EP0009181B1 - Verfahren zur Herstellung eines elektrischen Kontaktes zwischen einem normalleitenden Kontaktkörper und mindestens einem Supraleiter - Google Patents

Verfahren zur Herstellung eines elektrischen Kontaktes zwischen einem normalleitenden Kontaktkörper und mindestens einem Supraleiter Download PDF

Info

Publication number
EP0009181B1
EP0009181B1 EP79103321A EP79103321A EP0009181B1 EP 0009181 B1 EP0009181 B1 EP 0009181B1 EP 79103321 A EP79103321 A EP 79103321A EP 79103321 A EP79103321 A EP 79103321A EP 0009181 B1 EP0009181 B1 EP 0009181B1
Authority
EP
European Patent Office
Prior art keywords
conductor
production process
shaped body
terminal piece
annealing step
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP79103321A
Other languages
English (en)
French (fr)
Other versions
EP0009181A1 (de
Inventor
Hanns-Jörg Weisse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0009181A1 publication Critical patent/EP0009181A1/de
Application granted granted Critical
Publication of EP0009181B1 publication Critical patent/EP0009181B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • H01F6/065Feed-through bushings, terminals and joints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/048Superconductive coils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/825Apparatus per se, device per se, or process of making or operating same
    • Y10S505/917Mechanically manufacturing superconductor
    • Y10S505/918Mechanically manufacturing superconductor with metallurgical heat treating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/825Apparatus per se, device per se, or process of making or operating same
    • Y10S505/917Mechanically manufacturing superconductor
    • Y10S505/924Making superconductive magnet or coil
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/825Apparatus per se, device per se, or process of making or operating same
    • Y10S505/917Mechanically manufacturing superconductor
    • Y10S505/926Mechanically joining superconductive members
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/825Apparatus per se, device per se, or process of making or operating same
    • Y10S505/917Mechanically manufacturing superconductor
    • Y10S505/927Metallurgically bonding superconductive members
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49014Superconductor

Definitions

  • the invention relates to a method for producing an electrical contact of a magnetic winding, in which a contact body consisting of normally conductive material is electrically conductively connected to the end piece of at least one superconductor made of an intermetallic compound, which is formed by in-situ annealing of a preliminary conductor product becomes.
  • Superconducting intermetallic compounds of type A 3 B with an A15 crystal structure, such as Nb 3 Sn or V 3 Ga, have good superconducting properties and are distinguished by high critical values. Conductors with these materials are therefore particularly suitable for superconducting magnet coils for generating strong magnetic fields.
  • ternary compounds such as niobium-aluminum-Ge ⁇ nanium Nb 3 Al 0.8 Ge 0.2 are also of particular interest for conductors of such magnets.
  • a first component which is a wire-shaped ductile element of the intermetallic compound to be produced, is generally surrounded by a sheath which consists of a ductile carrier metal and an alloy containing the other elements of the compound consists.
  • a niobium or vanadium wire is surrounded by a sheath made of a copper-tin-bronze or a copper-gallium-bronze.
  • a large number of such wires can also be embedded in a matrix made of the corresponding alloy.
  • the structure obtained from these two components is then subjected to a cross-sectional machining. This gives a long wire-shaped structure, as is required for coils, without reactions that would embrittle the conductor.
  • the superconductor pre-product consisting of one or more wire cores and the surrounding matrix material is then subjected to an annealing treatment in such a way that the desired superconducting compound having an A15 crystal structure is formed by a reaction of the core material with the further element of the compound contained in the surrounding matrix becomes.
  • the element contained in the matrix diffuses into the core material consisting of the other element of the connection (cf. DE-OS 20 44 660).
  • Superconducting magnetic coils made from such superconductors are generally produced by two different processes.
  • the first process which is also referred to as the "react first-windthen process”
  • the preliminary conductor product of the superconductor to be produced is wound onto a provisional winding body and then subjected to the annealing treatment required to form the desired superconducting compound.
  • the superconductor thus produced is then unwound again from the provisional winding body and can be processed further.
  • the coil body of the magnet to be provided with the winding is first wound with the as yet unreacted conductor preliminary product of the superconductor and then the entire magnet thus wound is subjected to diffusion annealing.
  • This annealing is also referred to as “in situ” annealing.
  • This procedure avoids all difficulties in processing a brittle conductor material. It is also possible to manufacture coils with small inner diameters with relatively thick conductors. With this method, however, all the materials used to build the coil must withstand the high temperatures required for diffusion annealing, which can be 700 ° C. in the case of niobium tin, for example, for several hours to days.
  • connection contacts With such in-situ annealed solenoids, the production of connection contacts is difficult. Because of the strong brittleness of the fully reacted A15 superconductors, it is practically no longer possible to bend the leads after in-situ annealing. Therefore, the ends from the pre-conductor of these lines can be arranged on specially shaped contact bodies made of normally conductive material, especially copper, before the in-situ annealing (Proc. Of 6th Int. Conf. On Magn. Techn. (MT-6) , Bratislava, CSSR, 29 Aug. - 2 sept. 1977, page 998).
  • a reactive element of the superconducting compound to be produced for example tin
  • tin a reactive element of the superconducting compound to be produced
  • the result is weaker superconductor zones and thus a reduced current carrying capacity of the superconductors.
  • Other difficulties may arise sharp bends and kinks occur. In general, this does not play a role in the case of the unreacted intermediate conductor product, however, such spots can become critical after the annealing because of the mechanical stresses that are difficult to understand. Such stresses are caused in particular by materials of different shrinkage lying in the contact area.
  • the object of the present invention is therefore to create a method for producing contacts for conductors from such brittle intermetallic superconducting connections, in which these difficulties do not occur or are of only minor importance.
  • This object is achieved according to the invention for a method of the type mentioned at the outset in that the corresponding end piece of the intermediate conductor product is applied to a molded body made of a heat-resistant material which does not react with the elements of the intermediate conductor product during the annealing and that after the annealing Molded body is exchanged for a contact body with a corresponding shape.
  • the advantages achieved with this method are in particular that at no point in the end piece of the preliminary conductor product can a reduction in the current carrying capacity of the superconductor due to the loss of a component of the superconducting connection to be formed, since the preliminary conductor product only in the contact area during the in-situ annealing comes into contact with materials that practically do not react with the elements of the intermediate conductor product.
  • This method can also be used to produce contacts that are compact and have great mechanical stability.
  • the end piece of the intermediate conductor product is advantageously placed in helically arranged grooves of a cylindrical shaped body, after the annealing the shaped body is unscrewed from the conductor spiral solidified during the annealing and formed from the superconductive end piece, and a cylindrical contact body with a predetermined outer diameter is inserted into the conductor spiral inserted.
  • deformations of the superconductor can largely be avoided during the course of the method and the prerequisites for a good electrical connection between the contact piece and the conductor end piece can be created.
  • the end piece of the intermediate conductor product is expediently held on the molded body by means of a clamping device.
  • the conductor intermediate product is prevented from slipping on the molded body.
  • the molded body can then be removed relatively easily and the contact body can be introduced into the space enclosed by the conductor spiral.
  • FIGS. 1 to 3 An exemplary embodiment of the method according to the invention and its further developments characterized in the dependent claims are explained in more detail below with reference to the schematic drawing.
  • Various process steps are indicated in FIGS. 1 to 3, while in FIGS. 4 and 5 details of a conductor lead through the coil flange of a magnet winding are illustrated.
  • a provisional arrangement of the preliminary conductor product 2 is first provided on a hollow cylindrical winding device 3, which is shown schematically in FIG. 1 as a longitudinal section.
  • This device is fastened on the upper flat side of a coil flange 4 of a winding support of a magnetic coil, which is not shown in the figure.
  • the winding device 3 contains a hollow cylindrical base 5 made of a heat-resistant insulating material such as ceramic. Its predetermined outer diameter is denoted by d.
  • On the upper flat side 6 of this base there is also a hollow cylindrical shaped body 7 with a comparatively somewhat larger outer diameter.
  • the outer circumferential surface of the molded body is provided with a groove 8 which is so deep that it leads upwards in a helical shape, such that the base of the groove lies on a common imaginary cylinder surface with the diameter d of the ceramic base 5.
  • the materials used for the molded body 7 are advantageously insulating materials which do not react with the elements of the preliminary conductor product during an annealing treatment and which can be processed with conventional metal-cutting machines (for example from Rosenthal-Stemag, D 8560 Lauf: ERGAN). Corresponding materials can only change to the hard ceramic state after a special annealing (e.g. company Ore & Metal Comp. Ltd., Johannisburg, South Africa: Wonderstone or Rosenthal-Stemag, Lauf: STENAN). Metallic materials with a corresponding non-metallic temperature-resistant coating are also suitable.
  • the winding device 3 also contains an annular disk-shaped cover part 11 arranged on the upper flat side 10 of the shaped body 7.
  • This cover part which also has the outer diameter d and is made of metal, for example, is provided on its outer surface with at least one fastening device, for example a screwable clamping device 13 in order to be able to temporarily fix the preliminary conductor product to it.
  • the entire device comprising the cover part 11, the shaped body 7 and the ceramic base 5 is detachably fastened to the coil flange 4 with the aid of a central screw 15 engaging the cover part 11.
  • Extending through the coil flange 4 is an oblique feed-through slot 17, only indicated in the figure, which runs in such a way that the end of the conductor pre-product 2 which leads out of the winding space of the coil is wound helically around the outer surface of the hollow-cylindrical ceramic base 5 without a kink and then bumpless can be inserted into the helical groove 8 of the molded body 7. Since the preliminary conductor product 2 is not fixed on the ceramic base 5, a continuous transition from the slope of the lead-through slot 17 in the flange 4 to the slope of the groove 8 of the molded body 7 can be ensured on this part of the device 3. The end piece of the intermediate conductor product lying essentially in the groove 8 of the shaped body 7 and designated by 19 is placed a little further around the ring-shaped cover part 11 and then held in place by means of the clamping device 13.
  • a hollow cylindrical contact body 23 made of electrically highly conductive material such as e.g. Copper with an outer diameter corresponding to the inner diameter d of the conductor spiral 20 formed from the superconductive end piece 21 according to FIG. 2 is inserted into the conductor spiral from above and fastened on the ceramic base 5.
  • the disc-shaped bottom part 24 of the contact body which rests on the upper flat side 6 of the ceramic base 5, is screwed onto the upper side of the coil flange 4 by means of a fastening screw 26.
  • its bottom part 24, which is provided with a bore 27, is held by the screw via an annular insulation disk 28.
  • the contact body 23 can expediently have a tinned outer surface 29, so that the bronze matrix material of the superconducting end piece 21 can be easily soldered to it and a good electrically conductive, large-area connection between these parts is achieved.
  • At least one normal conductor 32 which is only indicated in the figure, can be electrically conductively connected to a head piece 30 of the contact body 23, which protrudes upward beyond the conductor spiral from the end piece 21.
  • the head piece 30 can have a square cross section, for example.
  • the conductor parts led out of the coil flange 4, in particular the parts lying on the ceramic base 5, are expediently fixed with a suitable fixing agent 34, e.g. a filled epoxy resin that hardens at room temperature or a ceramic putty to prevent conductor movement.
  • a suitable fixing agent 34 e.g. a filled epoxy resin that hardens at room temperature or a ceramic putty to prevent conductor movement.
  • the method according to the invention is also suitable for connecting superconducting parts of an in-situ annealed coil to one another. Individual superconducting conductor pieces of such a coil can namely be contacted with one another practically neither before nor after the annealing of the coil within the winding space of the coil. It is therefore necessary to lead them out of the changing room and connect them together outside.
  • the end pieces of two conductors to be connected are passed through the coil flange and placed parallel to one another or lying one on top of the other in the grooves of the shaped body shown in FIG. 1.
  • the remaining method steps differ from the method explained with reference to FIGS. 1 to 3 only in that instead of a single conductor end there are now two conductor ends and there is no need to solder a normal conductor to the head part of the contact body. After the annealing, the two superconductive end pieces are soldered to one another and to the contact body.
  • the bushings for the conductor preliminary products have to pass through the coils flange 4 can be designed accordingly.
  • 4 schematically illustrates the top view of such a coil flange. It is assumed that an intermediate contact between the conductor ends of two concentrically enclosing partial windings A and B of a magnetic winding is to be produced by the method according to the invention. Therefore, two feed-through slots 40 and 41 are required, which have a curved shape, in order to enable a continuous, kink-free transfer of the individual conductor ends to the outer jacket of the winding device 3.
  • slots can be made, for example, by milling, but guidance and support of the conductor is only possible in the radial direction. Due to the desired curved shape of the slots and the resulting possibility of almost all-round support and guidance of the conductor, the slots are advantageously spark-eroded.
  • the electrodes required for this process can be obliquely milled pipe segments with a wall thickness corresponding to the slot width and can consist, for example, of copper or graphite.
  • two slanted electrodes 43 and 44 are required to produce a slot, which electrodes are driven into the flange from the top side of the flange 4 or the bottom side by spark erosion. If several bushings are to be produced in one sink flange, then all electrodes to be driven in from the top of the flange and all corresponding electrodes to be driven in from the bottom of the flange are expediently mounted on a common carrier plate. By spark erosion with these two electrode arrangements, all lead-through slots can then be machined in only two work steps. Post-processing of the slots, e.g. Rounding off sharp edges can largely be dispensed with.
  • a conductor or intermediate conductor product with a circular cross section was assumed.
  • profile conductors with a rectangular cross-section can be contacted just as well, which have sufficient mechanical inherent stability and are generally relatively difficult to bend over their narrow sides.
  • profile conductors are also particularly suitable for an intermediate contact, since they can be easily and extensively soldered to one another and to the contact body.
  • the superconductor to be electrically conductively connected to the contact body consists of the intermetallic compound Nb 3 Sn, which is formed by the so-called bronze technique by in-situ annealing of the conductor.
  • Nb 3 Sn the intermetallic compound formed by the so-called bronze technique by in-situ annealing of the conductor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

  • Die Erfindung bezieht sich auf ein Verfahren zur Herstellung eines elektrischen Kontaktes einer Magnetwicklung, bei dem ein aus normalleitendem Material bestehender Kontaktkörper mit dem Endstück mindestens eines Supraleiters aus einer intermetallischen Verbindung, die durch eine in-situ-Glühung eines Leitervorproduktes gebildet wird, elektrisch leitend verbunden wird.
  • Supraleitende intermetallische Verbindungen vom Typ A3B mit A15-Kristallstruktur wie beispielsweise Nb3Sn oder V3Ga haben gute Supraleitungseigenschaften und zeichnen sich durch hohe kritische Werte aus. Leiter mit diesen Materialien sind deshalb besonders für Supraleitungsmagnetspulen zum Erzeugen starker Magnetfelder geeignet. Neben den genannten supraleitenden Binärverbindungen sind auch Ternärverbindungen wie beispielsweise Niob-Aluminìum-Geπnanium Nb3Al0,8Ge0,2 für Leiter solcher Magnete besonders interessant.
  • Diese intermetallischen Verbindungen sind jedoch im allgemeinen sehr spröde, so daß ihre Herstellung in einer beispielsweise für Magnetspulen geeigneten Form mit Schwierigkeiten verbunden ist. Es sind deshalb besondere Verfahren entwickelt worden, mit denen solche Supraleiter mit A15-Kristallstruktur in Form langer Drähte oder Bänder hergestellt werden können. Bei diesen Verfahren, die insbesondere eine Herstellung von sogenannten Vielkernleitern ermöglichen, wird im allgemeinen eine erste Komponente, die ein drahtförmiges duktiles Element der herzustellenden intermetallischen Verbindung ist, mit einer Hülle umgeben, die aus einem duktilen Trägermetall und einer die übrigen Elemente der Verbindung enthaltenden Legierung besteht. Beispielsweise wird ein Niob- oder Vanadiumdraht mit einer Hülle aus einer Kupfer-Zinn-Bronze bzw. einer Kupfer-Gallium-Bronze umgeben. Man kann auch eine Vielzahl solcher Drähte in eine Matrix aus der entsprechenden Legierung einlagern. Der so gewonnene Aufbau aus diesen beiden Komponenten wird dann einer querschnittsverringernden Bearbeitung unterzogen. Dadurch erhält man ein langes drahtförmiges Gebilde, wie es für Spulen benötigt wird, ohne daß Reaktionen auftreten, die den Leiter verspröden würden. Nach der Querschnittsverringerung wird dann das aus einem oder mehreren Drahtkernen und dem umgebenden Matrixmaterial bestehende Leitervorprodukt eines Supraleiters einer Glühbehandlung derart unterzogen, daß die gewünschte supraleitende Verbindung mit A15-Kristallstruktur durch eine Reaktion des Kernmaterials mit dem in der umgebenden Matrix enthaltenen weiteren Element der Verbindung gebildet wird. Das in der Matrix enthaltene Element diffundiert dabei in das aus dem anderen Element der Verbindung bestehende Kernmaterial ein (vgl. DE-OS 20 44 660).
  • Supraleitende Magnetspulen aus solchen Supraleitern werden im allgemeinen nach zwei verschiedenen Verfahren hergestellt. Bei dem ersten Verfahren, das auch als « react first-windthen-Verfahren bezeichnet wird, wickelt man auf einen provisorischen Wickelkörper das Leitervorprodukt des herzustellenden Supraleiters auf und setzt es dann der erforderlichen Glühbehandlung zur Bildung der gewünschten supraleitenden Verbindung aus. Daran anschließend wird der so hergestellte Supraleiter wieder von dem provisorischen Wickelkörper abgewickelt und kann weiter verarbeitet werden. Dabei besteht, insbesondere beim Wickeln von Magnetspulen, allgemein die Gefahr, daß die spröden intermetallischen Verbindungen des Leiters aufgrund unzulässiger Verformungen beschädigt und ihre supraleitenden Eigenschaften dementsprechend beeinträchtigt werden.
  • Diese Gefahren bestehen bei dem zweiten Verfahren zur Herstellung der supraleitenden Verbindung aus dem Leitervorprodukt nicht. Bei diesem Verfahren, das auch als « wind-and-react-Technik bezeichnet wird, bewickelt man zunächst den Spulenkörper des mit der Wicklung zu versehenden Magneten mit dem noch nicht durchreagierten Leitervorprodukt des Supraleiters und setzt dann den gesamten so bewickelten Magneten der Diffusionsglühung aus. Diese Glühung wird auch als « in-situ- »Glühung bezeichnet. Bei dieser Verfahrensweise werden alle Schwierigkeiten der Verarbeitung eines spröden Leitermaterials vermieden. Auch ist es so möglich, Spulen mit kleinen Innendurchmessern mit noch verhältnismäßig dicken Leitern zu fertigen. Bei diesem Verfahren müssen jedoch alle zum Bau der Spule verwendeten Materialien die für die Diffusionsglühung erforderlichen hohen Temperaturen, die beispielsweise im Falle von Niob-Zinn bei 700 °C liegen können, mehrere Stunden bis Tage lang aushalten.
  • Bei solchen in-situ-geglühten Magnetspulen ist die Herstellung von Anschlußkontakten mit Schwierigkeiten verbunden. Wegen der starken Sprödigkeit der durchreagierten A15-Supraleiter ist nämlich ein Verbiegen der Zuleitungen nach der in-situ-Glühung praktisch nicht mehr möglich. Deshalb können die Enden aus dem Leitervorprodukt dieser Leitungen bereits vor der in-situ-Glühung auf besonders geformten Kontaktkörpern aus normalleitendem Material, insbesondere aus Kupfer, angeordnet werden (Proc. of 6th Int. Conf. on Magn. Techn. (MT-6), Bratislava, CSSR, 29. Aug. - 2 sept. 1977, Seite 998). Bei der nachfolgenden Glühung kann jedoch ein reaktionsfähiges Element der herzustellenden supraleitenden Verbindung, beispielsweise das Zinn, aus der Leitermatrix des Leitervorproduktes in das Kupfer des Kontaktkörpers diffundieren. Es tritt so eine Verarmung der einen Komponente der supraleitenden Verbindung auf. Die Folge sind schwächere Supraleiterzonen und damit eine verminderte Stromtragfähigkeit der Supraleiter. Weitere Schwierigkeiten können an scharfen Biegungen und Knickstellen auftreten. Bei dem unreagierten Leitervorprodukt spielt dies zwar im allgemeinen keine Rolle, jedoch können solche Stellen nach der Glühung wegen der dort auftretenden, nur schwer überschaubaren mechanischen Spannungen kritisch werden. Solche Spannungen werden insbesondere aufgrund von im Kontaktierungsbereich liegenden Materialien unterschiedlicher Schrumpfung hervorgerufen.
  • Aufgabe der vorliegenden Erfindung ist es deshalb, ein Verfahren zur Herstellung von Kontakten für Leiter aus solchen spröden intermetallischen supraleitenden Verbindungen zu schaffen, bei dem diese Schwierigkeiten nicht auftreten oder nur von untergeordneter Bedeutung sind.
  • Diese Aufgabe wird für ein Verfahren der eingangs genannten Art erfindungsgemäß dadurch gelöst, daß das entsprechende Endstück des Leitervorproduktes vor der Glühung auf einem Formkörper aus einem hitzebeständigen, sich bei der Glühung mit den Elementen des Leitervorproduktes nicht umsetzenden Material aufgebracht wird und daß nach der Glühung der Formkörper gegen einen Kontaktkörper mit entsprechender Gestalt ausgetauscht wird.
  • Die mit diesem Verfahren erreichten Vorteile bestehen insbesondere darin, daß an keiner Stelle des Endstückes des Leitervorproduktes eine durch Verluste einer Komponente der zu bildenden supraleitenden Verbindung bedingte Verminderung der Stromtragfähigkeit des Supraleiters eintreten kann, da das Leitervorprodukt im Kontaktbereich während der in-situ-Glühung nur mit Materialien in Berührung kommt, die praktisch keine Reaktionen mit den Elementen des Leitervorproduktes eingehen. Außerdem können mit diesem Verfahren Kontakte hergestellt werden, die kompakt sind und eine große mechanische Stabilität haben.
  • Gemäß Weiterbildung des Verfahrens wird vorteilhaft das Endstück des Leitervorproduktes in schraubenförmig angeordneten Nuten eines zylindrischen Formkörpers eingelegt, wird nach der Glühung der Formkörper aus der bei der Glühung sich verfestigten, aus dem supraleitfähigen Endstück gebildeten Leiterspirale herausgedreht und ein zylindrischer Kontaktkörper mit vorbestimmtem Außendurchmesser in die Leiterspirale eingeschoben. Auf diese Weise lassen sich während des Verfahrensablaufes weitgehend Deformationen des Supraleiters vermeiden und die Voraussetzung für eine gute elektrische Verbindung zwischen dem Kontaktstück und dem Leiterendstück schaffen.
  • Das Endstück des Leitervorproduktes wird zweckmäßig mittels einer Klemmvorrichtung auf dem Formkörper gehalten. Bei der in-situ-Glühung wird so ein Verrutschen des Leitervorproduktes auf dem Formkörper vermieden. Nach der Glühung läßt sich dann der Formkörper verhältnismäßig leicht entfernen und der Kontaktkörper in den von der Leiterspirale umschlossenen Raum einführen.
  • Nachfolgend wird ein Ausführungsbeispiel des Verfahrens nach der Erfindung und dessen in den abhängigen Patentansprüchen gekennzeichneten Weiterbildungen anhand der schematischen Zeichnung noch näher erläutert. Dabei sind in den Fig. 1 bis 3 verschiedene Verfahrensschritte angedeutet, während in den Fig. 4 und 5 Einzelheiten einer Leiterdurchführung durch den Spulenflansch einer Magnetwicklung veranschaulicht sind.
  • Mit dem Verfahren nach der Erfindung können insbesondere mechanisch ausreichend stabile Supraleiter des A15-Typs, beispielsweise monolithische Leiter mit verhältnismäßig großem Querschnitt oder verseilte Leiter kontaktiert werden. Zur Herstellung von Magneten mit solchen Leitern, beispielsweise aus der spröden intermetallischen Verbindung Nb3Sn, wird von einem Leitervorprodukt ausgegangen, wie es z.B. in der deutschen Offenlegungsschrift 2044660 beschrieben ist. Zur Bildung dieses Leitervorproduktes wird zunächst ein Niobdraht mit einer Hülle aus einer Kupfer-Zinn-Bronze umgeben. Man kann auch eine Vielzahl solcher Drähte in eine Matrix aus der Bronze einlagern. Dieser Aufbau wird dann einer querschnittsverringernden bearbeitung unterzogen. Gegebenenfalls können einzelne Zwischenglühungen vorgenommen werden. Man erhält so als Leitervorprodukt einen langen Drahl, der ausreichend duktil ist. Dieses drahtförmige Leitervorprodukt wird dann auf den Wickelkörper einer Magnetspule aufgebracht.
  • Gemäß dem Verfahren nach der Erfindung wird zunächst eine provisorische Anordnung des Leitervorproduktes 2 auf einer hohlzylindrischen Wickelvorrichtung 3 vorgesehen, die in Fig. 1 schematisch als Längsschnitt dargestellt ist. Diese Vorrichtung ist auf der oberen Flachseite eines Spulenflansches 4 eines in der Figur nicht näher ausgeführten Wicklungsträgers einer Magnetspule befestigt. Die Wickelvorrichtung 3 enthält einen hohlzylindrischen Sockel 5 aus einem hitzebeständigen Isoliermaterial wie beispielsweise Keramik. Sein vorbestimmter Außendurchmesser ist mit d bezeichnet. Auf der oberen Flachseite 6 dieses Sockels ist ein ebenfalls hohlzylindrischer Formkörper 7 mit vergleichsweise etwas größerem Außendurchmesser angeordnet. Die äußere Mantelfläche des Formkörpers ist mit einer so tiefen, schraubenförmig nach oben führenden Nut 8 versehen, daß der Nutengrund auf einer gemeinsamen, gedachten Zylinderfläche mit dem Durchmesser d des Keramiksockels 5 liegt.
  • Als Werkstoffe für den Formkörper 7 werden vorteilhaft isolierende, sich mit den Elementen des Leitervorproduktes bei einer Glühbehandlung nicht umsetzende Materialien verwendet, die mit gewöhnlichen spanabhebenden Maschinen bearbeitet werden können (z.B. Firma Rosenthal-Stemag, D 8560 Lauf : ERGAN). Entsprechende Materialien können auch erst nach einer besonderen Glühung in den hart-keramischen Zustand übergehen (z.B. Firma Ore & Metal Comp. Ltd., Johannisburg, Südafrika: Wonderstone oder Firma Rosenthal-Stemag, Lauf : STENAN). Ferner sind auch metallische Werkstoffe mit einer entsprechenden nicht-metallischen temperaturfesten Beschichtung geeignet.
  • Die Wickelvorrichtung 3 enthält außerdem ein auf der oberen Flachseite 10 des Formkörpers 7 angeordnetes, ringscheibenförmiges Deckelteil 11. Dieses Deckeiteil, das ebenfalls den Außendurchmesser d hat und beispielsweise aus Metall besteht, ist auf seiner Mantelfläche mit mindestens einer Befestigungsvorrichtung, beispielsweise einer verschraubbaren Klemmvorrichtung 13 versehen, um das Leitervorprodukt an ihr provisorisch fixieren zu können. Die gesamte Vorrichtung aus Deckelteil 11, Formkörper 7 und Keramiksockel 5 ist mit Hilfe einer zentralen, an dem Deckelteil 11 angreifenden Schraube 15 an dem Spulenflansch 4 lösbar befestigt.
  • Durch den Spulenflansch 4 erstreckt sich ein schräg verlaufender, in der Figur nur angedeuteter Durchführungsschlitz 17, der so verläuft, daß das aus dem Wickelraum der Spule nach außen geführte Ende des Leitervorproduktes 2 ohne Knickstelle schraubenförmig um die Außenfläche des hohlzylindrischen Keramiksockels 5 gewickelt und dann stoßfrei in die schraubenförmig verlaufende Nut 8 des Formkörpers 7 eingelegt werden kann. Da das Leitervorprodukt 2 auf dem Keramiksockel 5 nicht fixiert ist, läßt sich an diesem Teil der Vorrichtung 3 ein kontinuierlicher Übergang von der Steigung des Durchführungsschlitzes 17 in dem Flansch 4 zu der Steigung der Nut 8 des Formkörpers 7 gewährleisten. Das im wesentlichen in der Nut 8 des Formkörpers 7 liegende und mit 19 bezeichnete Endstück des Leitervorproduktes wird noch ein Stück weit um das ringscheibenförmige Deckelteil 11 herumgelegt und dann mittels der Klemmvorrichtung 13 in seiner Lage festgehalten.
  • Daran anschließend wird die Reaktionsglühung des durch das Aufwickeln vorgeformten Leitervorproduktes vorgenommen, bei der die intermetallische Verbindung gebildet wird, beispielsweise das Niob der Drahtkerne mit dem Zinn aus der Bronze durch Diffusion zu Nb3Sn umgesetzt wird.
  • Nach der Reaktionsglühung wird die Klemmvorrichtung 13 gelöst und der Formkörper 7 zusammen mit dem Deckelteil 11 vorsichtig nach oben herausgedreht. Es verbleibt dann eine in Fig. 2 schematisch in Seitenansicht dargestellte Leiterspirale 20 aus nunmehr supraleitfähigem, verhältnismäßig starrem Material, deren freies, über den Keramiksockel 5 hinausragendes Endstück mit 21 bezeichnet ist.
  • Gemäß dem in Fig. 3 schematisch dargestellten Längsschnitt wird dann ein hohlzylindrischer Kontaktkörper 23 aus elektrisch gut leitendem Material wie z.B. Kupfer mit einem dem Innendurchmesser d der aus dem supraleitfähigen Endstück 21 gebildeten Leiterspirale 20 nach Fig. 2 entsprechenden Außendurchmesser in die Leiterspirale von oben eingesetzt und auf dem Keramlksockel 5 befestigt. Hierzu ist das an der oberen Flachseite 6 des Keramiksockels 5 anliegende, scheibenförmig ausgebildete Bodenteil 24 des Kontaktkörpers mittels einer Befestigungsschraube 26 an der oberen Seite des Spulenflansches 4 angeschraubt. Um eine Isolation der Schraube und somit des Spulenflansches gegenüber dem Kontaktkörper 23 zu gewährleisten, wird sein mit einer Bohrung 27 versehenes Bodenteil 24 von der Schraube über eine ringförmige Isolationsscheibe 28 gehalten. Der Kontaktkörper 23 kann zweckmäßig eine verzinnte Außenfläche 29 haben, so daß das Bronze-Matrix-Material des supraleitfähigen Endstückes 21 leicht mit ihm verlötet werden kann und so eine gut elektrisch leitende, großflächige Verbindung zwischen diesen Teilen erreicht wird.
  • Mit einem über die Leiterspirale aus dem Endstück 21 nach oben hinausragenden Kopfstück 30 des Kontaktkörpers 23 kann mindestens ein in der Figur nur angedeuteter Normalleiter 32 elektrisch leitend verbunden werden. Um eine großflächige Verbindung, beispielsweise durch Verlöten, zwischen diesen Teilen zu ermöglichen, kann das Kopfstück 30 beispielsweise quadratischen Querschnitt haben.
  • Die aus dem Spulenflansch 4 herausgeführten Leiterteile, insbesondere die auf dem Keramiksockel 5 liegenden Teile, werden zweckmäßig mit einem geeigneten Fixiermittel 34, z.B. einem bei Raumtemperatur aushärtenden, gefüllten Epoxidharz oder einem keramischen Kitt, festgelegt, um so Leiterbewegungen zu verhindern.
  • Im Ausführungsbeispiel nach den Figuren 1 bis 3 wurde angenommen, daß mit dem erläuterten Verfahren ein großflächiger elektrischer Kontakt zwischen einem Normalleiter und einem Supraleiter hergestellt wird, um so eine Stromzuleitung oder Stromableitung für eine supraleitende Magnetspule zu ermöglichen. Das Verfahren nach der Erfindung ist jedoch ebensogut auch für eine Verbindung von supraleitenden Teilen einer in-situ-geglühten Spule untereinander geeignet. Einzelne supraleitende Leiterstücke einer solchen Spule können nämlich praktisch weder vor noch nach der Glühung der Spule innerhalb des Wickelraumes der Spule miteinander kontaktiert werden. Es ist deshalb erforderlich, sie aus dem Wickelraum herauszuführen und außerhalb miteinander zu verbinden. In diesem Falle werden die Endstücke zweier zu verbindender Leiter durch den Spulenflansch hindurchgeführt und parallel nebeneinander- oder aufeinanderliegend in die Nuten des in Fig. 1 dargestellten Formkörpers eingelegt. Die übrigen Verfahrensschritte unterscheiden sich von dem anhand der Fig. 1 bis 3 erläuterten Verfahren nur dadurch, daß statt eines einzigen Leiterendes nunmehr zwei Leiterenden vorgesehen sind und ein Anlöten eines Normalleiters an das Kopfteil des Kontaktkörpers entfällt. Die beiden supraleitfähigen Endstücke werden nach der Glühung miteinander und mit dem Kontaktkörper verlötet.
  • Um ein oder mehrere Leitervorprodukte auf die Wickelvorrichtung 3 nach Fig. 1 knickfrei aufbringen zu können, müssen die Durchführungen für die Leitervorprodukte durch den Spulenflansch 4 entsprechend gestaltet sein. In Fig. 4 ist schematisch die Draufsicht auf einen solchen Spulenflansch veranschaulicht. Dabei ist angenommen, daß ein Zwischenkontakt zwischen den Leiterenden zweier konzentrisch sich umschließender Teilwicklungen A und B einer Magnetwicklung nach dem Verfahren gemäß der Erfindung hergestellt werden soll. Es sind deshalb zwei Durchführungsschlitze 40 und 41 erforderlich, die eine gekrümmte Gestalt haben, um eine kontinuierliche, knickfreie Überführung der einzelnen Leiterenden auf den Außenmantel der Wickelvorrichtung 3 zu ermöglichen. Diese Schlitze können beispielsweise durch Einfräsen hergestellt werden, wobei allerdings eine Führung und Abstützung des Leiters nur in radialer Richtung möglich ist. Aufgrund der angestrebten gekrümmten Gestalt der Schlitze und der sich damit ergebenden Möglichkeit einer nahezu allseitigen Abstützung und Führung des Leiters werden die Schlitze vorteilhaft funkenerudiert. Die für dieses Verfahren erforderlichen Elektroden können schräg abgefräste Rohrsegmente mit einer der Schlitzbreite entsprechenden Wanddicke sein und beispielsweise aus Kupfer oder Graphit bestehen.
  • Gemäß dem in Fig. 5 dargestellten schematischen Längsschnitte sind zur Herstellung eines Schlitzes jeweils zwei abgeschrägte Elektroden 43 und 44 erforderlich, die von der Oberseite des Flansches 4 bzw. der Unterseite her durch Funkenerosion in den Flansch eingetrieben werden. Sind mehrere Durchführungen in einem Spülenflansch herzustellen, so werden zweckmäßig alle von der Flanschoberseite her einzutreibenden und alle entsprechenden, von der Flanschunterseite her einzutreibenden Elektroden jeweils auf einer gemeinsamen Trägerplatte montiert. Durch Funkenerosion mit diesen beiden Elektrodenanordnungen lassen sich dann sämtliche Durchführungsschlitze in nur'zwei Arbeitsgängen einarbeiten. Eine Nachbearbeitung der Schlitze wie z.B. das Abrunden von scharfen Kanten kann weitgehend entfallen.
  • Im Ausführungsbeispiel wurde ein Leiter bzw. Leitervorprodukt mit kreisförmigem Querschnitt angenommen. Mit dem Verfahren nach der Erfindung können jedoch ebensogut Profilleiter mit rechteckigem Querschnitt kontaktiert werden, die eine ausreichende mechanische Eigenstabilität haben und im allgemeinen über ihre Schmalseiten verhältnismäßig schlecht zu biegen sind. Solche Profilleiter sind insbesondere auch für eine Zwischenkontaktierung geeignet, da sie leicht und großflächig untereinander und mit dem Kontaktkörper zu verlöten sind.
  • Ferner wurde im Ausführungsbeispiel angenommen, daß der mit dem Kontaktkörper elektrisch leitend zu verbindende Supraleiter aus der intermetallischen Verbindung Nb3Sn besteht, die nach der sogenannten Bronze-Technik durch eine in-situ-Glühung des Leiters gebildet wird. Mit dem Verfahren gemäß der Erfindung können jedoch ebensogut auch Leiter aus anderen spröden supraleitenden Materialien mit Normalleitern oder untereinander kontaktiert werden, deren Leitervorprodukte für eine gefahrlose Bewicklung des provisorischen Formkörpers ausreichend duktil sind.

Claims (12)

1. Verfahren zur Herstellung eines elektrischen Kontaktes einer Magnetwicklung, bei dem ein aus normalleitendem Material bestehender Kontaktkörper (23) mit dem Endstück (19) mindestens eines Supraleiters aus einer intermetallischen Verbindung, die durch eine in-situ-Glühung eines Leitervorproduktes (2) gebildet wird, elektrisch leitend verbunden wird, dadurch gekennzeichnet, daß das entsprechende Endstück (19) des Leitervorproduktes (2) vor der Glühung auf einen Formkörper (7) aus einem hitzebeständigen, sich bei der Glühung mit den Elementen des Leitervorproduktes (2) nicht umsetzenden Material aufgebracht wird und daß nach der Glühung der Formkörper (7) gegen einen Kontaktkörper (23) mit entsprechender Gestalt ausgetauscht wird.
2. Herstellungsverfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Endstück (19) des Leitervorproduktes (2) in Nuten (8) eines zylindrischen Formkörpers (7) eingelegt wird und das supraleitfähige Endstück (21) auf der Mantelfläche (29) eines zylindrischen Kontaktkörpers (23) angeordnet wird.
3. Herstellungsverfahren nach Anspruch 2, dadurch gekennzeichnet, daß das Endstück (19) des Leitervorproduktes (2) in schraubenförmig angeordnete Nuten (8) des Formkörpers (7) eingelegt wird, daß nach der Glühung der Formkörper (7) aus der bei der Glühung sich verfestigten, aus dem supraleitfähigen Endstück (21) gebildeten Leiterspirale (20) herausgedreht und ein Kontaktkörper (23) mit vorbestimmten Außendurchmesser (d) und glatter Mantelfläche (29) in die Leiterspirale (20) eingeschoben wird.
4. Herstellungsverfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das supraleitfähige Endstück (21) mit dem Kontaktkörper (23) verlötet oder verschweißt wird.
5. Herstellungsverfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Endstück (19) des Leitervorproduktes (2) mittels einer Klemmvorrichtung (13) auf dem Formkörper (7) während der Glühung gehalten wird.
6. Herstellungsverfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Formkörper (7) bzw. der Kontaktkörper (23) auf einen hohlzylindrischen Trägerkörper (5) mit entsprechendem Außendurchmesser (d) aufgesetzt wird.
7. Herstellungsverfahren nach Anspruch 6, da- durch gekennzeichnet, daß ein Trägerkörper (5) aus einem hitzebeständigen, sich bei der Glühung mit den Elementen des Leitervorproduktes (2) nicht umsetzenden Isolationsmaterial vorgesehen wird.
8. Herstellungsverfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß der auf dem Trägerkörper (5) angeordnete Teil des geglühten Supraleiters auf diesem fixiert wird.
9. Herstellungsverfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß ein Formkörper (7) aus einem Isoliermaterial vorgesehen wird.
10. Herstellungsverfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß ein Formkörper (7) aus einem durch Wärmebehandlung verhärtenden Material vorgesehen wird.
11. Herstellungsverfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß der Formkörper (7) bzw. der Kontaktkörper (23) auf der Außenseite des Flansches (4) eines Wicklungsträgers für die Magnetwicklung angeordnet wird.
12. Herstellungsverfahren nach Anspruch 11, dadurch gekennzeichnet, daß ein Leiterdurchführungsschlitz (17 ; 40 ; 41) durch den Flansch (4) mittels Funkenerosion eingearbeitet wird.
EP79103321A 1978-09-18 1979-09-06 Verfahren zur Herstellung eines elektrischen Kontaktes zwischen einem normalleitenden Kontaktkörper und mindestens einem Supraleiter Expired EP0009181B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2840526A DE2840526C2 (de) 1978-09-18 1978-09-18 Verfahren zum elektrischen Kontaktieren eines Supraleiters mit Hilfe eines normalleitenden Kontaktkörpers
DE2840526 1978-09-18

Publications (2)

Publication Number Publication Date
EP0009181A1 EP0009181A1 (de) 1980-04-02
EP0009181B1 true EP0009181B1 (de) 1982-03-17

Family

ID=6049727

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79103321A Expired EP0009181B1 (de) 1978-09-18 1979-09-06 Verfahren zur Herstellung eines elektrischen Kontaktes zwischen einem normalleitenden Kontaktkörper und mindestens einem Supraleiter

Country Status (3)

Country Link
US (1) US4270264A (de)
EP (1) EP0009181B1 (de)
DE (1) DE2840526C2 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60177602A (ja) * 1984-02-24 1985-09-11 Hitachi Ltd 超電導コイルの製作方法
US5227361A (en) * 1987-05-06 1993-07-13 Semiconductor Energy Laboratory Co., Ltd. Oxide superconducting lead for interconnecting device component with a semiconductor substrate via at least one buffer layer
US4978936A (en) * 1988-03-03 1990-12-18 Intermagnetics General Corporation Superconducting magnetic coil element having terminals bonded to the coil body
US5332988A (en) * 1992-05-15 1994-07-26 Massachusetts Institute Of Technology Removable coil form for superconducting nmr magnets and a method for its use
EP1222672A2 (de) * 1999-10-06 2002-07-17 Nordic Superconductor Technologies A/S Verfahren zur herstellung und verwendung eines supraleiterbandes, insbesondere zum wickeln einer spule.
DE102005052602B3 (de) * 2005-11-02 2007-03-08 Trithor Gmbh Spule zum Erzeugen eines Magnetfeldes
EP2190269B1 (de) * 2006-01-19 2017-03-15 Massachusetts Institute of Technology Magnetstruktur für Partikelbeschleunigung
US7372273B2 (en) 2006-10-02 2008-05-13 General Electric Company High temperature superconducting current leads for superconducting magnets
GB2485205B (en) * 2010-11-05 2016-08-17 Rolls Royce Plc A superconductor device
WO2016042821A1 (ja) * 2014-09-19 2016-03-24 株式会社日立製作所 永久電流スイッチ及び超電導コイル
GB2574210B (en) * 2018-05-30 2022-09-28 Siemens Healthcare Ltd Superconducting joints

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1648690A (en) * 1923-05-17 1927-11-08 Gen Electric Method of making long crystal tungsten filaments
US3296684A (en) * 1962-09-24 1967-01-10 Nat Res Corp Method of forming intermetallic superconductors
CH468095A (de) * 1967-10-13 1969-01-31 Bbc Brown Boveri & Cie Verfahren zur elektrischen Verbindung der Enden zweier Leiter, von denen mindestens einer aus einem hart-supraleitenden Material besteht, sowie eine elektrische Verbindung, hergestellt nach diesem Verfahren
BE755928A (fr) * 1969-09-10 1971-02-15 Whittaker Corp Procede de fabrication de supraconducteurs
GB1341726A (en) * 1971-02-04 1973-12-25 Imp Metal Ind Kynoch Ltd Superconductors

Also Published As

Publication number Publication date
EP0009181A1 (de) 1980-04-02
DE2840526C2 (de) 1985-04-25
US4270264A (en) 1981-06-02
DE2840526A1 (de) 1980-03-27

Similar Documents

Publication Publication Date Title
DE112008000364B4 (de) Spule und Verfahren zum Bilden der Spule
DE69333128T2 (de) Stromzuleitung für supraleitendes Magnetsystem ohne flüssiges Helium
EP0009181B1 (de) Verfahren zur Herstellung eines elektrischen Kontaktes zwischen einem normalleitenden Kontaktkörper und mindestens einem Supraleiter
DE4324845A1 (de) Supraleitende Verbindungsstelle mit Niob-Zinn und ein Verfahren zu deren Herstellung
EP0503525B1 (de) Verfahren zur Herstellung von supraleitenden Drähten
DE2749052C2 (de)
DE3045277C2 (de) Supraleiter
DE1917084A1 (de) Elektrischer Leiter
DE2217597A1 (de) Spule für Elektrowerkzeuge, Nietmaschinen oder dergleichen, sowie Verfahren zu deren Herstellung
DE2620271B2 (de) Verfahren zur Herstellung eines Nb3 Sn-stabilisierten Verbund- Supraleiters
EP0223137B1 (de) Supraleitender Verbundleiter mit mehreren Leiteradern und Verfahren zu dessen Herstellung
EP0503448A2 (de) Verfahren zur Herstellung eines supraleitenden Strombegrenzers sowie ein entsprechend hergestellter Strombegrenzer
EP0130442B1 (de) Extrem widerstandsarme Verbindungseinrichtung zwischen den Endstücken zweier Supraleiter
DE3905424C2 (de) Verfahren zur Herstellung einer supraleitenden Verbindung zwischen oxidischen Supraleitern
DE2515904C2 (de) Verfahren zur Herstellung eines stabilisierten Supraleiters
DE3413167A1 (de) Verfahren zur herstellung eines supraleitenden kontaktes
EP0032691A1 (de) Verfahren zur Herstellung eines Supraleiters mit einer intermetallischen Verbindung
EP0811995A1 (de) Magnetspule sowie Verfahren zu deren Herstellung
WO1994017567A1 (de) Verfahren und verbindung zum elektrischen verbinden zweier supraleitender kabel
DE2331919A1 (de) Verfahren zum herstellen eines supraleiters mit einer supraleitenden intermetallischen verbindung aus wenigstens zwei elementen
DE2734410A1 (de) Verfahren zur herstellung eines supraleiters
EP0014915A1 (de) Supraleitende Magnetwicklung mit mehreren Wicklungslagen
DE2200769A1 (de) Stabilisierte Supraleiter und Verfahren zu deren Herstellung
DE3147948A1 (de) "anordnung mit integrierten schaltungen"
DE1614630A1 (de) Steuerbares Halbleiter-Bauelement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR GB

17P Request for examination filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH FR GB

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19830926

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19831123

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19840930

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19850531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881118

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT