line
radiating elements
transmitter
Prior art date
Application number
PCT/FR1992/000263
Other languages
French (fr)
Inventor
Philippe Dupuis
Jean-Pierre Louis Marie Daniel
Jean-Luc Alanic
Philippe Renaudin
Original Assignee
Centre Regional D'innovation Et De Transfert De Technologie En Electronique Et Communications (Critt) Loi 1901
Serpe, Societe D'etudes Et De Realisations De Protection Electronique Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre Regional D'innovation Et De Transfert De Technologie En Electronique Et Communications (Critt) Loi 1901, Serpe, Societe D'etudes Et De Realisations De Protection Electronique Sa filed Critical Centre Regional D'innovation Et De Transfert De Technologie En Electronique Et Communications (Critt) Loi 1901
Priority to EP92908983A priority Critical patent/EP0585250B1/en
Priority to DE69212471T priority patent/DE69212471T2/en
Publication of WO1992017915A1 publication Critical patent/WO1992017915A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • H01Q21/205Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path providing an omnidirectional coverage

Definitions

  • the present invention relates to a cylindrical omnidirectional printed antenna and a maritime radar transponder which uses such antennas.
  • a cylindrical antenna which is omnidirectional in a horizontal plane and which has a minimized diameter while presenting a fairly high gain. Its opening angle in a vertical plane can be of the order of 35 ° and, in this case, it can be used in a maritime radar transponder as a receiving antenna and transmitting antenna in the frequency band 9.2 GHz-9.5 GHz.
  • the object of the invention is to produce an antenna which has these technical characteristics and the manufacture of which is easy to implement.
  • a cylindrical antenna according to the invention consists of a cylindrical substrate of a dielectric material, the internal wall of which is covered with a layer of metallic material forming a ground plane and the external wall of which receives the radiating elements, these being arranged in a plurality of identical sub-networks parallel to each other and equidistant on a perimeter of the substrate, the sub-networks being supplied in phase, each sub-network consisting of a line of straight feed which, on the
  • REPLACEMENT SHEET cylindrical substrate of the antenna is located on a generator of said cylinder and of a plurality of identical radiating elements located alternately on either side of said supply line and supplied by said supply line so as to be able emitting waves in phase, the distance on the perimeter of the cylinder which separates two neighboring sub-networks being at most equal to 2 times the maximum dimension on the perimeter of the cylinder of the radiating elements, the radiating elements on one side of a sub -network being interlaced with the radiating elements on the opposite side of a neighboring sub-network.
  • each radiating element consists of a conductive patch of square shape, one corner of which is in galvanic contact with the supply line of the corresponding sub-network and whose diagonal is perpendicular to the line d at the feed point.
  • the radiating elements of the same sub-network are distant from each other, on the supply line of said sub-network, by a half-wavelength guided by said line of food.
  • the invention also relates to a maritime radar transponder comprising a cylindrical casing at least part of which forms a radome and which contains a wave receiver such as those emitted by a scanning radar system, a transmitter emitting such radar waves, a control circuit which controls the transmission of the transmitter when the receiver has received a radar wave from a radar system, the receiver and the transmitter respectively comprising a reception antenna and a transmission antenna.
  • a maritime radar transponder comprising a cylindrical casing at least part of which forms a radome and which contains a wave receiver such as those emitted by a scanning radar system, a transmitter emitting such radar waves, a control circuit which controls the transmission of the transmitter when the receiver has received a radar wave from a radar system, the receiver and the transmitter respectively comprising a reception antenna and a transmission antenna.
  • each antenna is a cylindrical antenna having the characteristics mentioned above and is mounted coaxially inside said part forming a radome.
  • the transmitter, the receiver and the control circuit of this transponder are mounted on the same printed circuit board on which are threaded the cylindrical transmitting and receiving antennas, the transmitter located inside the transmitting antenna and the receiver inside the receiving antenna.
  • the transmitter and the receiver are on one side while the control circuit is on the other side.
  • FIG. . 1 is a perspective view of an antenna according to the invention
  • FIG. 2 is a developed view on a plan of an array of radiating elements of an antenna according to the invention
  • FIGS. 3a and 3b are characteristic curves of an antenna according to the invention
  • FIG. 4 is a perspective view of a radar transponder according to the present invention which uses two antennas according to the invention.
  • the cylindrical antenna shown in FIG. 1 consists of a cylindrical substrate of a dielectric material, the internal wall of which is covered with a layer 2 of a metallic material forming a ground plane and the internal wall of which receives radiating elements 3 supplied by lines of food 4.
  • the substrate is, for example, in a dielectric material such as polypropylene or Teflon glass. Its relative permittivity is, for example, close to 2.2. For correct operation in a band centered on 9.4 GHz, its thickness is advantageously of the order of 800 microns.
  • the radiating elements 3 are produced on the substrate 1 according to the technique of the printed circuit on a dielectric plate covered beforehand, on each of its two faces, with a layer metallic, for example, copper or aluminum and which is, after printing the radiating elements 3 on one of these two faces, rolled to form the cylindrical antenna shown in FIG. 1.
  • Fig. 2 shows an array of radiating elements 3 according to an exemplary embodiment of the invention. This network is shown developed on a plan as it appears when printed on a plate, before rolling.
  • It comprises four identical sub-networks RI, R2, R3, and R4, each of four identical radiating elements 3, the sub-networks Ri being mutually parallel and equidistant on the perimeter of the cylinder.
  • the number of sub-arrays can be less than or greater than four, depending on the diameter of the antenna that one wishes to obtain.
  • the Ri subnetworks are supplied in phase in a tree-like configuration.
  • the sub-networks RI, R2, R3 and R4 are respectively supplied by conductive lines Ll, L2, L3 and L4 bent at 90 °
  • the lines Ll and L2 have their common ends connected to a conductive line L12 bent at 90 °
  • lines L3 and L4 have their common ends connected to a conductive line L34 bent at 90 °.
  • the latter L12 and L34 have their common ends connected to a general supply line LA.
  • Another supply mode could also be used as long as it provides a phase supply of the sub-networks RI to R4, for example, a supply in series.
  • the lines L1 to L4 have lengths which are equal to a wavelength guided on the substrate at the operating frequency of the antenna. Their width is such that they have a characteristic impedance allowing the impedance adaptation with the sub-networks RI to R4.
  • the lines L suspiciousand L have equal lengths and each have a characteristic impedance which allows impedance matching with lines L1 to L4 and the sub-networks which the latter supply. It should be noted that these impedance adaptations may nevertheless require quarter-wave transformers consisting of a widening sow supply lines over a length equal to a quarter of a guided wavelength on the substrate. Thus, in the case where more than four sub-networks are used, such transformers should be provided on the lines L1 to L4 and L12 and L34. Similarly, if more than four radiating elements per sub-network are used, it is necessary to provide transformers on the sections of line between the radiating elements.
  • lines L and L have sections (horizontal in Fig. 2) which belong to the same perimeter of the cylinder. It is the same for lines L1 to L4 which also have sections belonging to the same perimeter of the cylinder.
  • Each sub-network Ri consists of a rectilinear supply line L which, on the cylindrical substrate 1 of the antenna, happens to be on a generator of this cylinder.
  • supply line L there are, supplied at points spaced on said line L of a half-wavelength guided on the substrate, four radiating elements 3.
  • Each radiating element 3 advantageously consists of a conductive patch of square shape, a corner 31 of which is in galvanic contact with the supply line L R for its excitation and a diagonal d of which is perpendicular to the supply line L at the supply point is. tion 31.
  • the radiating elements 3 could also consist of conductive pads of any shape, for example, circular, rectangular, etc. Square or rectangular in shape, they could also be fed from the middle of one side by means of an appropriate line section.
  • the supply line L of each sub-network and the vertical section in FIG. 2 of the corresponding line L1 to L4 are collinear.
  • the radiating elements 3g situated on one side of the supply line L D of a sub-network R. are interlaced with
  • the radiating elements 3 interleaved are distant by a half wavelength guided on the substrate.
  • the distance between the feed lines of two neighboring R and R sub-networks is an important parameter as regards the 1 1 + 1 omnidirectional characteristic of the antenna. This distance is more than 2 times the maximum dimension on the perimeter of the cylinder of the radiating elements, that is to say, in the case of radiating elements made up of pellets of square shape, the length of the diagonal of this pastille.
  • Measurements were made on a cylindrical antenna having a substrate with a permittivity of 2.2 and whose radius is 15 mm.
  • the distance on the line LR of each sub-network Ri between two radiating elements is substantially equal to 12.1 mm and the distance between two neighboring sub-networks is substantially equal to 2.40 mm.
  • the diagonal of the square of the pads 3 is substantially equal to 14 mm.
  • the width of the supply lines L1 to L4, L12, L34, and LA was adjusted to a characteristic impedance of 80 ohms in the frequency band 9.2 GHz-9.5 GHz .
  • Fig. 3a shows gain diagrams as a function of the azimuth angle which have been plotted with this antenna at an operating frequency of 9.4 GHz.
  • the main axis of the cylinder of this antenna is vertical.
  • the gain for the main polarization component is substantially constant and the gain ripples noted do not exceed 2.5 dB.
  • the gain for the cross component is at least 10 dB lower than that of the main component. It can therefore be seen that the antenna emits a wave polarized substantially linearly in a horizontal plane.
  • the standing wave ratio (ROS) is less than 1.5 in the band 9.2 GHz - 9.5 GHz.
  • Fig. 3b the gain at an operating frequency of 9.4 GHz of an antenna according to the invention as a function of the angle formed by the direction of measurement with a horizontal plane, the antenna cylindrical having its main vertical axis. It can be seen that the opening angle at -3 dB as measured is + 18 ° and -18 ° relative to the horizontal.
  • FIG. 4 There is shown in FIG. 4, a maritime rescue radar responder.
  • the housing 10 shown here in thin dashed mixed lines, inside which are housed, coaxially, a cylindrical transmitting antenna 11 and a cylindrical receiving antenna 12.
  • the housing 10 shown comprises a part 10a forming a radome transparent to radar waves and part 10b.
  • the antennas 11 and 12 are inside the part 10a.
  • the entire housing 10 can be a radome.
  • a transmitter 14 housed inside the first cylindrical antenna 11, and, at the other end, a receiver 15 housed at the inside the second cylindrical antenna 12.
  • a control circuit 16 is provided on the other face of the plate 13.
  • Coaxial cables 17 and 18 are respectively provided for respectively connecting the high frequency signal output of the transmitter 14 at the transmit antenna 10 and the high frequency signal input from the receiver 15 at the receive antenna 11.
  • An electrical supply device 19 is provided, in part 10b, for supplying direct current to the transmitter 14, the receiver 15 and the control circuit 16.
  • this supply device 19 is separated from the rest of the responder and is located in a second housing separate from the housing 10. In this case, the part 10b of the housing 10 does not exist.
  • the receiver 15 is of the type which can receive and demodulate signals transmitted by radar systems transmitting in the band of frequencies 9.2 GHz - 9.5 GHz. As for the transmitter 14, it emits, by frequency scanning, waves in the same frequency band.
  • a radar responder is used as follows. It equips, for example, a buoy or a lifeboat.
  • a second vessel has a rotating beam radar system which transmits, for example, on a frequency in the band 9.2 GHz - 9.5 GHz.
  • the receiving antenna 11 of this transponder When it passes within range of a buoy or a boat whose maritime radar transponder is started, following for example a sinking, the receiving antenna 11 of this transponder periodically receives the signals transmitted by the radar system and the receiver 15, connected to the reception antenna 11, detects them. This has the effect of activating the control circuit 16 which then turns on the transmitter 14.
  • the latter transmits, via the transmitting antenna 10 to which it is connected and by frequency scanning, radar waves in the same band which are then picked up by the radar system of the second boat. It is therefore possible to determine, on the screen of this system, the position of the buoy.
  • the antennas according to the invention are particularly well suited to this particular application. Indeed, due to their shape, they are easily accommodated in a cylindrical housing. In the internal volume that each generates, it is possible to place the transmitter and receiver which, because of the ground plane on their internal walls of the antenna, are isolated from the ambient waves and parasites and which, consequently, do not require shields.

Abstract

Omnidirectional printed cylindrical antenna consisting of a cylindrical substrate (1) in a dielectric material, the internal wall of which is coated with a metallic layer (2) forming a ground plane and the external wall of which receives the array elements (3), the latter being arranged in plurality of identical parallel sub-arrays (Ri) equidistant on a periphery of the substrate (1). The sub-arrays (Ri) are supplied in-phase, each sub-array (Ri) consisting of a rectilinear supply line (LR) which, on the cylindrical substrate (1) of the antenna is located on a generatrix of said cylinder, and a plurality of array elements (3) located alternately on either side of said supply line (LR) and supplied by said supply line (LR) so as to be able to transmit in-phase waves. The distance on the cylinder's periphery which separates the two adjacent sub-arrays (Ri and Ri+1) being at most equal to twice the maximum dimension on the periphery of the cylinder bearing the array elements (3). The said elements on one side of a sub-array are interlaced with the array elements (3) on the opposite side of an adjacent sub-array. The invention also concerns a marine radar transponder using such antennas.

Description

Antenne cylindrique imprimée omnidirectionnelle et répondeur radar maritime utilisant de telles antennes Omnidirectional printed cylindrical antenna and maritime radar responder using such antennas
La présente invention concerne une antenne cylindrique imprimée omnidirectionnelle et un répondeur radar maritime qui utilise de telles antennes.The present invention relates to a cylindrical omnidirectional printed antenna and a maritime radar transponder which uses such antennas.
On a cherché à réaliser une antenne cylindrique qui soit omnidirectionnelle dans un plan horizontal et qui ait un diamètre minimisé'tout en présentant un gain assez élevé. Son angle d'ouverture dans un plan vertical peut être de l'ordre de 35° et, dans ce cas, elle peut être utilisée dans un répondeur radar maritime en tant qu'antenne de réception et antenne d'émission dans la bande de fréquences 9,2 GHz-9,5 GHz.We have sought to produce a cylindrical antenna which is omnidirectional in a horizontal plane and which has a minimized diameter while presenting a fairly high gain. Its opening angle in a vertical plane can be of the order of 35 ° and, in this case, it can be used in a maritime radar transponder as a receiving antenna and transmitting antenna in the frequency band 9.2 GHz-9.5 GHz.
Le but de l'invention est de réaliser une antenne qui présente ces caractéristiques techniques et dont la fabrication soit facile à mettre en oeuvre.The object of the invention is to produce an antenna which has these technical characteristics and the manufacture of which is easy to implement.
A cet effet, une antenne cylindrique selon l'invention est constituée d'un substrat cylindrique d'un matériau diélectrique dont la paroi interne est recouverte d'une couche d'un matériau métallique formant un plan de masse et dont la paroi externe reçoit les éléments rayonnants, ceux-ci étant arrangés en une pluralité de sous-réseaux identiques parallèles entre eux et équidistants sur un périmètre du substrat, les sous-réseaux étant alimentés en phase, chaque sous-ré¬ seau étant constitué d'une ligne d'alimentation rectiligne qui, sur leTo this end, a cylindrical antenna according to the invention consists of a cylindrical substrate of a dielectric material, the internal wall of which is covered with a layer of metallic material forming a ground plane and the external wall of which receives the radiating elements, these being arranged in a plurality of identical sub-networks parallel to each other and equidistant on a perimeter of the substrate, the sub-networks being supplied in phase, each sub-network consisting of a line of straight feed which, on the
FEUILLE DE REMPLACEMENT substrat cylindrique de l'antenne, se trouve sur une génératrice dudit cylindre et d'une pluralité d'éléments rayonnants identiques situés alternativement de part et d'autre de ladite ligne d'alimentation et alimentés par ladite ligne d'alimentation de manière à pouvoir émettre des ondes en phase, la distance sur le périmètre du cylindre qui sépare deux sous-réseaux voisins étant au plus égale à 2 fois la dimension maximale sur le périmètre du cylindre des éléments rayonnants, les éléments rayonnants d'un côté d'un sous-réseau étant entrelacés avec les éléments rayonnants du côté opposé d'un sous- réseau voisin.REPLACEMENT SHEET cylindrical substrate of the antenna, is located on a generator of said cylinder and of a plurality of identical radiating elements located alternately on either side of said supply line and supplied by said supply line so as to be able emitting waves in phase, the distance on the perimeter of the cylinder which separates two neighboring sub-networks being at most equal to 2 times the maximum dimension on the perimeter of the cylinder of the radiating elements, the radiating elements on one side of a sub -network being interlaced with the radiating elements on the opposite side of a neighboring sub-network.
De cette manière, du fait de cet entrelacement, on dispose du nombre maximum d'éléments rayonnants, ceux-ci émettant en phase, ce qui permet à l'antenne de présenter un gain maximum pour un diamètre minimisé. L'espacement entre les sous-réseaux est ajusté, dans la fourchette indiquée, de manière que l'émission du rayonnement dans un plan horizontal soit omnidirectionnelle.In this way, due to this interlacing, there is the maximum number of radiating elements, these emitting in phase, which allows the antenna to present a maximum gain for a minimized diameter. The spacing between the sub-arrays is adjusted, within the range indicated, so that the emission of radiation in a horizontal plane is omnidirectional.
Selon une autre caractéristique de l'invention, chaque élément rayonnant est constitué d'une pastille conductrice de forme carrée dont un coin est en contact galvanique avec la ligne d'alimentation du sous-réseau correspondant et dont une diagonale est perpendiculaire à la ligne d'alimentation au point d'alimentation.According to another characteristic of the invention, each radiating element consists of a conductive patch of square shape, one corner of which is in galvanic contact with the supply line of the corresponding sub-network and whose diagonal is perpendicular to the line d at the feed point.
Selon une autre caractéristique de l'invention, les éléments rayonnants d'un même sous-réseau sont distants entre eux, sur la ligne d'alimentation dudit sous-réseau, d'une demi-longueur d'onde guidée par ladite ligne d'alimentation.According to another characteristic of the invention, the radiating elements of the same sub-network are distant from each other, on the supply line of said sub-network, by a half-wavelength guided by said line of food.
L'invention concerne également un répondeur radar maritime comprenant un boîtier cylindrique dont au moins une partie forme un râdome et qui renferme un récepteur d'ondes telles que celles qui sont émises par un système radar à balayage, un émetteur émettant de telles ondes radar, un circuit de commande qui commande l'émission de l'émetteur lorsque le récepteur a reçu une onde radar issue d'un système radar, le récepteur et l'émetteur comportant respectivement une antenne de réception et une antenne d'émission.The invention also relates to a maritime radar transponder comprising a cylindrical casing at least part of which forms a radome and which contains a wave receiver such as those emitted by a scanning radar system, a transmitter emitting such radar waves, a control circuit which controls the transmission of the transmitter when the receiver has received a radar wave from a radar system, the receiver and the transmitter respectively comprising a reception antenna and a transmission antenna.
Selon une première caractéristique, chaque antenne est une antenne cylindrique présentant les caractéristiques mentionnées ci-dessus et est montée coaxialement à l'intérieur de ladite partie formant radôme.According to a first characteristic, each antenna is a cylindrical antenna having the characteristics mentioned above and is mounted coaxially inside said part forming a radome.
Selon une autre caractéristique de l'invention, l'émetteur, le récepteur et le circuit de commande de ce répondeur sont montés sur une même plaque de circuit imprimé sur laquelle sont enfilées les antennes cylindriques d'émission et de réception, l'émetteur se trouvant à l'intérieur de l'antenne d'émission et le récepteur à l'intérieur de l'antenne de réception.According to another characteristic of the invention, the transmitter, the receiver and the control circuit of this transponder are mounted on the same printed circuit board on which are threaded the cylindrical transmitting and receiving antennas, the transmitter located inside the transmitting antenna and the receiver inside the receiving antenna.
Selon une autre caractéristique de l'invention, sur la plaque de circuit imprimé, l'émetteur et le récepteur se trouvent sur une face alors que le circuit de commande est sur l'autre face.According to another characteristic of the invention, on the printed circuit board, the transmitter and the receiver are on one side while the control circuit is on the other side.
Les caractéristiques de l'invention mentionnées ci-dessus, ainsi que d'autres, apparaîtront plus clairement à la lecture de la description suivante d'un exemple de réalisation, ladite description étant faite en relation avec les dessins joints, parmi lesquels: la Fig. 1 est une vue en perspective d'une antenne selon l'invention, la Fig. 2 est une vue en développée sur un plan d'un réseau d'éléments rayonnants d'une antenne selon l'invention, les Figs. 3a et 3b sont des courbes de caractéristiques d'une antenne selon l'invention, et la Fig. 4 est une vue en perspective d'un répondeur radar selon la présente invention qui utilise deux antennes selon l'invention.The characteristics of the invention mentioned above, as well as others, will appear more clearly on reading the following description of an exemplary embodiment, said description being made in relation to the accompanying drawings, among which: FIG. . 1 is a perspective view of an antenna according to the invention, FIG. 2 is a developed view on a plan of an array of radiating elements of an antenna according to the invention, FIGS. 3a and 3b are characteristic curves of an antenna according to the invention, and FIG. 4 is a perspective view of a radar transponder according to the present invention which uses two antennas according to the invention.
L'antenne cylindrique représentée à la Fig. 1 est constituée d'un substrat cylindrique d'un matériau diélectrique dont la paroi interne est recouverte d'une couche 2 d'un matériau métallique formant un plan de masse et dont la paroi interne reçoit des éléments rayonnants 3 alimentés par des lignes d'alimentation 4.The cylindrical antenna shown in FIG. 1 consists of a cylindrical substrate of a dielectric material, the internal wall of which is covered with a layer 2 of a metallic material forming a ground plane and the internal wall of which receives radiating elements 3 supplied by lines of food 4.
Le substrat est, par exemple, dans un matériau diélectrique tel que du polypropylène ou du verre Téflon. Sa permittivité relative est, par exemple, voisine de 2,2. Pour un fonctionnement correct dans une bande centrée sur 9,4 GHz, son épaisseur est avantageusement de l'ordre de 800 microns.The substrate is, for example, in a dielectric material such as polypropylene or Teflon glass. Its relative permittivity is, for example, close to 2.2. For correct operation in a band centered on 9.4 GHz, its thickness is advantageously of the order of 800 microns.
Les éléments rayonnants 3 sont réalisés sur le substrat 1 selon la technique du circuit imprimé sur une plaque diélectrique recouver- te, au préalable, sur chacune de ses deux faces, d'une couche métallique, par exemple, de cuivre ou d'aluminium et qui est, après impression des éléments rayonnants 3 sur une de ces deux faces, roulée pour former l'antenne cylindrique représentée à la Fig. 1.The radiating elements 3 are produced on the substrate 1 according to the technique of the printed circuit on a dielectric plate covered beforehand, on each of its two faces, with a layer metallic, for example, copper or aluminum and which is, after printing the radiating elements 3 on one of these two faces, rolled to form the cylindrical antenna shown in FIG. 1.
La Fig. 2 montre un réseau d'éléments rayonnants 3 selon un exemple de réalisation de l'invention. Ce réseau est montré en développée sur un plan tel qu'il apparaît lorsqu'il est imprimé sur une plaque, avant son roulage.Fig. 2 shows an array of radiating elements 3 according to an exemplary embodiment of the invention. This network is shown developed on a plan as it appears when printed on a plate, before rolling.
Il comprend quatre sous-réseaux RI, R2, R3, et R4 identiques de, chacun, quatre éléments rayonnants identiques 3, les sous-réseaux Ri étant parallèles entre eux et équidistants sur le périmètre du cylindre.It comprises four identical sub-networks RI, R2, R3, and R4, each of four identical radiating elements 3, the sub-networks Ri being mutually parallel and equidistant on the perimeter of the cylinder.
Le nombre de sous-réseaux peut être inférieur ou supérieur à quatre, selon le diamètre de l'antenne que l'on désire obtenir.The number of sub-arrays can be less than or greater than four, depending on the diameter of the antenna that one wishes to obtain.
Tels qu'ils sont représentés, les sous-réseaux Ri sont alimentés en phase selon une configuration en arborescence. Ainsi, les sous-réseaux RI, R2, R3 et R4 sont respectivement alimentés par des lignes conductrices Ll, L2, L3 et L4 coudées à 90°, les lignes Ll et L2 ont leurs extrémités communes reliées à une ligne conductrice L12 coudée à 90° et les lignes L3 et L4 ont leurs extrémités communes reliées à une ligne conductrice L34 coudée à 90°. Enfin, ces dernières L12 et L34 ont leurs extrémités communes reliées à une ligne d'alimen¬ tation générale LA.As shown, the Ri subnetworks are supplied in phase in a tree-like configuration. Thus, the sub-networks RI, R2, R3 and R4 are respectively supplied by conductive lines Ll, L2, L3 and L4 bent at 90 °, the lines Ll and L2 have their common ends connected to a conductive line L12 bent at 90 ° and lines L3 and L4 have their common ends connected to a conductive line L34 bent at 90 °. Finally, the latter L12 and L34 have their common ends connected to a general supply line LA.
Un autre mode d'alimentation pourrait également être utilisé dès lors qu'il assure une alimentation en phase des sous-réseaux RI à R4, par exemple, une alimentation en série.Another supply mode could also be used as long as it provides a phase supply of the sub-networks RI to R4, for example, a supply in series.
Les lignes Ll à L4 ont des longueurs qui sont égales à une longueur d'onde guidée sur le substrat à la fréquence de fonctionne¬ ment de l'antenne. Leur largeur est telle qu'elles ont une impédance caractéristique permettant l'adaptation d'impédance avec les sous-ré- seaux RI à R4.The lines L1 to L4 have lengths which are equal to a wavelength guided on the substrate at the operating frequency of the antenna. Their width is such that they have a characteristic impedance allowing the impedance adaptation with the sub-networks RI to R4.
Les lignes L „ et L ont des longueurs égales et présentent, chacune, une impédance caractéristique qui permet l'adaptation d'impédance avec les lignes Ll à L4 et les sous-réseaux que ces dernières alimentent. 0n notera que ces adaptations d'impédance peuvent néanmoins nécessiter des transformateurs quart d'onde consistant en un élargis- sèment des lignes d'alimentation sur une longueur égale à un quart d longueur d'onde guidée sur le substrat. Ainsi, dans le cas où plus d quatre sous-réseaux sont utilisés, de tels transformateurs devron être prévus sur les lignes Ll à L4 et L12 et L34. De même, si plus d quatre éléments rayonnants par sous-réseau sont utilisés, il es nécessaire de prévoir des transformateurs sur les tronçons de lign entre les éléments rayonnants.The lines L „and L have equal lengths and each have a characteristic impedance which allows impedance matching with lines L1 to L4 and the sub-networks which the latter supply. It should be noted that these impedance adaptations may nevertheless require quarter-wave transformers consisting of a widening sow supply lines over a length equal to a quarter of a guided wavelength on the substrate. Thus, in the case where more than four sub-networks are used, such transformers should be provided on the lines L1 to L4 and L12 and L34. Similarly, if more than four radiating elements per sub-network are used, it is necessary to provide transformers on the sections of line between the radiating elements.
On remarquera que les lignes L et L ont des tronçons (horizontaux sur la Fig. 2) qui appartiennent à un même périmètre du cylindre. Il en est de même des lignes Ll à L4 qui ont aussi des tronçons appartenant à un même périmètre du cylindre.Note that the lines L and L have sections (horizontal in Fig. 2) which belong to the same perimeter of the cylinder. It is the same for lines L1 to L4 which also have sections belonging to the same perimeter of the cylinder.
Chaque sous-réseau Ri est constitué d'une ligne d'alimentation rectiligne L qui, sur le substrat cylindrique 1 de l'antenne, se trouve être sur une génératrice de ce cylindre. Alternativement de part et d'autre de la ligne d'alimentation L , on trouve, alimentés en des points espacés sur ladite ligne L d'une demi-longeur d'onde guidée sur le substrat, quatre éléments rayonnants 3. Chaque élément rayonnant 3 est avantageusement constitué d'une pastille conductrice de forme carrée dont un coin 31 est en contact galvanique avec la ligne d'alimentation LR pour son excitation et dont une diagonale d est perpendiculaire à la ligne d'alimentation L au point d'alimenta¬ is. tion 31.Each sub-network Ri consists of a rectilinear supply line L which, on the cylindrical substrate 1 of the antenna, happens to be on a generator of this cylinder. Alternatively on either side of the supply line L, there are, supplied at points spaced on said line L of a half-wavelength guided on the substrate, four radiating elements 3. Each radiating element 3 advantageously consists of a conductive patch of square shape, a corner 31 of which is in galvanic contact with the supply line L R for its excitation and a diagonal d of which is perpendicular to the supply line L at the supply point is. tion 31.
Les éléments rayonnants 3 pourraient également être constitués de pastilles conductrices de forme quelconque, par exemple, circulaire, rectangulaire, etc. De forme carrée ou rectangulaire, ils pourraient également être alimentés par le milieu d'un côté au moyen d'un tronçon de ligne approprié.The radiating elements 3 could also consist of conductive pads of any shape, for example, circular, rectangular, etc. Square or rectangular in shape, they could also be fed from the middle of one side by means of an appropriate line section.
La ligne d'alimentation L de chaque sous-réseau et le tronçon vertical sur la Fig. 2 de la ligne Ll à L4 correspondante sont colinéaireε.The supply line L of each sub-network and the vertical section in FIG. 2 of the corresponding line L1 to L4 are collinear.
On remarquera que les éléments rayonnants 3g situés d'un côté de la ligne d'alimentation LD d'un sous-réseau R. sont entrelacés avecIt will be noted that the radiating elements 3g situated on one side of the supply line L D of a sub-network R. are interlaced with
*- 1 les éléments rayonnants 3d du côté opposé de la ligne d'alimentation LR d'un sous-réseau voisin R. . ou R. . Dans le sens vertical sur la Fi£- 2, les éléments rayonnants 3 entrelacés sont distants d'une demi-longueur d'onde guidée sur le substrat. La distance qui sépare les lignes d'alimentation de deux sous-réseaux R et R. _, voisins est un paramètre important quant à l 1 î+l caractéristique omnidirectionnelle.de l'antenne. Cette distance est a plus égale à 2 fois la dimension maximale sur le périmètre du cylindre des éléments rayonnants, c'est-à-dire, dans le cas d'éléments rayonnants contitués de pastilles de forme carrée, la longueur de la diagonale de cette pastille.* - 1 the 3d radiating elements on the opposite side of the supply line LR of a neighboring sub-network R.. or R.. In the vertical direction on the Fi £ - 2, the radiating elements 3 interleaved are distant by a half wavelength guided on the substrate. The distance between the feed lines of two neighboring R and R sub-networks is an important parameter as regards the 1 1 + 1 omnidirectional characteristic of the antenna. This distance is more than 2 times the maximum dimension on the perimeter of the cylinder of the radiating elements, that is to say, in the case of radiating elements made up of pellets of square shape, the length of the diagonal of this pastille.
On a réalisé des mesures sur une antenne cylindrique ayant un substrat de permittivité égale à 2,2 et dont le rayon est de 15 mm. La distance sur la ligne LR de chaque sous-réseau Ri entre deux éléments rayonnants est sensiblement égale à 12,1 mm et la distance entre deux sous-réseaux voisins est sensiblement égale à 2,40 mm. La diagonale du carré des pastilles 3 est sensiblement égale à 14 mm.Measurements were made on a cylindrical antenna having a substrate with a permittivity of 2.2 and whose radius is 15 mm. The distance on the line LR of each sub-network Ri between two radiating elements is substantially equal to 12.1 mm and the distance between two neighboring sub-networks is substantially equal to 2.40 mm. The diagonal of the square of the pads 3 is substantially equal to 14 mm.
Sans transformateur d'adaptation d'impédance, on a ajusté la largeur des lignes d'alimentation Ll à L4, L12, L34, et LA à une impédance caractéristique de 80 ohms dans la bande de fréquences 9,2 GHz-9,5 GHz.Without impedance matching transformer, the width of the supply lines L1 to L4, L12, L34, and LA was adjusted to a characteristic impedance of 80 ohms in the frequency band 9.2 GHz-9.5 GHz .
La Fig. 3a montre des diagrammes de gain en fonction de l'angle d'azimuth qui ont été tracés avec cette antenne à une fréquence de fonctionnement de 9,4 GHz. L'axe principal du cylindre de cette antenne est vertical. Dans un plan horizontal, le gain pour la composante principale de polarisation est sensiblement constant et les ondulations de gain remarquées ne dépassent pas 2,5 dB. Le gain pour la composante croisée est inférieur d'au moins 10 dB à celui de la composante principale. On constate donc que l'antenne émet une onde polarisée sensiblement linéairement dans un plan horizontal.Fig. 3a shows gain diagrams as a function of the azimuth angle which have been plotted with this antenna at an operating frequency of 9.4 GHz. The main axis of the cylinder of this antenna is vertical. In a horizontal plane, the gain for the main polarization component is substantially constant and the gain ripples noted do not exceed 2.5 dB. The gain for the cross component is at least 10 dB lower than that of the main component. It can therefore be seen that the antenna emits a wave polarized substantially linearly in a horizontal plane.
Par ailleurs, on a effectué des mesures de gain pour la composante principale de polarisation à différentes fréquences de fonctionnement dans la bande de fréquences 9,2-9,5 GHz et on a pu constater, qu'avec cette antenne, les ondulations de gain en fonction de l'angle d'azimuth sont toujours inférieures à 3,5 dB.In addition, gain measurements were carried out for the main polarization component at different operating frequencies in the 9.2-9.5 GHz frequency band and it was observed that, with this antenna, the gain ripples depending on the azimuth angle are always less than 3.5 dB.
Par ailleurs, le rapport d'onde stationnaire (ROS) est inférieur à 1,5 dans la bande 9,2 GHz - 9,5 GHz.In addition, the standing wave ratio (ROS) is less than 1.5 in the band 9.2 GHz - 9.5 GHz.
On a représenté, Fig. 3b, le gain à une fréquence de fonctionne- ment de 9,4 GHz d'une antenne selon l'invention en fonction de l'angle que forme la direction de mesure avec un plan horizontal, l'antenne cylindrique ayant son axe principal vertical. On constate que l'angle d'ouverture à - 3 dB tel que mesuré est de + 18° et - 18° par rapport à 1'horizontale.There is shown, Fig. 3b, the gain at an operating frequency of 9.4 GHz of an antenna according to the invention as a function of the angle formed by the direction of measurement with a horizontal plane, the antenna cylindrical having its main vertical axis. It can be seen that the opening angle at -3 dB as measured is + 18 ° and -18 ° relative to the horizontal.
Notons que ce dernier résultat a été obtenu avec des sous-réseaux à quatre éléments rayonnants. Avec des sous-réseaux à huit éléments, l'angle d'ouverture aurait été sensiblement deux fois moindre alors qu'avec seulement deux éléments par sous-réseau, il aurait été deux fois supérieur.Note that this last result was obtained with subnetworks with four radiating elements. With eight-element subnets, the opening angle would have been significantly less than half, while with only two elements per subnetwork, it would have been twice as large.
On a représenté, à la Fig. 4, un répondeur radar maritime de sauvetage.There is shown in FIG. 4, a maritime rescue radar responder.
Il comprend un boîtier cylindrique 10, représenté ici en traits fins pointillés mixtes, à l'intérieur duquel sont logées, coaxiale- ment, une antenne cylindrique émettrice 11 et une antenne cylindrique réceptrice 12. Le boîtier 10 représenté comprend une partie 10a formant un radôme transparent aux ondes radar et une partie 10b. Les antennes 11 et 12 sont à l'intérieur de la partie 10a. Pour des raisons de simplicité de construction, tout le boîtier 10 peut être un radôme.It comprises a cylindrical housing 10, shown here in thin dashed mixed lines, inside which are housed, coaxially, a cylindrical transmitting antenna 11 and a cylindrical receiving antenna 12. The housing 10 shown comprises a part 10a forming a radome transparent to radar waves and part 10b. The antennas 11 and 12 are inside the part 10a. For reasons of simplicity of construction, the entire housing 10 can be a radome.
Sur une face d'une plaque de circuit imprimé 13, sont prévus, à une première extrémité, un émetteur 14 logé à l'intérieur de la première antenne cylindrique 11, et, à l'autre extrémité, un récepteur 15 logé à l'intérieur de la seconde antenne cylindrique 12. Sur l'autre face de la plaque 13, est prévu un circuit de commande 16. Des câbles coaxiaux 17 et 18 sont respectivement prévus pour respective- ment relier la sortie de signal à haute fréquence de l'émetteur 14 à l'antenne d'émission 10 et l'entrée de signal à haute fréquence du récepteur 15 à l'antenne de réception 11.On one side of a printed circuit board 13, there is provided, at a first end, a transmitter 14 housed inside the first cylindrical antenna 11, and, at the other end, a receiver 15 housed at the inside the second cylindrical antenna 12. A control circuit 16 is provided on the other face of the plate 13. Coaxial cables 17 and 18 are respectively provided for respectively connecting the high frequency signal output of the transmitter 14 at the transmit antenna 10 and the high frequency signal input from the receiver 15 at the receive antenna 11.
Un dispositif d'alimentation électrique 19 est prévu, dans la partie 10b, pour alimenter en courant continu l'émetteur 14, le récepteur 15 et le circuit de commande 16.An electrical supply device 19 is provided, in part 10b, for supplying direct current to the transmitter 14, the receiver 15 and the control circuit 16.
Selon des variantes de réalisation de l'invention, ce dispositif d'alimentation 19 est séparé du reste du répondeur et se trouve dans un second boîtier distinct du boîtier 10. Dans ce cas, la partie 10b du boîtier 10 n'existe pas. Le récepteur 15 est du type qui peut recevoir et démoduler des signaux émis par des systèmes radar émettant dans la bande de fréquences 9,2 GHz - 9,5 GHz. Quant à l'émetteur 14, il éme , par balayage en fréquence, des ondes dans la même bande de fréquences.According to alternative embodiments of the invention, this supply device 19 is separated from the rest of the responder and is located in a second housing separate from the housing 10. In this case, the part 10b of the housing 10 does not exist. The receiver 15 is of the type which can receive and demodulate signals transmitted by radar systems transmitting in the band of frequencies 9.2 GHz - 9.5 GHz. As for the transmitter 14, it emits, by frequency scanning, waves in the same frequency band.
Un répondeur radar selon l'invention est utilisé comme suit. Il équipe, par exemple, une bouée ou un bateau de sauvetage. Un second bateau a un système radar à faisceau tournant qui émet, par exemple, sur une fréquence dans la bande 9,2 GHz - 9,5 GHz. Lorsqu'il passe à portée d'une bouée ou d'un bateau dont le répondeur radar maritime est mis en route, suite par exemple à un naufrage, l'antenne réceptrice 11 de ce répondeur reçoit périodiquement les signaux émis par le système radar et le récepteur 15, relié à l'antenne de réception 11, les détecte. Ceci a pour effet d'activer le circuit de commande 16 qui met alors en marche l'émetteur 14. Celui-ci émet, via l'antenne émettrice 10 auquel il est relié et par balayage en fréquence, des ondes radar dans la même bande de fréquence qui sont alors captées par le système radar du second bateau. Il est donc possible de déterminer, sur l'écran de ce système, la position de la bouée.A radar responder according to the invention is used as follows. It equips, for example, a buoy or a lifeboat. A second vessel has a rotating beam radar system which transmits, for example, on a frequency in the band 9.2 GHz - 9.5 GHz. When it passes within range of a buoy or a boat whose maritime radar transponder is started, following for example a sinking, the receiving antenna 11 of this transponder periodically receives the signals transmitted by the radar system and the receiver 15, connected to the reception antenna 11, detects them. This has the effect of activating the control circuit 16 which then turns on the transmitter 14. The latter transmits, via the transmitting antenna 10 to which it is connected and by frequency scanning, radar waves in the same band which are then picked up by the radar system of the second boat. It is therefore possible to determine, on the screen of this system, the position of the buoy.
Les antennes selon l'invention sont particulièrement bien adaptées à cette application particulière. En effet, de part, leur forme, elles sont facilement logeables dans un boîtier cylindrique. Dans le volume interne que chacune engendre, il est possible de placer les émetteur et récepteur qui, du fait du plan de masse sur leurs parois internes de l'antenne, sont isolés des ondes et parasites ambiants et qui, par conséquent, ne nécessitent pas de blindages. The antennas according to the invention are particularly well suited to this particular application. Indeed, due to their shape, they are easily accommodated in a cylindrical housing. In the internal volume that each generates, it is possible to place the transmitter and receiver which, because of the ground plane on their internal walls of the antenna, are isolated from the ambient waves and parasites and which, consequently, do not require shields.

Claims

REVENDICATIONS
1) Antenne cylindrique imprimée, caractérisée en ce qu'elle est constituée d'un substrat cylindrique (1) dans un matériau diélectrique dont la paroi interne est recouverte d'une couche (2) d'un matériau métallique formant un plan de masse et dont la paroi externe reçoit des éléments rayonnants (3), ceux-ci étant arrangés en une pluralité de sous-réseaux identiques (Ri) parallèles entre eux et équidistants sur un périmètre du substrat (1), les sous-réseaux (Ri) étant alimentés en phase, chaque sous-réseau (Ri) étant constitué d'une ligne d'alimentation rectiligne (LR) qui, sur le substrat cylindrique (1) de l'antenne, se trouve sur une génératrice dudit cylindre et d'une pluralité d'éléments rayonnants (3) situés alternativement de part et d'autre de ladite ligne d'alimentation (LR) et alimentés par ladite ligne d'alimentation (LR) de manière à pouvoir émettre des ondes en phase, la distance sur le périmètre du cylindre qui sépare deux sous-réseaux voisins (Ri et Ri+1) étant au plus égale à 2 fois la dimension maximale sur le périmètre du cylindre des éléments rayonnants (3), lesdits éléments rayonnants d'un côté d'un sous-réseau étant entrelacés avec les éléments rayonnants (3) du côté opposé d'un sous-réseau voisin. 2) Antenne selon la revendication 1, caractérisée en ce que chaque élément rayonnant (3) est constitué d'une pastille conductrice de forme carrée dont un coin est en contact galvanique avec la ligne d'alimentation (LR) du sous-réseau (Ri) correspondant et dont une diagonale (d) est perpendiculaire à ladite ligne d'alimentation (LR) au point d'alimentation (31).1) Printed cylindrical antenna, characterized in that it consists of a cylindrical substrate (1) in a dielectric material the internal wall of which is covered with a layer (2) of a metallic material forming a ground plane and whose external wall receives radiating elements (3), these being arranged in a plurality of identical sub-networks (Ri) parallel to each other and equidistant on a perimeter of the substrate (1), the sub-networks (Ri) being supplied in phase, each sub-network (Ri) consisting of a rectilinear supply line (LR) which, on the cylindrical substrate (1) of the antenna, is on a generator of said cylinder and of a plurality radiating elements (3) located alternately on either side of said supply line (LR) and supplied by said supply line (LR) so as to be able to emit waves in phase, the distance around the perimeter of the cylinder which separates two sub-networks neighbors (Ri and Ri + 1) being at most equal to 2 times the maximum dimension on the perimeter of the cylinder of the radiating elements (3), said radiating elements on one side of a sub-array being interlaced with the radiating elements ( 3) on the opposite side of a neighboring subnet. 2) Antenna according to claim 1, characterized in that each radiating element (3) consists of a conductive patch of square shape, one corner of which is in galvanic contact with the supply line (LR) of the subarray (Ri ) corresponding and of which a diagonal (d) is perpendicular to said supply line (LR) at the supply point (31).
3) Antenne selon la revendication 1 ou 2, caractérisée en ce que les éléments rayonnants (3) d'un même sous-réseau sont distants entre eux d'une demi-longueur d'onde guidée par ladite ligne d'alimentation (LR). 4) Répondeur radar maritime comprenant un boîtier dont au moins une partie forme un radôme et qui renfermant un récepteur (15) d'ondes telles que celles qui sont émises par un système radar à balayage, un émetteur (14) pouvant émettre de telles ondes radar, un circuit de commande (16) qui commande l'émission de l'émetteur (14) lorsque le récepteur (15) a reçu une onde radar d'un système radar, le récepteu (15) et l'émetteur (14) comportant respectivement une antenne d réception (11) et une antenne d'émission (10), caractérisé en ce qu chaque antenne (10, 11) est une' antenne cylindrique selon une de revendications précédentes, chaque antenne étant montée coaxialement l'intérieur de ladite partie du boîtier (10) formant radôme.3) Antenna according to claim 1 or 2, characterized in that the radiating elements (3) of the same sub-network are distant from each other by a half wavelength guided by said supply line (LR) . 4) Maritime radar responder comprising a housing at least part of which forms a radome and which contains a receiver (15) of waves such as those emitted by a scanning radar system, a transmitter (14) capable of emitting such waves radar, a control circuit (16) which controls the emission of the transmitter (14) when the receiver (15) has received a radar wave from a radar system, the receiver (15) and the transmitter (14) respectively comprising a receiving antenna (11) and a transmitting antenna (10), characterized in that each antenna (10, 11) is a ' cylindrical antenna according to one of the preceding claims, each antenna being mounted coaxially inside said part of the housing (10) forming a radome.
5) Répondeur radar selon la revendication 4, caractérisé en c l'émetteur (14), le récepteur (15), le circuit de commande (16) son montés sur une même plaque (13) de circuit imprimé sur laquelle son enfilées les antennes cylindriques d'émission (10) et de réceptio (11), l'émetteur (14) se trouvant à l'intérieur de l'antenne d'émission (10) et le récepteur (15) à l'intérieur de l'antenne de réception (11).5) Radar responder according to claim 4, characterized in c the transmitter (14), the receiver (15), the control circuit (16) its mounted on the same plate (13) of printed circuit on which are the antennas cylindrical transmitting (10) and receiving (11), the transmitter (14) being inside the transmitting antenna (10) and the receiver (15) inside the antenna reception (11).
6) Répondeur radar selon la revendication 5, caractérisé en ce que, sur la plaque (13) de circuit imprimé, l'émetteur (14) et le récepteur (15) sont montés sur une face alors que le circuit de commande (16) est monté sur l'autre face. 6) Radar responder according to claim 5, characterized in that, on the printed circuit board (13), the transmitter (14) and the receiver (15) are mounted on one side while the control circuit (16) is mounted on the other side.
PCT/FR1992/000263 1991-03-29 1992-03-23 Omnidirectionnal printed cylindrical antenna and marine radar transponder using such antennas WO1992017915A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP92908983A EP0585250B1 (en) 1991-03-29 1992-03-23 Omnidirectionnal printed cylindrical antenna and marine radar transponder using such antennas
DE69212471T DE69212471T2 (en) 1991-03-29 1992-03-23 Omnidirectional, printed cylinder antenna and sea radar response device with such antennas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9104146A FR2674689B1 (en) 1991-03-29 1991-03-29 OMNIDIRECTIONAL PRINTED CYLINDRICAL ANTENNA AND MARINE RADAR RESPONDER USING SUCH ANTENNAS.
FR91/04146 1991-03-29

Publications (1)

Publication Number Publication Date
WO1992017915A1 true WO1992017915A1 (en) 1992-10-15

Family

ID=9411504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1992/000263 WO1992017915A1 (en) 1991-03-29 1992-03-23 Omnidirectionnal printed cylindrical antenna and marine radar transponder using such antennas

Country Status (4)

Country Link
EP (1) EP0585250B1 (en)
DE (1) DE69212471T2 (en)
FR (1) FR2674689B1 (en)
WO (1) WO1992017915A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5859621A (en) * 1996-02-23 1999-01-12 Symmetricom, Inc. Antenna
US5945963A (en) * 1996-01-23 1999-08-31 Symmetricom, Inc. Dielectrically loaded antenna and a handheld radio communication unit including such an antenna
US6181297B1 (en) 1994-08-25 2001-01-30 Symmetricom, Inc. Antenna
US6300917B1 (en) 1999-05-27 2001-10-09 Sarantel Limited Antenna
US6552693B1 (en) 1998-12-29 2003-04-22 Sarantel Limited Antenna

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1093322A (en) * 1996-09-18 1998-04-10 Honda Motor Co Ltd Antenna system
FR2828935B1 (en) * 2001-08-21 2003-11-07 Serpe Iesm Soc D Etudes Et De MARINE RADAR RESPONDER

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4186396A (en) * 1978-04-18 1980-01-29 Mitsubishi Denki Kabushiki Kaisha Radar beacon apparatus
US4816836A (en) * 1986-01-29 1989-03-28 Ball Corporation Conformal antenna and method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4186396A (en) * 1978-04-18 1980-01-29 Mitsubishi Denki Kabushiki Kaisha Radar beacon apparatus
US4816836A (en) * 1986-01-29 1989-03-28 Ball Corporation Conformal antenna and method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IEE PROCEEDINGS H. MICROWAVES, ANTENNAS & PROPAGATION. vol. 135, no. 2, Avril 1988, STEVENAGE GB pages 132 - 134; ASHKENAZY ET AL.: 'Technical memorandum CONFORMAL MICROSTRIP ARRAYS ON CYLINDERS' *
TOUTE L'ELECTRONIQUE. no. 549, Décembre 1989, PARIS FR pages 32 - 37; DANIEL ET AL.: 'Antennes imprimées:réseaux plans et technologie' *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6181297B1 (en) 1994-08-25 2001-01-30 Symmetricom, Inc. Antenna
US5945963A (en) * 1996-01-23 1999-08-31 Symmetricom, Inc. Dielectrically loaded antenna and a handheld radio communication unit including such an antenna
US5859621A (en) * 1996-02-23 1999-01-12 Symmetricom, Inc. Antenna
US6552693B1 (en) 1998-12-29 2003-04-22 Sarantel Limited Antenna
US6300917B1 (en) 1999-05-27 2001-10-09 Sarantel Limited Antenna

Also Published As

Publication number Publication date
DE69212471T2 (en) 1996-11-28
DE69212471D1 (en) 1996-08-29
FR2674689A1 (en) 1992-10-02
FR2674689B1 (en) 1993-05-21
EP0585250A1 (en) 1994-03-09
EP0585250B1 (en) 1996-07-24

Similar Documents

Publication Publication Date Title
EP0805512B1 (en) Compact printed antenna with little radiation in elevation
FR2652453A1 (en) COAXIAL ANTENNA HAVING A PROGRESSIVE WAVE POWER TYPE.
EP0954055B1 (en) Dual-frequency radiocommunication antenna realised according to microstrip technique
EP0899814B1 (en) Radiating structure
FR2810163A1 (en) IMPROVEMENT TO ELECTROMAGNETIC WAVE EMISSION / RECEPTION SOURCE ANTENNAS
EP1416586B1 (en) Antenna with an assembly of filtering material
EP0457880B1 (en) Airborne iff antenna with switchable multiple diagrams
FR2930079A1 (en) RADIATION SENSOR, IN PARTICULAR FOR RADAR
EP0585250B1 (en) Omnidirectionnal printed cylindrical antenna and marine radar transponder using such antennas
FR2704359A1 (en) Flat antenna.
EP1188202B1 (en) Device for transmitting and/or receiving signals
EP1523062B1 (en) Omnidirectional antenna for transmitting and receiving audio/video signals
EP0520908B1 (en) Linear antenna array
EP0860895A1 (en) Resonant antenna for emitting or receiving polarized waves
EP0477102B1 (en) Directional network with adjacent radiator elements for radio communication system and unit with such a directional network
EP4046241B1 (en) Antenna array
FR3085234A1 (en) ANTENNA FOR TRANSMITTING AND / OR RECEIVING AN ELECTROMAGNETIC WAVE, AND SYSTEM COMPRISING THE SAME
FR2685979A1 (en) ANTENNA SYSTEM.
EP0860894A1 (en) Miniature resonant antenna in the form of annular microstrips
EP3506426B1 (en) Beam pointing device for antenna system, associated antenna system and platform
EP0429338A1 (en) Circularly polarised antenna particularly for antenna arrays
EP2889955B1 (en) Compact antenna structure for satellite telecommunication
EP0928042A1 (en) Wide band detection means, particularly radars
FR2677493A1 (en) NETWORK OF RADIANT ELEMENTS WITH AUTOCOMPLEMENTARY TOPOLOGY, AND ANTENNA USING SUCH A NETWORK.
WO2003019228A1 (en) Maritime radar transponder

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): FI JP NO RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU MC NL SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1992908983

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1992908983

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1992908983

Country of ref document: EP