EP0004081B1 - Shaft-type cooler - Google Patents

Shaft-type cooler Download PDF

Info

Publication number
EP0004081B1
EP0004081B1 EP79100708A EP79100708A EP0004081B1 EP 0004081 B1 EP0004081 B1 EP 0004081B1 EP 79100708 A EP79100708 A EP 79100708A EP 79100708 A EP79100708 A EP 79100708A EP 0004081 B1 EP0004081 B1 EP 0004081B1
Authority
EP
European Patent Office
Prior art keywords
shaft
cooling
cooler according
cooling passages
shaft cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP79100708A
Other languages
German (de)
French (fr)
Other versions
EP0004081A3 (en
EP0004081A2 (en
Inventor
Otto Heinemann
Rainer Philipp
Heinz-Herbert Schmits
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Industrial Solutions AG
Original Assignee
Krupp Polysius AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krupp Polysius AG filed Critical Krupp Polysius AG
Publication of EP0004081A2 publication Critical patent/EP0004081A2/en
Publication of EP0004081A3 publication Critical patent/EP0004081A3/en
Application granted granted Critical
Publication of EP0004081B1 publication Critical patent/EP0004081B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/04Tubular elements of cross-section which is non-circular polygonal, e.g. rectangular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D15/00Handling or treating discharged material; Supports or receiving chambers therefor
    • F27D15/02Cooling
    • F27D15/0286Cooling in a vertical, e.g. annular, shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0058Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for only one medium being tubes having different orientations to each other or crossing the conduit for the other heat exchange medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0045Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for granular materials

Definitions

  • the invention relates to a shaft cooler for indirect cooling of lumpy material supplied at the upper end of the shaft and discharged at the lower end of the shaft, containing in the interior of the shaft a number of cooling channels which are arranged at a mutual spacing and carry a cooling medium and are closed with respect to the interior of the shaft.
  • Shaft coolers are known (US Pat. No. 1,737,061 and US Pat. No. 2,377,943) in which the cooling air is brought into direct contact with the material to be cooled.
  • the cooling air is introduced into the shaft through roof-shaped internals that are open at the bottom and penetrate the shaft in the transverse direction. Since the cooling air often seeks preferred flow channels through the bulk material, these known shaft coolers often result in uneven cooling of the material in the individual areas of the shaft cross section.
  • Another disadvantage of these indirect shaft coolers is the effort required for dedusting the cooling air.
  • a shaft cooler for indirect cooling is also known (FR - A - 1 046 374), which has a number of cooling tubes of circular cross section penetrating the shaft interior in the horizontal direction.
  • the cooling pipes provided in rows one above the other are arranged offset to a gap.
  • the main disadvantage of this shaft cooler is the lack of uniformity of the time spent by the individual parts of the good in the shaft cooler. Because the movement path of the individual good particles when moving through the shaft cooler from top to bottom is not precisely predetermined, but is largely due to the formation of local agglomerates between individual cooling pipes, preferred movement paths of the material form within the shaft cooler, which leads to an uneven cooling of the whole Good leads.
  • the invention is therefore based on the object, while avoiding the described shortcomings of the known designs, to design a shaft cooler of the type mentioned in such a way that particularly uniform cooling of the entire product is achieved with cooling ducts which are simple to produce.
  • the material When passing through the cooling channels of zigzag-shaped cross section, the material is intensively circulated and mixed, with all the good particles coming into repeated and intensive contact with the cooling channels, which laterally delimit the zigzag-shaped material flow zone.
  • the cooling of the shaft cooler according to the invention which is substantially uniform and also improved in intensity, furthermore enables a reduction in the overall height of the shaft cooler.
  • an inventive, indirectly acting shaft cooler 1 is illustrated, which is used as a second cooling stage of a two-stage cooling device, which is connected downstream of a rotary kiln 2 and as a first cooling stage after the rotary kiln 2 contains a direct-acting cooler 3 of any design, of which preferably the entire heated cooling air is introduced as combustion air into the rotary kiln 2.
  • the direct-acting cooler 3 is connected by a mechanical conveyor 4 to the material inlet chute 5 of the shaft cooler 1 according to the invention;
  • a pre-comminution device is also provided at the outlet of the first cooler 3, in which the pre-cooled material to be fed to the conveyor 4 is comminuted to a minimum piece size.
  • the invention Shaft cooler can be designed with only one cooling shaft.
  • the exemplary embodiment illustrated in FIG. 1 is, however, intended for a relatively large throughput capacity, so that the shaft cooler 1 contains a plurality (in the exemplary embodiment shown four) of cooling ducts 6 lying directly next to one another, which are arranged in a row and have a common outer housing.
  • the cooling channels 7 arranged in the interior of the individual cooling shafts 6 have a zigzag-shaped cross-section with a vertical cross-sectional main axis and delimit good passage zones 8 of likewise zigzag-shaped cross-section between them. These material flow zones 8 therefore have an axis 9 which deviates several times from the straight, vertical profile (cf. FIG. 2).
  • the cooling channels 7 are arranged parallel to one another in the transverse direction of the shaft, approximately horizontally, and extend from one longitudinal shaft wall 6a to the opposite longitudinal shaft wall 6b.
  • Fig. 2 shows the design and arrangement of the cooling channels 7 in detail.
  • the zigzag-shaped cooling channels 7 have a number of bends 7a which have an angle a between 60 and 160 °, preferably between 100 and 120 °.
  • the distance A between two cooling channels 7 which are adjacent to one another in the horizontal direction is approximately the same over the entire height.
  • the distance A and thus the width of the material flow zone 8 mainly depends on the size of the material to be cooled, on the desired intensity of the cooling and the intended time for the material to pass through the cooler.
  • the cooling channels 7 can be produced by simply bending metal sheets and can be welded together with relatively few seams.
  • the multiple bevelling of the walls of the cooling channels also ensures excellent rigidity and stability of the cooling channels.
  • the cooling ducts 7 'arranged on a duct wall can also be simplified, in that the corresponding straight duct wall (e.g. 6c) is simultaneously used as a wall of the cooling duct 7'.
  • Such a cooling channel 7 'therefore only contains a zigzag-shaped wall 7'b.
  • each cooling shaft 6 contains a plurality (here four) shaft compartments 10a, 10b, 10c and 10d lying one above the other, in each of which the cooling channels 7 are provided in the manner explained.
  • the material flow zones 8 of these superimposed shaft compartments are in an open connection that is common to all material flow zones of this cooling shaft.
  • the division of a cooling shaft 6 into a plurality of shaft compartments lying one above the other has several advantages: on the one hand, the approximately cuboidal individual shaft compartments 10a to 10d facilitate the manufacture and assembly of such a shaft cooler; on the other hand, this enables multiple transverse guidance and deflection of the cooling medium to be achieved in an advantageous manner, as is shown by the arrows 11, 15 in FIG. 3.
  • the cooling channels 7 are each connected to two superimposed shaft compartments (e.g. 10a and 10b, 10b and 10c etc.) by an outer connecting line 12, 12a, 12b for the cooling medium.
  • the cooling air used as the cooling medium is preferably fed to the cooling channels 7 of the lower shaft compartment 10a by a cooling air fan 13 via a connecting line 14, then flows through the shaft compartments 10a, 10b, 10c and 10d one after the other in the transverse direction and is discharged from the uppermost shaft compartment 10d (cf. Arrows 15).
  • the cooling shafts 6 are arranged below a common upper goods supply space 16 (cf. FIG. 1), in which a material distributor conveyor 17 is provided which extends over the entire length of the goods supply space 16.
  • This material distributor conveyor 17, which is designed as a drag chain conveyor, interacts with a classifying grate which is likewise provided in the upper material supply space 16 in such a way that the lower drag chain center 17a slides along the grate bars of the classifying grate 18 running in the longitudinal direction of the material supply space 16. In this way, the material fed with the conveyor 4 and via a chute 5 is dragged over the classifying grate 18, the majority of the material then falling down and being distributed over the individual cooling shafts 6.
  • Cooling shafts 6 have multiple good outlets 21 at their lower ends. They can be controlled as a function of the material outlet temperature measured there and / or the shaft fill level, so that the shaft cooler 1 is operated continuously.
  • the material outlets 21 of all cooling shafts 6 are arranged above a common material removal device 22, via which the outlet of the coarse material shaft 19 also opens.

Description

Die Erfindung betrifft einen Schachtkühler zur indirekten Kühlung von am oberen Schachtende zugeführtem und am unteren Schachtende abgeführtem, stückigen Gut, enthaltend im Schachtinnenraum eine Anzahl von mit gegenseitigem Abstand angeordneten, ein Kühlmedium führenden, gegenüber dem Schachtinnenraum geschlossenen Kühlkanälen.The invention relates to a shaft cooler for indirect cooling of lumpy material supplied at the upper end of the shaft and discharged at the lower end of the shaft, containing in the interior of the shaft a number of cooling channels which are arranged at a mutual spacing and carry a cooling medium and are closed with respect to the interior of the shaft.

Es sind Schachtkühler bekannt (US - A - 1 737 061 und US - A - 2 377 943), in denen die Kühlluft in direkte Berührung mit dem zu kühlenden Gut gebracht wird. Die Einführung der Kühlluft in den Schacht erfolgt hierbei über dachförmige, nach unten offene Einbauten, die den Schacht in Querrichtung durchsetzen. Da sich die Kühlluft oft bevorzugte Strömungskanäle durch die Gutschüttung sucht, ergibt sich bei diesen bekannten Schachtkühlern vielfach eine ungleichmäßige Kühlung des Gutes in den einzelnen Bereichen des Schacht-Querschnitts. Nachteilig bei diesen indirekten Schachtkühlern ist ferner der für die Entstaubung der Kühlluft notwendige Aufwand.Shaft coolers are known (US Pat. No. 1,737,061 and US Pat. No. 2,377,943) in which the cooling air is brought into direct contact with the material to be cooled. The cooling air is introduced into the shaft through roof-shaped internals that are open at the bottom and penetrate the shaft in the transverse direction. Since the cooling air often seeks preferred flow channels through the bulk material, these known shaft coolers often result in uneven cooling of the material in the individual areas of the shaft cross section. Another disadvantage of these indirect shaft coolers is the effort required for dedusting the cooling air.

Es ist weiterhin ein Schachtkühler zur indirekten Kühlung bekannt (FR - A - 1 046 374), der eine Anzahl von den Schachtinnenraum in horizontaler Richtung durchsetzenden Kühlrohren von kreisförmigem Querschnitt aufweist. Die in übereinander liegenden Reihen vorgesehenen Kühlrohre sind hierbei auf Lücke versetzt angeordnet. Nachteilig ist bei diesem Schachtkühler vor allem die mangelnde Gleichmäßigkeit der Aufenthaltszeit der einzelnen Gutpartien im Schachtkühler. Da nämlich die Bewegungsbahn der einzelnen Gutteilchen beim Durchwandern des Schachtküh!ers von oben nach unten nicht genau vorgegeben, sondern weitgehend von örtlichen Agglomeratbildungen zwischen einzelnen Kühlrohren bedingt ist, bilden sich innerhalb des Schachtkühlers bevorzugte Bewegungsbahnen des Gutes aus, was zu einer ungleichmäßigen Kühlung des gesamten Gutes führt.A shaft cooler for indirect cooling is also known (FR - A - 1 046 374), which has a number of cooling tubes of circular cross section penetrating the shaft interior in the horizontal direction. The cooling pipes provided in rows one above the other are arranged offset to a gap. The main disadvantage of this shaft cooler is the lack of uniformity of the time spent by the individual parts of the good in the shaft cooler. Because the movement path of the individual good particles when moving through the shaft cooler from top to bottom is not precisely predetermined, but is largely due to the formation of local agglomerates between individual cooling pipes, preferred movement paths of the material form within the shaft cooler, which leads to an uneven cooling of the whole Good leads.

Der Erfindung liegt daher die Aufgabe zugrunde, unter Vermeidung der geschilderten Mängel der bekannten Ausführungen einen Schachtkühler der eingangs genannten Art so auszubilden, daß mit einfach herzustellenden Kühlkanälen eine besonders gleichmäßige Kühlung des gesamten Gutes erzielt wird.The invention is therefore based on the object, while avoiding the described shortcomings of the known designs, to design a shaft cooler of the type mentioned in such a way that particularly uniform cooling of the entire product is achieved with cooling ducts which are simple to produce.

Diese Aufgabe wird erfindungsgemäß durch die Kombination folgender Merkmale gelöst:

  • a) Die Kühlkanäle besitzen einen zick-zack-förmigen Querschnitt mit vertikaler Querschnitts-Hauptachse;
  • b) jeweils zwei in horizontaler Richtung einander benachbarte Kühlkanäle weisen über ihre ganze Höhe einen überall etwa gleich großen Abstand voneinander auf und begrenzen eine Gutdurchlaufzone von zick-zack-förmigem Querschnitt.
According to the invention, this object is achieved by combining the following features:
  • a) The cooling channels have a zigzag cross-section with a vertical cross-sectional main axis;
  • b) in each case two cooling ducts which are adjacent to one another in the horizontal direction have a spacing approximately the same distance apart from one another over their entire height and delimit a pass-through zone of a zigzag-shaped cross section.

Beim Durchwandern de Kühlkanäle von zick-zack-förmigem Querschnitt wird das Gut intensiv umgewälzt und durchmischt, wobei alle Gutteilchen in eine wiederholte und intensive Berührung mit den Kühlkanälen kommen, die die zick-zack-förmige Gutdurchlaufzone seitlich begrenzen.When passing through the cooling channels of zigzag-shaped cross section, the material is intensively circulated and mixed, with all the good particles coming into repeated and intensive contact with the cooling channels, which laterally delimit the zigzag-shaped material flow zone.

Die Ausbildung gesonderter, parallel zueinander angeordneter Gutdurchlaufzonen (die jeweils von zwei zick-zack-förmigen Kühlkanälen begrenzt werden) ergibt für alle Gutteilchen eine genau definierte Bewegungsbahn beim Durchwandern des Schachtkühlers von oben nach unten. Damit ist zugleich für alle Gutteilchen eine gleichmäßige Aufenthaltszeit im Kühler und eine gleichmäßige Kühlung gewährleistet. Die Ausbildung bevorzugter Bewegungsbahnen des Gutes und die hierdurch bedingten Nachteile einer in den einzelnen Querschnittsbereichen des Schachtes ungleichmäßigen Kühlwirkung werden durch die erfindungsgemäße Lösung mit Sicherheit vermieden.The formation of separate, parallel flow pass zones (which are each delimited by two zigzag-shaped cooling channels) results in a well-defined movement path for all good particles when moving through the shaft cooler from top to bottom. This ensures a uniform residence time in the cooler and even cooling for all good particles. The formation of preferred trajectories of the goods and the consequent disadvantages of an uneven cooling effect in the individual cross-sectional areas of the shaft are avoided with certainty by the solution according to the invention.

Die bei dem erfindungsgemäßen Schachtkühler wesentlich vergleichmäßigte und auch in der Intensität verbesserte Kühlung ermöglicht ferner eine Verringerung der Bauhöhe des Schachtkühlers.The cooling of the shaft cooler according to the invention, which is substantially uniform and also improved in intensity, furthermore enables a reduction in the overall height of the shaft cooler.

Zweckmäßige Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche und werden in Verbindung mit der Beschreibung eines in der Zeichnung veranschaulichten Ausführungsbeispieles näher erläutert.Useful embodiments of the invention are the subject of the dependent claims and are explained in more detail in connection with the description of an exemplary embodiment illustrated in the drawing.

In der Zeichnung zeigen

  • Fig. 1 eine schematische Gesamtansicht eines erfindungsgemäßen Schachtkühlers;
  • Fig. 2 einen Ausschnitt II aus Fig. 1 in vergrößertem Maßstab;
  • Fig. 3 einen Schnitt durch den Schachtkühler längs der Linie 111-111 der Fig. 1.
Show in the drawing
  • Fig. 1 is a schematic overall view of a shaft cooler according to the invention;
  • FIG. 2 shows a detail II from FIG. 1 on an enlarged scale;
  • 3 shows a section through the shaft cooler along the line 111-111 of FIG. 1st

In Fig. 1 ist ein erfindungsgemäßer, indirekt wirkender Schachtkühler 1 veranschaulicht, der als zweite Kählstufe einer zweistufigen Kühlvorrichtung eingesetzt ist, die einem Drehrohrofen 2 nachgeschaltet ist und als erste Kühlstufe nach dem Drehrohrofen 2 einen direkt wirkenden Kühler 3 beliebiger Ausführung enthält, von dem vorzugsweise die gesamte erwärmte Kühlluft als Verbrennungsluft in den Drehrohrofen 2 eingeführt wird. Der direkt wirkende Kühler 3 ist durch einen mechanischen Förderer 4 mit der Guteinlaufschurre 5 des erfindungsgemäßen Schachtkühlers 1 verbunden; vorzugsweise ist am Auslauf des ersten Kühlers 3 noch eine Vorzerkleinerungseinrichtung vorgesehen, in der das vorgekühlte, dem Förderer 4 zuzuführende Gut auf eine Mindest-Stückgröße zerkleinert wird.In Fig. 1, an inventive, indirectly acting shaft cooler 1 is illustrated, which is used as a second cooling stage of a two-stage cooling device, which is connected downstream of a rotary kiln 2 and as a first cooling stage after the rotary kiln 2 contains a direct-acting cooler 3 of any design, of which preferably the entire heated cooling air is introduced as combustion air into the rotary kiln 2. The direct-acting cooler 3 is connected by a mechanical conveyor 4 to the material inlet chute 5 of the shaft cooler 1 according to the invention; Preferably, a pre-comminution device is also provided at the outlet of the first cooler 3, in which the pre-cooled material to be fed to the conveyor 4 is comminuted to a minimum piece size.

Generell kann der erfindungsgemäße Schachtkühler mit nur einem Kühlschacht ausgebildet sein. Das in Fig. 1 veranschaulichte Ausführungsbeispiel ist jedoch für eine verhältnismäßig große Gutdurchsatzleistung bestimmt, so daß der Schachtkühler 1 mehrere (beim dargestellten Ausführungsbeispiel vier) unmittelbar nebeneinander liegende Kühlschächte 6 enthält, die in einer Reihe angeordnet sind und ein gemeinsames Außengehäuse besitzen.In general, the invention Shaft cooler can be designed with only one cooling shaft. The exemplary embodiment illustrated in FIG. 1 is, however, intended for a relatively large throughput capacity, so that the shaft cooler 1 contains a plurality (in the exemplary embodiment shown four) of cooling ducts 6 lying directly next to one another, which are arranged in a row and have a common outer housing.

Die im Innenraum der einzelnen Kühlschächte 6 angeordneten Kühlkanäle 7 besitzen einen zick-zack-förmigen Querschnitt mit vertikaler Querschnitts-Hauptachse und begrenzen zwischen sich Gutdurchlaufzonen 8 von gleichfalls zick-zack-förmigem Querschnitt. Diese Gutdurchlaufzonen 8 besitzen daher eine mehrfach vom geradlinig-vertikalen Verlauf abweichende Achse 9 (vgl. Fig. 2). Die Kühlkanäle 7 sind in Querrichtung des Schachtes parallel zueinander, etwa horizontal angeordnet und erstrecken sich von einer Schachtlängswand 6a bis zur gegenüberliegenden Schachtlängswand 6b.The cooling channels 7 arranged in the interior of the individual cooling shafts 6 have a zigzag-shaped cross-section with a vertical cross-sectional main axis and delimit good passage zones 8 of likewise zigzag-shaped cross-section between them. These material flow zones 8 therefore have an axis 9 which deviates several times from the straight, vertical profile (cf. FIG. 2). The cooling channels 7 are arranged parallel to one another in the transverse direction of the shaft, approximately horizontally, and extend from one longitudinal shaft wall 6a to the opposite longitudinal shaft wall 6b.

Fig. 2 zeigt die Ausbildung und Anordnung der Kühlkanäle 7 im einzelnen. Die zick-zack-förmigen Kühlkanäle 7 weisen eine Anzahl von Abwinklungen 7a auf, die einen Winkel a zwischen 60 und 160°, vorzugsweise zwischen 100 und 120°, aufweisen. Der Abstand A zweier in horizontaler Richtung einander benachbarter Kühlkanäle 7 ist über die ganze Höhe etwa gleich. Der Abstand A und damit die Weite der Gutdurchlaufzone 8 hängt hauptsächlich von der Stückgröße des zu kühlenden Gutes, von der gewünschten Intensität der Kühlung und der vorgesehenen Durchlaufzeit des Gutes durch den Kühler ab.Fig. 2 shows the design and arrangement of the cooling channels 7 in detail. The zigzag-shaped cooling channels 7 have a number of bends 7a which have an angle a between 60 and 160 °, preferably between 100 and 120 °. The distance A between two cooling channels 7 which are adjacent to one another in the horizontal direction is approximately the same over the entire height. The distance A and thus the width of the material flow zone 8 mainly depends on the size of the material to be cooled, on the desired intensity of the cooling and the intended time for the material to pass through the cooler.

Wie Fig. 2 zeigt, können die Kühlkanäle 7 durch einfaches Abkanten von Blechen hergestellt und mit verhältnismäßig wenigen Nahtstellen zusammengeschweißt werden. Durch die Mehrfach-Abkantung der Wände der Kühlkanäle wird außerdem eine ausgezeichnete Steifigkeit und Stabilität der Kühlkanäle erzielt. Bei der in Fig. 2 veranschaulichten Ausführung können ferner die an einer Schachtwand angeordneten Kühlkanäle 7' vereinfacht ausgeführt werden, indem die entsprechende gerade Schachtwand (z.B. 6c) gleichzeitig als eine Wand des Kühlkanales 7' ausgenutzt wird. Ein solcher Kühlkanal 7' enthält daher lediglich eine zick-zack-förmig abgekantete Wand 7'b.As FIG. 2 shows, the cooling channels 7 can be produced by simply bending metal sheets and can be welded together with relatively few seams. The multiple bevelling of the walls of the cooling channels also ensures excellent rigidity and stability of the cooling channels. In the embodiment illustrated in FIG. 2, the cooling ducts 7 'arranged on a duct wall can also be simplified, in that the corresponding straight duct wall (e.g. 6c) is simultaneously used as a wall of the cooling duct 7'. Such a cooling channel 7 'therefore only contains a zigzag-shaped wall 7'b.

Wie Fig. 1 zeigt, enthält jeder Kühlschacht 6 mehrere (hier vier) übereinander liegende Schachtabteile 10a, 10b, 10c und 10d, in denen jeweils die Kühlkanäle 7 in der erläuterten Weise vorgesehen sind. Die Gutdurchlaufzonen 8 dieser übereinander liegenden Schachtabteile stehen dabei in einer offenen, für alle Gutdurchlaufzonen dieses Kühlschachtes gemeinsamen Verbindung.As shown in FIG. 1, each cooling shaft 6 contains a plurality (here four) shaft compartments 10a, 10b, 10c and 10d lying one above the other, in each of which the cooling channels 7 are provided in the manner explained. The material flow zones 8 of these superimposed shaft compartments are in an open connection that is common to all material flow zones of this cooling shaft.

Die Aufteilung eines Kühlschachtes 6 in mehrere übereinander liegende Schachtabteile bringt mehrere Vorteile mit sich: Einerseits erleichtern die etwa quaderförmig ausgeführten einzelnen Schachtabteile 10a bis 10d die Fertigung und Montage eines solchen Schachtkühlers; zum andern läßt sich hierdurch in vorteilhafter Weise eine mehrfache Querführung und Umlenkung des Kühlmediums erzielen, wie dies in Fig. 3 die Pfeile 11, 15 verdeutlichen. Zu diesem Zweck sind die Kühlkanäle 7 je zweier übereinander liegender Schachtabteile (z.B. 10a und 10b, 10b und 10c usw.), durch eine äußere Verbindungsleitung 12, 12a, 12b für das Kühlmedium miteinander verbunden. Vorzugsweise wird die als Kühlmedium verwendete Kühlluft den Kühlkanälen 7 des unteren Schachtabteiles 10a von einem Kühlluftvenilator 13 über eine Verbindungsleitung 14 zugeführt, durchströmt dann nacheinander die Schachtabteile 10a, 10b, 10c und 10d jeweils in Querrichtung und wird aus dem obersten Schachtabtei 10d abgeführt (vgl. Pfeile 15).The division of a cooling shaft 6 into a plurality of shaft compartments lying one above the other has several advantages: on the one hand, the approximately cuboidal individual shaft compartments 10a to 10d facilitate the manufacture and assembly of such a shaft cooler; on the other hand, this enables multiple transverse guidance and deflection of the cooling medium to be achieved in an advantageous manner, as is shown by the arrows 11, 15 in FIG. 3. For this purpose, the cooling channels 7 are each connected to two superimposed shaft compartments (e.g. 10a and 10b, 10b and 10c etc.) by an outer connecting line 12, 12a, 12b for the cooling medium. The cooling air used as the cooling medium is preferably fed to the cooling channels 7 of the lower shaft compartment 10a by a cooling air fan 13 via a connecting line 14, then flows through the shaft compartments 10a, 10b, 10c and 10d one after the other in the transverse direction and is discharged from the uppermost shaft compartment 10d (cf. Arrows 15).

Die Kühlschächte 6 sind unterhalb eines gemeinsamen oberen Gutzuführraumes 16 angeordnet (vgl. Fig. 1), in dem ein über die ganze Länge des Gutzuführraumes 16 verlaufender Gutverteilerförderer 17 vorgesehen ist. Dieser als Schleppkettenförderer ausgebildete Gutverteilerförderer 17 wirkt mit einem ebenfals im oberen Gutzuführraum 16 vorgesehenen Klassierrost in der Weise zusammen, daß das untere Schleppkettentrum 17a auf den in Längsrichtung des Gutzuführraumes 16 verlaufenden Roststäben des Klassierrostes 18 entlang gleitet. Auf diese Weise wird das mit dem Förderer 4 und über eine Schurre 5 zugeführte Gut über den Klassierrost 18 geschleppt, wobei dann der größte Teil des Gutes nach unten durchfällt und sich auf die einzelnen Kühlschächte 6 verteilt. Das nicht durch den Klassierrost 18 hindurchfallende Grobgut fällt am Grobgutauslauf 18a in einen sich hier am Ende des Schachtkühlers 1 anschließenden Grobgutschacht 19 hinein. Am unteren Ende dieses Grobgutschachtes 19 befindet sich eine Zerkleinerungseinrichtung 20, die das Grobgut zunächst zerkleinert, ehe. es dem gekühlten Gut zugegeben wird.The cooling shafts 6 are arranged below a common upper goods supply space 16 (cf. FIG. 1), in which a material distributor conveyor 17 is provided which extends over the entire length of the goods supply space 16. This material distributor conveyor 17, which is designed as a drag chain conveyor, interacts with a classifying grate which is likewise provided in the upper material supply space 16 in such a way that the lower drag chain center 17a slides along the grate bars of the classifying grate 18 running in the longitudinal direction of the material supply space 16. In this way, the material fed with the conveyor 4 and via a chute 5 is dragged over the classifying grate 18, the majority of the material then falling down and being distributed over the individual cooling shafts 6. The not falling through the classifying grating 18 coarse material falls on rough g into a subsequent here at the end of the shaft cooler 1 coarse crediting Eight 19 utauslauf 18a. At the lower end of this coarse material chute 19 there is a comminution device 20 which first comminutes the coarse material before. it is added to the chilled goods.

Wie Fig. 1 ferner zeigt, weisen alle. Kühlschächte 6 an ihrem unteren Ende Mehrfach-Gutausläufe 21 auf. Sie können in Abhängigkeit von der dort gemessenen Gutaustrittstemperatur und/oder der Schachtfüllhöhe gesteuert werden, so daß sich ein kontinuierlicher Betrieb des Schachtkühlers 1 ergibt. Die Gutausläufe 21 aller Kühlschächte 6 sind über einer gemeinsamen Gutabfördereinrichtung 22 angeordnet, über der auch der Auslauf des Grobgutschachtes 19 mündet.1 also shows, all have. Cooling shafts 6 have multiple good outlets 21 at their lower ends. They can be controlled as a function of the material outlet temperature measured there and / or the shaft fill level, so that the shaft cooler 1 is operated continuously. The material outlets 21 of all cooling shafts 6 are arranged above a common material removal device 22, via which the outlet of the coarse material shaft 19 also opens.

Claims (8)

1. Shaft cooler for indirect cooling of lump material supplied at the top shaft end and discharged at the bottom shaft end, containing in the shaft interior a plurality of mutually spaced cooling passages conducting a cooling medium and sealed with respect to the shaft interior, characterised by the combination of the following features:
a) The cooling passages (7) have a zig-zag-shaped cross-section with vertical cross-sectional major axes:
b) every two horizontally adjacent cooling passages (7) have over their entire height a distance (A) apart substantially equal everywhere and define a material passage zone (8) of zig-zag-shaped cross-section.
2. Shaft cooler according to claim 1, characterised in that the cooling passages (7) form at the bends of their zig-zag-shaped cross-section an angle (a) of 60 to 160°, preferably 100 to 120°.
3. Shaft cooler according to claim 1, characterised in that in a cooling shaft (6) a plurality of superimposed shaft compartments (10a, 10b, 10c, 10d) are provided which each contain a group of cooling passages (7) and as regards their material passage zones (8) are .in open connection common for all the material passage zones of said cooling shaft.
4. Shaft cooler according to claim 3, characterised in that the cooling passages (7) of superimposed shaft compartments (e.g. 10a and 10b, 10b and 10c) are connected together by an outer connecting line (12, 12a, 12b) for the cooling medium.
5. Shaft cooler according to claim 3, characterised in that a plurality of cooling shafts (6) are provided adjacent each other beneath a common upper material supply space (16) provided with a material distributing conveyor (17).
6. Shaft cooler according to claim 5, characterised in that the material distributing conveyor (17) is constructed as drag chain conveyor and cooperates with a classifying grating (18) whose coarse material discharge is connected to a coarse materials shaft (19) which immediately follows the cooling shafts (6) and at the lower end of which a comminuting means (20) is provided.
7. Shaft cooler according to claim 3, characterised in that the cooling shaft (6) comprises at the lower end multiple material discharges (21) which are controllable in dependence upon the material discharge temperature and/or the shaft filling level measured there.
8. Shaft cooler according to claims 5 and 7, characterised in that the material discharges (21) of all cooling shafts (6) are disposed above a common material removal means (22).
EP79100708A 1978-03-08 1979-03-08 Shaft-type cooler Expired EP0004081B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2809927 1978-03-08
DE19782809927 DE2809927A1 (en) 1978-03-08 1978-03-08 DRAIN COOLER

Publications (3)

Publication Number Publication Date
EP0004081A2 EP0004081A2 (en) 1979-09-19
EP0004081A3 EP0004081A3 (en) 1979-10-17
EP0004081B1 true EP0004081B1 (en) 1980-10-29

Family

ID=6033836

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79100708A Expired EP0004081B1 (en) 1978-03-08 1979-03-08 Shaft-type cooler

Country Status (5)

Country Link
EP (1) EP0004081B1 (en)
BR (1) BR7901378A (en)
DE (1) DE2809927A1 (en)
ES (1) ES478365A1 (en)
ZA (1) ZA79867B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009036119A1 (en) * 2009-08-05 2011-02-10 Uhde Gmbh Method and device for cooling a fine-grained solid with simultaneous replacement of the gap space gas contained therein

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19643699C1 (en) * 1996-10-23 1998-03-26 Babcock Bsh Gmbh Shaft cooler, for cooling granular bulk material, especially sand
WO1998017959A1 (en) * 1996-10-23 1998-04-30 Babcock-Bsh Gmbh Shaft cooler
DE102016106746A1 (en) * 2016-04-12 2017-10-12 Cebcon Technologies Gmbh Process for sanitizing biomass
EP3822569B1 (en) 2019-11-14 2023-06-07 Promix Solutions AG Heat exchanger
EP4089357A1 (en) 2021-05-10 2022-11-16 Promix Solutions AG Heat exchanger

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB150056A (en) * 1919-05-26 1920-08-26 Albert Dyche An improved copper tube for refrigerators
US1737061A (en) * 1926-05-01 1929-11-26 Santa Cruz Portland Cement Com Clinker cooler
US2377943A (en) * 1939-01-07 1945-06-12 Kennedy Van Saun Mfg & Eng Means for cooling material
FR1046374A (en) * 1950-12-13 1953-12-07 Smidth & Co As F L Heat transmission

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009036119A1 (en) * 2009-08-05 2011-02-10 Uhde Gmbh Method and device for cooling a fine-grained solid with simultaneous replacement of the gap space gas contained therein

Also Published As

Publication number Publication date
EP0004081A3 (en) 1979-10-17
ZA79867B (en) 1980-03-26
ES478365A1 (en) 1979-05-16
BR7901378A (en) 1979-10-02
DE2809927A1 (en) 1979-09-13
EP0004081A2 (en) 1979-09-19

Similar Documents

Publication Publication Date Title
DE1519711C3 (en) Feeding a vapor-liquid mixture into mass transfer columns
DD232539B5 (en) Rostbodenelement to build a Rostflaeche
EP0004081B1 (en) Shaft-type cooler
EP0030947B1 (en) Plant for drying or cooling bulk materials such as lime or coal
DE2229810A1 (en) COOLING DEVICE FOR LITTLE OVEN GOODS
DE3325967C2 (en) Promotional fluidized bed device
DE19721206A1 (en) Device for removing and cooling bed ash from a fluidized bed furnace
DE445818C (en) Dryer with guide bodies for the drying gas
DE1751164A1 (en) Device for the continuous thermal treatment of pourable grainy material
DE1802699A1 (en) Freezer or cooling system
DE2046977A1 (en) Process for the hot granulation of fine-grained coals without additional binders
DE815112C (en) Corrugated sample divider arrangement
EP2864031B1 (en) Device having a variable scale for treating particulate material
EP0556368B1 (en) Bulk-material reactor
EP0044476A2 (en) Tube for the indirect heating of easy flowing material and heat exchanger composed of such tubes
DE646391C (en) Device for the heat treatment of all kinds of goods, for example raw cement
DE3717748C1 (en) Plate heat exchanger for preheating broken glass or similar bulk materials
AT212619B (en) Sorting machine
DE727497C (en) Feeding device for table separators
EP0934498A1 (en) Shaft cooler
DE825988C (en) HEATING SURFACE FURNACE.
DE1507685C (en) Feeding device for an ascending pipe sifter
DE1954616C (en) Continuous dryer for grain, especially for maize
DE253892C (en)
DE2343810C3 (en) Device for carrying out physical and chemical continuous processes in the fluidized bed of a bulk material

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): BE FR GB

AK Designated contracting states

Designated state(s): BE FR GB

17P Request for examination filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE FR GB

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19810218

Year of fee payment: 3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19810331

Year of fee payment: 3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19820308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19830131

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881117

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT