EP0000315A1 - Procédé de préparation de citronellal optiquement actif - Google Patents

Procédé de préparation de citronellal optiquement actif Download PDF

Info

Publication number
EP0000315A1
EP0000315A1 EP78420001A EP78420001A EP0000315A1 EP 0000315 A1 EP0000315 A1 EP 0000315A1 EP 78420001 A EP78420001 A EP 78420001A EP 78420001 A EP78420001 A EP 78420001A EP 0000315 A1 EP0000315 A1 EP 0000315A1
Authority
EP
European Patent Office
Prior art keywords
rhodium
chiral
radicals
carbon atoms
radical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP78420001A
Other languages
German (de)
English (en)
Other versions
EP0000315B1 (fr
Inventor
Paul Aviron-Violet
Tuan-Phat Dang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rhone Poulenc Recherches SA
Original Assignee
Rhone Poulenc Industries SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhone Poulenc Industries SA filed Critical Rhone Poulenc Industries SA
Publication of EP0000315A1 publication Critical patent/EP0000315A1/fr
Application granted granted Critical
Publication of EP0000315B1 publication Critical patent/EP0000315B1/fr
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1845Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing phosphorus
    • B01J31/1875Phosphinites (R2P(OR), their isomeric phosphine oxides (R3P=O) and RO-substitution derivatives thereof)
    • B01J31/188Amide derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • B01J31/2409Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring with more than one complexing phosphine-P atom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • B01J31/2409Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring with more than one complexing phosphine-P atom
    • B01J31/2414Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring with more than one complexing phosphine-P atom comprising aliphatic or saturated rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • B01J31/2442Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring comprising condensed ring systems
    • B01J31/2447Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring comprising condensed ring systems and phosphine-P atoms as substituents on a ring of the condensed system or on a further attached ring
    • B01J31/2452Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring comprising condensed ring systems and phosphine-P atoms as substituents on a ring of the condensed system or on a further attached ring with more than one complexing phosphine-P atom
    • B01J31/2457Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring comprising condensed ring systems and phosphine-P atoms as substituents on a ring of the condensed system or on a further attached ring with more than one complexing phosphine-P atom comprising aliphatic or saturated rings, e.g. Xantphos
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/62Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by hydrogenation of carbon-to-carbon double or triple bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
    • B01J2231/645Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes of C=C or C-C triple bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/822Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/20Carbonyls

Definitions

  • the subject of the present invention is a process for the preparation of optically active citronellal, also called chiral citronellal, by asymmetric hydrogenation of the mineral (E-dimethyl-3,7 octadienes or geranial (Z-dimethyl-3,7 octadiene-2,6 al) isomers achirau constitutive of citral.
  • the chiral citronellal is a suitable intermediary in organic synthesis; in particular d-citronellal is used for the preparation of (-) (lS) menthol designated below 1-menthol, by a process which implements the cyclization of d-citronclial into (-) (lS) -isopulégol under the influence of a proton or para catalyst. thermally, then the hydrogenation of isopulegol to (l) -menthol (cf. J.C. LEFFINGWELL and R.E.SHACKELFORD, Cosmetics and Perfumery 89 70-78 / 1974 /).
  • D-citronellal used for synthesis obtained from various natural essences containing d-citronellal and in particular from petrol
  • the use of chiral citronellal of natural origin is not satisfactory to the extent that due to fluctuation natural products, it periodically happens that the price of is higher than that of natural menthol. It is therefore important for the industry to have a source of chiral citronellal having relatively stable price and leading to a synthetic 1-menthol the cost price is lower than that of natural menthol.
  • the synthetic achiral citronellal obtained by hydrogenation of citral could constitute an interesting source of chiral citronellal and in particular of d-citronellal, however there is no industrial process for splitting the racemic citronellal into its enantiomers, so that the industry does not have any process allowing synthetic chiral citronellals to be obtained.
  • the present invention aims precisely to solve such a problem. '
  • the subject of the present invention is a process for the preparation of optically active citronellal, characterized in that the neral or geranial is hydrogenated in the presence of a catalyst consisting of a complex soluble in the reaction medium formed from a derived from rhodium and a chiral phosphine.
  • chiral phosphine is meant a phosphine or diphosphine in which at least one of the organic residues linked to the phosphorus atom comprises at least one chiral carbon atom, and / or in which at least one of the phosphorus atoms is chiral.
  • the soluble complex of the rhodium derivative and of the chiral phosphine can be prepared extemporaneously or be formed "in situ" under the conditions of the reaction by using the constituents of the complex. This latter method which has the advantage of simplicity is generally preferred.
  • the chiral diphosphine is tetramenthyidiphosphine bis (diphenylphosphinomethyl) -1,2 cyclobutane, bis (diphenylphosphino-methyl) -4,5 dimethyl-2 , 2 dioxolane, bis (diphenylphosphinomethyl) -1,2 acenaphthene, bis (diphenylphosphino) - !, 4 2,3-dimethoxy butane, bis [(N, N '-diphenylphosphinol] bis [N, N' - ( 1-phenylethyl)] 1,4-diaza butane.
  • phosphines mentioned above use is preferably made of bis (diarylphosphinomethyl) -1.2 cyclobutanes described in French patent No. 73/18 319.
  • phosphines with chiral phosphorus atoms mention may be made of methyl cyclohexyl orthomethoxyphenyl phosphine; methylcyclohexylphenylphosphine; benzylphenylmethylphosphine.
  • the complexes derived from Rh 4 (CO) 12 or Rh 6 (CO) 16 and bis (diarylphosphinomethyl) -1,2 cyclobutanes are particularly suitable for the asymmetric hydrogenation of the mineral and the geranial to enantiomers of citronellal because they provide both a high rate of hydrogenation, good selectivity for citronellal and good optical purity.
  • the amount of rhodium derivative used in the process of the invention expressed in gram atoms of metal per mole of diene aldehyde to be hydrogenated can vary within wide limits. Whether it is the preformed complex or the derivative capable of generating this complex under the conditions of the reaction, the quantity can be chosen so that the number of gram atoms of rhodium per mole of aldehyde is between 1 ⁇ 10 - 4 and 1 x 10-1.
  • the amount of phosphine involved in the process depends on the nature of the phosphine and that of the rhodium derivative. This quantity, expressed by the number of gram atoms of phophore per gram atom of rhodium is such that this ratio can vary between 0.5 and 10; preferably the P / Rh ratio is between 1 and 6. However, P / Rh ratios greater than 10 could be used without departing from the scope of the present invention, but this would not provide any particular advantage.
  • the temperature at which the hydrogenation is carried out is not critical and can vary within wide limits. In general it is between 0 and 150 ° C and preferably between 10 and 100 ° C. It is the same for the hydrogen pressure which can vary between 0.1 and 100 bars and preferably between 0.5 and 50 bars.
  • the asymmetric hydrogenation of neral or geranial is preferably conducted in an inert solvent for the aldehyde and the catal y- sor.
  • solvents that may be mentioned include hydrocarbons (hexane, heptane, cyclohexane, benzene, toluene), alcohols (methanol, ethanol), nitriles (acetonitrile, benzonitrile).
  • optical purity PO denotes the ratio of the rotary power ( ⁇ 1 ) D of the product obtained by the process to the rotary power (a) D of the product measured under the same conditions, multiplied by 100, ie
  • optical yield is meant the value of the optical purity of the product which would be obtained by using an optically pure phosphine.
  • the apparatus is purged with hydrogen and then the contents of the flask are kept under 1 bar of hydrogen for 4 hours at 25 ° C.
  • the reaction esc stopped and the reaction mass is subjected to a gas chromatographic analysis: the rate of transformation of the geranial is 100% and the yield of citronellal of 99%.
  • the rotary power of pure 1-citronellal measured on a solution at 6 g / 100 cm 3 in cyclohexane is -15.6 °. With reference to this value, the P.0 of the product obtained is 56%.
  • the reaction time is 10 hours
  • Example 2 The procedure is as in Example 1, replacing the (+) - DPCB with the (+) - DIOP.
  • the geranial / Rh ratio is 120 and a P / Rh ratio of 4 and 6 is used successively.
  • the procedure is as in Example 1, replacing the (+) - DPCB with the (-) - DPCB.
  • the ratio of the number of moles of geranium to the number of gram atoms of rhodium (G / Rh) is equal to 123 and 125 P / Rh to 4.
  • the (-) - DPCB has an optical purity of 95.5%.
  • a 35 cm3 glass ampoule containing 10 cm3 of toluene, 18.3 mg of (-) - DPCB, 91.9 mg is introduced into a 125 cm3 stainless steel autoclave equipped with a shaking system. RhH (CO) (P0) 3 and 1.91 g of geranial.
  • the autoclave is closed and hydrogen is introduced to a pressure of 25 bars. Maintained for 17 hours under these conditions, then the autoclave is degassed and the contents of the ampoule are treated and analyzed as in Example 1.

Abstract

Procédé de préparation de citronellal optiquement actif caractérisé en ce que l'on hydrogène le néral ou le géranial en présence d'un catalyseur constitué par un complexe soluble dans le milieu réactionnel, formé à partir d'un dérivé du rhodium et d'une phosphine chirale. Ce procédé permet d'accéder au d-citronellal intermédiaire de la synthése de (-) (1S) menthol.

Description

  • La présente invention a pour objet un procédé de préparation de citronellal optiquement actif, encore dénommé citronellal chiral, par hydrogénation asymétrique du néral (E-diméthyl-3,7 octadiènes
    Figure imgb0001
    ou du géranial (Z-diméthyl-3,7 octadiëne-2,6 al) isomères achirau constitutifs du citral.
  • Le citronellal chiral est un intermédiaire apprécié en synthèse organique ; en particulier le d-citronellal est utilisé pour la préparation du (-) (lS) menthol désigné ci-après 1-menthol, par un procédé qui met en oeuvre la cyclisation du d-citronclial en (-) (lS)-isopulégol sous l'influence d'un catalyseur protonique ou par. voie thermique, puis l'hydrogénation de l'isopulégol en (l)-menthol (cf. J.C.LEFFINGWELL et R.E.SHACKELFORD, Cosmetics and Perfumery 89 70-78 /1974/).
  • Le d-citronellal utilisé pour la synthèse
    Figure imgb0002
    obtenu à partir de diverses essences naturelles contenant
    Figure imgb0003
    Figure imgb0004
    du d-citronellal et en particulier à partir de l'essence
    Figure imgb0005
    L'emploi de citronellal chiral d'origine naturelle n'est pas
    Figure imgb0006
    satisfaisant dans la mesure où, en raison de la fluctuation
    Figure imgb0007
    produits naturels, il arrive périodiquement que le prix du
    Figure imgb0008
    soit plus élevé que celui du menthol naturel. Il importe donc à l'industrie de disposer d'une source de citronellal chiral ayant
    Figure imgb0009
    prix relativement stable et conduisant à un 1-menthol synthétique
    Figure imgb0010
    le prix de revient soit inférieur à celui du menthol naturel.
  • Le citronellal synthétique achiral obtenu par hydrogénation du citral (mélange de néral et de géranial) pourrait constituer une source intéressante de citronellal chiral et notamment de d-citronellal, toutefois il n'existe pas de procédé industriel de dédoublement du citronellal racémique en ses énantiomères, de sorte que l'industrie.ne dispose d'aucun procédé permettant d'obtenir des citronellals chiraux par voie synthétique. La présente invention se propose précisément de résoudre un tel problème.'
  • Plus particulièrement la présente invention a pour objet un procédé de préparation de citronellal optiquement actif caractérisé en ce que l'on hydrogène le néral ou le géranial en présence d'un catalyseur constitué par un complexe soluble dans le milieu réactionnel formé à partir d'un dérivé du rhodium et d'une phosphine chirale.
  • Par phosphine chirale on désigne une phosphine ou diphosphine dont l'un au moins des restes organiques liés à l'àtome de phosphore comporte au moins un atome de carbone chiral, et/ou dont un au moins des atomes de phosphore est chiral.
  • Le complexe soluble du dérivé du rhodium et de la phosphine chirale peut être préparé extemporanément ou être formé "in situ" dans les conditions de la réaction par mise en oeuvre des constituants du complexe. Cette dernière façon de faire qui a l'avantage de la simplicité est généralement préférée.
  • Comme dérivés du rhodium convenance la mise en oeuvre du procédé selon l'invention on utilise des dérivés du rhodium comportant des restes de nature diverses. Il peut s'agir de sels de rhodium d'acides minéraux ou organiques ou de complexes du rhodium dont les ligands peuvent être remplacés par la phosphine chirale. On peut par exemple faire appel à des halogénures de rhodium tel que le trichlorure de rhodium hydraté ; à des complexes du rhodium avec les oléfines de formule générale : - -
    Figure imgb0011
    dans laquelle X représente un atome d'halogène : chlore ou brome par
    • - un radical alcoylène linéaire ou ramifié ayant de 1 à 10 atomes de carbone, un radical cycloalcoylène ayant de 3 à 7 atomes de carbone cycliques éventuellement substitués par 1 à 3 radicaux alcoyles ayanc de 1 à 4 atomes de carbone, un radical arylène, un radical polycyclique divalent, lesdits radicaux pouvant être substitués par un ou plusieurs groupesalcoxy ayant de 1 à 4 atomes de carbone.
    • - un groupe hétérocyclique divalent ayant 1 ou 2 hétéroatomes du groupe de l'oxygène et de l'azote.
    • - un enchaînement de 1 ou plusieurs radicaux alcoylènes et/ou cycloalcoylènes et/ou hétérocycliques et/ou polycycliques divalents tels que ceux définis précédemment.
    • - un enchaînement de groupes alcoylènes tels que ceux définis précédamment et de groupes amino tertiaires qui peuvent être liés directement aux atomes de phosphore par l'intermédiaire de l'atome d'azote.
  • 14°) Procédé selon la revendication 13, caractérisé en ce que l'on utilise une diphosphine de formule (III) dans laquelle R1 et R2 représente un radical aryle et A est un groupe chiral.
  • 15°) Procédé selon l'une quelconque des revendications 11 à 14, caractérisé en ce que la diphosphine chirale est la tétramenthyidiphosphine le bis(diphénylphosphinométhyl)-1,2 cyclobutane, le bis(diphénylphosphino- méthyl)-4,5 diméthyl-2,2 dioxolane, le bis(diphénylphosphinométhyl)-1,2 acénaphtène, le bis(diphénylphosphino)-!,4 diméthoxy-2,3 butane, le bis[(N,N' -diphénylphosphinol] bis[N,N' -(phényl-1 éthyl)] diaza-1,4 butane.
  • 16°) Procédé selon l'une quelconque des revendications 1 à 15, caractérisé en ce que la quantité de complexe du rhodium exprimée en nombre d'atomes-grammes de rhodium par mole d'aldéhyde diénique est comprise entre 1 x 10-4 et 1 x 10-1.
  • 17°) Procédé selon l'une quelconque des revendications
    Figure imgb0012
    caractérisé en ce que la quantité de phosphine exprima par le
    Figure imgb0013
    nombre d'atomes-grammes de phosphore au nombre d'atomes-grammes de rhodium est telle que ce rapport est compris entre 1 et 6.
  • 18°) Procédé selon l'une quelconque des revendications 1 à 17, caractérisé en ce que l'hydrogénation est conduite à une température comprise entre 0 et 150°C et sous une pression d'hydrogène comprise entre 0,1 et 100 bars.
  • Figure imgb0014
    Figure imgb0015
    Figure imgb0016
    Figure imgb0017
  • Parmi les diphosphines chirales qui peuvent être utilisées dans le procédé selon l'invention on peut citer à titre non limitatif :
    • le bis(diphénylphosphinométhyl)-1,2 cyclobutane (DPCB), le bis(diméthyl- phophinométhyl)-1,2 cyclobutane, le bis(di-n-butylphosphinométhyl)-1,2 cyclobutane, le bis(dioctylphosphinométhyl-)-1,2 cyclobutane, le bis(dito- lylphosphinométhyl)-1,2 cyclobutane, le bis(dinaphtylphosphinométhyl)-1,2 cyclobutane, le bis(éthyl,hexylphosphinométhyl)-1,2 cyclobutane, le bis-(diphénylphosphinométhyl)-1,2 cyclopentane ; le bis(diphénylphosphino- méthy)-1,2 cyclohexane ; le bis-(diméthylphosphinométhyl)-4,5 diméthyl-2,2 dioxolane-1,3, le bis-(diphénylphosphinométhyl)-4,5 diméthyl-2,2 dioxolane-1,3, (DIOP), le bis(ditolylphosphinométhyl)-4,5 dinéthyl-2,2 dioxolane-1,3 le bis(diméthylphosphinométhyl)-1,2 acénaphtène, le bis-(dibutylphosphinométhyl)-1,2 acénaphtène, le bis-(diphénylphosphinomërhyl)-1,2 acénaphtène (DPA), le bis(ditolylphosphinomëthyl)-1,2 acénaphtène, le bis(diphénylphosphino)-1,4 diméthoxy-2,3 butane (DDB), la tétramenthyl- diphosphine ; le bis (N,N'-diphénylphosphino)bis(N,N' (phényl-1 éthyl))-diaza-1,4 butane.
  • Parmi les phosphines citées précédemment on utilise de préférence les bis(diarylphosphinométhyl)-1,2 cyclobutanes décrits dans le brevet français n° 73/18 319.
  • Comme exemples de phosphines à atomes de phosphore chiral on peut citer la méthyl cyclohexyl orthométhoxyphényl phosphine ; la méthylcyclohexylphénylphosphine ; la benzylphénylméthylphosphine.
  • Les complexes dérivés de Rh4 (CO)12 ou de Rh6 (CO)16 et des bis(diarylphosphinométhyl)-1,2 cyclobutanes conviennent tout particulièrement bien à l'hydrogénation asymétrique du néral et du géranial en énantiomères du citronellal car ils procurent à la fois une vitesse élevée d'hydrogénation, une bonne sélectivité en citronellal et une bonne pureté optique.
  • La quantité de dérivé du rhodium mise en oeuvre dans le procédé de l'invention, exprimée en atomes-grammes de métal par mole d'aldéhyde diénique à hydrogéner peut varier dans de larges limites. Qu'il s'agisse du complexe préformé ou du dérivé apte à engendrer ce complexe dans les conditions de la réaction la quantité peut être choisie pour que le nombre d'atomes-grammes de rhodium par mole d'aldéhyde soit compris entre 1 x 10-4 et 1 x 10-1.
  • Lorsque le complexe dérivé du rhodium/phosphine chirale est préparé "in situ", la quantité de phosphine engagée dans le processus dépend de la nature de la phosphine et de celle du dérivé du rhodium. Cette quantité, exprimée par le nombre d'atomes-grammes de phophore par atome-gramme de rhodium est telle que ce rapport peut varier entre 0,5 et 10 ; de préférence le rapport P/Rh est compris entre 1 et 6. On pourrait cependant mettre en oeuvre des rapports P/Rh supérieurs à 10 sans sortir du cadre de la présente invention, mais celà ne procurerait aucun avantage particulier.
  • La température à laquelle on conduit l'hydrogénation n'est pas critique et peut varier dans de larges limites. En général elle est comprise entre 0 et 150°C et de préférence entre 10 et 100°C. Il en est de même de la pression d'hydrogène qui peut varier entre 0,1 et 100 bars et de préférence entre 0,5 et 50 bars.
  • Bien qu'il soit préférable de soumettre à l'hydrogénation asymétrique un aldéhyde diénique aussi pur que possible, c'est-à-dire pratiquement exempt de son isomère, on peut mettre en oeuvre du néral contenant jusqu'à 15 % de géranial et vice versa.
  • De la même façon il est préférable d'utiliser une phosphine chirale ne contenant pas son énantiomère bien que l'on puisse opérer avec une phosphine chirale contenant moins de 15 % de son énantiomère.
  • L'hydrogénation asymétrique du néral ou du géranial est de préférence conduite dans un solvant inerte de l'aldéhyde et du cataly- seur. Comme exemple de solvants, on peut citer des hydrocarbures (hexane, heptane, cyclohexane, benzène, toluène), des alcools (méthanol, éthanol), des nitriles (acétonitrile, benzonitrile).
  • Les exemples suivants illustrent l'invention et montrent comment elle peut être mise en pratique. Dans ces exemples on désignera par pureté optique P.O le rapport du pouvoir rotatoire (α1)D du produit obtenu par le procédé au pouvoir rotatoire (a)D du produit mesuré dans les mêmes conditions, multiplié par 100, soit
    Figure imgb0018
  • Par rendement optique on désigne la valeur de la pureté optique du produit que l'on obtiendrait par utilisation d'une phosphine optiquement pure.
  • EXEMPLE I
  • Dans un ballon en verre de 50 cm3, équipé d'une arrivée de gaz par tube plongeant, d'un thermomètre, d'une agitation magnétique et d'un bouchon en verre permettant de procéder à des additions de réactifs ou des prélèvements de masse réactionnelle au moyen d'une seringue, on charge 18,2 mg de Rh6 (CO)16 (1,02 x 10-4 at-g de Rh), 67,5 mg (+)-(DPCB) soit 0,15 millimoie, puis on purge l'appareil à l'azote et injecte 20 cm3 de toluène. On agite le contenu du ballon pendant 1 heure sous atmosphère d'azote puis ajoute 1,79 g (soit 11,77 millimole) de géranial contenant 5 % de néral. On purge l'appareil à l'hydrogène puis maintient le contenu du ballon sous 1 bar d'hydrogène pendant 4 heures à 25°C. La réaction esc arrêtée et la masse réactionnelle est soumise à une analyse chromatogra- phique en phase gazeuse : le taux de transformation du géranial est de 100 % et le rendement en citronellal de 99 %. On évapore le solvant puis distille le résidu sous pression réduite. On recueille ainsi 1,28 g de 1-citronellal ayant un pouvoir rotatoire
    Figure imgb0019
    = -8,76° (mesuré sur une solution à 6 g pour 100 cm3 dans l'hexane) et
    Figure imgb0020
    = -9,1° mesuré en absence de solvant. Le pouvoir rotatoire du 1-citronellal pur
    Figure imgb0021
    mesuré sur une solution à 6 g/100 cm3 dans le cyclohexane est de -15,6°. Par référence à cette valeur, la P.0 du produit obtenu est de 56 %. Le pouvoir rotatoire du 1-citronellal pur (détermination sans solvant) est (α)25 D = -16° (cf. DONELL et al. Australian J. Chem. 19 525 [1966]).
  • EXEMPLE 2
  • On opère comme à l'exemple 1 sur les quantités suivantes :
    Figure imgb0022
  • La durée de réaction est de 10 heures
    Figure imgb0023
  • Après distillation on recueille 9,6 g de citronellal de (α)25 D = +10,15° (solution à 6 g/100 cm3 dans l'hexane) soit une pureté optique de 65 %.
  • EXEMPLES 3 A 4
  • On opère comme à l'exemple 1 en remplaçant la (+)-DPCB par la (+)-DIOP. Le rapport géranial/Rh est de 120 et on utilise successivement un rapport P/Rh de 4 et de 6.
  • Dans ces conditions on a obtenu les résultats suivants :
    Figure imgb0024
  • EXEMPLE 5
  • On opère comme à l'exemple 1 en remplaçant la (+)-DPCB par la (-)-DPCB. Le rapport du nombre de mole de géranium au nombre d'atomes-grammes de rhodium (G/Rh) est égal à 123 et 125 P/Rh à 4. La (-)-DPCB a une pureté optique de 95,5 %.
  • La durée de réaction est de 18 heures, le taux de transformation du géranial de 99 %, le RT en citronellal de 99 % L3 pureté optique du (d)-citronellal obtenu est de 49 % [
    Figure imgb0025
    = +7 7°. solution à 6 g/100 cm3 dans l'hexane]. Si l'on tient compte de la purete de la phosphine le rendement optique s'élève à 52 %.
  • EXEMPLE 6
  • On opère comme à l'exemple 5 en remplaçant le géranial par le néral, les autres conditions étant par ailleurs identiques. On a obtenu les résultats suivants :
    Figure imgb0026
  • EXEMPLE 7
  • On opère suivant le mode opératoire de l'exemple 1 et dans les mêmes conditions de pression et de température en remplaçant (Rh6(CO)16 par Rh4(CO)12. Le rapport P/Rh est de 3 et le rapport G/Rh de 120. Les résultats sont les suivants :
    Figure imgb0027
  • EXEMPLE 8
  • On opère comme à l'exemple 7 en remplaçant le géranis par le néral (le rapport N/Rh est de 140). On a obtenu les résultats suivants :
    Figure imgb0028
  • EXEMPLE 9
  • On opère comme à l'exemple 1 en portant le rapport N/Rh à 750 au lieu de 115 et le rapport P/Rh à 2. On a obtenu les résultats suivants :
    Figure imgb0029
  • EXEMPLES 10 à 18
  • On opère selon le mode opératoire et les conditions de température et de pression de l'exemple 1, en faisant varier la nature de l'aldéhyde, de la phosphine chirale et du dérivé du rhodium. Les autres conditions et les résultats obtenus figurent dans le tableau suivant':
    Figure imgb0030
  • EXEMPLE 19
  • Dans un autoclave en acier inoxydable de 125 cm3 équipé d'un système d'agitation à secousses, on introduit une ampoule de verre de 35 cm3 contenant 10 cm3 de toluène, 18,3 mg de (-)-DPCB, 91,9 mg de RhH(CO)(P0)3 et 1,91 g de géranial. On ferme l'autoclave et introduit de l'hydrogène jusqu'à une pression de 25 bars. On maintient 17 heures dans ces conditions, puis l'autoclàve est dégazé et le contenu de l'ampoule est traité et analysé comme à l'exemple 1.
  • Le taux de transformation du géranial s'élève à 69 % le rendement en citronellal par rapport au géranial transformé à 99 % et la pureté optique à 60 % (pouvoir rotatoire
    Figure imgb0031
    = +6,6° mesuré sur le produit pur).

Claims (13)

1°) Procédé de préparation de citronellal optiquement actif, caractérisé en ce que l'on hydrogène le néral ou le géranial en présence d'un catalyseur constitué par un complexe soluble dans le milieu réactionnel, formé à partir d'un dérivé du rhodium et d'une phosphine chirale.
2°) Procédé selon la revendication 1, caractérisé en ce que le complexe du rhodium et de la phosphine chirale est préparé extemporanément.
3°) Procédé selon la revendication 1, caractérisé en ce que le complexe du rhodium et de la phosphine chirale est formé "in situ" à partir d'un dérivé du rhodium et d'une phosphine chirale.
4°) Procédé selon la revendication 3, caractérisé en ce que le dérivé du rhodium est un sel d'acide minéral ou organique ou un complexe du rhodium avec un ligand achiral.
5°) Procédé selon la revendication 4, caractérisé en ce que le dérivé du rhodium est le trichlorure de rhodium.
6°) Procédé selon la revendication 4, caractérisé en ce que le complexe du rhodium a pour formule générale :
Figure imgb0032
dans laquelle :
- X représente un atome d'halogène
- x est un nombre entier de 1 à 4
- L représente une mono- ou dioléfine.
7°) Procédé selon la revendication 6, caractérisé en ce que le complexe du rhodium est le µ,µ'-dichloro bis(cyclooctadiene-1,5 rhodium).
8°) Procédé selon la revendication 4, caractérisé en ce que le complexe du rhodium a la formule générale :
Figure imgb0033
dans laquelle R représente un radical alcoyle, cycloalcoyle ou aryle achiral ayant de 1 à 10 atomes de carbone.
9°) Procédé selon la revendication 8, caractérisé en ce que le complexe du rhodium a la formule Rh H (CO[P-(C6H5)3]3.
10°) Procédé selon la revendication 4, caractérisé en ce que le complexe du rhodium est un rhodium carbonyle pris dans le groupe du tétrarhodiumdodécarbonyle et de l'hexarhodiumhexadécacarbonyle.
11°) Procédé selon l'une quelconque des revendications 1 à 10, caractérisé en ce que la phosphine chirale comporte au moins un atome de carbone chiral et/ou au moins un atome de phosphore chiral.
12°) Procédé selon la revendication 11, caractérisé en ce que la phosphine chirale est une diphosphine de formule générale :
Figure imgb0034
dans laquelle :
- RI et R2, identiques ou différents, représentent des radicaux hydrocarbonés ayant de 1 à 15 atomes de carbone,
- A représente un lien valentiel ou un radical organique divalent éventuellement substitué par un ou plusieurs groupes fonctionnels inertes, l'un sa moins des radicaux R1, R2 et A étant chiral.
13°) Procédé selon la revendication 12, caractérisé en ce que l'on utilise une diphosphine chirale de formule (III) dans laquelle R1 et R2 représentent des radicaux alcoyles ayant de 1 à 10 atomes de carbone, cycloalcoyles ayant de 4 à 8 atomes de carbone cycliques, aryles ou alcoylaryles et A symbolise :
Figure imgb0035
Figure imgb0036
dans laquelle L1 représente un ligand mono- ou polydentate et notamment une phophine achirale de formule générale :
Figure imgb0037
dans laquelle R représente un radical achiral alcoyle, cycloalcoyle aryle ayant de 1 à 10 atomes de carbone tel que les radicaux méthyle éthyle, propyle, butyles, pentyles, hexyles, octyles, cyclohexyle, phényle, toluyle. De préférence L1 est la triphénylphesphine. Parmi les dérivés du rhodium précités on fait appel de préférence aux divers rho- diumcarbonyle et notamment au tétrarhodium dodécacarbonyle et à l'hexa- rhodiumhexadécacarbonyle. Les complexes du rhodium pris sous forme cationique peuvent également être utilisés.
Comme phosphine chirale convenant à la mise et oeuvre de l'invention on peut utiliser aussi bien des monophosphines que des diphosphines. Comme exemplesde monophosphines chirale on
Figure imgb0038
diphanylmenthylphosphine, la phényldimenthylphosphine
Figure imgb0039
phosphine. On préfére toutefois faire appel
Figure imgb0040
de formule générale :
Figure imgb0041

dans laquelle :
- R1 et R2, identiques ou différents, représentent des radicaux
Figure imgb0042
carbonés ayant de 1 à 15 atomes de carbone,
- A représente un lien valentiel ou un radical organique divaient éventuellement substitué par un ou plusieurs groupes fonctionnels inertes,

l'un au moins des radicaux R1, R2 et A étant chiral.
Plus spécifiquement R1 et R2, qui sont de préférence identiques, représentent des radicaux alcoyles ayant de 1 à 10 atomes de carbone (méthyle, éthyle, isobutyle, sec-butyle, sec-pentyle, éthyl-2 hexyle), cycloalcoyle ayant de 4 à 8 atomes de carbone cycliques (cyclobutyle, méthyle-1 cyclobutyle, cyclohexyle, méthyle-1 cyclohexyle, méthyle-2 cyclohexyle), aryles ou alcoylaryles (phényle, naphtyle, toluyle). A représente :
- un radical alcoylène linéaire ou ramifié ayant de 1 à 10 atomes de carbone, un radical cycloalcoylène ayant de 3 à 7 atomes de carbone cycliques, éventuellement susbstitué par 1 à 3 groupes alcoyles ayant de 1 à 4 atomes de carbone, un radical arylène, un radical polycyclique divalent, ces radicaux étant éventuellement substitués par 1 ou plusieurs groupes fonctionnels inertes et notamment 1 à 3 groupes alcoxy ayant de 1 à 4 atomes de carbone.
- un groupe hétérocyclique divalent (pyridylène, dioxa-1,3 cyclopenty- lène-4,5) ayant 1 ou 2 hétéroatomes tels que l'oxygène et/ou l'azote.
- un enchaînement de 1 ou plusieurs radicaux alcoylène et/ou cycloalcoylènes et/ou hétérocycliques et/ou polycycliques divalents tel que ceux définis précédemment.
- un enchaînement de groupes alcoylènes tels que ceux définis précédemment et de groupes amino tertiaire qui peuvent éventuellement être liés directement aux atomes de phosphore par l'intermédiaire de l'atome d'azote.
Comme exemple de radicaux alcoylènes ont peut citer les radicaux méthylène, éthylène, propylène, éthyl-2 propylène A peut encore représenter un radical cyclobutylène ; cyclohexylène-1, 4 ; méthyl-2 cyclohexylène-1,4 ; un radical ortho- ou p-phénylène ; un radical diméthoxy-2,3 butylène-1,4.
Comme exemple de radicaux A chiraux divalents formés par un enchaînement de radicaux alcoylènes et cycloalcoylènes ou hétérocycliques ou polycycliques ou amino on peut citer ceux de formules :
EP78420001A 1977-07-04 1978-06-14 Procédé de préparation de citronellal optiquement actif Expired EP0000315B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR7721377A FR2396735A1 (fr) 1977-07-04 1977-07-04 Procede de preparation de citronellal optiquement actif
FR7721377 1977-07-04

Publications (2)

Publication Number Publication Date
EP0000315A1 true EP0000315A1 (fr) 1979-01-10
EP0000315B1 EP0000315B1 (fr) 1980-09-17

Family

ID=9193250

Family Applications (1)

Application Number Title Priority Date Filing Date
EP78420001A Expired EP0000315B1 (fr) 1977-07-04 1978-06-14 Procédé de préparation de citronellal optiquement actif

Country Status (7)

Country Link
US (1) US4237072A (fr)
EP (1) EP0000315B1 (fr)
JP (1) JPS5414911A (fr)
CA (1) CA1117981A (fr)
DE (1) DE2860165D1 (fr)
FR (1) FR2396735A1 (fr)
IT (1) IT1096979B (fr)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2651152A1 (fr) * 1989-08-23 1991-03-01 Elf Aquitaine Perfectionnement a la preparation de catalyseurs chiraux a base de complexes du ruthenium et du phosphore.
WO2006040096A1 (fr) * 2004-10-11 2006-04-20 Basf Aktiengesellschaft Procede pour preparer des composes de carbonyle optiquement actifs
WO2007057354A1 (fr) * 2005-11-17 2007-05-24 Basf Se Procede de fabrication de citronellal
JP2009515541A (ja) * 2005-11-17 2009-04-16 ビーエーエスエフ ソシエタス・ヨーロピア シトロネラールの生産法
US7973198B2 (en) 2007-04-25 2011-07-05 Basf Se Method for synthesizing optically active carbonyl compounds
US8318985B2 (en) 2007-11-30 2012-11-27 Basf Se Method for producing optically active, racemic menthol
US9975837B2 (en) 2014-12-19 2018-05-22 Basf Se Method for synthesizing optically active carbonyl compounds
WO2020048975A1 (fr) 2018-09-05 2020-03-12 Basf Se Production continue d'un composé carbonyle optiquement actif par hydrogénation asymétrique
WO2021114021A1 (fr) 2019-12-09 2021-06-17 万华化学集团股份有限公司 Procédé de préparation pour un citronellal optiquement actif

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2934250A1 (de) * 1979-08-24 1981-03-19 Basf Ag, 6700 Ludwigshafen Verfahren zur herstellung von olefinisch ungesaettigten carbonylverbindungen und alkoholen
ZM3391A1 (en) * 1990-08-06 1992-04-30 R & C Products Pty Ltd Insect repellent
JP3247277B2 (ja) * 1994-07-29 2002-01-15 高砂香料工業株式会社 液状l−n−メントール組成物及びその調製法
DE102005036340A1 (de) * 2005-07-29 2007-02-01 Basf Ag Verfahren zur Herstellung optisch aktiver Bis-Phosphinylalkane
EP2353714A4 (fr) 2008-11-27 2012-05-16 Takasago Perfumery Co Ltd Catalyseur d'hydrogénation asymétrique
CN101747152B (zh) * 2008-12-18 2012-10-24 复旦大学 一种柠檬醛液相加氢合成不饱和醇的方法
JP5663791B2 (ja) * 2009-06-03 2015-02-04 高砂香料工業株式会社 不斉水素化触媒
JP5711209B2 (ja) 2010-03-04 2015-04-30 高砂香料工業株式会社 均一系不斉水素化触媒
JP5560464B2 (ja) 2010-11-29 2014-07-30 高砂香料工業株式会社 不斉水素化触媒
JP5913352B2 (ja) 2010-11-29 2016-04-27 高砂香料工業株式会社 不斉水素化触媒、およびそれを用いた光学活性カルボニル化合物の製造方法
WO2012150053A1 (fr) 2011-02-22 2012-11-08 Firmenich Sa Hydrogénation de diénals au moyen de complexes de rhodium sous une atmosphère exempte de monoxyde de carbone
DE102013103563A1 (de) 2013-04-10 2014-10-16 Basf Se Verfahren zur Herstellung von Citronellal
CN105218335B (zh) * 2015-10-20 2017-06-16 万华化学集团股份有限公司 一种由柠檬醛不对称催化氢化制备手性香茅醛的方法
CN105254474B (zh) * 2015-10-20 2017-07-21 万华化学集团股份有限公司 一种由柠檬醛不对称催化氢化制备手性香茅醇的方法
CN105330515B (zh) * 2015-10-20 2017-07-21 万华化学集团股份有限公司 一种光学纯香茅醇的制备方法
MX2018013563A (es) * 2016-05-06 2019-03-14 Basf Se Ligandos p-quirales de fosfina y su uso para sintesis asimetrica.
CN109851486B (zh) * 2018-12-20 2022-03-11 万华化学集团股份有限公司 一种钌络合物选择性氢化二烯酮的方法
CN111056932A (zh) * 2019-12-09 2020-04-24 万华化学集团股份有限公司 一种制备光学活性香茅醛的方法
CN110872217A (zh) * 2019-12-09 2020-03-10 万华化学集团股份有限公司 一种光学活性的香茅醛的制备方法
CN111004102B (zh) * 2019-12-23 2022-11-04 万华化学集团股份有限公司 一种制备光学活性香茅醛的方法及用于该方法的催化剂
CN111056933B (zh) * 2019-12-24 2022-11-08 万华化学集团股份有限公司 一种制备光学活性香茅醛的方法及用于该方法的催化剂体系

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2161200A1 (de) * 1970-12-10 1972-06-22 Institut Francais Du Petrole Des Carburants Et Lubrifiants, Rueil-Malmaison, Hauts-De-Seine (Frankreich) Neue zweibindige Liganden, ihre Herstellung und Verwendung
US3849480A (en) * 1968-09-09 1974-11-19 Monsanto Co Catalytic asymmetric hydrogenation
US3939188A (en) * 1972-03-24 1976-02-17 Exxon Research And Engineering Company Preparation of zerovalent phosphine substituted rhodium compounds and their use in the selective carbonylation of olefins
FR2314911A1 (fr) * 1975-06-18 1977-01-14 Rhone Poulenc Ind Procede de semi-hydrogenation du citral et de ses homologues en citronnellal et homologues du citronnellal

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3489786A (en) * 1964-12-10 1970-01-13 Shell Oil Co Hydrogenation process
US3860657A (en) * 1970-03-25 1975-01-14 Givaudan Corp Process for the preparation of citronellal
CA1022187A (fr) * 1971-12-23 1977-12-06 Peter S. Gradeff Procede de semi-hydrogenation du citral en citronellal
US4029709A (en) * 1976-02-17 1977-06-14 Rhodia, Inc. Process for the hydrogenation of citral to citronellal and of citronellal to citronellol using chromium-promoted Raney nickel catalyst

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3849480A (en) * 1968-09-09 1974-11-19 Monsanto Co Catalytic asymmetric hydrogenation
DE2161200A1 (de) * 1970-12-10 1972-06-22 Institut Francais Du Petrole Des Carburants Et Lubrifiants, Rueil-Malmaison, Hauts-De-Seine (Frankreich) Neue zweibindige Liganden, ihre Herstellung und Verwendung
US3939188A (en) * 1972-03-24 1976-02-17 Exxon Research And Engineering Company Preparation of zerovalent phosphine substituted rhodium compounds and their use in the selective carbonylation of olefins
FR2314911A1 (fr) * 1975-06-18 1977-01-14 Rhone Poulenc Ind Procede de semi-hydrogenation du citral et de ses homologues en citronnellal et homologues du citronnellal

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991002588A1 (fr) * 1989-08-23 1991-03-07 Societe National Elf Aquitaine Perfectionnement a la preparation de catalyseurs chiraux a base de complexes du ruthenium et du phosphore
FR2651152A1 (fr) * 1989-08-23 1991-03-01 Elf Aquitaine Perfectionnement a la preparation de catalyseurs chiraux a base de complexes du ruthenium et du phosphore.
WO2006040096A1 (fr) * 2004-10-11 2006-04-20 Basf Aktiengesellschaft Procede pour preparer des composes de carbonyle optiquement actifs
US7534921B2 (en) 2004-10-11 2009-05-19 Basf Aktiengesellschaft Method for the production of optically active carbonyl
CN101415831B (zh) * 2005-11-17 2013-03-13 巴斯夫欧洲公司 用于产生香茅醛的方法
WO2007057354A1 (fr) * 2005-11-17 2007-05-24 Basf Se Procede de fabrication de citronellal
JP2009515541A (ja) * 2005-11-17 2009-04-16 ビーエーエスエフ ソシエタス・ヨーロピア シトロネラールの生産法
US8124387B2 (en) 2005-11-17 2012-02-28 Basf Se Process for the production of citronellal
US7973198B2 (en) 2007-04-25 2011-07-05 Basf Se Method for synthesizing optically active carbonyl compounds
US8318985B2 (en) 2007-11-30 2012-11-27 Basf Se Method for producing optically active, racemic menthol
US9988331B2 (en) 2007-11-30 2018-06-05 Basf Se Method for producing optically active, racemic menthol
US9975837B2 (en) 2014-12-19 2018-05-22 Basf Se Method for synthesizing optically active carbonyl compounds
US10301244B2 (en) 2014-12-19 2019-05-28 Basf Se Method for synthesizing optically active carbonyl compounds
EP3489213A1 (fr) 2014-12-19 2019-05-29 Basf Se Composition destinée à l'utilisation dans un procédé de production de composés carbonyles optiquement actifs
USRE49036E1 (en) 2014-12-19 2022-04-19 Basf Se Method for synthesizing optically active carbonyl compounds
WO2020048975A1 (fr) 2018-09-05 2020-03-12 Basf Se Production continue d'un composé carbonyle optiquement actif par hydrogénation asymétrique
WO2021114021A1 (fr) 2019-12-09 2021-06-17 万华化学集团股份有限公司 Procédé de préparation pour un citronellal optiquement actif

Also Published As

Publication number Publication date
IT1096979B (it) 1985-08-26
DE2860165D1 (en) 1980-12-18
IT7825303A0 (it) 1978-07-04
FR2396735A1 (fr) 1979-02-02
FR2396735B1 (fr) 1980-02-01
JPS6123775B2 (fr) 1986-06-07
US4237072A (en) 1980-12-02
EP0000315B1 (fr) 1980-09-17
JPS5414911A (en) 1979-02-03
CA1117981A (fr) 1982-02-09

Similar Documents

Publication Publication Date Title
EP0000315B1 (fr) Procédé de préparation de citronellal optiquement actif
FR2534903A1 (fr) Procede d'hydroformylation
JPH0548215B2 (fr)
EP0136210A1 (fr) Ligands phosphorés chiraux, leur procédé de fabrication et leur application à catalyse de réactions de synthèse énantiosélective
EP0191675A1 (fr) Perfectionnement à la métathèse d'oléfines avec un catalyseur à base d'un complexe de tungstène
FR2741875A1 (fr) Procede pour l'hydroformylation des composes olefiniques
EP0044771B1 (fr) Procédé d'addition sélective d'un composé ayant un atome de carbone activé sur un diène conjugué substitué
FR2549840A1 (fr) Nouvelles phosphines chirales sulfonees, leur preparation et leur emploi en catalyse asymetrique
EP0243281A2 (fr) Procédé de dimérisation d'un acrylate d'alkyle inférieur et composition catalytique
EP0319406B1 (fr) Procédé de préparation d'alcools insaturés
FR2511613A1 (fr) Complexes organometalliques et leur utilisation comme catalyseurs homogenes
EP0320339B1 (fr) Procédé de préparation d'alcools insaturés
EP0441708B1 (fr) Procédé de préparation de cétones terpéniques
CA2019495A1 (fr) Catalyseur a base de palladium et son emploi
EP0621257B1 (fr) Nouveaux composés di-ramifiés et leurs procédés de préparation
EP0161979B1 (fr) Procédé de dimérisation d'un diène conjugué
EP0270468B1 (fr) Procédé de préparation d'un mélange renfermant un cyclohexanol et de la cyclohexanone à partir du cyclohexane
EP0009429B1 (fr) Nouveaux composés undécadiènes fonctionnalisés comportant un substituant du type méthylène et leur procédé de fabrication
EP0118354A1 (fr) Procédé chimique de purification d'un mélange de trimères de l'isoprène
EP0362037A2 (fr) Procédé de préparation d'aldéhydes saturés par hydrogénation d'aldéhydes alfa, beta-insaturés
EP0305302B1 (fr) Perfectionnement au procédé de dimérisation catalytique d'un acrylate d'alkyle
EP0927152B1 (fr) Procede de preparation de benzylalcools alpha-substitues optiquement actifs
FR2588197A1 (fr) Catalyseur et procede d'hydrogenation des liaisons ethyleniques ou acetyleniques
FR2486525A1 (fr) Procede d'addition selective d'un compose a methylene actif sur un diene conjugue substitue et nouveaux composes resultants
EP0015845A1 (fr) Nouveaux esters insaturés et leur procédé de préparation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH DE GB NL

17P Request for examination filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE CH DE GB NL

REF Corresponds to:

Ref document number: 2860165

Country of ref document: DE

Date of ref document: 19801218

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: RHONE-POULENC RECHERCHES

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910531

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910628

Year of fee payment: 14

Ref country code: BE

Payment date: 19910628

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19910630

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19910701

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19920630

Ref country code: BE

Effective date: 19920630

BERE Be: lapsed

Owner name: RHONE-POULENC INDUSTRIES

Effective date: 19920630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19930101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19920614

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930302

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT