EA201991909A1 - Интегрированный плазмонно-фотонный биосенсор и способ его использования - Google Patents

Интегрированный плазмонно-фотонный биосенсор и способ его использования

Info

Publication number
EA201991909A1
EA201991909A1 EA201991909A EA201991909A EA201991909A1 EA 201991909 A1 EA201991909 A1 EA 201991909A1 EA 201991909 A EA201991909 A EA 201991909A EA 201991909 A EA201991909 A EA 201991909A EA 201991909 A1 EA201991909 A1 EA 201991909A1
Authority
EA
Eurasian Patent Office
Prior art keywords
optical
mzi
splitter
specified
sensor
Prior art date
Application number
EA201991909A
Other languages
English (en)
Inventor
Николаос Плерос
Димитриос Тсиокос
Георгиос Нтампос
Димитра Кетцаки
Анна-Лена Гизеке
Original Assignee
Аристотл Юнивёрсити Оф Тессалоники-Рисёч Коммитти, Е.Л.К.Е.
Амо Гмбх Гезелльшафт Фюр Ангевандте Микро- Унд Оптоэлектроник Мит Бешренктер Хафтунг)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Аристотл Юнивёрсити Оф Тессалоники-Рисёч Коммитти, Е.Л.К.Е., Амо Гмбх Гезелльшафт Фюр Ангевандте Микро- Унд Оптоэлектроник Мит Бешренктер Хафтунг) filed Critical Аристотл Юнивёрсити Оф Тессалоники-Рисёч Коммитти, Е.Л.К.Е.
Publication of EA201991909A1 publication Critical patent/EA201991909A1/ru

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2202Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
    • G01N1/2205Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling with filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/45Refractivity; Phase-affecting properties, e.g. optical path length using interferometric methods; using Schlieren methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/7703Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1226Basic optical elements, e.g. light-guiding paths involving surface plasmon interaction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/45Refractivity; Phase-affecting properties, e.g. optical path length using interferometric methods; using Schlieren methods
    • G01N2021/458Refractivity; Phase-affecting properties, e.g. optical path length using interferometric methods; using Schlieren methods using interferential sensor, e.g. sensor fibre, possibly on optical waveguide
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7769Measurement method of reaction-produced change in sensor
    • G01N2021/7779Measurement method of reaction-produced change in sensor interferometric
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7793Sensor comprising plural indicators

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

Изобретение относится к устройству, содержащему оптический сенсор на основе первого интерферометра (ИМЦ1) Маха-Цендера с большим свободным спектральным диапазоном, причем предусмотрен плазмонный волновод (107), в частности тонкопленочный или гибридный щелевой волновод, в качестве преобразовательного элемента, планарно интегрированного на фотонных Si3N4-волноводах, и второго оптического интерферометра (ИМЦ2) Маха-Цендера, причем оба интерферометра содержат термооптические фазорегуляторы (104, 106) для оптимальной настройки указанного ИМЦ-сенсора (ИМЦ1) и ИМЦ в качестве регулируемого оптического аттенюатора (РОА). Устройство дополнительно содержит общий чип (112), характеризующийся тем, что он содержит набор фотонных волноводов (103) с полосой (303, 603) из нитрида кремния с высоким показателем преломления, который расположен между оксидной подложкой (из SiO2) с низким показателем преломления и оксидным покрывающим слоем (из низкотемпературного оксида) с низким показателем преломления; оптические структуры (102, 109) связи, расположенные на обоих концах сенсора и действующие в качестве оптических средств ввода/вывода; оптический расщепитель (102) и оптический объединитель (109) для оптического расщепления на первом разветвителе (102) указанного первого сенсора (ИМЦ1) и для оптического объединения на втором разветвителе (109) указанного первого ИМЦ (ИМЦ1); регулируемый оптический аттенюатор (РОА) с указанным дополнительным вторым ИМЦ (ИМЦ2), встроенным в указанный первый ИМЦ-сенсор (ИМЦ1) и выполненный с возможностью использования оптического расщепителя и оптического объединителя для оптического расщепления на первом разветвителе указанного дополнительного второго ИМЦ (ИМЦ2) и для оптического объединения на втором разветвителе указанного второго ИМЦ (ИМЦ2); набор термооптических фазорегуляторов (104, 106) для настройки фазы оптического сигнала в опорном плече (104, 106) каждого из указанных ИМЦ (ИМЦ1, ИМЦ2-РОА), причем термооптические фазорегуляторы сформированы посредством осаждения поверх секции фотонного волновода двух металлических полос, параллельных одна другой и ориентированных вдоль направления распространения света; причем плазмонный волновод (107) сформирован в верхней ветви (103) указанного первого ИМЦ (ИМЦ1) и пространственно ограничивает распространение света посредством его связывания в поверхностные плазмонные поляритоны на границе раздела металл-аналит. Предложен также способ использования данного устройства.
EA201991909A 2017-02-17 2018-02-20 Интегрированный плазмонно-фотонный биосенсор и способ его использования EA201991909A1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GR20170100088A GR1009480B (el) 2017-02-17 2017-02-17 Μεθοδος κατασκευης ολοκληρωμενου πλασμο-φωτονικου βιοαισθητηρα και συσκευη για το σκοπο αυτο
PCT/GR2018/000007 WO2018150205A1 (en) 2017-02-17 2018-02-20 Integrated plasmo-photonic biosensor and method of use

Publications (1)

Publication Number Publication Date
EA201991909A1 true EA201991909A1 (ru) 2021-02-05

Family

ID=59325571

Family Applications (1)

Application Number Title Priority Date Filing Date
EA201991909A EA201991909A1 (ru) 2017-02-17 2018-02-20 Интегрированный плазмонно-фотонный биосенсор и способ его использования

Country Status (10)

Country Link
US (1) US11204326B2 (ru)
EP (1) EP3583406B1 (ru)
JP (1) JP7212901B2 (ru)
KR (1) KR102499209B1 (ru)
CN (1) CN110325840B (ru)
AU (1) AU2018221428B2 (ru)
CA (1) CA3053715A1 (ru)
EA (1) EA201991909A1 (ru)
GR (1) GR1009480B (ru)
WO (1) WO2018150205A1 (ru)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109445025A (zh) * 2018-12-19 2019-03-08 武汉邮电科学研究院有限公司 一种光混频器相位误差的修正方法及结构
EP3671186A1 (en) * 2018-12-21 2020-06-24 IHP GmbH - Innovations for High Performance Microelectronics / Leibniz-Institut für innovative Mikroelektronik Photonic sensor chip, packaged photonic sensor device and arrangement
CN113785404B (zh) * 2019-03-01 2022-10-28 加州理工学院 波导集成等离子体激元辅助场发射检测器
EP4127668A4 (en) 2020-04-13 2024-05-01 Univ British Columbia PHOTONIC SENSOR WITH A FIXED WAVELENGTH LASER
CN113917603B (zh) * 2021-03-26 2023-06-16 广东工业大学 基于亚波长金属/介质的集成光学器件
CN113253403B (zh) * 2021-06-17 2021-10-29 苏州浪潮智能科技有限公司 一种光学器件、电子器件和可编程光子集成电路
CN113532493B (zh) * 2021-07-26 2023-03-24 吉林大学 一种有机无机混合集成的聚合物温度传感器及其制备方法
EP4148469A1 (en) * 2021-09-14 2023-03-15 Cambridge Enterprise, Ltd. Photonic crystal-based sensor
CN114089474B (zh) * 2021-11-30 2024-04-19 吉林大学 一种有机无机混合集成的可变光衰减器及其制备方法
WO2023119475A1 (ja) * 2021-12-22 2023-06-29 日本電信電話株式会社 光デバイス
WO2023139408A1 (en) * 2022-01-21 2023-07-27 Bialoom Ltd Optical interferometric sensor
CN115290605B (zh) * 2022-04-29 2024-01-02 科竟达生物科技有限公司 炽热表面等离子体共振生物芯片、其制造方法、包含其的生物传感系统及其应用
CN117470806B (zh) * 2023-12-21 2024-03-26 天津工业大学 一种基于马赫曾德尔结构的聚合物葡萄糖传感器

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3872817B2 (ja) 1996-03-30 2007-01-24 ノバルティス アクチエンゲゼルシャフト 集積化された光学的ルミネセンスセンサ
JPH1020348A (ja) * 1996-06-28 1998-01-23 Nippon Telegr & Teleph Corp <Ntt> 光可変減衰器
US6341031B1 (en) * 1999-05-25 2002-01-22 Jds Uniphase Corporation Optical pulse generation using a high order function waveguide interferometer
US7212692B2 (en) 2002-11-08 2007-05-01 Ming Yan Multiple array surface plasmon resonance biosensor
JP2005009944A (ja) * 2003-06-18 2005-01-13 Hitachi Ltd 化学物質検出装置
JP2006071300A (ja) * 2004-08-31 2006-03-16 Hitachi Ltd 生化学物質検出装置
US7697796B2 (en) * 2005-05-17 2010-04-13 Corporation De L'ecole Polytechnique De Montreal Plasmon-polariton refractive-index fiber bio-sensor with fiber Bragg grating
US20080158563A1 (en) * 2006-08-21 2008-07-03 Pierre Simon Joseph Berini Sensors
KR100801278B1 (ko) * 2006-08-29 2008-02-04 삼성전기주식회사 하이브리드형 광도파로 센서
JP5233983B2 (ja) * 2007-02-19 2013-07-10 日本電気株式会社 光位相変調素子およびこれを用いた光変調器
US7715667B2 (en) * 2008-02-26 2010-05-11 Sungkyunkwan University Foundation For Corporate Collaboration Metal waveguide device and nano plasmonic integrated circuits and optical integrated circuit module using the same
WO2010010527A2 (en) * 2008-07-24 2010-01-28 Ramot At Tel Aviv University Ltd. Enhanced sensitivity interferometric sensors
IT1397108B1 (it) 2008-09-23 2012-12-28 Calmed S R L Procedimento di fabbricazione di un dispositivo a cristallo fotonico provvisto di guida d'onda plasmonica.
EP2214049B1 (en) 2009-02-03 2011-12-07 Optisense B.V. Integrated optical waveguide interferometric sensor
JP2015135386A (ja) 2014-01-16 2015-07-27 国立大学法人東北大学 光リング共振器および波長選択スイッチ
JP6467781B2 (ja) * 2014-03-31 2019-02-13 住友大阪セメント株式会社 光変調器

Also Published As

Publication number Publication date
JP2020508471A (ja) 2020-03-19
US20200003696A1 (en) 2020-01-02
CN110325840A (zh) 2019-10-11
GR20170100088A (el) 2018-10-31
AU2018221428A1 (en) 2019-10-10
WO2018150205A8 (en) 2019-05-09
CA3053715A1 (en) 2018-08-23
AU2018221428B2 (en) 2023-03-16
EP3583406A1 (en) 2019-12-25
CN110325840B (zh) 2023-02-03
WO2018150205A1 (en) 2018-08-23
EP3583406B1 (en) 2023-10-18
KR102499209B1 (ko) 2023-02-10
US11204326B2 (en) 2021-12-21
JP7212901B2 (ja) 2023-01-26
KR20190128172A (ko) 2019-11-15
EP3583406C0 (en) 2023-10-18
GR1009480B (el) 2019-03-19

Similar Documents

Publication Publication Date Title
EA201991909A1 (ru) Интегрированный плазмонно-фотонный биосенсор и способ его использования
Ortmann et al. Ultra-low-power tuning in hybrid barium titanate–silicon nitride electro-optic devices on silicon
US9151968B2 (en) Integrated optical waveguide interferometric sensor
US20180274981A1 (en) Apparatus, Systems, and Methods for On-Chip Spectroscopy Using Optical Switches
CN103884450B (zh) 一种光电温度传感器
JPH09511847A (ja) チャネル導波管から成る接合スプリッタおよび用途
Joo et al. Cost-Effective $2\times 2$ Silicon Nitride Mach-Zehnder Interferometric (MZI) Thermo-Optic Switch
US9310563B2 (en) Integrated system for active equalization of chromatic dispersion
Zhang et al. Tandem configuration of microrings and arrayed waveguide gratings for a high-resolution and broadband stationary optical spectrometer at 860 nm
CN110312918B (zh) 基于高分辨率集成光学器件的光谱仪
US11683092B2 (en) Loss-based wavelength meter
Samadi et al. RF arbitrary waveform generation using tunable planar lightwave circuits
US20120257206A1 (en) Optical delay-line interferometer for dpsk and dqpsk receivers for fiber-optic communication systems
Chen et al. Lithium-Niobate Mach-Zehnder Interferometer With Enhanced Index Contrast by SiO 2 Film
US7013065B2 (en) Planar optical apparatus for setting the chromatic dispersion in an optical system
Civitci et al. Planar prism spectrometer based on adiabatically connected waveguiding slabs
Wang et al. Athermal silicon arrayed waveguide grating with polymer-filled slot structure
Heise et al. Simple model for polarization sensitivity of silica waveguide Mach-Zehnder interferometer
Gervais et al. Tunable slow-light in silicon photonic subwavelength grating waveguides
Fernandez et al. Sagnac reflector based broadband tunable integrated mirror
Mohammed et al. Athermal mach-zehnder interferometer with heterogeneous cladding for bio-sensing
JP2012068499A (ja) 光導波回路
Li et al. Integrated optic beam combiners in lithium niobate for stellar interferometer
JP2004021123A (ja) 導波路型光回路の調整方法
Podviaznyi et al. Improved interferometric method for determination of refractive index profile parameters in single-mode waveguides