EP0001367A1 - Antiseismic buildings with basements forming an atombomb-proofed shelter - Google Patents

Antiseismic buildings with basements forming an atombomb-proofed shelter Download PDF

Info

Publication number
EP0001367A1
EP0001367A1 EP78400106A EP78400106A EP0001367A1 EP 0001367 A1 EP0001367 A1 EP 0001367A1 EP 78400106 A EP78400106 A EP 78400106A EP 78400106 A EP78400106 A EP 78400106A EP 0001367 A1 EP0001367 A1 EP 0001367A1
Authority
EP
European Patent Office
Prior art keywords
elements
seismic
construction according
base
seismic construction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP78400106A
Other languages
German (de)
French (fr)
Other versions
EP0001367B1 (en
Inventor
Jean-Raphael Hirsch
Claude Di Crescenzo
Jean-Marie Sachet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CRESCENZO C DI
HIRSCH JEAN RAPHAEL
SACHET JEAN MARIE
Original Assignee
CRESCENZO C DI
HIRSCH JEAN RAPHAEL
SACHET JEAN MARIE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CRESCENZO C DI, HIRSCH JEAN RAPHAEL, SACHET JEAN MARIE filed Critical CRESCENZO C DI
Publication of EP0001367A1 publication Critical patent/EP0001367A1/en
Application granted granted Critical
Publication of EP0001367B1 publication Critical patent/EP0001367B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/04Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate against air-raid or other war-like actions
    • E04H9/06Structures arranged in or forming part of buildings
    • E04H9/08Structures arranged underneath buildings, e.g. air-raid shelters
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/028Earthquake withstanding shelters
    • E04H9/029Earthquake withstanding shelters arranged inside of buildings

Definitions

  • the present invention relates to the construction of buildings liable to be subjected to earthquakes of natural origin or caused by atomic explosions.
  • the shelter must have a mechanical resistance far superior to conventional shelters in order to be able to resist in particular the seismic pressure wave, any cracking removing the seal necessary to cope with pollution and the dangers resulting from radioactive fallout. , gases and thermal effects and also water.
  • the determining phenomenon for the collapse of the superstructures can be the atmospheric overpressure wave, or the seismic wave acting on the foundations which shakes the entire structure. In the case of an earthquake, it is the seismic wave that causes the buildings to shake and collapse.
  • the aim of the present invention is to produce constructions in which the buried part can withstand intense seismic tremors, whether of natural or atomic origin, without risk of serious degradation, the horizontal displacements to which the buried part may be subjected. of construction, not being transmitted to the superstructure.
  • the buried base of the construction is constituted by a plurality of independent elements having a mechanical resistance such that each of them is capable of withstanding without damage to the seismic wave of maximum intensity and to support a large fraction preferably greater than a third of the weight of the superstructure, the superstructure being calculated to resist in the case of an isostatic bearing on three points distributed randomly among its points of support provided for construction on the base elements, the shear strength of the connections to the support points of the super structure on the base elements being less than the overall shear strength of the elements of the structure leading to the point considered.
  • the elements of the base can, under the effect of seismic waves, undergo relative displacements without any effort, in particular of shearing, greater than the mechanical resistance of the superstructure, being transmitted to the latter.
  • a dislocation of the base into its independent elements can result in a support of the superstructure on only three of these elements providing isostatic support but without dislocation of the superstructure, which protects the occupants from the risk of collapse and allows a resumption in subsequent underpinning, for example by injection, to level the base again.
  • the independent elements of the base are constituted, at least in part, by habitable cells forming atomic shelters.
  • the independent elements are spaced from each other by a distance at least equal to the compressibility of a ground thickness equal and parallel to their greatest horizontal dimension under the maximum pressure developed by the seismic wave d 'maximum intensity.
  • the gap between two independent elements is, in particular in the case of habitable cells, closed by a compressible material as impervious as possible to water, gases and radiation.
  • This material distorted ble may be a heavy metal filled foam or a composite material based on foam and malleable metal layers.
  • the elements of the base are separated from the elements of vertical walls delimiting the excavation of the base, the gap being filled with a tight compressible material.
  • the emergency exit is carried out by tubular elements which can individually resist without crushing the earthquake of maximum intensity, the various elements being joined together by flexible joints capable of absorbing the relative displacements of two successive elements.
  • the ends of two tubular elements successive, spaced apart by a sufficient distance to absorb the relative displacement are engaged in a tubular junction element having the same mechanical resistance characteristics but reserving between its internal surface and the external peripheral surface of the internal elements a clearance greater than the relative displacement, this clearance being filled with a deformable material similar to that used between the base elements.
  • access to the emergency exit is closed off by a rigid destructible wall with the tools located in the shelter, for example a masonry wall, unreinforced concrete or other similar material.
  • the invention in the embodiment shown in the drawings, is applied to a two-story building.
  • the buried basement is on one floor and has a part 1 forming garages and a part 2 forming an atomic shelter.
  • Part 1 comprises a certain number of slabs 3, reinforced concrete slabs having a thickness and a sufficient reinforcement to be able to support each a significant fraction which can theoretically reach a third of the total weight of the construction, concentrated in their center. To increase their resistance, these slabs can be profiled and include beams forming a crossed network.
  • the building is supported on the slabs 3 by posts 4 provided with a distribution sole 5.
  • the distribution sole 5 is not secured to the slab 3, except possibly by irons of small section capable of being sheared in the event of a shear force exceeding the shear strength of the post 4.
  • each support between the building and the base comprises, as shown in Figure 2, a cylinder 6 interposed with a ball joint system between each sole 5 and each post 4 or between a metal distribution sole 5 'bearing on a habitable cell 10 forming atomic shelter as described below and a support plate 7 incorporated in the system of load-bearing beams 8 of the building in superstructure.
  • the jacks 6 are divided into three groups and the jacks of the same group are interconnected by pipes 9.
  • Each jack or group of jacks can be connected to an enclosure for absorbing pressure waves in the form of a hydropneumatic chamber or analog not shown.
  • a vertical wave which propagates under the elements with a vertical amplitude less than the stroke of the cylinders can be absorbed without damaging the construction.
  • Part 2 is made up of habitable cells also made of reinforced concrete 10. These cells are calculated individually to be able, like the slabs 3, to support a large fraction of the weight of the construction and to be able to resist crushing by seismic waves acting on their lateral faces. It should be noted that when distributor actuator systems 6 are provided, the weight of the construction is always distributed between the various supports and the fraction of the weight of the building that each support must support is therefore lower. These cells are equipped, like all conventional atomic shelters, with standard emergency equipment with regard to means of survival, ventilation, lighting and disinfection. They can be used directly as support, without mechanical connection preventing a horizontal displacement or limiting it beyond a certain shearing force, to the superstructure construction. This support can also include a hydrostatic connection device as shown in FIG. 2.
  • the base elements, slabs 3 and cells 10 are separated by a distance approximately equal to the maximum amplitude of the displacement which can receive the element under the effect of a natural or atomic earthquake.
  • the gap thus created is filled by a seal 11 made of an elastically deformable waterproof material which can be a plastic foam loaded with heavy metal salts.
  • This joint can, as shown in Figure 2, be delimited or subdivided by lead walls or the like 12 which can be folded and anchored in neighboring elements.
  • the plastic foam of the joint which must have as high elongation and compression coefficients, is preferably cast on site and it is possible to provide cavities in the surfaces of the adjacent parts. anchor for the foam (not shown) so that, even when stretched, the foam continues to seal.
  • the side walls of the cells 10 directed towards the ground can be doubled by walls 13 which are separated from it by a thickness of foam 14 treated like the foam of the joints 11
  • the side walls 15 of the other basements are preferably mounted also floating with seals 11 at the base and at the top.
  • the watertightness, gas and radiation tightness of the seals not incorporated in part 2 forming an atomic shelter, can be neglected and they may be simple overlapping seals liable to shear under the stresses resulting from 'an earthquake.
  • the superstructure construction 16 is constituted as a self-supporting element, especially when the load is transferred directly, that is to say without connection of the type of jacks 6, to the elements 3 and 10 of the base.
  • truss-forming reinforcements 17 are embedded in the partitioning walls made of sheet concrete arranged in two orthogonal orientations.
  • Architectural elements such as thresholds 18, pediments 19, balconies 20 and others are calculated as belt elements and reinforced accordingly.
  • beams such as 21 in which a part of the truss reinforcement is embedded can be arranged in a grid on the terrace.
  • Those of cells 10 which are in the vicinity of the land may include emergency exits leading by a buried hose 22 to an outlet well 23 disposed at a distance from the building 16 substantially equal to its height to prevent its outlet from being blocked by the collapsed parts.
  • this outlet is surrounded by a concrete ring 24 forming a barrier against runoff water.
  • the hose 22 consists of elements such as centrifugal reinforced concrete pipes 25 capable of resisting the seismic wave.
  • the connections between elements are constituted by foam rings 26 having thicknesses sufficient to absorb the relative displacements. These rings are held in place by metal hoops 27. Access to the hose 22 can be achieved by destruction, using the tools located in the shelter, of a thinned part 28 of the facing wall. -vis cell 10, the frames 29 also being interrupted to the right of this thinned part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

Le présente invention concerne des constructions antisismiques notamment des constructions avec sous-sols formant abris anti-atomiques. Dans ce type de constructions, le soubassement enterré de la construction est constitué par une pluralité d'éléments indépendants (3, 10) présentant une résistance mécanique telle que chacun d'entre eux est susceptible de résister sans endommagement à l'onde sismique d'intensité maximale. Ces constructions sont utilisées comme abris anti-atomiques.The present invention relates to earthquake-resistant constructions, in particular constructions with basements forming atomic shelters. In this type of construction, the underground base of the construction is constituted by a plurality of independent elements (3, 10) having a mechanical resistance such that each of them is capable of withstanding without damage to the seismic wave of maximum intensity. These constructions are used as atomic shelters.

Description

La présente invention concerne la construction d'immeubles susceptibles d'être soumis à des secousses sismiques d'origine naturelle ou provoquées par des explosions atomiques.The present invention relates to the construction of buildings liable to be subjected to earthquakes of natural origin or caused by atomic explosions.

Il est d'une manière générale connu de renforcer les caves des immeubles existants pour les transformer en abris contre les obus et bombes explosives du type conventionnel. Dans ce cas, l'abri doit pouvoir résister à la puissance perforatrice de l'engin et aux ébranlements du sol que provoquent les explosions. Il s'agit toutefois de phénomènes correspondant à une énergie libérée assez faible et, sauf le cas de coups tombant directement sur l'abri ou dans son voisinage très immédiat, les dérangements pouvant se produire dans la structure de l'abri tels que des fissures, ne mettent pas en danger la vie des occupants.It is generally known to reinforce the cellars of existing buildings to transform them into shelters against shells and explosive bombs of the conventional type. In this case, the shelter must be able to withstand the puncturing power of the device and the shaking of the ground caused by the explosions. However, these are phenomena corresponding to a fairly low energy released and, except in the case of blows falling directly on the shelter or in its very immediate vicinity, disturbances that may occur in the structure of the shelter such as cracks , do not endanger the lives of the occupants.

Il en est tout différemment dans le cas des abris anti-atomiques car les armes nucléaires ayant une puissance incomparablement supérieure agissent à des distances du point d'impact correspondant à plusieurs kilomètres par plusieurs phénomènes dont il est nécessaire de protéger les utilisateurs de l'abri. Ces phénomènes sont une onde de surpression atmosphérique qui se traduit par un souffle violent du type cyclone, une onde de pression sismique, un rayonnement du type calorifique et radio-actif pur et des retombées radio-actives. Il faut en outre protéger les utilisateurs contre des phénomènes dérivés, notamment les incendies allumés par le rayonnement calorifique, les projectiles, décombres et poussières résultant de l'onde de surpression atmosphérique, les émanations gazeuses résultant des destructions des réseaux de distribution, voire les gaz ou agents biologiques utilisés pour infecter la zone bombardée et enfin les inondations éventuelles.It is quite different in the case of atomic shelters because nuclear weapons with incomparably greater power act at distances from the point of impact corresponding to several kilometers by several phenomena which it is necessary to protect the users of the shelter . These phenomena are a wave atmospheric overpressure which results in a violent blast of the cyclone type, a seismic pressure wave, radiation of the pure calorific and radioactive type and radioactive fallout. It is also necessary to protect users against derivative phenomena, in particular fires ignited by heat radiation, projectiles, rubble and dust resulting from the atmospheric overpressure wave, gaseous fumes resulting from destruction of distribution networks, or even gases. or biological agents used to infect the bombed area and finally possible floods.

En fait donc l'abri doit présenter une résistance mécanique très supérieure aux abris classiques pour pouvoir résister notamment à l'onde de pression sismique, toute fissuration supprimant l'étanchéité nécessaire pour faire face à la pollution et aux dangers résultant des retombées radio-actives, des gaz et effets thermiques et également des eaux.In fact, therefore, the shelter must have a mechanical resistance far superior to conventional shelters in order to be able to resist in particular the seismic pressure wave, any cracking removing the seal necessary to cope with pollution and the dangers resulting from radioactive fallout. , gases and thermal effects and also water.

Il est difficile d'envisager un abri anti-atomique en superstructure car il doit alors résister par lui-même et en toutes ses parties à l'onde de surpression atmosphérique, il doit être très monolithique ce qui rend sa construction chère et en outre son aspect architectural est inesthétique. Il peut être enterré en dehors de toute construction mais, d'une part, il est souvent difficile de trouver un site d'implantation, d'autre part, il doit être occupé en quasi-permanence du fait de son éloignement obligé des locaux d'habitation et des lieux de travail et, enfin, des bâtiments construits en superstructure sur l'abri forment, surtout lorsqu'ils sont,en béton armé, des écrans primaires contre les bombes et obus conventionnels. Par contre, ils créent un risque d'effondrement sur l'abri et d'incendie pouvant se développer au-dessus de celui-ci.It is difficult to envisage an atomic shelter in superstructure because it must then resist by itself and in all its parts to the wave of atmospheric overpressure, it must be very monolithic which makes its construction expensive and in addition its architectural aspect is unsightly. It can be buried outside any construction but, on the one hand, it is often difficult to find a site of establishment, on the other hand, it must be occupied almost permanently because of its forced distance from the premises of housing and workplaces and, finally, buildings constructed in superstructure on the shelter form, especially when they are, in reinforced concrete, primary screens against conventional bombs and shells. However, they create a risk collapse on the shelter and fire that may develop above it.

Il est donc essentiel que l'abri anti-atomique enterré résiste parfaitement aux ondes de pression sismiques engendrées par la bombe. Selon la distance du point d'impact, le phénomène déterminant pour l'effondrement des superstructures peut être l'onde de surpression atmosphérique, ou l'onde sismique agissant sur les fondations laquelle ébranle l'ensemble de la construction. Dans le cas d'un tremblement de terre, c'est l'onde sismique qui provoque l'ébranlement et l'effondrement des immeubles.It is therefore essential that the buried atomic shelter perfectly withstand the seismic pressure waves generated by the bomb. Depending on the distance from the point of impact, the determining phenomenon for the collapse of the superstructures can be the atmospheric overpressure wave, or the seismic wave acting on the foundations which shakes the entire structure. In the case of an earthquake, it is the seismic wave that causes the buildings to shake and collapse.

La présente invention a pour but de réaliser des constructions dans lesquelles la partie enterrée peut résister à des secousses sismiques intenses qu'elles soient d'origine naturelle ou atomique, sans risque de dégradation grave, les déplacements horizontaux auxquels peut se trouver soumise la partie enterrée de la construction, n'étant pas transmis à la superstructure.The aim of the present invention is to produce constructions in which the buried part can withstand intense seismic tremors, whether of natural or atomic origin, without risk of serious degradation, the horizontal displacements to which the buried part may be subjected. of construction, not being transmitted to the superstructure.

Ce but est atteint conformément à l'invention par le fait que le soubassement enterré de la construction est constitué par une pluralité d'éléments indépendants présentant une résistance mécanique telle que chacun d'entre eux est susceptible de résister sans endommagement à l'onde sismique d'intensité maximale et de supporter une fraction importante de préférence supérieure au tiers du poids de la superstructure, la superstructure étant calculée pour résister dans le cas d'une mise en appui isostatique sur trois points répartis de manière aléatoire parmi ses points d'appui prévus de construction sur les éléments de soubassement, la résistance au cisaillement des liaisons aux points d'appui de la superstructure sur les éléments de soubassement étant inférieure à la résistance globale au cisaillement des éléments de la structure aboutissant au point considéré.This object is achieved in accordance with the invention by the fact that the buried base of the construction is constituted by a plurality of independent elements having a mechanical resistance such that each of them is capable of withstanding without damage to the seismic wave of maximum intensity and to support a large fraction preferably greater than a third of the weight of the superstructure, the superstructure being calculated to resist in the case of an isostatic bearing on three points distributed randomly among its points of support provided for construction on the base elements, the shear strength of the connections to the support points of the super structure on the base elements being less than the overall shear strength of the elements of the structure leading to the point considered.

Avec ce mode de réalisation les éléments du soubassement peuvent, sous l'effet des ondes sismiques, subir des déplacements relatifs sans qu'aucun effort, notamment de cisaillement, supérieur à la résistance mécanique de la superstructure, soit transmis à celle-ci.With this embodiment, the elements of the base can, under the effect of seismic waves, undergo relative displacements without any effort, in particular of shearing, greater than the mechanical resistance of the superstructure, being transmitted to the latter.

Une dislocation du soubassement en ses éléments indépendants peut se traduire par un appui de la superstructure sur trois seulement de ces éléments assurant un appui isostatique mais sans dislocation de la superstructure, ce qui met les occupants à l'abri des risques d'effondrement et permet une reprise en sous-oeuvre ultérieure, par exemple par injection, pour niveller à nouveau le soubassement.A dislocation of the base into its independent elements can result in a support of the superstructure on only three of these elements providing isostatic support but without dislocation of the superstructure, which protects the occupants from the risk of collapse and allows a resumption in subsequent underpinning, for example by injection, to level the base again.

De préférence et conformément à une autre caractéristique de l'invention, les éléments indépendants du soubassement sont constitués, au moins pour partie, par des cellules habitables formant abris anti-atomiques.Preferably and in accordance with another characteristic of the invention, the independent elements of the base are constituted, at least in part, by habitable cells forming atomic shelters.

Selon une autre caractéristique, les éléments indépendants sont écartés les uns des autres d'une distance au moins égale à la compressibilité d'une épaisseur de terrain égale et parallèle à leur plus grande dimension horizontale sous la pression maximale développée par l'onde sismique d'intensité maximale.According to another characteristic, the independent elements are spaced from each other by a distance at least equal to the compressibility of a ground thickness equal and parallel to their greatest horizontal dimension under the maximum pressure developed by the seismic wave d 'maximum intensity.

L'intervalle existant entre deux éléments indépendants est, notamment dans le cas de cellules habitables, obturé par un matériau compressible aussi étanche que possible à l'eau, aux gaz et aux radiations. Ce matériau déformable peut être une mousse chargée en métal lourd ou un matériau composite à base de mousse et de couches en métal malléable.The gap between two independent elements is, in particular in the case of habitable cells, closed by a compressible material as impervious as possible to water, gases and radiation. This material distorted ble may be a heavy metal filled foam or a composite material based on foam and malleable metal layers.

Selon une autre caractéristique les éléments du soubassement sont écartés des éléments de parois verticaux délimitant la fouille du soubassement, l'intervalle étant rempli avec un matériau compressible étanche.According to another characteristic, the elements of the base are separated from the elements of vertical walls delimiting the excavation of the base, the gap being filled with a tight compressible material.

Il est usuel de munir l'accès aux abris anti-atomiques de sas étanches et de tels sas seront éventuellement prévus pour donner accès aux cellules ou au groupe de cellules. Toutefois, les entrées normales situées sous la superstructure peuvent être obstruées par effondrement de la superstructure sous l'effet de l'onde de surpression atmosphérique. Pour y remédier on a déjà proposé, par exemple dans le brevet français N° 1.375.468 du 22 Novembre 1963, de munir les abris anti-aériens de sortie de secours constituée par un boyau souterrain reliant ledit abri à un puits creusé dans le sol. Il est connu que ce puits de sortie doit être situé à une distance de l'immeuble au moins égale à la hauteur de ce dernier et le brevet ci-dessus propose de prévoir à l'entrée et en divers points du boyau des portes d'isolement. Il est toutefois certain qu'un tel boyau soumis à une secousse sismique intense risque de s'ébouler et que des portes métalliques risquent de se coincer. Dans le cadre du développement de la présente invention, la sortie de secours est réalisée par des éléments tubulaires susceptibles individuellement de résister sans écrasement à la secousse sismique d'intensité maximale, les divers éléments étant réunis entre eux par des joints souples susceptibles d'absorber les déplacements relatifs de deux éléments successifs. Selon un mode de réalisation, les extrémités de deux éléments tubulaires successifs, écartées d'une distance suffisante pour absorber le déplacement relatif, sont engagées dans un élément tubulaire de jonction présentant les mêmes caractéristiques de résistance mécanique mais réservant entre sa surface interne et la surface périphérique externe des éléments intérieurs un jeu supérieur au déplacement relatif, ce jeu étant rempli par un matériau déformable analogue à celui utilisé entre les éléments de soubassement.It is customary to provide access to the atomic shelters with airlocks and such airlocks will eventually be provided to give access to the cells or to the group of cells. However, normal inputs located under the superstructure may be obstructed by collapse of the superstructure under the effect of the atmospheric overpressure wave. To remedy this, it has already been proposed, for example in French patent No. 1,375,468 of November 22, 1963, to provide air-raid shelters with an emergency exit constituted by an underground hose connecting said shelter to a well dug in the ground . It is known that this outlet well must be located at a distance from the building at least equal to the height of the latter and the above patent proposes to provide at the entrance and at various points of the hose doors of isolation. It is however certain that such a hose subjected to an intense seismic shock is likely to collapse and that metal doors are likely to jam. In the context of the development of the present invention, the emergency exit is carried out by tubular elements which can individually resist without crushing the earthquake of maximum intensity, the various elements being joined together by flexible joints capable of absorbing the relative displacements of two successive elements. According to one embodiment, the ends of two tubular elements successive, spaced apart by a sufficient distance to absorb the relative displacement, are engaged in a tubular junction element having the same mechanical resistance characteristics but reserving between its internal surface and the external peripheral surface of the internal elements a clearance greater than the relative displacement, this clearance being filled with a deformable material similar to that used between the base elements.

Selon une autre caractéristique, l'accès à la sortie de secours est obturé par une paroi rigide destructible avec les outils se trouvant dans l'abri par exemple une paroi en maçonnerie, en béton non armé ou autre matériau analogue.According to another characteristic, access to the emergency exit is closed off by a rigid destructible wall with the tools located in the shelter, for example a masonry wall, unreinforced concrete or other similar material.

La présente invention sera décrite plus en détail ci-après sous forme d'un exemple de réalisation avec référence aux dessins ci-annexés dans lesquels :

  • La figure 1 est une vue en coupe verticale schématique d'un immeuble conforme à l'invention;
  • La figure 2 est une vue de détail d'une partie de la cellule reliée à la sortie de secours.
The present invention will be described in more detail below in the form of an exemplary embodiment with reference to the attached drawings in which:
  • Figure 1 is a schematic vertical sectional view of a building according to the invention;
  • Figure 2 is a detail view of part of the cell connected to the emergency exit.

L'invention, dans le mode de réalisation représenté aux dessins, est appliquée à un immeuble à deux étages. Le soubassement enterré est à un seul étage et comporte une partie 1 formant garages et une partie 2 formant abri anti-atomique. La partie 1 comporte un certain nombre de dalles 3, dalles en béton armé présentant une épaisseur et un ferraillage suffisant pour pouvoir supporter chacune une fraction importante qui peut atteindre théoriquement le tiers du poids total de la construction, concentrée en leur centre. Pour accroître leur résistance, ces dalles peuvent être profilées et comporter des poutres formant un réseau croisé. L'immeuble prend appui sur les dalles 3 par des poteaux 4 munis d'une semelle de répartition 5. La semelle de répartition 5 n'est pas solidarisée avec la dalle 3, sauf éventuellement par des fers de faible section susceptibles d'être cisaillés en cas d'effort tranchant excédant la résistance au cisaillement du poteau 4. Dans le cas d'une construction dans une zone particulièrement exposée ou d'une construction d'une nature particulière dont la destruction pourrait constituer un danger grave, par exemple des centrales nucléaires, une liaison à élasticité verticale peut être prévue entre chaque dalle 3 et chaque poteau 4. Une solution optimale serait une construction du type complètement isostatique dans laquelle chaque appui entre l'immeuble et le soubassement comporte, comme représenté à la figure 2, un vérin 6 interposé avec un système à rotule entre chaque semelle 5 et chaque poteau 4 ou entre une semelle métallique de répartition 5' prenant appui sur une cellule habitable 10 formant abri anti-atomique comme décrit ci-après et une plaque d'appui 7 incorporée dans le système de poutres porteuses 8 de l'immeuble en superstructure. Les vérins 6 sont répartis en trois groupes et les vérins d'un même groupe sont interconnectés par des canalisations 9. Chaque vérin ou groupe de vérins peut être relié à une enceinte d'absorption des ondes de pression sous forme d'une chambre hydropneumatique ou analogue non représentée. Avec ce mode de réalisation, une onde verticale qui se propage sous les éléments avec une amplitude verticale inférieure à la course des vérins, peut être absorbée sans endommager la construction.The invention, in the embodiment shown in the drawings, is applied to a two-story building. The buried basement is on one floor and has a part 1 forming garages and a part 2 forming an atomic shelter. Part 1 comprises a certain number of slabs 3, reinforced concrete slabs having a thickness and a sufficient reinforcement to be able to support each a significant fraction which can theoretically reach a third of the total weight of the construction, concentrated in their center. To increase their resistance, these slabs can be profiled and include beams forming a crossed network. The building is supported on the slabs 3 by posts 4 provided with a distribution sole 5. The distribution sole 5 is not secured to the slab 3, except possibly by irons of small section capable of being sheared in the event of a shear force exceeding the shear strength of the post 4. In the case of a construction in a particularly exposed area or a construction of a particular nature whose destruction could constitute a serious danger, for example power stations nuclear, a vertical elastic connection can be provided between each slab 3 and each post 4. An optimal solution would be a construction of the completely isostatic type in which each support between the building and the base comprises, as shown in Figure 2, a cylinder 6 interposed with a ball joint system between each sole 5 and each post 4 or between a metal distribution sole 5 'bearing on a habitable cell 10 forming atomic shelter as described below and a support plate 7 incorporated in the system of load-bearing beams 8 of the building in superstructure. The jacks 6 are divided into three groups and the jacks of the same group are interconnected by pipes 9. Each jack or group of jacks can be connected to an enclosure for absorbing pressure waves in the form of a hydropneumatic chamber or analog not shown. With this embodiment, a vertical wave which propagates under the elements with a vertical amplitude less than the stroke of the cylinders, can be absorbed without damaging the construction.

La partie 2 est constituée par des cellules habitables également en béton armé 10. Ces cellules sont calculées individuellement pour pouvoir, comme les dalles 3, supporter une fraction importante du poids de la construction et pour pouvoir résister à l'écrasement par les ondes sismiques agissant sur leurs faces latérales. Il est à noter que lorsque des systèmes de vérins répartiteurs 6 sont prévus, le poids de la construction est toujours réparti entre les différents appuis et la fraction du poids de l'immeuble que doit supporter chaque appui est donc plus faible. Ces cellules sont équipées comme tous les abris anti-atomiques classiques de l'équipement de secours normalisé en ce qui concerne les moyens de survie, la ventilation, l'éclairage et la désinfection. Elles peuvent servir directement d'appui, sans liaison mécanique empêchant un déplacement horizontal ou le limitant au delà d'une certaine force de cisaillement, à la construction en superstructure. Cet appui peut également comporter un dispositif de liaison hydrostatique comme représenté à la figure 2.Part 2 is made up of habitable cells also made of reinforced concrete 10. These cells are calculated individually to be able, like the slabs 3, to support a large fraction of the weight of the construction and to be able to resist crushing by seismic waves acting on their lateral faces. It should be noted that when distributor actuator systems 6 are provided, the weight of the construction is always distributed between the various supports and the fraction of the weight of the building that each support must support is therefore lower. These cells are equipped, like all conventional atomic shelters, with standard emergency equipment with regard to means of survival, ventilation, lighting and disinfection. They can be used directly as support, without mechanical connection preventing a horizontal displacement or limiting it beyond a certain shearing force, to the superstructure construction. This support can also include a hydrostatic connection device as shown in FIG. 2.

D'une manière générale et conformément à l'invention, les éléments de soubassement, dalles 3 et cellules 10, sont séparés d'une distance approximativement égale à l'amplitude maximale du déplacement qui peut recevoir l'élément sous l'effet d'une secousse sismique naturelle ou atomique. L'intervalle ainsi créé est garni par un joint 11 en un matériau étanche déformable élastiquement qui peut être une mousse plastique chargée en sels de métaux lourds. Ce joint peut, comme représenté à la figure 2, être délimité ou subdivisé par des parois en plomb ou analogues 12 qui peuvent être plissées et ancrées dans les éléments voisins. La mousse plastique du joint qui doit avoir des coefficients d'allongement et de compression aussi élevés que possible, est de préférence coulée sur place et il est possible de prévoir, dans les surfaces des pièces adjacentes, des cavités d'ancrage pour la mousse (non représentées) pour que , même étirée, la mousse continue à assurer l'étanchéité.In general and in accordance with the invention, the base elements, slabs 3 and cells 10, are separated by a distance approximately equal to the maximum amplitude of the displacement which can receive the element under the effect of a natural or atomic earthquake. The gap thus created is filled by a seal 11 made of an elastically deformable waterproof material which can be a plastic foam loaded with heavy metal salts. This joint can, as shown in Figure 2, be delimited or subdivided by lead walls or the like 12 which can be folded and anchored in neighboring elements. The plastic foam of the joint, which must have as high elongation and compression coefficients, is preferably cast on site and it is possible to provide cavities in the surfaces of the adjacent parts. anchor for the foam (not shown) so that, even when stretched, the foam continues to seal.

Pour réduire autant que possible la transmission des ondes sismiques aux éléments du soubassement, les parois latérales des cellules 10 dirigées vers le terrain, peuvent être doublées par des parois 13 qui en sont séparées par une épaisseur de mousse 14 traitée comme la mousse des joints 11. Les parois latérales 15 des autres sous-sols sont de préférence montées également flottantes avec des joints 11 à la base et au sommet. L'étanchéité à l'eau, aux gaz et aux radiations des joints non incorporés dans la partie 2 formant abri anti-atomique, peut être négligée et il peut s'agir de simples joints à recouvrement susceptibles de se cisailler sous les contraintes résultant d'une secousse sismique.To reduce as much as possible the transmission of seismic waves to the elements of the base, the side walls of the cells 10 directed towards the ground, can be doubled by walls 13 which are separated from it by a thickness of foam 14 treated like the foam of the joints 11 The side walls 15 of the other basements are preferably mounted also floating with seals 11 at the base and at the top. The watertightness, gas and radiation tightness of the seals not incorporated in part 2 forming an atomic shelter, can be neglected and they may be simple overlapping seals liable to shear under the stresses resulting from 'an earthquake.

La construction en superstructure 16 est constituée comme un élément auto-porteur surtout lorsque la charge est reportée directement, c'est-à-dire sans liaison du type des vérins 6, sur les éléments 3 et 10 de soubassement. Pour ce faire des armatures formant treillis 17 sont noyées dans les cloisons séparatrices en béton banché disposées selon les deux orientations orthogonales. Les éléments architecturaux tels que les seuils 18, les frontons 19, les balcons 20 et autres sont calculés comme éléments de ceinturage et ferraillés en conséquence. Pour accroître le moment d'inertie et la résistance à la cassure suivant un plan médian, des poutres telles que 21 dans lesquelles est noyée une partie du ferraillage en treillis peuvent être disposées en quadrillage sur la terrasse.The superstructure construction 16 is constituted as a self-supporting element, especially when the load is transferred directly, that is to say without connection of the type of jacks 6, to the elements 3 and 10 of the base. To do this, truss-forming reinforcements 17 are embedded in the partitioning walls made of sheet concrete arranged in two orthogonal orientations. Architectural elements such as thresholds 18, pediments 19, balconies 20 and others are calculated as belt elements and reinforced accordingly. To increase the moment of inertia and the resistance to fracture along a median plane, beams such as 21 in which a part of the truss reinforcement is embedded can be arranged in a grid on the terrace.

Celles des cellules 10 qui se trouvent au voisinage de terrain, peuvent comporter des sorties de secours conduisant par un boyau enterré 22 à un puits de sortie 23 disposé à une distance de l'immeuble 16 sensiblement égale à sa hauteur pour éviter que sa sortie soit obturée par les parties effondrées. Dans le mode de réalisation, cette sortie est entourée par un anneau en béton 24 formant barrage contre les eaux de ruissellement. Le boyau 22 est constitué par des éléments tels que des tuyaux en béton armé centrifugé 25 susceptibles de résister à l'onde sismique. Les raccordements entre éléments sont constitués par des anneaux en mousse 26 ayant des épaisseurs suffisantes pour absorber les déplacements relatifs. Ces anneaux sont maintenus en place par des frettes métalliques 27. L'accès au boyau 22 peut être réalisé par destruction, à l'aide des outils se trouvant dans l'abri, d'une partie amincie 28 de la paroi en vis-à-vis de la cellule 10, les armatures 29 étant également interrompues au droit de cette partie amincie.Those of cells 10 which are in the vicinity of the land, may include emergency exits leading by a buried hose 22 to an outlet well 23 disposed at a distance from the building 16 substantially equal to its height to prevent its outlet from being blocked by the collapsed parts. In the embodiment, this outlet is surrounded by a concrete ring 24 forming a barrier against runoff water. The hose 22 consists of elements such as centrifugal reinforced concrete pipes 25 capable of resisting the seismic wave. The connections between elements are constituted by foam rings 26 having thicknesses sufficient to absorb the relative displacements. These rings are held in place by metal hoops 27. Access to the hose 22 can be achieved by destruction, using the tools located in the shelter, of a thinned part 28 of the facing wall. -vis cell 10, the frames 29 also being interrupted to the right of this thinned part.

Les modes de réalisation ci-dessus décrits sont susceptibles de recevoir de nombreuses modifications sans sortir du cadre de la présente invention.The embodiments described above are capable of receiving numerous modifications without departing from the scope of the present invention.

Claims (11)

1. Construction anti-sismique notamment construction avec sous-sols formant abris anti-atomiques,
caractérisée en ce que le soubassement enterré de la construction est constitué par une pluralité d'éléments indépendants présentant une résistance mécanique telle que chacun d'entre eux est susceptible de résister sans endommagement à l'onde sismique d'intensité maximale.
1. Anti-seismic construction, in particular construction with basements forming atomic shelters,
characterized in that the buried base of the construction is constituted by a plurality of independent elements having a mechanical resistance such that each of them is capable of withstanding without damage the seismic wave of maximum intensity.
2. Construction anti-sismique selon la revendication 1,
caractérisée en ce que la résistance au cisaillement des liaisons aux points d'appui de la superstructure sur les éléments de soubassement est inférieure à la résistance globale au cisaillement des éléments de la structure aboutissant au point considéré.
2. Anti-seismic construction according to claim 1,
characterized in that the shear strength of the connections at the points of support of the superstructure on the base elements is less than the overall shear resistance of the elements of the structure leading to the point considered.
3. Construction anti-sismique selon l'une quelconque des revendications 1 et 2,
caractérisée en ce que les éléments indépendants du soubassement sont constitués, au moins pour partie, par des cellules habitables formant abris anti-atomiques.
3. Anti-seismic construction according to any one of claims 1 and 2,
characterized in that the independent elements of the base consist, at least in part, of habitable cells forming atomic shelters.
4. Construction anti-sismique selon l'une quelconque des revendications 1 à 3,
caractérisée en ce que les éléments indépendants sont écartés les uns des autres d'une distance au moins égale à la compressibilité d'une épaisseur de terrain égale et parallèle à leur plus grande dimension horizontale sous la pression maximale développée par l'onde sismique d'intensité maximale.
4. Anti-seismic construction according to any one of claims 1 to 3,
characterized in that the independent elements are spaced from each other by a distance at least equal to the compressibility of a thickness of ground equal and parallel to their greatest horizontal dimension under the maximum pressure developed by the seismic wave of maximum intensity.
5. Construction anti-sismique selon la revendication.4,
caractérisée en ce que l'intervalle existant entre deux éléments indépendants est, notamment dans le cas de cellules habitables, obturé par un matériau compressible aussi étanche que possible à l'eau, aux gaz et aux radiations.
5. Anti-seismic construction according to claim.4,
characterized in that the interval between two independent elements is, in particular in the case of habitable cells, closed with a compressible material as impervious to water, gas and radiation.
6. Construction anti-sismique selon l'une quelconque des revendications 1 à 5,
caractérisée en ce que les éléments de soubassement sont écartés des éléments de parois verticaux délimitant la fouille du soubassement, l'intervalle étant rempli avec un matériau compressible étanche.
6. Anti-seismic construction according to any one of claims 1 to 5,
characterized in that the base elements are spaced from the vertical wall elements delimiting the excavation of the base, the gap being filled with a compressible waterproof material.
7. Construction anti-sismique selon l'une quelconque des revendications 1 à 6,
caractérisée en ce que la sortie de secours constituée par un boyau enterré partant des cellules habitables est formée par des éléments tubulaires susceptibles individuellement de résister sans écrasement à la secousse sismique d'intensité maximale, les divers éléments étant réunis entre eux par des joints souples susceptibles d'absorber les déplacements relatifs de deux éléments successifs.
7. Anti-seismic construction according to any one of claims 1 to 6,
characterized in that the emergency exit constituted by a buried hose leaving the habitable cells is formed by tubular elements which can individually resist without crushing the earthquake of maximum intensity, the various elements being joined together by flexible seals which can absorb the relative displacements of two successive elements.
8. Construction anti-sismique selon la revendication 7,
caractérisée en ce que les extrémités de deux éléments tubulaires successifs, écartées d'une distance suffisante pour absorber le déplacement relatif, sont engagées dans un élément tubulaire de jonction présentant les mêmes caractéristiques de résistance mécanique mais réservant entre sa surface interne et la surface périphérique externe des éléments intérieurs un jeu supérieur au déplacement relatif, ce jeu étant rempli par un matériau déformable.
8. Anti-seismic construction according to claim 7,
characterized in that the ends of two successive tubular elements, spaced apart by a distance sufficient to absorb the relative displacement, are engaged in a tubular junction element having the same characteristics of mechanical resistance but reserving between its internal surface and the external peripheral surface interior elements play greater than the relative displacement, this play being filled with a deformable material.
9. Construction anti-sismique selon l'une quelconque des revendications 7 et 8,
caractérisée en ce que l'accès à la sortie de secours est obturé par une paroi rigide destructible avec les outils se trouvant dans l'abri par exemple une paroi en maçonnerie, en béton non armé ou autre matériau analogue.
9. Anti-seismic construction according to any one of claims 7 and 8,
characterized in that the access to the emergency exit is closed by a rigid destructible wall with the tools being in the shelter for example a wall in masonry, in non-reinforced concrete or other similar material.
10. Construction anti-sismique selon l'une quelconque des revendications 1 à 9,
caractérisée en ce que la construction en superstructure prend appui sur les éléments de soubassement par l'intermédiaire de vérins répartis en trois groupes, les vérins d'un même groupe étant interconnectés.
10. Anti-seismic construction according to any one of claims 1 to 9,
characterized in that the superstructure construction is supported on the base elements by means of jacks distributed in three groups, the jacks of the same group being interconnected.
11. Construction anti-sismique selon l'une quelconque des revendications 1 à 9,
caractérisée en ce que la superstructure est calculée pour résister dans le cas d'une mise en appui isostatique sur trois points répartis de manière aléatoire parmi ses points d'appui prévus de construction sur les éléments de soubassement.
11. Anti-seismic construction according to any one of claims 1 to 9,
characterized in that the superstructure is calculated to resist in the case of an isostatic support on three points distributed randomly among its support points provided for construction on the base elements.
EP78400106A 1977-09-22 1978-09-21 Antiseismic buildings with basements forming an atombomb-proofed shelter Expired EP0001367B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR7728622A FR2404087A1 (en) 1977-09-22 1977-09-22 ANTI-SEISMIC CONSTRUCTIONS ESPECIALLY CONSTRUCTIONS WITH BASEMENT FORMING ANTI-ATOMIC SHELTERS
FR7728622 1977-09-22

Publications (2)

Publication Number Publication Date
EP0001367A1 true EP0001367A1 (en) 1979-04-04
EP0001367B1 EP0001367B1 (en) 1981-01-07

Family

ID=9195666

Family Applications (1)

Application Number Title Priority Date Filing Date
EP78400106A Expired EP0001367B1 (en) 1977-09-22 1978-09-21 Antiseismic buildings with basements forming an atombomb-proofed shelter

Country Status (8)

Country Link
US (1) US4250671A (en)
EP (1) EP0001367B1 (en)
JP (1) JPS5457338A (en)
CA (1) CA1116644A (en)
DE (1) DE2837172C2 (en)
ES (1) ES473055A1 (en)
FR (1) FR2404087A1 (en)
TR (1) TR21057A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2182371A (en) * 1985-11-02 1987-05-13 Roger Smith Jones Underground structures
US5048244A (en) * 1990-06-07 1991-09-17 Marcel M. Barbier, Inc. Underground shock-resistant structure

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57147953U (en) * 1980-09-22 1982-09-17
JPS57193632A (en) * 1981-05-22 1982-11-29 Saburo Shibata Multi-purpose building constructed in watery place
JPS59150843U (en) * 1983-03-29 1984-10-09 吉松 孝吉 building with basement
FR2688818B1 (en) * 1992-03-17 1994-06-24 Bernard Thomann ANTISISMIC BUILDING.
US5537790A (en) * 1994-02-09 1996-07-23 Jackson; Roger L. Seismic bridge
US6298612B1 (en) 1995-09-05 2001-10-09 James A. Adams Wall strengthening component
US5706626A (en) 1995-12-14 1998-01-13 Mueller; Lee W. Pre-assembled internal shear panel
CN1080801C (en) * 1996-10-07 2002-03-13 邓庚厚 Top-lifting building method of building from upper to lower
JP2944565B2 (en) * 1996-11-28 1999-09-06 普 山田 Basement structure, transportation method and construction method
US8397454B2 (en) 1997-11-21 2013-03-19 Simpson Strong-Tie Company, Inc. Building wall for resisting lateral forces
US6385920B1 (en) * 2000-06-30 2002-05-14 Roy T. Chandler Modular storm shelter with emergency breakaway access chute
US20080016793A1 (en) * 2004-04-19 2008-01-24 Majlessi Kamran R Web hole reinforcing for metal wall stubs
WO2010151539A1 (en) 2009-06-22 2010-12-29 Barnet Liberman Modular building system for constructing multi-story buildings
JP6179077B2 (en) * 2012-07-31 2017-08-16 株式会社大林組 Evacuation structures and evacuation facilities

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE630356C (en) * 1934-05-27 1936-05-26 Karl Walter Dipl Ing Expansion of underground air-raid shelters to protect against the effects of explosive bombs and the penetration of poisonous gases
DE638110C (en) * 1934-03-10 1936-11-09 Karl Scherbaum Bomb-repellent protective roofing for buildings etc.
FR816490A (en) * 1936-04-15 1937-08-09 Shelter for the protection of civilian populations
FR1157413A (en) * 1956-08-16 1958-05-29 Prefabricated shelter
US3172377A (en) * 1961-04-06 1965-03-09 John A Dewar Bomb shelter building
FR1486137A (en) * 1966-07-07 1967-06-23 Protective device or shelter against the action of nuclear weapons

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US981884A (en) * 1909-03-11 1911-01-17 Otto Ruhl Earthquake-proof building.
DE375822C (en) * 1921-01-20 1923-05-18 Emil Diepenbrock Securing buildings against mountain damage
GB496592A (en) * 1937-03-13 1938-12-02 Willy Schramm Improvements in buildings for rendering the same less liable to damage by air attack
US2271079A (en) * 1937-06-16 1942-01-27 Kieser Karl Structural element
GB520326A (en) * 1938-10-13 1940-04-19 William Herbert Smith Improvements relating to shelters
US2358143A (en) * 1942-06-11 1944-09-12 Fuller Label & Box Company Vented panel
DE1108890B (en) * 1956-03-16 1961-06-15 Maschf Augsburg Nuernberg Ag Joint for structures in earthquake or mountain damage areas
US3099110A (en) * 1957-09-17 1963-07-30 Dur O Wal National Inc Control joint
CH454429A (en) * 1965-07-08 1968-04-15 Staeheli Fritz Underground space to protect against the effects of nuclear weapons
DE1264737B (en) * 1966-06-21 1968-03-28 Gustav Luding Protective structure
CH499711A (en) * 1969-02-15 1970-11-30 Luding Gustav Entry and exit tunnels for protective structures
US3908323A (en) * 1974-07-11 1975-09-30 Robert K Stout Void creating device to be embedded in a concrete structure
US4102097A (en) * 1974-12-23 1978-07-25 Elemer Zalotay Construction for supporting space units installed in a building especially a multi-storey building
DE2557043A1 (en) * 1975-12-18 1978-09-14 Peter Valerius Building with elastically connected rooms - has room cells connected with cables to prevent damage from earthquake shocks

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE638110C (en) * 1934-03-10 1936-11-09 Karl Scherbaum Bomb-repellent protective roofing for buildings etc.
DE630356C (en) * 1934-05-27 1936-05-26 Karl Walter Dipl Ing Expansion of underground air-raid shelters to protect against the effects of explosive bombs and the penetration of poisonous gases
FR816490A (en) * 1936-04-15 1937-08-09 Shelter for the protection of civilian populations
FR1157413A (en) * 1956-08-16 1958-05-29 Prefabricated shelter
US3172377A (en) * 1961-04-06 1965-03-09 John A Dewar Bomb shelter building
FR1486137A (en) * 1966-07-07 1967-06-23 Protective device or shelter against the action of nuclear weapons

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2182371A (en) * 1985-11-02 1987-05-13 Roger Smith Jones Underground structures
GB2182371B (en) * 1985-11-02 1989-10-04 Roger Smith Jones Underground structures
US5048244A (en) * 1990-06-07 1991-09-17 Marcel M. Barbier, Inc. Underground shock-resistant structure

Also Published As

Publication number Publication date
TR21057A (en) 1983-06-10
JPS6154905B2 (en) 1986-11-25
US4250671A (en) 1981-02-17
DE2837172A1 (en) 1979-04-05
ES473055A1 (en) 1979-04-01
FR2404087A1 (en) 1979-04-20
EP0001367B1 (en) 1981-01-07
CA1116644A (en) 1982-01-19
DE2837172C2 (en) 1984-08-23
FR2404087B1 (en) 1982-04-30
JPS5457338A (en) 1979-05-09

Similar Documents

Publication Publication Date Title
EP0001367B1 (en) Antiseismic buildings with basements forming an atombomb-proofed shelter
KR101277967B1 (en) Underground shelter
US20070189854A1 (en) Apparatus and method for flood defence
US4686804A (en) Prefabricated panelized nuclear-hardened shelter
BG104367A (en) Protective element, device comprising said element and method for protecting a zone against floods and avalanches
US20110226166A1 (en) Overhead protection system
US20150315805A1 (en) Seismic isolation system
RU2721552C1 (en) Field demountable fortification structure
JP2007056600A (en) Earthquake dispersion type basement structure and its construction method
EP3666987A1 (en) Vacuum shell for self-standing, self-insulating, floating, antiseismic and semi-mobile building
AU2011200386B2 (en) Disaster Protection Shelter
FR2852620A1 (en) Seismic shelter for installation inside building comprises framework that will withstand collapsing masonry
RU2112835C1 (en) Device for dampening elastic waves at earthquakes
RU2751172C1 (en) Field collapsible modular fortification
FR2509355A1 (en) Nuclear air raid shelter - has underground reinforced steel cylinder with main and decontamination chambers, also reinforced concrete outlet tube
CN213709643U (en) Basement antidetonation impervious structure
FR2604462A1 (en) HOUSE BUILDING FOR ONE SINGLE FAMILY
Boas Archaeological evidence for the Mamluk sieges and dismantling of Montfort: a preliminary discussion
Mallawaarachchi et al. The effects of cyclones, tsunami and earthquakes on built environments and strategies for reduced damage
JP3878375B2 (en) building
RU2065522C1 (en) Building
JP3358799B2 (en) Building
Jagadeesan Upstream Waterproof Treatment with Protective Geomembrane for Masonry Dams-A Case Study on Upper Bhavani Dam, Tamil Nadu
RU2423591C1 (en) Safe building
Yanev et al. Hokkaido Nansei-oki, Japan Earthquake of July 12, 1993

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH GB LU NL SE

17P Request for examination filed
D17P Request for examination filed (deleted)
R17P Request for examination filed (corrected)
R17P Request for examination filed (corrected)
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE CH GB LU NL SE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19930730

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19930819

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930820

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930913

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19930916

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930930

Year of fee payment: 16

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940921

Ref country code: GB

Effective date: 19940921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19940922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19940930

Ref country code: BE

Effective date: 19940930

EAL Se: european patent in force in sweden

Ref document number: 78400106.7

BERE Be: lapsed

Owner name: SACHET JEAN-MARIE

Effective date: 19940930

Owner name: DI CRESCENZO CLAUDE

Effective date: 19940930

Owner name: HIRSCH JEAN-RAPHAEL

Effective date: 19940930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950401

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940921

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 78400106.7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT