EA009704B1 - Система и способы применения волоконной оптики в гибких насосно-компрессорных трубах ( нкт ) - Google Patents

Система и способы применения волоконной оптики в гибких насосно-компрессорных трубах ( нкт ) Download PDF

Info

Publication number
EA009704B1
EA009704B1 EA200602252A EA200602252A EA009704B1 EA 009704 B1 EA009704 B1 EA 009704B1 EA 200602252 A EA200602252 A EA 200602252A EA 200602252 A EA200602252 A EA 200602252A EA 009704 B1 EA009704 B1 EA 009704B1
Authority
EA
Eurasian Patent Office
Prior art keywords
flexible tubing
well
wellbore
fiber optic
halyard
Prior art date
Application number
EA200602252A
Other languages
English (en)
Other versions
EA200602252A1 (ru
Inventor
Джон Р. Лоувелл
Майкл Г. Гэй
Сармад Аднан
Кин Землак
Original Assignee
Шлюмбергер Текнолоджи Б.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34969306&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EA009704(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Шлюмбергер Текнолоджи Б.В. filed Critical Шлюмбергер Текнолоджи Б.В.
Publication of EA200602252A1 publication Critical patent/EA200602252A1/ru
Publication of EA009704B1 publication Critical patent/EA009704B1/ru

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/20Flexible or articulated drilling pipes, e.g. flexible or articulated rods, pipes or cables
    • E21B17/206Flexible or articulated drilling pipes, e.g. flexible or articulated rods, pipes or cables with conductors, e.g. electrical, optical
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/13Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling by electromagnetic energy, e.g. radio frequency
    • E21B47/135Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling by electromagnetic energy, e.g. radio frequency using light waves, e.g. infrared or ultraviolet waves
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B23/00Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells
    • E21B23/08Introducing or running tools by fluid pressure, e.g. through-the-flow-line tool systems
    • E21B23/12Tool diverters
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/06Valve arrangements for boreholes or wells in wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/06Valve arrangements for boreholes or wells in wells
    • E21B34/066Valve arrangements for boreholes or wells in wells electrically actuated
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B2200/00Special features related to earth drilling for obtaining oil, gas or water
    • E21B2200/04Ball valves
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B2200/00Special features related to earth drilling for obtaining oil, gas or water
    • E21B2200/06Sleeve valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Remote Sensing (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Geophysics (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Earth Drilling (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Radiation-Therapy Devices (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Endoscopes (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Sewage (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

Предложено устройство, имеющее волоконно-оптический фал, расположенный в гибкой насосно-компрессорной трубе (НКТ), для передачи информации между скважинными инструментами или датчиками и оборудованием, находящимся на поверхности, а также предложены способы эксплуатации такого оборудования. Операции в стволе скважины, проводимые с помощью включаемого волоконно-оптическими средствами устройства гибкой НКТ, включают в себя передачу управляющих сигналов из оборудования, находящегося на поверхности, в скважинное оборудование по волоконно-оптическому фалу, передачу информации, собираемой по меньшей мере из одного скважинного датчика, в оборудование, находящееся на поверхности, по волоконно-оптическому фалу, или сбор информации путем измерения наблюдаемой оптической характеристики и передачи ее по волоконно-оптическому фалу. Скважинные инструменты или датчики, соединенные с волоконно-оптическим фалом, могут включать в себя либо устройства, которые манипулируют оптическим сигналом непосредственно или реагируют на него, либо инструменты или датчики, которые работают в соответствии с обычными принципами.

Description

Настоящее изобретение относится в основном к операциям в подземных скважинах, а более конкретно - к применению волоконной оптики и волоконно-оптических компонентов, таких как фалы и датчики, на операциях с гибкими насосно-компрессорными трубами (НКТ).
Предшествующий уровень техники
В течение срока службы подземной скважины, такой как те, которые бурят на нефтяных месторождениях, зачастую необходимо осуществлять техническое обслуживание скважины, например, с целью продления срока службы скважины, повышения дебита, предоставления доступа в подземную зону или устранения неисправности условия, возникающего во время эксплуатации. Известно, что для осуществления такого обслуживания полезны трубы НКТ. Применение гибких НКТ зачастую позволяет добиться цели быстрее и экономичнее, чем применение сборной трубы и буровой установки для осуществления технического обслуживания скважины, при этом гибкие НКТ допускают транспортировку в невертикальные стволы скважин или стволы скважин с несколькими ответвлениями.
В то время как операции с гибкими НКТ оказывают некоторое воздействие на глубине под поверхностью грунта, обслуживающий персонал или оборудование на поверхности осуществляет управление этими операциями. Вместе с тем, на поверхности обычно ощущается недостаток информации о состоянии операций со скваженными гибкими НКТ. Когда передача достоверных данных между скважинным инструментом и поверхностью невозможна, не всегда удается узнать, каковы условия в стволе скважины или каково состояние находящегося в ней инструмента.
В частности, гибкие НКТ полезны для обработок в скважине с участием флюидов, когда один или более флюидов закачиваются в ствол скважины через полую сердцевину гибкой НКТ или вниз по кольцевому пространству между гибкой НКТ и стволом скважины. Такие обработки могут предусматривать циркуляцию в скважине, очистку от заполняющего материала, воздействие на коллектор, удаление окалины, создание разрыва, изоляцию зон и т.д. Гибкие НКТ позволяют размещать эти флюиды на определенной глубине в скважине. Гибкие НКТ можно также применять для вмешательства в обстановку в стволе скважины, например, с целью извлечения утерянного инструмента либо установки оборудования или манипуляций с ним в стволе скважины.
При развертывании гибкой НКТ под давлением в ствол скважины непрерывный участок НКТ проходит от барабана через уплотнения устья скважины в ствол скважины. Поток флюида по гибкой НКТ можно также использовать для подачи гидравлической мощности в инструментальную колонну, прикрепленную к концу гибкой НКТ. Типичная инструментальная колонна может включать в себя один или более невозвратных клапанов, так что в случае поломки НКТ невозвратные клапаны закрываются и предотвращают выброс скважинных флюидов. Ввиду требований, предъявляемых в настоящее время, как правило, нет системы, которая осуществляла бы прямой обмен данными между инструментальной колонной и поверхностью. Другие устройства, используемые совместно с гибкой НКТ, могут быть гидравлически переключаемыми. Некоторые устройства, такие как спускаемые инструменты, можно переключать с помощью последовательности протаскивания и проталкивания инструментальной колонны, но и в этом случае оператору, находящемуся на поверхности, трудно ознакомиться с состоянием скважинного инструмента.
Столь же важно иметь возможность точно оценивать глубину инструментальной колонны в стволе скважины. Однако прямое измерение длины гибкой НКТ, прикрепленной к инструментальной колонне и введенной в ствол скважины, может неточно отражать глубину инструментальной колонны, поскольку НКТ спирально свернута в бухту, когда ее подают вниз по обсадной колонне скважины. Этот эффект спирального сворачивания в бухту делает непредсказуемой оценку глубины развертываемого инструмента в гибкой НКТ.
Трудность сбора и передачи точных данных из подземной толщи на поверхность часто приводит к тому, что обслуживающий персонал, принимающий решения, касающиеся скважинных операций, получает неправильное представление об условиях в стволе скважины, поэтому желательно, в частности, передавать информацию в реальном масштабе времени, что позволило бы корректировать упомянутые операции. Это повысило бы эффективность и понизило бы стоимость операций в стволе скважины. Например, наличие такой информации позволило бы обслуживающему персоналу лучше эксплуатировать инструментальную колонну, находящуюся в стволе скважины, точнее определять положение инструментальной колонны, или убеждаться в надлежащем проведении операций в стволе скважины.
Из уровня техники известны способы передачи данных о работе в стволе скважины на поверхность, например, с помощью гидравлических импульсов и кабелей проводных линий связи. Каждый из этих способов имеет различные недостатки. Телеметрия с использованием пульсации бурового раствора включает в себя использование гидравлических импульсов для передачи модулированной волны давления на поверхность. Эту волну затем демодулируют, чтобы извлечь переданные биты информации. Этот телеметрический способ может обеспечить данные с малой скоростью передачи, выражаемой в битах в секунду, а на более высоких скоростях передачи сигнал интенсивно ослабляется из-за свойств флюида.
- 1 009704
Кроме того, метод создания сигнала при телеметрии с использованием пульсации бурового раствора подразумевает требования временного прерывания потока, а при эксплуатации скважин это зачастую нежелательно.
Из уровня техники известно использование электрических кабелей или кабелей проводных линий связи для передачи информации во время операций в стволах скважин. Предложено, как в патенте США № 5434395, развертывать кабель проводной линии связи вместе с гибкой НКТ, при этом кабель развертывают снаружи НКТ. Такое наружное развертывание технологически затруднено и вносит риск помешать операциям заканчивания стволов скважин. Потребность в специализированном оборудовании и процедурах, а также вероятность, что кабель будет оборачиваться вокруг НКТ, при развертывании этой гибкой трубы, делает такой способ нежелательным. Другой способ, например, такой, о котором идет речь в патенте США № 5542471, основан на внедрении кабеля или каналов данных в толщину стенки самой НКТ. Такая конфигурация имеет достоинство, заключающееся в том, что весь внутренний диаметр НКТ можно использовать для накачивания флюидов, а также имеет существенный недостаток, заключающийся в том, что нет удобного способа ремонта такой гибкой трубы (НКТ) в полевых условиях. Повреждение НКТ во время операций с помощью НКТ происходит нечасто, и в этом случае нужно удалить поврежденную секцию из бухты и приварить остающиеся куски друг к другу. При наличии внедренных кабелей или каналов данных такие сварочные операции могут усложниться или оказаться просто неосуществимыми.
Известно развертывание кабеля проводной линии связи внутри гибкой НКТ. Хотя этот способ обеспечивает определенную функциональность, при этом также имеет некоторые недостатки. Вопервых, введение кабеля в барабан с НКТ - это задача нетривиальная. Для транспортировки кабеля проводной линии связи в трубу используется флюид, а для продвижения кабеля с флюидом необходим кабестан высокого давления. Одно такое устройство для установки электрического кабеля в гибкую НКТ описано в упоминаемом здесь для ссылки патенте США № 5573225 (Вгисе X. Воу1е) под названием Меапк Рог Р1астд СаЫе \νί11ιίη СоПеб ТиЬтд («Средство для размещения кабеля внутри НКТ»).
Помимо трудности установки кабеля в НКТ, относительный размер кабеля по сравнению с внутренним диаметром гибкой НКТ, а также вес и стоимость кабеля препятствуют использованию кабеля внутри НКТ.
Электрические кабели, используемые в операциях с гибкими НКТ, обычно имеют 0,25-0,3 дюйма (0,635-0,762 см) в диаметре, а диаметры гибких НКТ, как правило, находятся в диапазоне от 1 до 2,5 дюймов (от 2,54 до 6,350 см). Относительно большой наружный диаметр кабеля по сравнению с относительно малым внутренним диаметром НКТ, приводит к нежелательному уменьшению площади поперечного сечения, доступной для течения флюида в трубе. Кроме того, большая наружная площадь поверхности кабеля обеспечивает фрикционное сопротивление флюиду, закачиваемому по гибкой НКТ.
Вес кабеля проводной линии связи представляет собой еще один недостаток в контексте его использования в гибкой НКТ. Известные электрические кабели, используемые при операциях с гибкими НКТ на нефтяных месторождениях, могут весить до 0,35 фунта-силы на фут (фн-с/фт) (2,91 кг/м), так что электрический кабель длиной 20000 фт (6096 см) мог бы привнести дополнительные 7000 фн-с (3175 кг) в вес колонны НКТ. Для сравнения отметим, что обычная колонна в виде НКТ, имеющая диаметр 1,25 дюйма (3,175 см), весила бы приблизительно 1,5 фн-с/фт (12,5 кг/м), что дало бы суммарный вес 30000 фн-с (13608 кг) для колонны длиной 20000 фт (6096 м). Следовательно, электрический кабель увеличивает вес системы примерно на 25%. Таким тяжелым оборудованием трудно манипулировать, и это зачастую препятствует установке гибкой НКТ и оснащенной кабелем проводной линии связи в полевых условиях. Более того, тяжесть кабеля будет вызывать его растяжение под действием собственного веса со скоростью, отличающейся от той, которая характерна для растяжения трубы, что приводит к внесению провисания в кабель. С этим провисанием нужно бороться во избежание повреждения и спутывания (образования «птичьих гнезд») кабеля в НКТ. Борьба с провисанием, включая в некоторых случаях подрезку кабеля или отрезание колонны НКТ для введения провисания кабеля в удовлетворительные пределы, могут потребовать дополнительного рабочего времени и затрат на работу с НКТ.
При использовании кабеля проводной линии связи внутри НКТ возникают и другие затруднения. Например, для извлечения данных из линии передачи в кабеле необходима система сбора данных, которая может вращаться вместе с барабаном, не вызывая при этом спутывание той части провода, которая находится снаружи барабана (например, провода, который соединен с компьютером, находящимся на поверхности). Известные устройства такого типа подвержены отказам и являются дорогостоящими. Кроме того, сам кабель подвержен износу и ухудшению свойств из-за течения флюидов в НКТ. Наружное армирование брони кабеля тоже может создавать технологические трудности. Во время некоторых скважинных операций НКТ срезают, чтобы как можно скорее закупорить скважину. Для резания НКТ имеются оптимизированные ножницы, но они, как правило, неэффективны, когда требуется перерезать бронированный кабель.
Из вышеизложенного должно быть ясно, что существует потребность в системах и способах сбора и передачи данных в среду операций в стволе скважины и из нее с помощью гибких НКТ, без ущерба для операций в стволе скважины. В частности, желательны системы и способы сбора и передачи этой ин- 2 009704 формации своевременным, эффективным и экономичным образом. Настоящее изобретение позволяет преодолеть недостатки, характерные для известного уровня техники, и направлено на реализацию этих потребностей.
Сущность изобретения
В настоящем изобретении предложены системы, устройства и способы работ в стволе скважины или осуществления скважинных операций или обработок в скважине, предусматривающих развертывание волоконно-оптического фала в гибкой НКТ, развертывание гибкой НКТ в стволе скважины, и передачу информации о стволе скважины с помощью волоконно-оптического фала.
В одном варианте осуществления изобретения предложен способ обработки подземного пласта, пересекаемого стволом скважины, заключающийся в том, что развертывают волоконно-оптический фал в гибкую НКТ, развертывают гибкую НКТ в стволе скважины, осуществляют операцию обработки в скважине, измеряют характеристику в стволе скважины и используют волоконно-оптический фал для передачи измеряемой характеристики. Операция обработки в скважине может предусматривать по меньшей мере один корректируемый параметр, а способ может включать в себя коррекцию этого параметра. Этот способ желателен, в частности, когда упомянутую характеристику измеряют во время проведения операции обработки в скважине, когда приходится корректировать параметр обработки в скважине, или когда измерение и передачу измеряемой характеристики проводят в реальном масштабе времени. Зачастую операция обработки в скважине будет включать в себя нагнетание по меньшей мере одного флюида в ствол скважины, например нагнетание флюида в гибкую НКТ в кольцевое пространство ствола скважины или и в упомянутую гибкую НКТ и в кольцевое пространство. В некоторых операциях может происходить нагнетание более одного флюида или разных флюидов в гибкую НКТ и в упомянутое кольцевое пространство. Операция обработки в стволе скважины может включать в себя подачу флюидов для стимулирования потока углеводородов или предотвращения потока воды из подземного пласта. В некоторых вариантах осуществления операция обработки в скважине может включать в себя осуществление связи посредством волоконно-оптического фала с инструментом в стволе скважины, в частности, осуществление связи между оборудованием, находящимся на поверхности, и инструментом в стволе скважины. Измеряемая характеристика может быть любой характеристикой, которую можно измерить в скважине, включая, но не в ограничительном смысле, давление, температуру, рН, количество осадка, температуру флюида, глубину, присутствие газа, химическую люминесценцию, гамма-излучение, удельное сопротивление, соленость, расход флюида, сжимаемость флюида, местоположение инструмента, присутствие локатора муфтовых соединений обсадной колонны, состояние инструмента и ориентацию инструмента. В конкретных вариантах осуществления измеряемая характеристика может отображать диапазон распределения измерений по интервалу ствола скважины, например по ответвлению скважины с несколькими ответвлениями. Параметр операции обработки может быть любым параметром, который можно корректировать, включая, но не в ограничительном смысле, количество нагнетаемого флюида, относительные пропорции каждого флюида в наборе нагнетаемых флюидов, химическую концентрацию каждого материала в наборе нагнетаемых материалов, относительные пропорции флюидов, прокачиваемых в кольцевом пространстве, с флюидами, закачиваемыми в гибкой НКТ, концентрацию катализатора, подлежащего выделению, концентрацию полимера, концентрацию расклинивающего наполнителя и местоположение гибкой НКТ. Способ может дополнительно включать в себя отвод гибкой НКТ из ствола скважины или оставление волоконно-оптического фала в стволе скважины.
В одном варианте осуществления изобретение относится к способу осуществления операции в подземной скважине, заключающемуся в том, что развертывают волоконно-оптический фал в гибкую НКТ, развертывают гибкую НКТ в стволе скважины и осуществляют по меньшей мере один технологический этап из передачи управляющих сигналов из системы управления по волоконно-оптическому фалу в скважинное оборудование, соединенное с гибкой НКТ, передачи информации из скважинного оборудования в систему управления по волоконно-оптическому фалу или передачи характеристики, измеряемой с помощью волоконно-оптического фала, в систему управления по волоконно-оптическому фалу. Способ может дополнительно включать в себя отвод гибкой НКТ из ствола скважины или оставление волоконно-оптического фала в стволе скважины. Как правило, волоконно-оптический фал развертывают в гибкую НКТ путем закачивания флюида в гибкую НКТ. Фал можно развертывать в гибкой НКТ во время ее наматывания на барабан или разматывания. Способ может также включать в себя измерение характеристики. В некоторых вариантах осуществления измерение можно проводить в реальном масштабе времени. Измеряемая характеристика может быть любой характеристикой, которую можно измерить в скважине, включая, но не в ограничительном смысле, забойное давление, забойную температуру, распределенную температуру, удельное сопротивление текучей среды, рН, растяжение-сжатие, крутящий момент, расход скважинного флюида, сжимаемость скважинного флюида, положение инструмента, гаммаизлучение, ориентацию инструмента, высоту слоя твердых частиц и местоположение муфтового соединения обсадной колонны.
В настоящем изобретении предложено устройство для проведения операции в стволе подземной скважины, содержащем гибкую НКТ и выполненную с возможностью размещения в стволе скважины, оборудование управления, находящееся на поверхности по меньшей мере одно скважинное устройство,
- 3 009704 соединенное с гибкой НКТ, и волоконно-оптический фал, установленный в гибкой НКТ и соединенный с каждым из упомянутого скважинного устройства и упомянутого оборудования управления, находящегося на поверхности, причем волоконно-оптический фал содержит по меньшей мере одно оптическое волокно, по которому можно передавать оптические сигналы а) из упомянутого по меньшей мере одного скважинного устройства в оборудование управления, находящееся на поверхности, Ь) из оборудования управления, находящегося на поверхности, в упомянутое по меньшей мере одно скважинное устройство, или с) из упомянутого по меньшей мере одного скважинного устройства в оборудование управления, находящееся на поверхности, и из оборудования управления, находящегося на поверхности, в упомянутое по меньшей мере одно скважинное устройство. В некоторых предпочтительных вариантах осуществления волоконно-оптический фал представляет собой металлическую трубку с расположенным в ней по меньшей мере одним оптическим волокном. Можно предусмотреть концевые муфты, расположенные на поверхности или в скважине либо и на поверхности, и в скважине. Скважинное устройство может содержать измерительное устройство для измерения характеристики и генерирования выходного сигнала и устройство сопряжения для преобразования упомянутого выходного сигнала из измерительного устройства в оптический сигнал. Характеристика может быть любой характеристикой, которую можно измерить в скважине, включая, но не в ограничительном смысле, давление, температуру, распределенную температуру, рН, количество осадка, температуру флюида, глубину, химическую люминесценцию, гамма-излучение, удельное сопротивление, соленость, расход флюида, сжимаемость флюида, вязкость, сжатие, механическое напряжение, деформацию, местоположение инструмента, ориентацию инструмента и их комбинации. В конкретных вариантах осуществления, устройство согласно настоящему изобретению может содержать устройство для ввода в предварительно определенное ответвление скважины с несколькими ответвлениями. В некоторых вариантах осуществления ствол скважины может принадлежать скважине с несколькими ответвлениями, а измеряемая характеристика может быть ориентацией инструмента или положением инструмента.
В некоторых вариантах осуществления устройство дополнительно содержит средство для коррекции работы в ответ на оптический сигнал, принимаемый оборудованием, находящимся на поверхности, из упомянутого по меньшей мере одного скважинного устройства. В некоторых вариантах осуществления волоконно-оптический фал содержит более одного оптического волокна, причем оптические сигналы можно передавать из оборудования управления, находящегося на поверхности, в упомянутое по меньшей мере одно скважинное устройство по оптическому волокну, и оптические сигналы можно передавать из упомянутого по меньшей мере одного скважинного устройства в оборудование управления, находящееся на поверхности, по другому волокну. Типы скважинных устройств включают в себя съемочную камеру, кавернометр, щуп, локатор муфтовых соединений обсадной колонны, датчик, датчик температуры, химический датчик, датчик давления, датчик приближения, датчик удельного сопротивления, электрический датчик, исполнительный механизм, оптически активируемый инструмент, химический анализатор, устройство, измеряющее расход, клапанный исполнительный механизм, исполнительный механизм стреляющей головки перфоратора, реверсивный клапан, обратный клапан и анализатор флюида. Устройство согласно настоящему изобретению полезно для множества операций в стволе скважины, таких как стимулирование материнской породы, очистка от заполняющего материала, создание разрыва, удаление окалины, изоляция зон, перфорирование, управление потоками в скважине, манипуляции при заканчивании, проводимые в скважине, каротаж скважины, извлечение инструментов, бурение, измельчение, измерение физической характеристики, определение местонахождения элемента оборудования в скважине, определение местонахождения конкретной особенности в стволе скважины, управление клапаном и управление инструментом.
Настоящее изобретение также относится к способу определения характеристики подземного пласта, пересекаемого стволом скважины, заключающемуся в том, что развертывают волоконно-оптический фал в гибкую НКТ, развертывают измерительный инструмент в стволе скважины в гибкой НКТ, измеряют характеристику с помощью измерительного инструмента и используют волоконно-оптический фал для передачи измеряемой характеристики. В некоторых вариантах осуществления способ может также включать в себя отвод гибкой НКТ и измерительного инструмента из ствола скважины. В предпочтительных вариантах осуществления упомянутую характеристику передают в реальном масштабе времени или одновременно с проведением операции обработки в скважине.
В широком смысле настоящее изобретение относится к способу работы в стволе скважины, заключающемуся в том, что развертывают волоконно-оптический фал в гибкой НКТ, развертывают гибкую НКТ в стволе скважины и проводят операцию, причем управление этой операцией осуществляют посредством сигналов, передаваемых по волоконно-оптическому фалу, или операция включает в себя передачу информации из ствола скважины в оборудование, находящееся на поверхности, или из оборудования, находящегося на поверхности, в ствол скважины по волоконно-оптическому фалу.
Другие аспекты и преимущества настоящего изобретения станут очевидными из нижеследующего подробного описания, приводимого со ссылками на прилагаемые чертежи, иллюстрирующие на примерах принципы изобретения.
- 4 009704
Краткое описание чертежей
На фиг. 1 представлено схематическое изображение оборудования гибкой НКТ, используемого для операций обработки в скважине;
на фиг. 2А - сечение вдоль оси скважины примерного устройства гибкой НКТ, в котором в связи с операциями, проводимыми с помощью гибкой НКТ, используется волоконно-оптическая система;
на фиг. 2В - сечение возможного устройства с трубой, сворачиваемой в бухту, вдоль линии а-а, показанной на фиг. 2А, в котором в связи с операциями с гибкой НКТ используется волоконно-оптическая система;
на фиг. ЗА - сечение первого варианта осуществления концевой муфты, находящейся на поверхности, волоконно-оптического фала в соответствии с изобретением.
На фиг. ЗВ - сечение второго варианта осуществления концевой муфты, находящейся на поверхности, волоконно-оптического фала в соответствии с изобретением;
на фиг. 4 - сечение концевой муфты, находящейся в скважине, волоконно-оптического фала;
на фиг. 5А и 5В - схематические изображения общего случая скважинного датчика, соединенного с волоконно-оптическим фалом для передачи оптического сигнала по волоконно-оптическому фалу, причем этот оптический сигнал отображает измеряемую характеристику;
на фиг. 6 - схематическая иллюстрация обработки в скважине, проводимой с помощью устройства гибкой НКТ, имеющего волоконно-оптический фал в соответствии с изобретением;
на фиг. 7 - схематическая иллюстрация операции очистки от заполняющего материала, усовершенствованной за счет применения включаемой волоконно-оптическими средствами колонны гибкой НКТ, в соответствии с изобретением;
на фиг. 8 - схематическое изображение перфорационной системы, транспортируемой с помощью гибкой НКТ, в соответствии с изобретением, при этом для проведения перфорирования приспособлено устройство гибкой НКТ с включенной волоконной оптикой.
На фиг. 9 - скважины и пластовыми флюидами используется волоконно-оптический управляющий клапан.
Подробное описание
В нижеследующем подробном описании и на нескольких фигурах чертежей одинаковые элементы обозначены одинаковыми позициями.
В соответствии с настоящим изобретением такие операции, как операция обработки в скважине, можно осуществлять в стволе скважины с помощью гибкой НКТ, имеющей расположенный в ней волоконно-оптический фал, причем волоконно-оптический фал выполнен с возможностью применения для передачи сигналов или информации из ствола скважины на поверхность или с поверхности в ствол скважины. Возможности такой системы обеспечивают многие преимущества над проведением таких операций с помощью известных способов передачи и гарантируют многие недостижимые до сих пор приложения гибких НКТ в операциях в стволах скважин. Применение оптических волокон в настоящем изобретении обеспечивает такие преимущества, как малый вес, наличие малого поперечного сечения, а также обеспечивает расширенные возможности в контексте ширины полосы сигналов.
Со ссылкой на фиг. 1, отмечаем, что здесь показано схематическое изображение оборудования, в частности находящегося на поверхности оборудования, применяемого в процессе осуществления обслуживания или проведения операций с помощью гибкой НКТ, применительно к подземной скважине. Оборудование гибкой НКТ может быть доставлено на буровую площадку с помощью грузового автомобиля 101, салазок или прицепа. Грузовой автомобиль 101 несет трубный барабан 103, на котором находится некоторая навеска намотанной на него гибкой НКТ 105. Один конец гибкой НКТ 105 оканчивается на центральной оси барабана 10З в коаксиальном тракте 12З барабана, что позволяет закачивать флюиды в гибкую НКТ 105, допуская при этом вращение барабана. Другой конец гибкой НКТ 105 помещен в ствол 121 скважины с помощью головки 107 ввода посредством подъемника 109 типа «гусиная шея». Головка 107 ввода инжектирует гибкую НКТ 105 в ствол 121 скважины посредством различного оборудования управления скважиной, находящегося на поверхности, такого как блок 111 превенторов и главный управляющий вентиль 113. На спускаемом в скважину конце гибкой трубы 105 (НКТ) можно транспортировать один или более инструментов или датчиков 117.
Транспортное средство 101 с гибкой НКТ может представлять некоторые другие мобильные НКТ или стационарно установленную структуру в месте расположения скважин. Транспортное средство 101 (или альтернативные средства) также несет некоторое оборудование 119 управления, находящееся на поверхности, которое в типичном случае включает в себя компьютер. Оборудование 119 управления, находящееся на поверхности, соединено с головкой 107 ввода и барабаном 103 и используется для управления введением НКТ 105 в скважину 121. Оборудование 119 управления также используется для управления работой инструментов и датчиков 117 и для сбора любых данных, передаваемых из инструментов и датчиков 117 на поверхность и в обратном направлении. Может быть предусмотрено оборудование 118 оперативного контроля, выполненное вместе с оборудованием 119 управления или отдельно от него. Соединение между НКТ 105 и оборудованием 118 оперативного контроля и/или оборудованием 119 управления может быть физическим соединением, как в случае линий связи, или оно может быть
- 5 009704 виртуальным соединением, реализуемым посредством беспроводной передачи или известных протоколов связи, таких как протокол управления передачей и протокол 1п1егпе1, входящие в стек ТСР/1Р. Одна такая система беспроводной связи, которую можно использовать совместно с настоящим изобретением, описана в заявке № 10/296522 на патент США, упоминаемой здесь для ссылки. Таким образом, появляется возможность размещения оборудования 118 оперативного контроля на некотором расстоянии от ствола скважины. Кроме того, оборудование 118 оперативного контроля можно, в свою очередь, применять для передачи принятых сигналов в пункты, удаленные от буровой площадки, такими способами, как тот, который описан в патенте США № 6519568, упоминаемом здесь для справок.
Обращаясь к фиг. 2А, отмечем, что здесь показано сечение устройства 200 с гибкой НКТ в соответствии с изобретением, включающее в себя колонну 105 гибкой НКТ, волоконно-оптический фал 211 (содержащий в показанном варианте внешнюю защитную трубку 203 и одно или несколько оптических волокон 201), концевую муфту 301, находящуюся на поверхности, концевую муфту 207, находящуюся в скважине, и герметичную переборку 213, находящуюся на поверхности. Герметичная переборка 213, находящаяся на поверхности, установлена в барабане 103 НКТ и используется для герметизации волоконно-оптического фала 211 внутри гибкой НКТ 105, тем самым предотвращая сброс флюида, участвующего в обработке, и давления с одновременным обеспечением доступа к оптическому волокну 201. Концевая муфта 207, находящаяся в скважине, обеспечивает физические и оптические соединения между оптическим волокном 201 и одним или несколькими оптическими инструментами или датчиками 209. Оптические инструменты или датчики 209 могут быть инструментами или датчиками 117 для работы гибкой НКТ, могут быть компонентом этой трубы или могут обеспечивать функциональные возможности независимо от инструментов или датчиков 117, которые осуществляют операции с гибкой НКТ. Более подробное описание концевой муфты 301, находящейся на поверхности, и концевой муфты 207, находящейся в скважине, приводится ниже в связи с фиг. 3 и 4 соответственно.
Примерные оптические инструменты и датчики 209 включают в себя датчики температуры и датчики давления для определения забойной температуры или забойного давления. Оптический инструмент или датчик также может проводить измерение пластового давления или температуры пласта. В альтернативных вариантах осуществления оптический инструмент и датчик 209 представляет собой кинокамеру, выполненную с возможностью обеспечения визуального изображения некоторых условий внутри скважины, например, слоев песка, или окалины, скопившейся на стенке насосно-компрессорной трубы, или состояния некоторого скважинного оборудования, например оборудования, отводимого во время операции извлечения инструмента. Точно так же инструмент или датчик 209 может представлять собой некоторую форму щупа, который может работать, обнаруживая некоторые физически обнаружимые особенности в скважине, например слои песка или окалину, либо предоставляя какое-то заключение относительно них. В альтернативном варианте инструмент или датчик 209 содержит химический анализатор для проведения химического анализа некоторого типа, например определения количества нефти и/или газа в скважинном флюиде, или измерения рН скважинного флюида. В таких случаях инструмент или датчик 209 соединен с волоконно-оптическим фалом 211 для передачи измеряемых характеристик или сведений об особенностях на поверхность. Таким образом, если инструмент или датчик 209 работает, измеряя характеристику или особенность в стволе скважины, волоконно-оптический фал 211 обеспечивает канал для передачи или транспортировки измеряемой характеристики.
В альтернативном варианте инструмент или датчик 209 представляет собой оптически активируемый инструмент, такой как активируемый клапан или активируемые стреляющие головки перфораторов. В вариантах осуществления, содержащих стреляющие головки перфораторов, коды стрельбы можно передавать с помощью оптического волокна (оптических волокон) в волоконно-оптическом фале 211. Эти коды можно передавать по одному волокну и декодировать с помощью скважинного оборудования. В альтернативном варианте волоконно-оптический фал 211 может содержать многочисленные оптические волокна, а каждая из стреляющих головок перфораторов может быть соединена с отдельным волокном, особым для каждой стреляющей головки. Передача сигналов стрельбы по оптическому волокну 201 волоконно-оптического фала 211 позволяет избежать таких недостатков, как перекрестная помеха и помеха из-за импульсов давления, которые приходится учитывать при использовании электрической линии или проводной линии связи или телеметрии, основанной на импульсах давления, для передачи сигналов на стреляющие головки. Такие недостатки могут привести к стрельбе из несправных перфораторов или стрельбе не в тот момент времени, когда это нужно.
Обращаясь теперь к фиг. 2В отмечаем, что здесь показано сечение устройства с гибкой НКТ, в котором волоконно-оптический фал 211 содержит одно или более оптических волокон 201, находящихся внутри защитной трубки 203. Оптические волокна могут быть многомодовыми или одномодовыми. В некоторых вариантах осуществления защитная трубка 203 содержит металлический материал, а в конкретных вариантах осуществления защитная трубка 203 представляет собой металлическую трубку, содержащую 1сопе1™, нержавеющую сталь, На§1е11оу™ или другой металлический материал, обладающий подходящими свойствами растяжения, а также стойкостью к коррозии в присутствии кислоты и Н2§.
В качестве иллюстрации, не носящей ограничительный характер, отметим, что волоконнооптический фал 211 имеет защитную трубку 203 с наружным диаметром в диапазоне от примерно 0,071
- 6 009704 до примерно 0,125 дюйма, причем эта защитная трубка сформирована вокруг одного или более оптических волокон 201. В предпочтительном варианте осуществления используются стандартные оптические волокна, а толщина защитной трубки 203 не превышает 0,020 дюйма. Отметим, что внутренний диаметр защитной трубки может быть больше, чем необходимо для плотной упаковки оптических волокон. В альтернативных вариантах волоконно-оптический фал 211 может содержать кабель, состоящий из неизолированных оптических волокон, или кабель, содержащий оптические волокна, покрытые композиционным материалом, а одним примером такого кабеля является ВиддсШ/сб МюгосаЫе, изготавливаемый Лп<1гс\\· Согрогайоп, Орленд Парк, штат Иллинойс, США.
Концевая муфта 207 может быть дополнительно соединена с одним или несколькими инструментами или датчиками 117 для проведения таких операций, как измерение, обработка или вмешательство, при которых сигналы передаются между оборудованием 119 управления, находящимся на поверхности, и скважинными инструментами или датчиками 117 по волоконно-оптическому фалу 211. Эти сигналы могут обеспечивать передачу измерений из скважинных инструментов или датчиков 117 или передачу управляющих сигналов из управляющего оборудования в скважинные инструменты или датчики 117. В некоторых вариантах осуществления возможна передача сигналов в реальном масштабе времени. Примеры таких операций включают в себя стимулирование материнской породы, очистку от заполняющего материала, создание разрыва, удаление окалины, изоляцию зон, перфорирование, проводимое с помощью гибкой НКТ, управление потоками в скважине, манипуляции при заканчивании, проводимые внутри скважины, извлечение инструментов, измельчение и бурение с помощью гибкой НКТ.
Волоконно-оптический фал 211 можно развертывать в гибкую трубу 105 (НКТ) с помощью любых подходящих средств, одним их которых, в частности, является использование потока флюида. Один способ осуществления этого состоит в креплении одного конца короткого (например, длиной от пяти до пятнадцати футов) шланга к барабану 103, на котором находится гибкая НКТ, а другого конца шланга - к Υ-образной концевой муфте. Волоконно-оптический фал 211 может быть введен в одну ветвь Υобразной концевой муфты, а флюид закачивают в другую ветвь Υ-образной концевой муфты. Тогда тяговая сила флюида, действующая на фал, обеспечивает продвижение волоконно-оптического фала вниз в шланг и дальше барабан 103, на котором находится гибкая НКТ. В качестве примера отметим, что когда наружный диаметр волоконно-оптического фала меньше 0,125 дюйма (0,3175 см) (и при этом сам фал выполнен из материала 1сопе1™), малая подача насоса, составляющая 1-5 баррелей в минуту (159-795 л/мин), оказалась достаточной для продвижения волоконно-оптического фала 211 вдоль длины гибкой трубы 105 (НКТ), даже когда та намотана на барабан. Простота этой операции обеспечивает значительные выгоды по сравнению со сложными способами, применяемыми в известных технических решениях для замены проводной линии связи в трубе, сворачиваемой в бухту.
На практике можно обеспечить достаточную длину волоконно-оптического фала 211, так что когда один конец фала выступает, проходя через вал барабана, другой конец фала все еще находится снаружи гибкой НКТ. Дополнительные 10-20% волоконно-оптического фала могут понадобиться для того, чтобы обеспечить устранение провисания по мере разматывания гибкой трубы (НКТ) в ствол скважины и сматывания трубы из него. Сразу же после введения желательной длины фала в барабан посредством закачивания можно отрезать фал и отсоединить упомянутый шланг. Фал, выступающий через вал барабана, можно заделывать так, как показано на фиг. ЗА и 3В. Скважинный конец фала можно заделывать так, как показано на фиг. 4.
Обращаясь к фиг. 3А и 3В отмечаем, что здесь показаны сечения двух альтернативных вариантов осуществления концевой муфты 301, находящейся на поверхности, волоконно-оптического фала 211 и герметичной переборки 213, находящейся на поверхности. Во многих приложениях возможна ситуация, в которой муфту волоконно-оптического фала 211 может осуществлять, направляя его вокруг прямоугольного колена тройника или соединения, которое расположено вне оси относительно потока флюида в гибкой НКТ, причем тройник или соединение предпочтительно соединяется с коаксиальным трактом 123 барабана на оси барабана 103. Поскольку сбрасываемые шары и абразивные флюиды при больших скоростях закачивания могут увеличить вероятность повреждения установки, в некоторых вариантах осуществления желательно обеспечивать концевую муфту, находящуюся на поверхности.
На фиг. 3А показано сечение первого варианта осуществления концевой муфты, находящейся на поверхности, волоконно-оптического фала 211 в соответствии с изобретением. В иллюстрируемом варианте осуществления концевая муфта 301, находящаяся на поверхности, содержит разветвление, имеющее основную ветвь 303, которая находится на оси по отношению к гибкой НКТ 105, и боковое ответвление 305, которое находится вне оси по отношению к гибкой НКТ 105. Поток флюида следует по пути, определяемому боковой ветвью 305, а волоконно-оптический фал 211 следует по основной ветви 303. На конце боковой ветви 305 можно предусмотреть соединительный механизм 313 для введения флюида в гибкую НКТ 105. Концевая муфта 301, находящаяся на поверхности, соединена с гибкой НКТ 105 или коаксиальным трактом 123 барабана, на котором находится гибкая НКТ на фланце 309, который образует уплотнение с гибкой НКТ 105, или коаксиальным трактом 123 барабана, на котором находится гибкая НКТ. Волоконно-оптический фал 211 проходит от гибкой НКТ 105, через концевую муфту 301, находящуюся на поверхности, по основной ветви 303. Концевая муфта 301, находящаяся на поверхности, имеет
- 7 009704 обращенный вверх фланец 307, прикрепленный к герметичной переборке 213, которая допускает прохождение волоконно-оптического фала 211 - с одновременным поддержанием герметичности - внутрь гибкой НКТ 105. Идущий от концевой муфты 301, находящейся на поверхности, волоконно-оптический фал может быть соединен с оборудованием 119 управления или, в альтернативном варианте, с оптическим компонентом 505, который обеспечивает оптическую связь со скважинным узлом.
Пример еще одного варианта осуществления концевой муфты, находящейся на поверхности, в соответствии с настоящим изобретением показан на фиг. 3В. Концевая муфта 301', находящаяся на поверхности, содержит разветвление, имеющее основную ветвь 303', которая находится на оси по отношению к гибкой НКТ 105, и боковое ответвление 305', которое находится вне оси по отношению к гибкой НКТ 105. В иллюстрируемом варианте осуществления поток флюида следует по пути, определяемому основной ветвью 303', а волоконно-оптический фал 211 следует по боковой ветви 305'. Концевая муфта 301', находящаяся на поверхности, соединена с гибкой НКТ 105 или коаксиальным трактом 123 барабана, на котором находится гибкая НКТ на фланце 309', который образует уплотнение с гибкой НКТ 105, или коаксиальным трактом 123 барабана, на котором находится гибкая НКТ.
Волоконно-оптический фал 211 проходит от гибкой НКТ 105 через концевую муфту 301', находящуюся на поверхности, по боковой ветви 305'. Концевая муфта 301', находящаяся на поверхности, имеет обращенный вверх фланец 307', прикрепленный к герметичной переборке 213', которая допускает прохождение волоконно-оптического фала 211 - с одновременным поддержанием герметичности - внутрь гибкой НКТ 105. На конце боковой ветви 305' можно предусмотреть соединительный механизм 313' для введения флюидов в гибкую НКТ 105.
Обращаясь теперь к фиг. 4, отмечаем, что здесь показано сечение одного варианта осуществления концевой муфты 207, находящейся в скважине, волоконно-оптического фала 211, причем этот вариант обеспечивает управляемое проникновение гибкой НКТ 105 в концевую муфту 207, находящуюся в скважине. Гибкая НКТ 105 подсоединяется внутри концевой муфты 207, находящейся в скважине, и устанавливается на сопрягающем краю 403. Гибкую НКТ 105 можно крепить в концевой муфте 207, находящийся внутри скважины, с помощью одного или нескольких установочных винтов 405, а для уплотнения концевой муфты 207 и гибкой НКТ 105 можно использовать одно или несколько уплотнительных колец 407. Волоконно-оптический фал 211, располагающийся внутри гибкой НКТ 105, выходит из гибкой НКТ 105 и крепится соединителем 411. Соединитель 411 также может обеспечить соединение с инструментом или датчиком 209. Соединение, создаваемое соединителем 411, может быть либо оптическим, либо электрическим. Например, если датчик 209 является оптическим датчиком, то соединение является оптическим соединением. Однако во многих вариантах осуществления инструмент или датчик 209 является электрическим устройством, и в это случае соединитель 411 также обеспечивает необходимое преобразование между электрическими и оптическими сигналами. Инструмент или датчик 209 можно крепить к концевой муфте, например, располагая обращенный книзу скважины конец 415 концевой муфты 207 между двумя концентрическими выступающими цилиндрами 417 и 417' и осуществляя уплотнение с помощью одного или нескольких уплотнительных колец 419.
Обращаясь теперь к фиг. 5А и 5В, отмечаем, что здесь показаны схематические иллюстрации применения скважинного оптического устройства 501, соединенного с волоконно-оптическим фалом 211, для передачи оптического сигнала, причем волоконно-оптический фал 211 соединен на поверхности с оптическим устройством 505. Это оптическое устройство 505 можно подсоединить к барабану 103, на котором находится гибкая НКТ, и обеспечить вращение этого устройства вместе с барабаном. В некоторых вариантах осуществления, оптическое устройство 505 может содержать радиопередатчик, который также вращается вместе с барабаном. В альтернативном варианте, оптическое устройство 505 может содержать оптический коллектор, имеющий части, которые остаются неподвижными при вращении барабана 103, на котором находится гибкая НКТ. Одним примером такого устройства является волоконнооптическое вращающееся сочленение, поставляемой фирмой Рпхт Абгапсеб СоттишсаИоп 1пс., Балтимор, штат Мэриленд, США. Скважинное оптическое устройство 501 содержит один или несколько инструментов или датчиков 209. Инструмент или датчик 209 может быть двух категорий, а именно, относящимся к тем, которые вырабатывают оптический сигнал непосредственно, и тем, которые вырабатывают электрический сигнал, требующий преобразования в оптический сигнал для передачи по волоконнооптическому фалу 211.
Можно проводить одновременно несколько измерений на основании оптических свойств с помощью известных оптических датчиков. Примеры таких датчиков включают в себя те, которые относятся к типам, описанным в таких руководствах, как Р1Ьег Орйс 8епкогк апб АррИсаИоп («Волоконнооптические датчики и их приложения») Ьу Э.А. Кгойп, 2000, 1пк1гитеп1а1юп 8ук1етк (Ι8ΒΝ № 1556177143), и включают в себя датчики, модулированные по яркости, датчики, модулированные по фазе, датчики, модулированные по длине волны, цифровые переключатели и счетчики, датчики перемещения, датчики температуры, датчики давления, датчики расхода, датчики уровня, датчики электрического и магнитного полей, датчики химического анализа, датчики скорости вращения, гироскопы, распределенные измерительные системы, гелевые структуры, оболочки и структуры со встроенными микропроцессорами.
- 8 009704
В альтернативном варианте инструменты или датчики 209 могут вырабатывать электрический сигнал, характерный для измеряемой характеристики. При использовании инструментов или датчиков, выдающих электрические сигналы, скважинное оптическое устройство 501 дополнительно содержит устройство 503 оптико-электрического сопряжения. Варианты осуществления оптико-электрических устройств и электрооптических устройств хорошо известны в промышленности. Примеры преобразования данных обычного датчика в оптические сигналы известны и описаны, например, в работе Рйо1ошс Апа1од-1о-О1дйа1 Сопусгаюп (8рг1пдсг 8спс5 ίη Орйса1 8с1спсс5, 81) («Фотонное аналого-цифровое преобразование (Серия издательства 8ргшдсг в оптических науках - 81)») Ьу В. 8поор, опубликованной издательством 8ргтдсг-Усг1ад в 2001 г. В некоторых вариантах осуществления устройства 503 оптикоэлектрического (устройство сопряжения) сопряжения можно использовать простую схему, в которой электрический сигнал используется для включения источника света в скважине, а амплитуда этого источника света линейно пропорциональна амплитуде электрического сигнала. Эффективным скважинным источником света для операций с гибкой НКТ является светоизлучающий диод (СИД), выполненный из 1пСаА§Р, длина волны излучения которого составляет 1300 нм. Свет распространяется вдоль длины волокна, а его амплитуда обнаруживается на поверхности с помощью фотоприемника, встроенного в устройство 505, находящееся на поверхности. Это значение амплитуды потом можно пропускать в оборудование 119 управления. В еще одном варианте осуществления, в устройствах 503 сопряжения используется аналого-цифровой преобразователь для анализа электрических сигналов, поступающих из датчика 209, и преобразования их в цифровые сигналы. Это цифровое представление можно затем передавать на поверхность по волоконно-оптическому фалу 211 в цифровой форме или преобразовывать в аналоговый оптический сигнал путем изменения амплитуды или частоты. Протоколы для передачи цифровых данных по оптическим волокнам очень хорошо известны в данной области техники и в данном описании не повторяются. Еще один вариант осуществления устройства 503 сопряжения может предусматривать преобразование сигнала, поступающего из датчика 209, в некоторый оптический элемент, опрос в связи с которым можно проводить с поверхности, например, это может быть изменение отражающей способности на конце оптического волокна, или изменение резонанса полости. Следует отметить, что в некоторых вариантах осуществления устройство оптико-электрического сопряжения и измерительное устройство могут быть объединены в одно физическое устройство, и манипуляции с ними можно проводить как с одним блоком.
В различных вариантах осуществления настоящее изобретение обеспечивает способ определения характеристики ствола скважины, включающий в себя этапы, на которых развертывают волоконнооптический фал в гибкую НКТ, развертывают измерительный инструмент в ствол скважины на гибкой НКТ, измеряют характеристику с помощью этого измерительного инструмента и используют волоконнооптический фал для передачи измеряемой характеристики. Такие характеристики могут включать в себя, например, давление, температуру, местоположение муфтовых соединений обсадной клоны, удельное сопротивление, химический состав, расход, положение, состояние или ориентацию инструмента, высоту слоя твердых частиц, образование осадка, измерение содержания газа, такого как диоксид углерода и кислород, рН, соленость и сжимаемость флюида.
Во многих операциях с использованием гибкой НКТ полезно знать забойное давление. В некоторых вариантах осуществления настоящее изобретение обеспечивает оператору способ оптимизации зависящих от давления параметров операции в стволе скважины. Известны подходящие оптические датчики давления, например, такие как те, в которых используется метод волоконной решетки Брэгга и метод Фабри-Перо. Метод волоконной решетки Брэгга основан на решетке на малом участке волокна, которая приводит к локальной модуляции коэффициента преломления самой сердцевины волокна на конкретном промежутке. Затем этот участок ограничивают с возможностью реагировать на некоторый физический стимул, такой как давление, температура или деформация. На другом конце волокна располагают опрашивающий блок, который запускает широкополосный источник света, действующий по длине волокна. Длина волны, соответствующая периоду решетки, отражается назад к опрашивающему блоку и обнаруживается. Когда физический стимул изменяется, изменяется и период решетки; после этого изменяется длина отраженной волны, которая затем коррелируется с наблюдаемой физической характеристикой, в результате чего и достигается измерение. Метод волоконной решетки Брэгга дает преимущество возможности нескольких измерений вдоль одного волокна. В вариантах осуществления настоящего изобретения, предусматривающих применение волоконной решетки Брэгга, опрашивающий блок может быть размещен в оптическом устройстве 505, находящемся на поверхности.
Датчики, в которых применяется метод Фабри-Перо, содержат малую оптическую полость, ограниченную с возможностью реагировать на некоторый физический стимул, такой как давление, температура или деформация. Исходной поверхностью полости является само волокно с частично отражающим покрытием, а противоположной поверхностью в типичном случае является полностью отражающее зеркало. На одном конце волокна располагают опрашивающий блок, используемый для запуска широкополосного источника света, действующий по длине волокна. В датчике создается интерференционная картина, особая для конкретной длины полости, так что длина волны при пиковой яркости, отраженная обратно к поверхности, соответствует длине полости. Отраженный сигнал анализируется в опрашивающем
- 9 009704 блоке с целью определения пиковой яркости, которая затем коррелируется с наблюдаемой физической характеристикой, в результате чего и получается измерение. Одно ограничение метода Фабри-Перо заключается в том, что для каждого проводимого измерения требуется одно оптическое волокно. Вместе с тем, в некоторых вариантах осуществления настоящего изобретения можно предусмотреть многочисленные оптические волокна внутри волоконно-оптического фала 211, что позволяет использовать многочисленные датчики Фабри-Перо в скважинном устройстве 501. Один такой датчик давления, в котором используется метод Фабри-Перо и который пригоден для использования в приложениях, связанных с гибкой НКТ, изготавливается фирмой ΡΙ8Θ Тсе11по1ощс5. авеню Св. Жана-Батиста, Монреаль, Канада.
Методами волоконной решетки Брэгга можно также проводить измерения температуры, измеряя деформацию вдоль оптического волокна волоконно-оптического фала 211 и преобразуя деформацию на волокне, индуцируемую тепловым расширением компонента, прикрепленного к волокну, в температуру. В некоторых вариантах осуществления датчик можно использовать для осуществления локализованного измерения, а в некоторых вариантах осуществления также проводится измерение полного распределения температуры вдоль длины фала 211. Для осуществления измерения температуры можно передавать импульсы света с фиксированной длиной волны из источника света в оборудовании 505, находящемся на поверхности, вниз по волоконно-оптической линии. В каждой точке измерения свет претерпевает обратное рассеивание и возвращается в оборудование 505, находящееся на поверхности.
Знание скорости света и момента прибытия возвратного сигнала гарантирует возможность определения точки его происхождения вдоль волоконной линии. Температура стимулирует энергетические уровни молекул диоксида кремния в волоконной линии. Обратно рассеиваемый свет содержит диапазоны волн, частоты которых сдвинуты вверх и вниз (такие как участки Стокса-Рамана в спектре обратного рассеивания), которые можно анализировать для определения температуры в исходной точке. Таким образом, с помощью вышеупомянутого оборудования можно вычислить температуру каждой из реагирующих точек измерения, что обеспечивает полный профиль температуры вдоль длины волоконной линии. Эта общая волоконно-оптическая система и метод получения распределенной температуры хорошо известны в данной области техники. Кроме того, в данной области техники также известно, что волоконно-оптическую линию можно также возвращать к линии, находящейся на поверхности, что приводит к и-образной форме всей линии. Использование возвратной линии может обеспечить улучшенную работоспособность и повышенное пространственное разрешение, потому что погрешности из-за концевых эффектов устраняются из исследуемой зоны. В одном варианте осуществления этого изобретения скважинное устройство 501 состоит из малого И-образного участка волокна. Концевая муфта 207, находящаяся в скважине, обеспечивает два связывающих соединения между двумя оптическими волокнами внутри фала для обеих половин И-образного профиля, так что устройство в сборе становится единым оптическим трактом с возвратной линией, идущей к поверхности. В еще одном варианте осуществления этого изобретения скважинное устройство 501 содержит устройство для ввода в конкретное ответвление скважины с несколькими ответвлениями, так что можно передавать на поверхность профиль температуры конкретного ответвления. Такие профили можно впоследствии использовать для идентификации водяных зон или поверхностей раздела «нефть газ» из каждого ответвления скважины с несколькими ответвлениями. Устройство для ориентации скважинного инструмента и введения его в конкретное ответвление известно в данной области техники.
В некоторых операциях с трубой, сворачиваемой в бухту, можно воспользоваться преимуществом измерений разности температур вдоль ствола скважины или участка ствола скважины, как описано в патентной публикации И8 2004/0129418 (V. 1ее и др.), которая во всей ее полноте упоминается здесь для ссылки. Однако при других операциях представляет интерес температура в конкретном интересующем месте, например забойная температура. Для таких операций не обязательно получать полный профиль температуры вдоль длины волоконно-оптической линии.
Преимущество датчиков температуры в отдельных местах над измерениями распределенной температуры заключается в том, что последние требуют усреднения сигналов по интервалу времени, чтобы отбросить шум. Это может внести небольшую задержку в работу. Когда нужно заменить прерыватели потока (или когда пласт больше не вбирает в себя расклинивающий наполнитель), незамедлительность получения информации приобретает первостепенное значение. Одиночный датчик температуры или датчик давления скважинного узла на трубе, сворачиваемой в бухту, или гибкой НКТ, обеспечивает механизм передачи этих важных данных на поверхность достаточно быстро, чтобы можно было принимать управленческие решения в связи с упомянутым заданием.
Во многих приложениях, связанных с гибкими НКТ, желательно знать место в стволе скважины относительно установленной обсадной колонны; как правило, в целях обнаружения таких мест используют локатор муфтовых соединений обсадной колонны, который наблюдает за характерным признаком присутствия муфтового соединения обсадной колонны. Обычный локатор муфтовых соединений обсадной колонны имеет соленоид, намотанный аксиально вокруг инструмента, при этом напряжение в катушке генерируется в присутствии изменяющегося электрического или магнитного поля. Такое изменение учитывается при движении скважинного инструмента через часть обсадной колонны, которая претерпевает изменение свойств материала, например, через механический стык между двумя секциями обсадной ко
- 10 009704 лонны. Перфорационные отверстия и скользящие манжеты в обсадной трубе также могут создавать характерные напряжения в соленоиде. Локаторы муфтовых соединений обсадной колонны не обязательно должны быть активно запитываемыми так, как это описано, например, в патенте США № 2558427, упоминаемом здесь для ссылки. В некоторых вариантах осуществления настоящего изобретения традиционный локатор муфтовых соединений обсадной колонны может быть соединен с волоконно-оптическим фалом 211 посредством электрооптического интерфейса 503 с помощью светоизлучающего диода. Для обнаружения местоположения муфтового соединения обсадной колонны в скважине можно соединить локатор муфтовых соединений обсадной колонны с гибкой НКТ и транспортировать по участку ствола скважины. Когда гибкая НКТ движется при изменении электрического или магнитного поля во время встречи с муфтой обсадной колонны генерируется сигнал, и этот сигнал передается с помощью волоконно-оптического фала 211. Другие способы определения глубины включают в себя измерение характеристики ствола скважины и корреляцию этой характеристики с измерением той же характеристики, которая была получена на ранее проведенном спуске. Например, во время бурения обычно проводят измерение естественных гамма-лучей, испускаемых пластом, в каждой точке вдоль ствола скважины. Выдавая измерение гамма-лучей через посредство оптической линии, можно найти место, соответствующее глубине гибкой НКТ, путем корреляции этого гамма-излучения с измерением, проведенным ранее.
В операциях с гибкими НКТ зачастую желательны измерения параметров потока в стволе скважины, и для получения этой информации оказываются полезными варианты осуществления настоящего изобретения. Измерения параметров потока в стволе скважины снаружи гибкой НКТ можно использовать для определения скоростей течения флюида ствола скважины в пласт, либо скорости обработки или скоростей течения скважинных флюидов в ствол скважины, например, дебита или дифференциальной производительности. Измерения параметров потока в гибкой НКТ могут оказаться полезными для измерения подачи флюида в разные зоны в стволе скважины или для измерения качества и консистенции пены в пенных флюидах для обработки. Для использования в настоящем изобретении можно адаптировать известные способы измерения параметров потока. В некоторых вариантах осуществления, с оптиковолоконным фалом может быть соединено устройство для измерения параметров потока, такое как устройство вращения. Когда поток обтекает его, такое устройство для измерения параметров потока измеряет скорость потока, а это измерение передается посредством волоконно-оптического фала 211. В вариантах осуществления, в которых можно использовать обычное устройство для измерения параметров потока, которое выдает электрический сигнал, предусматривается электрооптический интерфейс 503 для преобразования электрических сигналов в оптические сигналы с целью их передачи по волоконнооптическому фалу 211. В некоторых вариантах осуществления можно использовать устройство для измерения параметров потока, которое измеряет вращение потока посредством прямого оптического метода, например, предусматривающего размещение лопасти устройства вращения между источником света и фотоприемником таким образом, что свет будет попеременно блокироваться и пропускаться при вращении вращательного устройства. В качестве альтернативы, в некоторых вариантах осуществления настоящего изобретения можно использовать устройства для измерения параметров потока, предусматривающие применение косвенных оптических методов. В некоторых вариантах осуществления настоящего изобретения можно использовать такие косвенные оптические методы, которые основаны на влиянии скорости потока на оптическое устройство таким образом, что можно наблюдать изменение оптических характеристик этого устройства.
В операциях с гибкими НКТ зачастую желательно иметь информацию, связанную с положением или ориентацией инструмента или устройства в стволе скважины. Кроме того, в операциях с гибкими НКТ желательно определять состояние инструмента или устройства (например, открытое или закрытое, замкнутое или разомкнутое) в стволе скважины. Траектория ствола скважины может зависеть от точечных измерений ориентации инструмента или может определяться в результате непрерывного оперативного контроля во время движения инструмента по стволу скважины. Ориентация полезна при определении местоположения инструмента в скважине с несколькими ответвлениями, когда каждое ответвление имеет известный азимут или наклон, с которым можно сравнить ориентацию инструмента. Как правило, ориентацию инструмента в стволе скважины измеряют с помощью гироскопа, инерциального датчика или акселерометра. См., например, патент США № 6419014, упоминаемый здесь для ссылки. Известно применение таких устройств в конфигурациях, включаемых волоконно-оптическими средствами. Например, известны оптические гироскопы, поставляемые целым рядом производителей, таких как фирма Еха1о8, базирующаяся в Цюрихе, Швейцария. В некоторых вариантах осуществления настоящего изобретения, датчик 209 представляет собой устройство для определения положения или ориентации инструмента, что полезно при определении траектории ствола скважины. В различных вариантах осуществления настоящего изобретения это устройство для определения положения или ориентации может быть соединено с волоконно-оптическим фалом 211, что дает возможность проводить измерения, указывающие положение или ориентацию в стволе скважины и передавать эти измерения по волоконнооптическому фалу 211. В альтернативных вариантах осуществления, датчик 209 может быть традиционным или гироскопическим устройством, или гироскопическим устройством на основе микроэлектромеханических систем (МЭМС), подключенным к волоконно-оптическому фалу 211 посредством электро
- 11 009704 оптического интерфейса 503.
Применение таких устройств определения положения или ориентации полезно, в частности, в стволах скважин с несколькими ответвлениями. В некоторых вариантах осуществления настоящего изобретения совместно с устройством для определения положения или ориентации можно использовать устройство для ввода в конкретное ответвление скважины с несколькими ответвлениями, такое как описанное в патенте США 6349768, который во всей его полноте упоминается здесь для ссылки, чтобы сначала определить, находится ли инструмент или устройство в точке ввода в ответвление скважины с несколькими ответвлениями, а затем ввести его в упомянутое ответвление. Таким образом, можно обеспечить позиционирование в желаемом месте внутри ствола скважины или можно ориентировать скважинное устройство в желаемой конфигурации. Кроме того, для определения положения или состояния скважинного узла можно использовать механический или оптический переключатель.
В некоторых операциях с гибкими НКТ желательна информация, связанная с твердыми частицами в стволе скважины, таким, например, с высотой слоя твердых частиц или с образованием осадков. В некоторых вариантах осуществления настоящего изобретения датчик 209 используется для измерения твердых частиц или обнаружения образования осадков во время операций в скважине. Такие измерения можно передавать посредством волоконно-оптического фала 211. Эти измерения можно использовать для коррекции параметра, такого как подача гидравлического насоса или скорость перемещения гибкой НКТ, с целью улучшения или оптимизации работы гибкой НКТ. В некоторых вариантах осуществления настоящего изобретения можно использовать датчик приближения, включая обычный датчик приближения с оптическим интерфейсом или кавернометр, чтобы определить высоту слоя твердых частиц в скважине. В известных датчиках приближения используются ядерные, ультразвуковые или электромагнитные способы определения расстояния между скважинным узлом и внутренней поверхностью стенки обсадной колонны. Такие датчики можно также использовать для оповещения о приближающемся перерыве в операции в стволе скважины, например, из-за образования разрыва. Обнаружение формирования осадка, осуществляемое в операциях в стволе скважины, полезно для оперативного контроля за ходом обработок в скважине во время операций с гибкой НКТ, например во время стимулирования материнской породы. В некоторых вариантах осуществления настоящего изобретения датчик 209 представляет собой устройство для обнаружения формирования осадков известными способами, такими как прямое оптическое измерение отражательной способности и амплитуды рассеивания.
Вообще говоря, в процессе операций в стволе скважины можно воспользоваться измерениями характеристик, таких как удельное сопротивление, в качестве показателя наличия углеводородов или других флюидов в пласте. В некоторых вариантах осуществления настоящего изобретения инструмент или датчик 209 можно использовать для измерения удельного сопротивления обычными методами и можно сопрягать его с волоконно-оптическим фалом 211 через электрооптический интерфейс, за счет чего возникает возможность передачи измерений удельного сопротивления по волоконно-оптическому фалу. В альтернативном варианте удельное сопротивление можно измерять косвенно, измеряя соленость или коэффициент преломления оптическими методами, а потом передавать оптические изменения, обусловленные удельным сопротивлением, на поверхность по волоконно-оптическому фалу 211. В различных вариантах осуществления настоящее изобретение полезно для обеспечения оперативного контроля удельного сопротивления пласта, пластового флюида, флюида обработки либо прямых или побочных продуктов в виде флюида, твердых частиц или газа.
Применительно к стволу скважины можно с некоторой степенью точности проводить химический анализ. Известны датчики люминесценции или флуоресценции, а также оптические методы анализа их выходных сигналов. Одним способом осуществления этого является измерение отражательной способности. С помощью волоконно-оптического зонда можно показать, что если во флюид попадает свет, а часть этого света отражается обратно в зонд, то этот параметр коррелируется с присутствием газа во флюиде. Комбинацию измерения флуоресценции и отражательной способности можно использовать для определения содержания нефти и газа во флюиде. В некоторых вариантах осуществления настоящего изобретения датчик 209 представляет собой датчик люминесценции или флуоресценции, выходной сигнал которого передается через волоконно-оптический фал 211. В конкретных вариантах осуществления, в которых внутри волоконно-оптического фала 211 предусматривается более одного оптического волокна, передачу информации по отдельным оптическим волокнам можно проводить, используя более одного датчика 209.
Наличие обнаружимых газов, таких как СО2 и О2 можно также устанавливать оптическими методами. Датчики, способные измерять такие газы, известны, см., например, публикацию Р1Ьег ОрДс Р1иого8еп8ог Гог Охудеп апД СагЬоп Эюх|Де («Волоконно-оптический датчик флуоресценции для обнаружения кислорода и диоксида углерода»), Апа1. Сйеш. 60, 2028-2030 (188) Ьу 0.8. ^о1ГЬе15. Ь. ХУеД, М.1.Р. Ьетет апД ^.Е. 21ед1ет, упоминаемый здесь для ссылки. Как раскрыто в указанной публикации, способность волоконно-оптических световодов передавать множество оптических сигналов одновременно можно использовать для создания оптоволоконного датчика для измерения содержания кислорода и диоксида углерода. Чувствительный к кислороду материал (например, металлоорганический комплекс, способный поглощать силикагель) и чувствительный к СО2 материал (такой как иммобилизованное ве
- 12 009704 щество-индикатор рН в буферном растворе) можно размещать в газопроницаемой полимерной матрице, прикрепленном к дистальному концу оптического волокна. Хотя оба эти вещества-индикатора могут иметь одинаковую волну возбуждения (чтобы избежать переноса энергии), они имеют совершенно разные максимумы испускания. Таким образом, две полосы испускания могут быть разделены с помощью интерференционных фильтров для обеспечения независимых сигналов. Как правило, кислород можно определить в диапазоне от 0 до 200 торр с точностью ±1 торр, а диоксид углерода можно определить в диапазоне от 0 до 150 торр с точностью ±1 торр. Таким образом, в различных вариантах осуществления настоящего изобретения датчик 209 может быть оптическим устройством, обнаруживающим СО2 или О2, а измерение из этого устройства передается через волоконно-оптический фал 211.
Измерение рН полезно во многих операциях, когда поведение технологических химикалий может сильно зависеть от рН. Измерение рН также полезно для определения осаждения во флюидах. Известны волоконно-оптические датчики для измерения рН. Один такой датчик, который описали М.Н. Майег и М.К. 8НаИг1аг1 в 1оигпа1 о£ ТекДпд апб Ενοίιιοίίοη. т. 21, выпуск 5, сентябрь 1993, является датчиком, выполненным из пористой полимерной пленки, иммобилизованной веществом-индикатором рН, и заключенным в пористом зонде. Оптические спектральные характеристики этого датчика продемонстрировали очень хорошую чувствительность к изменениям уровней рН при тестировании с помощью видимого света (380-780 нм). Для измерения содержания конкретных химических веществ, а также рН, можно использовать золь-гелевые датчики. В альтернативном варианте, датчик может измерять рН путем измерения оптического спектра краски, которая инжектирована во флюид, на основе чего можно выбирать эту краску таким образом, что ее спектральные характеристики будут изменяться в зависимости от рН флюида. Такие краски по оказываемому влиянию аналогичны лакмусовой бумаге и хорошо известны в промышленности. Например, 8с1епсе Сотрапу, Денвер, штат Колорадо, США, распространяет ряд красок, которые изменяют свой цвет в соответствии с небольшими изменениями рН. Такую краску можно вводить во флюид через боковую ветвь 305 концевой муфты, находящейся на поверхности. В различных вариантах осуществления настоящего изобретения датчик 209 является датчиком рН, соединенным с волоконно-оптическим фалом 211 таким образом, что измерения из этого датчика можно передавать через волоконно-оптический фал.
Отметим, что измерение измерений при изменениях рН являются лишь одним примером того, как можно использовать настоящее изобретение для оперативного контроля измерений, происходящих в скважинных флюидах. Полностью в рамках притязаний настоящего изобретения находится возможность использования датчиков, полезных при измерении изменений химических, биологических или физических параметров в качестве датчика 209, посредством которого измерение характеристики или измерение изменения характеристики можно передавать через волоконно-оптический фал 211.
Например, путем использования вариантов осуществления настоящего изобретения можно измерять или оперативно контролировать соленость скважинного флюида или закачиваемого флюида. Один способ согласно настоящему изобретению заключается в направлении светового сигнала по оптическому волокну и измерении отклонения луча, вызываемого оптическим преломлением на принимающем торце из-за солености соляного раствора. Измеряемые оптические сигналы отражаются и передаются через последовательно расположенные линейные фильтры, после чего прибор с зарядовой связью обнаруживает пиковое значение яркости света и его отклонение. В такой конфигурации зонд датчика может состоять из монокристалла химически чистого СаАк, прямоугольной призмы, отдельной ячейки для электролиза воды, испускающего волокна с самофокусирующимся объективом и матрицей линейно расположенных принимающих волокон. Альтернативный способ измерения изменений солености предложили О. ЕЧеЬап, М. Сгих-ШуаггеЩ N. 1ех-Сапо и Е. ВегпаЬеи в упоминаемой здесь для ссылки статье МеакигетеШ о£ 111е Иедгее о£ 8а1шйу о£ \Уа1ег \νί11ι а ИЬег-ОрДе 8епког («Измерение степени солености воды волоконно-оптическим датчиком»), АррНеб ОрДек, т. 39, выпуск 25, 5267-5271, сентябрь 1999. Описанный способ предусматривает использование волоконно-оптического датчика на основе резонанса поверхностного плазмона для определения коэффициента преломления, а значит и степени солености воды. Приемопередающий элемент состоит из многослойной структуры, осажденной на отполированное сбоку одномодовое оптическое волокно. Измерение затухания мощности, передаваемой по волокну, показывает, что получается линейная связь с коэффициентом преломления внешней среды структуры. Система отличается использованием переменного коэффициента преломления, получаемого с помощью смеси воды и этиленгликоля.
Варианты осуществления настоящего изобретения полезны при измерении сжимаемости флюида, когда датчик 209 представляет собой такое устройство, как то, которое описано в патенте США № 6474152, упоминаемом здесь во всей его полноте для ссылки, что позволяет измерять сжимаемость флюида и передавать это измерение через волоконно-оптический фал 211. Такие измерения позволяют избежать необходимости измерения объемного сжатия и пригодны, в частности, для приложений, связанных с гибкими НКТ. При измерении сжимаемости флюида, изменение оптического поглощения на некоторых длинах волн, возникающее из-за измерения давления, коррелируется непосредственно со сжимаемостью флюида. Иными словами, приложение изменения давления к углеводородному флюиду
- 13 009704 изменяет количество света, поглощаемого этим флюидом, на некоторых длинах волн, что может быть использовано в качестве прямого показания сжимаемости флюида.
В различных вариантах осуществления настоящее изобретение обеспечивает способ осуществления операции в стволе подземной скважины, заключающийся в том, что развертывают волоконнооптический фал в гибкую НКТ, развертывают гибкую НКТ в ствол скважины и осуществляют по меньшей мере один из следующих этапов, заключающихся в том, что передают управляющие сигналы из системы управления по волоконно-оптическому фалу в скважинное оборудование, соединенное с гибкой НКТ, передают информацию из скважинного оборудования в систему управления по волоконнооптическому фалу или передают характеристику, измеренную с помощью волоконно-оптического фала, в систему управления через волоконно-оптический фал. В некоторых вариантах осуществления настоящее изобретение обеспечивает способ работы в стволе скважины, заключающийся в том, что развертывают волоконно-оптический фал в гибкую НКТ, развертывают гибкую НКТ в скважину и проводят операцию, причем управление этой операцией осуществляют с помощью сигналов, передаваемых по волоконно-оптическому фалу. Такие операции могут включать в себя активацию клапанов, установку инструментов, активацию стреляющих головок или перфораторов, активацию инструментов и реверсирование клапанов. Такие примеры приведены в качестве неограничительных примеров.
В некоторых вариантах осуществления изобретения можно осуществлять оптическое управление скважинными устройствами посредством сигналов, передаваемых по оптическому фалу 211. Точно так же по волоконно-оптическому фалу 211 можно передавать информацию, связанную со скважинным устройством, например информацию об установке инструмента. В некоторых вариантах осуществления, в которых волоконно-оптический фал 211 содержит более одного оптического волокна, по меньшей мере одно из оптических волокон может быть выделено для осуществления связи с инструментом. Если это желательно, то можно предусмотреть более одного скважинного устройства, а для каждого устройства можно выделить отдельное оптическое волокно. В других вариантах осуществления, в которых в волоконно-оптическом фале 211 предусмотрено единственное оптическое волокно, эта связь может быть мультиплексирована таким образом, что то же самое волокно можно будет использовать для передачи информации об измерениях. В случае, когда имеется несколько инструментов, можно расширить схему мультиплексирования, такую как предусматривающая использование некоторого количества импульсов в заданный момент времени, длительности импульса постоянного напряжения, яркости падающего света, длины волны падающего света и двоичных команд, на дополнительные инструменты.
В некоторых вариантах осуществления настоящего изобретения скважинное устройство, такое как механизм активации клапанов, выполнено совместно с волоконно-оптическим интерфейсом для формирования клапана с волоконно-оптическим управлением. Волоконно-оптический интерфейс соединен с волоконно-оптическим фалом 211, так что управляющие сигналы можно передавать в устройство через волоконно-оптический фал 211. Один вариант осуществления волоконно-оптического интерфейса может состоять из платы оптико-электрического интерфейса с батарейкой для преобразования оптического сигнала в небольшой электрический сигнал, возбуждающий соленоид, который в свою очередь активирует клапан.
Как правило, при операциях с гибкой НКТ конфигурирование скважинных инструментов осуществляют на поверхности перед развертыванием этих инструментов в ствол скважины. Вместе с тем, бывают случаи, когда было бы желательно устанавливать инструмент или корректировать его настройку уже внутри скважины. В некоторых вариантах осуществления изобретения скважинный инструмент оснащают оптико-электрическим интерфейсом для приема оптических сигналов и преобразования оптических сигналов в электрические или цифровые сигналы. Оптико-электрический интерфейс также соединен с логическими схемами на скважинном инструменте для загрузки и возможной записи в его память параметров для инструмента или датчика. Таким образом, осуществляемая с волоконно-оптическим управлением операция с гибкой НКТ в присутствии инструмента, оснастка которого выполнена с возможностью приема параметров инструмента по волоконно-оптическому фалу 211, обеспечивает оператору возможность корректировать настройки инструмента в скважине в реальном масштабе времени.
Одним примером является коррекция усиления волоконно-оптической схемы муфтового соединения обсадной колонны. В этом случае одна настройка усиления может оказаться желательной для операций расцепления на скоростях 50-100 футов в минуту (0,254-0,508 м/с), а другая настройка усиления может оказаться желательной для операций каротажа или перфорирования на скоростях 10 футов в минуту (0,0508 м/с) или менее. Управляющий сигнал от оборудования, находящегося на поверхности, можно передавать в локатор муфт бурильной колонны через волоконно-оптический фал 211. Такие функциональные возможности полезны, когда желательно иметь различные настройки усиления, основанные на конкретных металлургических свойствах обсадной колонны. Эти металлургические свойства могут не быть известными заранее, в результате чего может оказаться желательной посылка управляющего сигнала из оборудования, находящегося на поверхности, в локатор муфтовых соединений обсадной колонны через волоконно-оптический фал 211 для коррекции настройки усиления в реальном масштабе времени в ответ на измерение, проводимое локатором муфтовых соединений обсадной колонны и передаваемое в оборудование, находящееся на поверхности, через волоконно-оптический фал 211.
- 14 009704
В других вариантах осуществления настоящее изобретение обеспечивает способ активации перфораторов или стреляющих головок в скважине путем передачи управляющего сигнала из оборудования, находящегося на поверхности, в скважинное устройство. Волоконно-оптический интерфейс, который может быть использован совместно со стреляющей головкой, активируется с помощью электрических сигналов, причем этот волоконно-оптический интерфейс преобразует оптический сигнал, передаваемый по волоконно-оптическом фалу 211, в электрический сигнал для активации стреляющей головки. Для электропитания этого интерфейса можно использовать батарейку. В тех вариантах осуществления, в которых волоконно-оптический фал 211 содержит более одного оптического волокна, каждой головке может быть выделено свое волокно. В альтернативном варианте, когда предусмотрено единственное оптическое волокно, можно использовать особую кодовую последовательность для подачи дискретных сигналов на различные стреляющие головки. Использование оптического волокна для передачи таких управляющих сигналов выгодно, потому что оно минимизирует возможность случайной стрельбы из не той головки, которая требуется, что может произойти вследствие перекрестной помехи, которая может возникнуть в случае кабеля проводной лини связи. В альтернативном варианте можно использовать источник света для непосредственной активации пороховой стреляющей головки. В определенных вариантах осуществления стреляющую головку можно активировать с помощью оптической схемы управления, такой как описанная в патенте США № 4859054, упоминаемом здесь для ссылки.
При операциях с гибкой НКТ зачастую необходимо активировать инструменты в стволе скважины. Приведение инструмента в действие может принимать множество форм, например, включая в себя, но не в ограничительном смысле, высвобождение запасенной энергии, сдвиг или блокировка защитного устройства, приведение в действие сцепления, приведение в действие стреляющей головки для перфорирования. Такая активация, как правило, управляется или подтверждается простейшими телеметрическими сигналами, включая сигналы давления расхода и силы толчка или тяги, которые подвержены влияниям скважины и зачастую могут оказаться неэффективными. Например, силы толчка или тяги, прикладываемые на поверхности, уменьшаются за счет трения в стволе скважины, причем количественная характеристика этого трения неизвестна. Когда связь осуществляют посредством давления, сигнал зачастую замаскирован давлением трения, связанным с флюидами, циркулирующими через гибкую НКТ и текущими внутри ствола скважины. Расход, как правило, является более приемлемым средством для осуществления связи, однако, некоторые инструменты требуют конфигурации, которая приводит к неизвестной утечке флюида, что может повлиять на индикатор расхода. В некоторых вариантах осуществления изобретения сигналы активации инструмента передаются в инструмент по волоконно-оптическому фалу 211. В некоторых случаях инструмент можно оснастить оптико-электрическим интерфейсом, который может иметь схему усиления и работать на прием оптического сигнала и преобразование его в электрический сигнал, на который реагирует схема активации, тогда как в других случаях инструмент может быть выполнен с возможностью приема непосредственно оптического сигнала.
В одном варианте осуществления изобретения с оптиковолоконным фалом соединен оптически управляемый золотник перемены хода. Сигнал в золотник перемены хода можно посылать из оборудования 119 управления, находящегося на поверхности, через оптико-волоконный фал 211 для запирания обратных клапанов, например для обеспечения обратной циркуляции флюидов (т.е. из кольцевого пространства скважины в гибкую НКТ) при определенных условиях. В ответ на этот сигнал, золотник выходит из запертого положения, активируя обратные клапаны. В одном варианте осуществления волоконнооптическая активация золотника перемены хода может также обеспечивать сигнал из золотника в оборудование, находящееся на поверхности, указывающий состояние золотника.
В различных вариантах осуществления настоящее изобретение обеспечивает способ обработки подземного пласта, пересекаемого стволом скважины, заключающийся в том, что развертывают волоконнооптический фал в гибкую НКТ, развертывают гибкую НКТ в ствол скважины, проводят операцию обработки скважины, измеряют характеристику в стволе скважины и используют волоконно-оптический фал для передачи измеряемой характеристики. Для осуществления обработки в скважине, вмешательства в работу скважины и предоставление услуг в скважине можно использовать включаемое волоконнооптическими средствами устройство 200 с гибкой НКТ, позволяющее проводить операции, которые до сих пор - с использованием обычного устройства с гибкой НКТ - были невозможны. Отметим, что ключевое преимущество настоящего изобретения заключается в том, что волоконно-оптический фал 211 не мешает использованию колонны в виде гибкой НКТ для операций обработки в скважине. Кроме того, поскольку многие операции обработки в скважине, например «промывки» кислотой внутри ствола этой скважины, требуют движения гибкой НКТ в стволе скважины, преимущество настоящего изобретения заключается в том, что это изобретение пригодно для использования во время движения в стволе скважины.
Стимулирование материнской породы представляет собой операцию обработки в стволе скважины, в процессе которой флюид, в типичном случае - кислая текучая среда, нагнетается в пласт посредством операции закачивания. Гибкую НКТ используют при стимулировании материнской породы, поскольку это позволяет проводить направленное нагнетание в желательную зону. Стимулирование материнской породы может включать в себя нагнетание нескольких нагнетаемых флюидов в пласт. Во многих прило
- 15 009704 жениях закачивают первый промывочный флюид для вымывания материала, который мог бы вызвать осаждение, а потом, сразу же после промывки близлежащей зоны ствола скважины, закачивают второй флюид. В альтернативном варианте операция стимулирования материнской породы может заканчиваться нагнетанием смеси флюидов и химических веществ в виде твердых частиц.
Обращаясь к фиг. 6, отмечаем, что здесь показана схематическая иллюстрация стимулирования материнской породы с помощью устройства с гибкой НКТ, содержащего волоконно-оптический фал в соответствии с изобретением, причем флюид для обработки в скважине вводится в ствол 600 скважины через гибкую НКТ 601. Флюид для обработки можно вводить с помощью одного из различных инструментов, известных для этой цели в данной области техники, например с помощью насадок, прикрепленных к гибкой НКТ. В примере, показанном на фиг. 6, выброс флюида, который вводят в ствол 600 скважины, из зоны обработки предотвращается барьерами 603 и 605. Барьеры 603 и 605 могут представлять собой некоторый механический барьер, такой как надувной пакер, или химическую перегородку, такую как пенный барьер.
На операциях стимулирования материнской породы предпочтительно обеспечивать размещение флюида для обработки в надлежащей зоне (надлежащих зонах) в стволе 600 скважины. В предпочтительном варианте для определения местоположения скважинного устройства, подаваемого флюид для стимулирования материнской породы, можно использовать оптический датчик 607, выполненный с возможностью определения глубины. Оптический датчик 607 соединен с волоконно-оптическим фалом 211 для осуществления связи с оборудованием управления, находящимся на поверхности, что позволяет оператору активировать подачу флюида для обработки в оптимальном месте.
Настоящее изобретение позволяет проводить в реальном масштабе времени оперативный контроль таких параметров, как забойное давление, забойная температура, забойный рН, количество осадка, образующегося за счет взаимодействия флюидов для обработки с пластом, и температуру флюида, причем каждый из этих параметров можно использовать для оперативного контроля успешности операции стимулирования материнской породы. Датчик 609 для измерения таких параметров (например, датчик для измерения давления, температуры или рН или для обнаружения образования осадка) может быть соединен с волоконно-оптическим фалом 211, расположенным внутри гибкой НКТ 601. Эти измерения можно затем передать в оборудование, находящееся на поверхности, по волоконно-оптическому фалу 211.
Проводимое в реальном масштабе времени измерение, например, забойного давления полезно для оперативного контроля и оценки внешнего слоя пласта, что допускает оптимизацию скорости нагнетания стимулирующего флюида или допускает коррекцию концентрации или относительных пропорций смешения флюида или относительных пропорций смешения флюидов и химических веществ в виде твердых частиц. Когда гибкая НКТ находится в движении, измерения пластового давления в реальном масштабе времени можно корректировать путем вычитания эффектов поршня и гидравлического удара для учета движения гибкой НКТ. Еще одним вариантом использования пластового давления в реальном масштабе времени является поддержание давления в стволе скважины, обусловленного закачиванием флюида, ниже желаемого порогового уровня. Например, во время стимулирования материнской породы важен контакт поверхности ствола скважины с флюидов для обработки. Если давление в стволе скважины слишком велико, то произойдет разрыв пласта, а также нежелательное затекание флюида для обработки в этот разрыв. Возможность измерения забойного давления в реальном масштабе времени полезна, в частности, когда флюиды для обработки вспениваются. При закачке не вспенивающихся флюидов, забойное давление в некоторых случаях можно определять, исходя из измерений, проводимых на поверхности, с учетом справедливости некоторых формул потерь на трение при течении вниз по стволу скважины, но такие способы не полностью изучены в аспекте применения вспенивающихся флюидов.
Измерения параметров забойных параметров помимо давления также полезны при операциях обработки в скважине. Проводимые в реальном масштабе времени измерения забойной температуры можно использовать для вычисления пенообразующей способности, и поэтому они полезны при гарантировании эффективного применения метода переброски. Точно так же, забойную температуру можно использовать при определении протекания операции стимулирования, и поэтому такая температура полезна при коррекции концентрации или относительных пропорций смешения флюидов и химических веществ в виде твердых частиц. Измерение рН полезно в целях выбора оптимальной концентрации флюидов для обработки или относительных пропорций каждого перекачиваемого флюида или относительных пропорций смешения флюидов и химических веществ в виде твердых частиц. Измерение осадка, образующегося за счет взаимодействия флюидов со стенкой ствола скважины, также можно использовать для анализа на предмет необходимости коррекции концентрации или смешения флюида для обработки, например, относительных концентраций или относительных пропорций смешения флюидов и химических веществ в виде твердых частиц.
В альтернативном приложении устройства 200 с гибкой НКТ, при осуществлении которого совокупность флюидов нагнетают в пласт, частично - через гибкую НКТ, а частично - через кольцевое пространство, образованное между гибкой НКТ 105 и стенкой ствола 121 скважины, указанная гибкая НКТ 105 образует механический барьер для изоляции флюидов, нагнетаемых через гибкую НКТ 105 от флюидов, нагнетаемых в упомянутое кольцевое пространство. Измерения, например, забойной температуры и
- 16 009704 забойного давления, проводимые в реальном масштабе времени и передаваемые на поверхность по волоконно-оптическому фалу 211, можно использовать для коррекции относительных пропорций флюидов, нагнетаемых в гибкую НКТ 105, и флюидов, нагнетаемых в упомянутое кольцевое пространство.
В одном альтернативном варианте, когда гибкая НКТ 105 действует как барьер между флюидами в гибкой НКТ 105 и упомянутом кольцевом пространстве, флюиды, нагнетаемые через гибкую НКТ 105, являются вспениваемыми или аэрируемыми. Высвобождаясь в скважине на конце гибкой НКТ 105, вспениваемые флюиды частично заполняют кольцевое пространство вокруг основания гибкой НКТ, тем самым создавая в кольцевом пространстве поверхность раздела между флюидами, закачиваемыми вниз по гибкой НКТ, и флюидами, закачиваемыми вниз по кольцевому пространству. Различные параметры операции стимулирования, включая относительные пропорции флюидов, перекачиваемых в кольцевом пространстве и гибкой НКТ, можно корректировать для гарантии того, что упомянутая поверхность раздела окажется в конкретном желаемом положении в коллекторе, или можно использовать для коррекции местоположения поверхности раздела. Коррекция конкретного местоположения поверхности раздела полезна для гарантии того, что стимулирующие флюиды попадут в интересующую зону коллектора либо для увеличения притока углеводорода из коллектора, либо для того, чтобы воспрепятствовать притоку из неуглеводородоносной зоны. Для увеличения притока углеводорода и остановки притока из неуглеводородоносной зоны таким образом, как это описано в патенте США № 6667280, упоминаемом здесь во всей его полноте для ссылки, можно закачивать добавку в буровой раствор для избирательной закупорки вниз по гибкой НКТ.
В некоторых операциях стимулирования материнской породы может оказаться желательным закачивание катализатора вниз по гибкой НКТ 105 для транспортировки этого катализатора в конкретное положение в стволе скважины. Физические свойства, такие как забойная температура, забойное давление и забойный рН, которые измеряются и передаются на поверхность в реальном масштабе времени по волоконно-оптическому фалу 211, можно использовать для оперативного контроля протекания процесса стимулирования материнской породы, а значит и для коррекции концентрации катализатора с целью оказания влияния на это протекание. В некоторых вариантах осуществления настоящего изобретения на операциях стимулирования материнской породы можно использовать волоконно-оптический фал 211 для обеспечения профиля распределенной температуры так, как это описано в и8 патентной публикации 2004/0129418.
В другой операции обработки в скважине устройство 200 с гибкой НКТ согласно настоящему изобретению применяется в операции разрыва пласта. Создание разрыва посредством гибкой НКТ является стимулирующей обработкой, во время которой суспензию или кислоту нагнетают под давлением в пласт. Преимущество, предоставляемое возможностями настоящего изобретения для операций разрыва пласта, заключается в использовании волоконно-оптического фала 211 для передачи данных в реальном масштабе времени несколькими способами. Во-первых, получаемая в реальном масштабе времени информация, такая как забойные давление и температура, полезна для оперативного контроля протекания процесса обработки в стволе скважины и для оптимизации смеси флюида разрыва. Зачастую флюиды разрыва, а в частности - полимерные флюиды разрыва требуют введения разрушающей дробящей добавки в полимер. Время, необходимое для разрушения полимера, связано с температурой, временем экспозиции и концентрацией дробящей добавки. Следовательно, знание скважинной температуры позволяет оптимизировать режим введения разрушающей добавки с целью деструкции флюида, когда та попадает в пласт или сразу же после этого, что позволяет уменьшить контакт полимера и пласта. Введение полимера повышает несущую способность флюида применительно к расклинивающему наполнителю (например, песку), используемому на операции создания разрыва.
Кроме того, по гибкой НКТ можно развертывать датчики давления, позволяющие характеризовать распространение разрыва. График Нолте-Смита (Νο11ο8ιηί11ι) представляет собой график в логарифмическом масштабе по обеим осям, используемый в промышленности для оценки распространения обработки. Неспособность пласта принимать еще какое-либо количество песка можно обнаружить по росту наклона кривой, отображающей зависимость одного параметра (давления), выраженного в логарифмическом масштабе, от другого параметра (времени), выраженного в логарифмическом масштабе. При условии, что упомянутая информация используется в качестве информации в реальном масштабе времени, можно было бы корректировать скорость и концентрацию флюида и расклинивающего наполнителя для активации скважинного клапанного механизма с целью вымывания расклинивающего наполнителя из гибкого НКТ. Один такой скважинный клапанный механизм описан в И8 патентной публикации 2004/0084190, упоминаемой здесь во всей ее полноте для ссылки. Скважинный датчик давления можно соединить с волоконно-оптическим фалом 211 таким образом, что измерения давления можно будет передавать в оборудование, находящееся на поверхности, для предоставления информации, касающейся обработки в стволе скважины. Кроме того, измерения из скважинных датчиков давления, соединенных с волоконно-оптическим фалом 211, можно использовать для идентификации начала выпадения песка при обработке, когда обрабатываемый подземный пласт больше не может принимать флюид для обработки. Этому состоянию, как правило, предшествует постепенный рост давления в соответствии с графиком Нолте-Смита, причем такой постепенный рост, как правило, оказывается неидентифицируемым при ис
- 17 009704 пользовании только измерения давления на базе аппаратуры, находящейся на поверхности. Следовательно, настоящее изобретение обеспечивает полезную информацию для идентификации постепенного роста давления, что дает оператору возможность корректировать параметры обработки, такие как скорость и концентрация песка, чтобы избежать влияния состояния выпадения песка или минимизировать это влияние.
Вообще говоря, надлежащее размещение флюидов для обработки в конкретном подземном пласте является важным фактором. В одном альтернативном варианте осуществления изобретения датчик 607 является датчиком, выполненным с возможностью определения местоположения оборудования с гибкой НКТ в скважине 600, а также выполненным с возможностью передачи необходимых данных, указывающих место на волоконно-оптическом фале 211. Датчик может быть, например, локатором муфтовых соединений обсадной колонны (ЛМСОК). Путем передачи в реальном масштабе времени в управляющий блок 119, находящийся на поверхности, таких параметров, как глубина гибкой НКТ или транспортируемых инструментов, создающих разрыв, можно гарантировать, что глубина разрыва будет соответствовать желательной зоне или перфорированному интервалу.
Очистка от заполняющего материала является еще одной операцией обработки в скважине, для которой часто применяется гибкая НКТ. Настоящее изобретение обеспечивает преимущество при очистке от заполняемого материала, заключающееся в том, что информация, например, о высоте слоя заполняющего материала и концентрации песка у промывочной насадки, выдается в реальном масштабе времени по волоконно-оптическому фалу 211. В соответствии с вариантом осуществления настоящего изобретения операцию можно улучшить путем выдачи скважинного измерения сжатия гибкой НКТ поскольку это сжатие будут увеличиваться, когда конец гибкой НКТ проталкивается дальше в твердый заполняющий материал. В соответствии с некоторыми вариантами осуществления настоящего изобретения, скважинный датчик оперативно измеряет характеристики флюида и параметры ствола скважины, которые влияют на характеристики флюида, и передает эти характеристики в оборудование, находящееся на поверхности, по волоконно-оптическому фалу 211. Характеристики флюида и связанные с ними параметры, которые желательно измерить во время операций очистки от заполняющего материала, не ограничиваются вязкостью и температурой. Оперативный контроль этих характеристик можно использовать для оптимизации химического состава или смешения флюидов, используемых при операции очистки от заполняющего материала. В соответствии с еще одним вариантом осуществления изобретения, для выдачи параметров очистки можно использовать оптически включаемую систему 200 с гибкой НКТ, такую как описанная в заявке № 11/010116 на патент США под названием Аррага!и8 апб МеШобк Гог Меакигетеп! оГ 8о11б§ ίη а \Уе11Ьоге («Устройства и способы измерения параметров твердых частиц в стволе скважины»), содержание которой во всей его полноте упоминается здесь в качестве ссылки.
Обращаясь теперь к фиг. 7, отмечаем, что здесь представлена схематическая иллюстрация операции очистки от заполняющего материала, усовершенствованной за счет применения включаемой волоконнооптическими средствами колонны гибкой НКТ в бухту, в соответствии с изобретением. Гибкую НКТ 601 можно использовать для транспортировки промывочного флюида в скважину 600 и дополнения его к заполняющему материалу 703. Расположенный в скважине конец гибкой НКТ можно снабдить некоторой формой насадки 701. С волоконно-оптическим фалом 211 соединен датчик 705. Этот датчик 705 может измерять любую из различных характеристик, которые могут оказаться полезными на операциях очистки от заполняющего материала, включая сжатие на витке трубы, давление, температуру, вязкость и плотность. Потом эти характеристики передаются вверх по волоконно-оптическому фалу 211 в оборудование, находящееся на поверхности, для дальнейшего анализа и возможной оптимизации процесса очистки.
В альтернативном варианте осуществления насадку 701 можно оснастить многочисленными управляемыми каналами. Во время операции очистки насадка может засоряться или закупориваться. Избирательно открывая многочисленные управляемые каналы, можно прочищать насадку избирательной промывкой управляемых каналов. При таких операциях волоконно-оптический фал применяется для передачи управляющих сигналов из оборудования, находящегося на поверхности, в насадку 701, которые предписывают насадке избирательную промывку одного или нескольких управляемых каналов. Оптический сигнал может активировать управляемые каналы с помощью электрического исполнительного механизма, работающего от энергии батарейки, для активации каждого управляемого канала, причем этот оптический сигнал используется для управления электрическим исполнительным механизмом. В альтернативном варианте осуществления исполнительные механизмы могут быть фотоклапанами, при этом оптическая энергия, направляемая по волокну, питает такой клапан, вызывая некоторое действие, являющееся ее результатом, например, избирательное открывание или закрывание одного или нескольких управляемых каналов.
В некоторых вариантах осуществления настоящего изобретения инструмент или датчик 607 включаемого волоконно-оптическими средствами устройства 200 гибкой НКТ может содержать кинокамеру или устройство со щупом, используемые для удаления окалины. Окалина может образовываться внутри насосно-компрессорных труб, а потом действует как ограничивающий фактор, тем самым снижая производительность скважины и/или увеличивая затраты на спускоподъемные операции. Кинокамеру или уст
- 18 009704 ройство со щупом, соединенную или соединенное с волоконно-оптическим фалом 211, можно использовать для обнаружения присутствия окалины в насосно-компрессорной трубе. Либо фотографические изображения (в случае съемочной камеры), либо данные, указывающие на присутствие окалины (в случае устройства со щупом) можно передавать по волоконно-оптическому фалу 211 из скважинной кинокамеры или устройства со щупом на поверхность, где их можно анализировать.
В еще одном альтернативном варианте инструмент или датчик 607 может содержать клапан, управляемый волоконно-оптическими средствами. Этот клапан, управляемый волоконно-оптическими средствами, соединяют с волоконно-оптическим фалом 211 с возможностью реагирования на управляющие сигналы из оборудования, находящегося на поверхности, и этот клапан можно использовать для смещения или высвобождения химических веществ с целью удаления или окалины или предотвращения ее образования.
При таких операциях с гибкой НКТ, как стимулирование, борьба с прорывами воды и тестирование, зачастую желательно изолировать конкретную открытую зону в стволе скважины, чтобы гарантировать, что весь закачиваемый или добываемый флюид выходит из интересующей изолированной зоны. В одном варианте осуществления изобретения устройство 200 гибкой НКТ применяется для того, чтобы задействовать зональное оборудование управления. Волоконно-оптический фал 211 позволяет оператору, пользующемуся оборудованием, находящимся на поверхности, точнее управлять оборудованием зональной изоляции, чем это возможно с помощью известных гидравлических команд приложения толкающих и тяговых усилий. На операциях зональной изоляции можно также получать выгоду от возможности получения информации о давлении и температуре в реальном масштабе времени (например, от ЛМСОК).
За счет применения волоконно-оптической связи, осуществляемой по волоконно-оптическому фалу 211, происходит значительное совершенствование операций зональной изоляции и измерений, потому что система связи не мешает использованию гибкой НКТ, для перекачивания флюидов. Кроме того, уменьшая объем необходимой перекачки, операторы, пользующиеся волоконно-оптической связью для зональной изоляции, описанной выше, могут рассчитывать на экономию расходов и времени.
Варианты осуществления настоящего изобретения полезны при перфорировании с помощью гибкой НКТ. При осуществлении перфорирования важно иметь надлежащее управление по глубине. Вместе с тем, управление по глубине в процессе операций с гибкой НКТ может быть затруднено из-за остаточного изгиба и извилистого пути, по которому гибкая НКТ проходит в стволе скважины. На операциях перфорирования с помощью известных из уровня техники гибких НКТ управление глубиной, на которой срабатывают стреляющие головки с гидравлическим приводом, осуществляется путем ряда прогона памяти, используемого совместно с программой прогнозирования растяжения или отдельным измерительным устройством. Подход, предусматривающий использование памяти, приводит к экономии и средств, и времени, а использование отдельного устройства может увеличить время и средства, затрачиваемые на выполнение задания.
На фиг. 8 показано схематическое изображение перфорационной системы, транспортируемой на гибкой НКТ в соответствии с изобретением, при этом для проведения перфорирования приспособлено включаемое волоконно-оптическими средствами устройство 200 гибкой НКТ. Локатор 801 муфтовых соединений обсадной колонны прикреплен к гибкой НКТ 601 и соединен с волоконно-оптическим фалом 211. К гибкой НКТ 601 прикреплен также перфорационный инструмент 803, например стреляющая головка. Локатор 801 муфтовых соединений обсадной колонны передает прямым или косвенным методом сигналы, указывающие местоположение муфтового соединения обсадной колонны, по волоконнооптическому фалу 211, вследствие чего оказывается возможной активация упомянутого локатора путем передачи оптических сигналов из оборудования, находящегося на поверхности, по волоконнооптическому фалу 211, когда измерение с помощью локатора муфтовых соединений обсадной колонны показывает, что такое соединение находится на желаемой глубине. Обращаясь к фиг. 9, отмечаем, что здесь показана иллюстрация возможного управления потоком в скважине, причем для управления потоком в стволе скважины и пластовыми флюидами используется волоконно-оптический управляющий клапан 901 или 901'. Например, либо управляющий клапан 901 можно использовать для направления флюида, перекачиваемого вниз по гибкой НКТ в коллектор, либо управляющий клапан 901' можно использовать для направления флюида, перекачиваемого вверх по гибкой НКТ в кольцевое пространство, окружающее гибкую НКТ 601. Этот метод часто называют «установлением точного местонахождения» и используют в случаях, когда подходящий объем такого флюида стимулирует коллектор, но избыток этого флюида на практике может затем повредить добыче из подземного пласта. В некоторых вариантах осуществления настоящее изобретение содержит конкретный механизм для управления потоком и предусматривает светочувствительное обнаружение в сочетании с усилительной схемой 903 или 903', отбирающей световой сигнал и возвращающий обнаруженный свет в источник электрического напряжения или тока, который, в свою очередь, возбуждает исполнительный механизм клапана 901 или 901'. Для возбуждения электрической усилительной схемы 903 или 903' можно использовать маломощный источник питания.
Одна распространенная операция с гибкой НКТ заключается в использовании ее для манипуляций таким вспомогательным элементом для заканчивания в стволе скважины, как скользящая манжета. Как
- 19 009704 правило, это осуществляется путем спуска специально разработанного инструмента, который защелкивается с компонентом для заканчивания, с последующим манипулированием гибкой НКТ, приводящим к манипулированию компонентом для заканчивания. Настоящее изобретение полезно тем, что допускает избирательное манипулирование компонентами или допускает более одного манипулирования за один проход. Например, если оператору нужно, чтобы скважина была очищена и чтобы компонент для заканчивания был приведен в действие, можно было бы использовать волоконно-оптический фал 211 для направления управляющих сигналов для системы 119 управления для избирательного перехода между конфигурацией, обеспечивающей очистку, и конфигурацией, обеспечивающей манипулирование. Точно так же, настоящее изобретение можно использовать для подтверждения состояния или местоположения инструмента в стволе скважины при осуществлении вмешательства вне графика.
Еще одна операция в стволе скважины, в которой применяется гибкая НКТ, это извлечение инструмента, потерянного в скважинах. Как правило, извлечение (вылавливание) требует имеющего специальные размеры захвата или копья для защелкивания на крайнем верхнем компоненте, остающемся в стволе скважины, причем этот крайний сверху компонент называют «упущенным в скважину предметом». В некоторых вариантах осуществления инструмент или датчик 209 представляет собой датчик, соединенный с волоконно-оптическим фалом и выполненный с возможностью подтверждения факта защелкивания упущенного в скважину предмета в извлекающем инструменте. Например, такой датчик представляет собой механическое или электрическое устройство, которое воспринимает надлежащее защелкивание упущенного в скважину предмета. Этот датчик соединен с оптическим интерфейсом для преобразования информации о том, что обнаружено надлежащее защелкивание упущенного в скважину инструмента, в оптическом сигнале, передаваемом в оборудование, находящееся на поверхности, по волоконнооптическому фалу 211. В еще одном варианте осуществления инструмент или датчик 209 может быть устройством формирования изображений (например, кинокамерой от фирмы ΌΗν 1п1егпа11опа1. Окснард, штат Калифорния, США), соединенным с волоконно-оптическим фалом и выполненным с возможностью точного определения размера и формы упущенного в скважину предмета. Изображения, получаемые устройством формирования изображений, передаются в оборудование, находящееся на поверхности, по волоконно-оптическому фалу 211. В других вариантах осуществления можно соединить с волоконнооптическим фалом 211 регулируемый извлекающий инструмент, вследствие чего появится возможность управлять этим извлекающим инструментом из оборудования, находящегося на поверхности, путем передачи оптических сигналов по волоконно-оптическому фалу 211, что обеспечивает резкое уменьшение необходимых извлекающих инструментов. В этом варианте осуществления инструмент или датчик 209 является оптически активируемым устройством, аналогичным оптически активируемым клапанам или каналам, рассмотренным выше.
В некоторых вариантах осуществления настоящее изобретение относится к способу каротажа ствола скважины или определения характеристики в стволе скважины, заключающегося в том, что развертывают волоконно-оптический фал в гибкую НКТ, развертывают измерительный инструмент в ствол скважины на гибкой НКТ, измеряют характеристику с помощью упомянутого измерительного инструмента и используют волоконно-оптический фал для передачи измеряемой характеристики. Гибкую НКТ и измерительный инструмент можно отводить из ствола скважины, а измерения можно проводить во время отвода или измерения можно проводить одновременно с осуществлением операции обработки в скважине. Измеряемые характеристики можно передавать в оборудование, находящееся на поверхности, в реальном масштабе времени.
Во время каротажа с помощью проводной системы связи один или несколько электрических датчиков (например, таких как тот, который измеряет удельное сопротивление пласта) объединяют в один инструмент, называемый каротажным зондом. Этот зонд спускают в ствол скважины на электрическом кабеле, а потом извлекают из ствола скважины, собирая при этом измерения. Этот электрический кабель используют и для подвода электропитания к каротажному зонду, и для информационной телеметрии собранных данных. Измерения при каротаже скважин также часто проводили с помощью устройства гибкой НКТ, и при этом электрический кабель был установлен в гибкую НКТ. Включаемое волоконнооптическими средствами устройство гибкой НКТ в соответствии с настоящим изобретением имеет преимущество, заключающееся в том, что в гибкой НКТ легче развернуть волоконно-оптический кабель 211, чем электрическую линию. В случае, когда устройство гибкой НКТ с волоконно-оптическими средствами используется в приложении, предусматривающем каротаж скважины, инструменты или датчики 209 представляют собой измерительное устройство для измерения физической характеристики в стволе скважины или породе, окружающей коллектор. В тех приложениях, в которых инструмент или датчик 209 требует питания для проведения каротажа или измерения, такое питание можно подводить с помощью блока батарей питания или турбины. Однако в некоторых приложениях это означает, что можно уменьшить габариты и сложность источника питания, находящегося на поверхности.
Хотя выше описаны и проиллюстрированы конкретные варианты осуществления изобретения, это изобретение не сводится к конкретным формам или конструкциям описанных и проиллюстрированных деталей. После детального изучения вышеизложенного описания для специалистов в данной области техники будут очевидны многочисленные изменения и модификации. Предполагается, что настоящее
- 20 009704 изобретение следует интерпретировать в широком смысле - как охватывающее все такие изменения и модификации.

Claims (45)

1. Способ обработки подземного пласта, пересекаемого стволом скважины, включающий в себя этапы, на которых развертывают волоконно-оптический фал в гибкую насосно-компрессорную трубу (НКТ), развертывают гибкую НКТ в ствол скважины, проводят операцию обработки в скважине, измеряют характеристику в стволе скважины и используют волоконно-оптический фал для передачи измеряемой характеристики.
2. Способ по п.1, в котором операция обработки в скважине предусматривает по меньшей мере один корректируемый параметр.
3. Способ по п.2, дополнительно включающий в себя коррекцию упомянутого по меньшей мере одного параметра операции обработки в скважине.
4. Способ по п.1, в котором упомянутую характеристику измеряют одновременно с проведением операции обработки в скважине.
5. Способ по п.3, в котором упомянутую характеристику измеряют одновременно с коррекцией упомянутого по меньшей мере одного параметра обработки в скважине.
6. Способ по п.1, в котором операция обработки в скважине включает в себя нагнетание по меньшей мере одного флюида в ствол скважины.
7. Способ по п.6, в котором операция обработки в скважине включает в себя нагнетание по меньшей мере одного флюида в гибкую НКТ.
8. Способ по п.6, в котором операция обработки в скважине включает в себя нагнетание по меньшей мере одного флюида в кольцевое пространство ствола скважины снаружи гибкой НКТ.
9. Способ по п.1, в котором операция обработки в скважине включает в себя нагнетание по меньшей мере одного флюида в гибкую НКТ и по меньшей мере одного флюида в кольцевое пространство ствола скважины снаружи гибкой НКТ.
10. Способ по п.1, в котором измерение характеристики и использование волоконно-оптического фала для передачи измеряемой характеристики осуществляют в реальном масштабе времени.
11. Способ по п.1, в котором измеряемую характеристику выбирают из группы, состоящей из давления, температуры, рН, количества осадка, температуры флюида, глубины, наличия газа, химической люминесценции, гамма-излучения, удельного сопротивления, солености, расхода флюида, сжимаемости флюида, местоположения инструмента, присутствия локатора муфтовых соединений обсадной колонны, состояния инструмента и ориентации инструмента.
12. Способ по п.4, в котором измеряемой характеристикой является давление, а операция обработки в скважине дополнительно включает в себя этап, на котором поддерживают упомянутое давление ниже предварительно определенного предела.
13. Способ по п.2, в котором упомянутый по меньшей мере один параметр выбирают из группы, состоящей из количества нагнетаемого флюида, относительных пропорций каждого флюида в наборе нагнетаемых флюидов, химической концентрации каждого материала в наборе нагнетаемых материалов, относительные пропорции флюидов, закачиваемых в кольцевое пространство, с флюидами, закачиваемыми в гибкую НКТ, концентрации катализатора, подлежащего выпуску, концентрации полимера, концентрации расклинивающего наполнителя и местоположения гибкой НКТ.
14. Способ по п.1, в котором измеряемая характеристика является диапазоном распределения измерений по интервалу скважины.
15. Способ по п.14, в котором интервал скважины находится в пределах ответвления скважины с несколькими ответвлениями.
16. Способ по п.1, в котором гибкую НКТ располагают с возможностью подачи флюидов в подземный пласт, а операция обработки в скважине стимулирует поток углеводородов из пласта.
17. Способ по п.1, в котором гибкую НКТ располагают с возможностью подачи флюидов в подземный пласт, а операция обработки в скважине предотвращает поток воды из пласта.
18. Способ по п.6, в котором по меньшей мере один из упомянутых флюидов является вспенивающимся.
19. Способ по п.1, в котором операция обработки в скважине включает в себя осуществление связи с инструментом в стволе скважины через волоконно-оптический фал.
20. Способ осуществления операции в стволе подземной скважины, заключающийся в том, что развертывают волоконно-оптический фал в гибкую НКТ, развертывают гибкую НКТ в ствол скважины и осуществляют по меньшей мере один технологический этап, выбранный из передачи управляющих сигналов из системы управления по волоконно-оптическому фалу в скважинное оборудование, соединенное с гибкой НКТ, передачи информации из скважинного оборудования в систему управления по волоконнооптическому фалу, передачи характеристики, измеряемой с помощью волоконно-оптического фала, в систему управления по волоконно-оптическому фалу.
- 21 009704
21. Способ по п.20, дополнительно включающий в себя отвод гибкой НКТ из ствола скважины.
22. Способ по п.21, дополнительно включающий в себя оставление волоконно-оптического фала в стволе скважины.
23. Способ по п.20, в котором волоконно-оптический фал развертывают в гибкую НКТ путем закачивания флюида в гибкую НКТ.
24. Способ по п.20, дополнительно включающий в себя измерение характеристики.
25. Способ по п.24, в котором упомянутую характеристику измеряют в реальном масштабе времени.
26. Способ по п.24, в котором измеряемую характеристику выбирают из набора, включающего в себя забойное давление, забойную температуру, распределенную температуру, удельное сопротивление флюида, рН, растяжение-сжатие, крутящий момент, расход скважинного флюида, сжимаемость скважинного флюида, положение инструмента, гамма-излучение, ориентацию инструмента, высоту слоя твердых частиц и местоположение муфтового соединения обсадной колонны.
27. Способ по п.26, в котором упомянутую характеристику выбирают из распределенной температуры, положения инструмента и ориентации инструмента, а ствол скважины принадлежит скважине с несколькими ответвлениями.
28. Устройство для проведения операции в стволе подземной скважины, содержащее гибкую НКТ, выполненную с возможностью размещения в стволе скважины, оборудование управления, находящееся на поверхности, по меньшей мере одно скважинное устройство, соединенное с гибкой НКТ, волоконнооптический фал, установленный в гибкой НКТ и соединенный с каждым из упомянутого скважинного устройства и упомянутого оборудования управления, находящегося на поверхности, причем волоконнооптический фал содержит по меньшей мере одно оптическое волокно, по которому можно передавать оптические сигналы а) из упомянутого по меньшей мере одного скважинного устройства в оборудование управления, находящееся на поверхности, Ь) из оборудования управления, находящегося на поверхности, в упомянутое по меньшей мере одно скважинное устройство или с) из упомянутого по меньшей мере одного скважинного устройства в оборудование управления, находящееся на поверхности, и из оборудования управления, находящегося на поверхности, в упомянутое по меньшей мере одно скважинное устройство.
29. Устройство по п.28, в котором скважинное устройство содержит измерительное устройство для измерения характеристики и генерирования выходного сигнала и устройство сопряжения для преобразования упомянутого выходного сигнала, поступающего из измерительного устройства, в оптический сигнал.
30. Устройство по п.29, в котором измеряемая характеристика выбрана из группы, включающей в себя давление, температуру, распределенную температуру, рН, количество осадка, температуру флюида, глубину, химическую люминесценцию, гамма-излучение, удельное сопротивление, соленость, расход флюида, сжимаемость флюида, вязкость, сжатие, механическое напряжение, деформацию, местоположение инструмента, состояние инструмента, ориентацию инструмента и их комбинации.
31. Устройство по п.28, дополнительно содержащее устройство для ввода в предварительно определенное ответвление скважины с несколькими ответвлениями.
32. Устройство по п.28, дополнительно содержащее средство для коррекции работы в ответ на оптический сигнал, принимаемый оборудованием управления, находящимся на поверхности, из упомянутого по меньшей мере одного скважинного устройства.
33. Устройство по п.28, в котором волоконно-оптический фал содержит более одного оптического волокна, причем оптические сигналы можно передавать из оборудования управления, находящегося на поверхности, в упомянутое по меньшей мере одно скважинное устройство по оптическому волокну, и оптические сигналы можно передавать из упомянутого по меньшей мере одного скважинного устройства в оборудование управления, находящееся на поверхности, по другому волокну.
34. Устройство по п.28, в котором скважинное устройство выбрано из кинокамеры, кавернометра, щупа, локатора муфтовых соединений обсадной колонны, датчика, датчика температуры, химического датчика, датчика давления, датчика приближения, датчика удельного сопротивления, электрического датчика, исполнительного механизма, оптически активируемого инструмента, химического анализатора, устройства, измеряющего расход, клапанного исполнительного механизма, исполнительного механизма стреляющей головки перфоратора, исполнительного механизма инструмента, реверсивного клапана, обратного клапана и анализатора текучей среды.
35. Устройство по п.28, в котором волоконно-оптический фал представляет собой металлическую трубку, окружающую по меньшей мере одно оптическое волокно.
36. Устройство по п.28, дополнительно содержащее по меньшей мере одну из концевой муфты, расположенной на поверхности, и концевой муфты, расположенной в скважине, для волоконнооптического фала.
37. Способ применения устройства по п.28 на операции в стволе скважины, причем эту операцию выбирают из стимулирования материнской породы, очистки от заполняющего материала, создания разрыва, удаления окалины, изоляции зон, перфорирования, управления потоками в скважине, манипуляции
- 22 009704 при заканчивании, проводимой в скважине, каротажа скважины, извлечения инструментов, бурения, измельчения, измерения физической характеристики, определения местонахождения элемента оборудования в скважине, определения местонахождения конкретной характеристики в стволе скважины, управления клапаном и управления инструментом.
38. Устройство по п.28, в котором волоконно-оптический фал содержит более одного оптического волокна, дополнительно содержащее концевую муфту, которая находится в скважине и посредством которой подсоединяются по меньшей мере два из волокон.
39. Способ определения характеристики в стволе скважины, включающий в себя этапы, на которых развертывают волоконно-оптический фал в гибкую НКТ, развертывают измерительный инструмент в ствол скважины на гибкой НКТ, измеряют характеристику с помощью измерительного инструмента и используют волоконно-оптический фал для передачи измеряемой характеристики.
40. Способ по п.39, дополнительно включающий в себя отвод гибкой НКТ и измерительного инструмента из ствола скважины.
41. Способ по п.39, дополнительно включающий в себя измерение характеристики во время отвода гибкой НКТ и измерительного инструмента из ствола скважины.
42. Способ по п.39, в котором измеряемую характеристику передают в реальном масштабе времени.
43. Способ по п.42, в котором упомянутую характеристику измеряют одновременно с проведением операции обработки в скважине.
44. Способ по п.39, дополнительно включающий в себя коррекцию измеряемой характеристики в соответствии с глубиной и движением измерительного инструмента.
45. Способ работы в стволе скважины, включающий в себя этапы, на которых развертывают волоконно-оптический фал в гибкую НКТ, развертывают гибкую НКТ в ствол скважины и проводят операцию, причем управление этой операцией осуществляют посредством сигналов, передаваемых по волоконно-оптическому фалу.
EA200602252A 2004-05-28 2005-05-26 Система и способы применения волоконной оптики в гибких насосно-компрессорных трубах ( нкт ) EA009704B1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US57532704P 2004-05-28 2004-05-28
US11/135,314 US7617873B2 (en) 2004-05-28 2005-05-23 System and methods using fiber optics in coiled tubing
PCT/IB2005/051734 WO2005116388A1 (en) 2004-05-28 2005-05-26 System and methods using fiber optics in coiled tubing

Publications (2)

Publication Number Publication Date
EA200602252A1 EA200602252A1 (ru) 2007-04-27
EA009704B1 true EA009704B1 (ru) 2008-02-28

Family

ID=34969306

Family Applications (1)

Application Number Title Priority Date Filing Date
EA200602252A EA009704B1 (ru) 2004-05-28 2005-05-26 Система и способы применения волоконной оптики в гибких насосно-компрессорных трубах ( нкт )

Country Status (13)

Country Link
US (5) US7617873B2 (ru)
EP (1) EP1753934B8 (ru)
JP (1) JP4764875B2 (ru)
AT (1) ATE470782T1 (ru)
BR (1) BRPI0511469B1 (ru)
CA (1) CA2566221C (ru)
DE (1) DE602005021780D1 (ru)
DK (1) DK1753934T3 (ru)
EA (1) EA009704B1 (ru)
MX (1) MXPA06013223A (ru)
NO (1) NO339196B1 (ru)
PL (1) PL1753934T3 (ru)
WO (1) WO2005116388A1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9500058B2 (en) 2004-05-28 2016-11-22 Schlumberger Technology Corporation Coiled tubing tractor assembly
RU2649195C1 (ru) * 2017-01-23 2018-03-30 Владимир Николаевич Ульянов Способ определения параметров трещины гидроразрыва пласта
RU2651677C1 (ru) * 2014-07-10 2018-04-23 Халлибертон Энерджи Сервисез, Инк. Установка многоствольного сопряжения для интеллектуального заканчивания скважины
RU2669818C1 (ru) * 2013-11-15 2018-10-16 Бейкер Хьюз Инкорпорейтед Противодействие изгибаниям кабеля с трубчатой оболочкой в процессе его ввода

Families Citing this family (223)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003255294A1 (en) 2002-08-15 2004-03-11 Sofitech N.V. Use of distributed temperature sensors during wellbore treatments
AU2003267555A1 (en) * 2002-08-30 2004-03-19 Sensor Highway Limited Method and apparatus for logging a well using a fiber optic line and sensors
US20070044672A1 (en) * 2002-08-30 2007-03-01 Smith David R Methods and systems to activate downhole tools with light
US9540889B2 (en) * 2004-05-28 2017-01-10 Schlumberger Technology Corporation Coiled tubing gamma ray detector
US10316616B2 (en) 2004-05-28 2019-06-11 Schlumberger Technology Corporation Dissolvable bridge plug
US8522869B2 (en) * 2004-05-28 2013-09-03 Schlumberger Technology Corporation Optical coiled tubing log assembly
US7617873B2 (en) 2004-05-28 2009-11-17 Schlumberger Technology Corporation System and methods using fiber optics in coiled tubing
US7420475B2 (en) * 2004-08-26 2008-09-02 Schlumberger Technology Corporation Well site communication system
US7353869B2 (en) * 2004-11-04 2008-04-08 Schlumberger Technology Corporation System and method for utilizing a skin sensor in a downhole application
US7543635B2 (en) * 2004-11-12 2009-06-09 Halliburton Energy Services, Inc. Fracture characterization using reservoir monitoring devices
WO2006097772A1 (en) * 2005-03-16 2006-09-21 Philip Head Well bore sensing
US7920765B2 (en) * 2005-06-09 2011-04-05 Schlumberger Technology Corporation Ruggedized optical fibers for wellbore electrical cables
US7980306B2 (en) 2005-09-01 2011-07-19 Schlumberger Technology Corporation Methods, systems and apparatus for coiled tubing testing
US7444861B2 (en) * 2005-11-22 2008-11-04 Halliburton Energy Services, Inc. Real time management system for slickline/wireline
GB2433112B (en) * 2005-12-06 2008-07-09 Schlumberger Holdings Borehole telemetry system
US7448448B2 (en) * 2005-12-15 2008-11-11 Schlumberger Technology Corporation System and method for treatment of a well
US8770261B2 (en) 2006-02-09 2014-07-08 Schlumberger Technology Corporation Methods of manufacturing degradable alloys and products made from degradable alloys
US8651179B2 (en) 2010-04-20 2014-02-18 Schlumberger Technology Corporation Swellable downhole device of substantially constant profile
US20110067889A1 (en) * 2006-02-09 2011-03-24 Schlumberger Technology Corporation Expandable and degradable downhole hydraulic regulating assembly
US8573313B2 (en) * 2006-04-03 2013-11-05 Schlumberger Technology Corporation Well servicing methods and systems
US7398680B2 (en) 2006-04-05 2008-07-15 Halliburton Energy Services, Inc. Tracking fluid displacement along a wellbore using real time temperature measurements
US7607478B2 (en) * 2006-04-28 2009-10-27 Schlumberger Technology Corporation Intervention tool with operational parameter sensors
US20070284106A1 (en) * 2006-06-12 2007-12-13 Kalman Mark D Method and apparatus for well drilling and completion
US7934556B2 (en) 2006-06-28 2011-05-03 Schlumberger Technology Corporation Method and system for treating a subterranean formation using diversion
US7597142B2 (en) * 2006-12-18 2009-10-06 Schlumberger Technology Corporation System and method for sensing a parameter in a wellbore
US7708078B2 (en) 2007-04-05 2010-05-04 Baker Hughes Incorporated Apparatus and method for delivering a conductor downhole
US20080308272A1 (en) * 2007-06-12 2008-12-18 Thomeer Hubertus V Real Time Closed Loop Interpretation of Tubing Treatment Systems and Methods
US7498567B2 (en) 2007-06-23 2009-03-03 Schlumberger Technology Corporation Optical wellbore fluid characteristic sensor
US8022839B2 (en) * 2007-07-30 2011-09-20 Schlumberger Technology Corporation Telemetry subsystem to communicate with plural downhole modules
US8733438B2 (en) * 2007-09-18 2014-05-27 Schlumberger Technology Corporation System and method for obtaining load measurements in a wellbore
US7784330B2 (en) 2007-10-05 2010-08-31 Schlumberger Technology Corporation Viscosity measurement
DE102007057348A1 (de) * 2007-11-28 2009-06-04 Uhde Gmbh Verfahren zum Befüllen einer Ofenkammer einer Koksofenbatterie
US8090227B2 (en) * 2007-12-28 2012-01-03 Halliburton Energy Services, Inc. Purging of fiber optic conduits in subterranean wells
US7769252B2 (en) * 2008-02-08 2010-08-03 Weatherford/Lamb, Inc. Location marker for distributed temperature sensing systems
US8607864B2 (en) * 2008-02-28 2013-12-17 Schlumberger Technology Corporation Live bottom hole pressure for perforation/fracturing operations
US20090260807A1 (en) * 2008-04-18 2009-10-22 Schlumberger Technology Corporation Selective zonal testing using a coiled tubing deployed submersible pump
US7946350B2 (en) 2008-04-23 2011-05-24 Schlumberger Technology Corporation System and method for deploying optical fiber
WO2010011402A2 (en) 2008-05-20 2010-01-28 Oxane Materials, Inc. Method of manufacture and the use of a functional proppant for determination of subterranean fracture geometries
WO2009140767A1 (en) * 2008-05-23 2009-11-26 University Of Victoria Innovation And Development Corporation Micron-scale pressure sensors and use thereof
GB0814095D0 (en) * 2008-08-01 2008-09-10 Saber Ofs Ltd Downhole communication
US9267330B2 (en) 2008-08-20 2016-02-23 Foro Energy, Inc. Long distance high power optical laser fiber break detection and continuity monitoring systems and methods
US9669492B2 (en) 2008-08-20 2017-06-06 Foro Energy, Inc. High power laser offshore decommissioning tool, system and methods of use
US20170191314A1 (en) * 2008-08-20 2017-07-06 Foro Energy, Inc. Methods and Systems for the Application and Use of High Power Laser Energy
US8571368B2 (en) 2010-07-21 2013-10-29 Foro Energy, Inc. Optical fiber configurations for transmission of laser energy over great distances
US9347271B2 (en) 2008-10-17 2016-05-24 Foro Energy, Inc. Optical fiber cable for transmission of high power laser energy over great distances
US9089928B2 (en) 2008-08-20 2015-07-28 Foro Energy, Inc. Laser systems and methods for the removal of structures
US9074422B2 (en) * 2011-02-24 2015-07-07 Foro Energy, Inc. Electric motor for laser-mechanical drilling
US9664012B2 (en) 2008-08-20 2017-05-30 Foro Energy, Inc. High power laser decomissioning of multistring and damaged wells
US9080425B2 (en) 2008-10-17 2015-07-14 Foro Energy, Inc. High power laser photo-conversion assemblies, apparatuses and methods of use
US9138786B2 (en) 2008-10-17 2015-09-22 Foro Energy, Inc. High power laser pipeline tool and methods of use
US9244235B2 (en) 2008-10-17 2016-01-26 Foro Energy, Inc. Systems and assemblies for transferring high power laser energy through a rotating junction
US9242309B2 (en) 2012-03-01 2016-01-26 Foro Energy Inc. Total internal reflection laser tools and methods
US8636085B2 (en) 2008-08-20 2014-01-28 Foro Energy, Inc. Methods and apparatus for removal and control of material in laser drilling of a borehole
US10301912B2 (en) * 2008-08-20 2019-05-28 Foro Energy, Inc. High power laser flow assurance systems, tools and methods
US8627901B1 (en) 2009-10-01 2014-01-14 Foro Energy, Inc. Laser bottom hole assembly
US9027668B2 (en) 2008-08-20 2015-05-12 Foro Energy, Inc. Control system for high power laser drilling workover and completion unit
US9719302B2 (en) 2008-08-20 2017-08-01 Foro Energy, Inc. High power laser perforating and laser fracturing tools and methods of use
US9360631B2 (en) 2008-08-20 2016-06-07 Foro Energy, Inc. Optics assembly for high power laser tools
EP2347085A2 (en) * 2008-10-08 2011-07-27 Potter Drilling, Inc. Methods and apparatus for mechanical and thermal drilling
US8176979B2 (en) * 2008-12-11 2012-05-15 Schlumberger Technology Corporation Injection well surveillance system
US9593573B2 (en) * 2008-12-22 2017-03-14 Schlumberger Technology Corporation Fiber optic slickline and tools
EP2401475B1 (en) * 2009-02-27 2017-05-10 Baker Hughes Incorporated System and method for wellbore monitoring
CA2709248C (en) * 2009-07-10 2017-06-20 Schlumberger Canada Limited Method and apparatus to monitor reformation and replacement of co2/ch4 gas hydrates
US8903243B2 (en) 2009-09-17 2014-12-02 Schlumberger Technology Corporation Oilfield optical data transmission assembly joint
US20110088462A1 (en) * 2009-10-21 2011-04-21 Halliburton Energy Services, Inc. Downhole monitoring with distributed acoustic/vibration, strain and/or density sensing
GB0918617D0 (en) * 2009-10-23 2009-12-09 Tendeka Bv Wellbore treatment apparatus and method
WO2011079169A2 (en) 2009-12-23 2011-06-30 Schlumberger Canada Limited Hydraulic deployment of a well isolation mechanism
US9388686B2 (en) 2010-01-13 2016-07-12 Halliburton Energy Services, Inc. Maximizing hydrocarbon production while controlling phase behavior or precipitation of reservoir impairing liquids or solids
US9476294B2 (en) * 2010-01-29 2016-10-25 Baker Hughes Incorporated Device and method for discrete distributed optical fiber pressure sensing
US8326095B2 (en) * 2010-02-08 2012-12-04 Schlumberger Technology Corporation Tilt meter including optical fiber sections
WO2011115601A1 (en) * 2010-03-15 2011-09-22 Fmc Technologies, Inc. Optical scanning tool for wellheads
WO2011120147A1 (en) 2010-03-30 2011-10-06 University Of Victoria Innovation And Development Corporation Multi-point pressure sensor and uses thereof
US8505625B2 (en) 2010-06-16 2013-08-13 Halliburton Energy Services, Inc. Controlling well operations based on monitored parameters of cement health
US8930143B2 (en) 2010-07-14 2015-01-06 Halliburton Energy Services, Inc. Resolution enhancement for subterranean well distributed optical measurements
US8584519B2 (en) 2010-07-19 2013-11-19 Halliburton Energy Services, Inc. Communication through an enclosure of a line
EP2606201A4 (en) * 2010-08-17 2018-03-07 Foro Energy Inc. Systems and conveyance structures for high power long distance laster transmission
US8397815B2 (en) 2010-08-30 2013-03-19 Schlumberger Technology Corporation Method of using wired drillpipe for oilfield fishing operations
US20120061141A1 (en) * 2010-09-09 2012-03-15 Michael Dean Rossing Method for finding and re-entering a lateral bore in a multi-lateral well
CA2912919A1 (en) * 2010-09-17 2012-03-22 Mathew M. Samuel Downhole delivery of chemicals with a micro-tubing system
US8789585B2 (en) * 2010-10-07 2014-07-29 Schlumberger Technology Corporation Cable monitoring in coiled tubing
US20120121224A1 (en) * 2010-11-12 2012-05-17 Dalrymple Larry V Cable integrating fiber optics to power and control an electrical submersible pump assembly and related methods
WO2012116148A1 (en) 2011-02-24 2012-08-30 Foro Energy, Inc. Method of high power laser-mechanical drilling
US10145975B2 (en) * 2011-04-20 2018-12-04 Saudi Arabian Oil Company Computer processing of borehole to surface electromagnetic transmitter survey data
US8680866B2 (en) * 2011-04-20 2014-03-25 Saudi Arabian Oil Company Borehole to surface electromagnetic transmitter
EP2715035A4 (en) * 2011-06-02 2014-11-26 Halliburton Energy Serv Inc OPTIMIZED PRESSURE DRILLING WITH DRILLING RODS WITH CONTINUOUS TUBING
EP2715887A4 (en) 2011-06-03 2016-11-23 Foro Energy Inc PASSIVELY COOLED HIGH ENERGY LASER FIBER ROBUST OPTICAL CONNECTORS AND METHODS OF USE
US20140130591A1 (en) * 2011-06-13 2014-05-15 Schlumberger Technology Corporation Methods and Apparatus for Determining Downhole Parameters
CN102268986B (zh) * 2011-06-29 2013-06-19 中国石油集团西部钻探工程有限公司 井底参数测量装置
US9399269B2 (en) 2012-08-02 2016-07-26 Foro Energy, Inc. Systems, tools and methods for high power laser surface decommissioning and downhole welding
US9458685B2 (en) 2011-08-25 2016-10-04 Baker Hughes Incorporated Apparatus and method for controlling a completion operation
US9127532B2 (en) 2011-09-07 2015-09-08 Halliburton Energy Services, Inc. Optical casing collar locator systems and methods
US9127531B2 (en) 2011-09-07 2015-09-08 Halliburton Energy Services, Inc. Optical casing collar locator systems and methods
US9297767B2 (en) * 2011-10-05 2016-03-29 Halliburton Energy Services, Inc. Downhole species selective optical fiber sensor systems and methods
US10215013B2 (en) 2011-11-10 2019-02-26 Baker Hughes, A Ge Company, Llc Real time downhole sensor data for controlling surface stimulation equipment
US20130160998A1 (en) * 2011-12-23 2013-06-27 Francois M. Auzerais Lost Circulation Materials and Methods of Using Same
US10060250B2 (en) 2012-03-13 2018-08-28 Halliburton Energy Services, Inc. Downhole systems and methods for water source determination
EP2850278B1 (en) * 2012-05-18 2018-02-28 Services Pétroliers Schlumberger System and method for performing a perforation operation
US8893785B2 (en) 2012-06-12 2014-11-25 Halliburton Energy Services, Inc. Location of downhole lines
EP2890859A4 (en) 2012-09-01 2016-11-02 Foro Energy Inc REDUCED MECHANICAL ENERGY WELL CONTROL SYSTEMS AND METHODS OF USE
US8960287B2 (en) * 2012-09-19 2015-02-24 Halliburton Energy Services, Inc. Alternative path gravel pack system and method
US8916816B2 (en) * 2012-10-17 2014-12-23 Schlumberger Technology Corporation Imaging systems and image fiber bundles for downhole measurement
US9512717B2 (en) * 2012-10-19 2016-12-06 Halliburton Energy Services, Inc. Downhole time domain reflectometry with optical components
US9523254B1 (en) 2012-11-06 2016-12-20 Sagerider, Incorporated Capillary pump down tool
US20140126330A1 (en) * 2012-11-08 2014-05-08 Schlumberger Technology Corporation Coiled tubing condition monitoring system
US9823373B2 (en) 2012-11-08 2017-11-21 Halliburton Energy Services, Inc. Acoustic telemetry with distributed acoustic sensing system
WO2014078663A2 (en) * 2012-11-15 2014-05-22 Foro Energy, Inc. High power laser hydraulic fructuring, stimulation, tools systems and methods
US20140152659A1 (en) * 2012-12-03 2014-06-05 Preston H. Davidson Geoscience data visualization and immersion experience
BR112015013108B8 (pt) * 2012-12-14 2020-06-23 Halliburton Energy Services Inc método para determinar a colocação de uma árvore de teste submarina dentro de um conjunto de preventores
US9239406B2 (en) 2012-12-18 2016-01-19 Halliburton Energy Services, Inc. Downhole treatment monitoring systems and methods using ion selective fiber sensors
AU2012397854B2 (en) * 2012-12-28 2016-05-19 Halliburton Energy Services Inc. Downhole bladeless generator
WO2014204535A1 (en) 2013-03-15 2014-12-24 Foro Energy, Inc. High power laser fluid jets and beam paths using deuterium oxide
US9611734B2 (en) * 2013-05-21 2017-04-04 Hallitburton Energy Services, Inc. Connecting fiber optic cables
MX361795B (es) * 2013-05-24 2018-12-17 Schlumberger Technology Bv Registro de produccion en pozos multilaterales.
US9201155B2 (en) * 2013-06-12 2015-12-01 Halliburton Energy Services, Inc. Systems and methods for downhole electromagnetic field measurement
US9291740B2 (en) * 2013-06-12 2016-03-22 Halliburton Energy Services, Inc. Systems and methods for downhole electric field measurement
US9250350B2 (en) * 2013-06-12 2016-02-02 Halliburton Energy Services, Inc. Systems and methods for downhole magnetic field measurement
US20160097275A1 (en) * 2013-06-29 2016-04-07 Schlumberger Technology Corporation Optical Interface System For Communicating With A Downhole Tool
US9988898B2 (en) 2013-07-15 2018-06-05 Halliburton Energy Services, Inc. Method and system for monitoring and managing fiber cable slack in a coiled tubing
US9416648B2 (en) 2013-08-29 2016-08-16 Schlumberger Technology Corporation Pressure balanced flow through load measurement
US9441480B2 (en) 2013-10-03 2016-09-13 Baker Hughes Incorporated Wavelength-selective, high temperature, near infrared photodetectors for downhole applications
US11988539B2 (en) * 2013-10-09 2024-05-21 Parker-Hannifin Corporation Aircraft fluid gauging techniques using pressure measurements and optical sensors
US20160250812A1 (en) * 2013-10-14 2016-09-01 United Technologies Corporation Automated laminate composite solid ply generation
US10316643B2 (en) * 2013-10-24 2019-06-11 Baker Hughes, A Ge Company, Llc High resolution distributed temperature sensing for downhole monitoring
WO2015065479A1 (en) 2013-11-01 2015-05-07 Halliburton Energy Services, Inc. Downhole optical communication
ES2792981T3 (es) 2013-11-19 2020-11-12 Minex Crc Ltd Métodos y aparato para diagrafía de pozo de sondeo
US9512682B2 (en) * 2013-11-22 2016-12-06 Baker Hughes Incorporated Wired pipe and method of manufacturing wired pipe
US9670759B2 (en) 2013-11-25 2017-06-06 Baker Hughes Incorporated Monitoring fluid flow in a downhole assembly
US9382768B2 (en) 2013-12-17 2016-07-05 Offshore Energy Services, Inc. Tubular handling system and method
BR112016007183A2 (pt) * 2013-12-20 2017-08-01 Halliburton Energy Services Inc aparelho, sistema e método para a recuperação de dados de sensores em uma ferramenta de perfilagem de fundo de poço
US9683435B2 (en) 2014-03-04 2017-06-20 General Electric Company Sensor deployment system for a wellbore and methods of assembling the same
WO2015142803A1 (en) * 2014-03-18 2015-09-24 Schlumberger Canada Limited Flow monitoring using distributed strain measurement
US9529112B2 (en) 2014-04-11 2016-12-27 Schlumberger Technology Corporation Resistivity of chemically stimulated reservoirs
US10316629B2 (en) 2014-06-18 2019-06-11 Halliburton Energy Services, Inc. Pressure-restrictor plate for a partially loaded perforating gun
US20170145760A1 (en) * 2014-06-27 2017-05-25 Schlumberger Technology Corporation Dynamically automated adjustable downhole conveyance technique for an interventional application
WO2016007161A1 (en) * 2014-07-10 2016-01-14 Schlumberger Canada Limited Distributed fiber optic monitoring of vibration to generate a noise log to determine characteristics of fluid flow
US10018016B2 (en) 2014-07-18 2018-07-10 Advanced Wireline Technologies, Llc Wireline fluid blasting tool and method
US20160024914A1 (en) * 2014-07-23 2016-01-28 Schlumberger Technology Corporation Monitoring matrix acidizing operations
US10174600B2 (en) 2014-09-05 2019-01-08 Baker Hughes, A Ge Company, Llc Real-time extended-reach monitoring and optimization method for coiled tubing operations
US20170260834A1 (en) * 2014-10-01 2017-09-14 Halliburton Energy Services, Inc. Multilateral access with real-time data transmission
US10260335B2 (en) 2014-10-30 2019-04-16 Halliburton Energy Services, Inc. Opto-electrical networks for controlling downhole electronic devices
CA2971101C (en) * 2014-12-15 2020-07-14 Baker Hughes Incorporated Systems and methods for operating electrically-actuated coiled tubing tools and sensors
US10062202B2 (en) 2014-12-22 2018-08-28 General Electric Company System and methods of generating a computer model of a composite component
US10207905B2 (en) 2015-02-05 2019-02-19 Schlumberger Technology Corporation Control system for winch and capstan
US10718202B2 (en) 2015-03-05 2020-07-21 TouchRock, Inc. Instrumented wellbore cable and sensor deployment system and method
US9988893B2 (en) 2015-03-05 2018-06-05 TouchRock, Inc. Instrumented wellbore cable and sensor deployment system and method
WO2016153475A1 (en) 2015-03-23 2016-09-29 Halliburton Energy Services, Inc. Fiber optic array apparatus, systems, and methods
GB2553708B (en) * 2015-05-15 2020-12-23 Halliburton Energy Services Inc Cement plug tracking with fiber optics
US20180202281A1 (en) * 2015-08-12 2018-07-19 Halliburton Energy Services Inc. Locating wellbore flow paths behind drill pipe
CA3237935A1 (en) * 2015-08-20 2017-02-23 Kobold Corporation Downhole operations using remote operated sleeves and apparatus therefor
US10502050B2 (en) * 2015-10-01 2019-12-10 Schlumberger Technology Corporation Optical rotary joint in coiled tubing applications
AR104575A1 (es) * 2015-10-07 2017-08-02 Baker Hughes Inc Método de monitorización y optimización en tiempo real de alcance extendido para operaciones con tubería en espiral
EP3332083A4 (en) 2015-10-29 2018-07-11 Halliburton Energy Services, Inc. Mud pump stroke detection using distributed acoustic sensing
US10590758B2 (en) 2015-11-12 2020-03-17 Schlumberger Technology Corporation Noise reduction for tubewave measurements
US10047601B2 (en) 2015-11-12 2018-08-14 Schlumberger Technology Corporation Moving system
US10495778B2 (en) * 2015-11-19 2019-12-03 Halliburton Energy Services, Inc. System and methods for cross-tool optical fluid model validation and real-time application
US10221687B2 (en) 2015-11-26 2019-03-05 Merger Mines Corporation Method of mining using a laser
US10495524B2 (en) 2015-12-09 2019-12-03 Halliburton Energy Services, Inc. Apparatus and method for monitoring production wells
GB201522713D0 (en) * 2015-12-23 2016-02-03 Optasense Holdings Ltd Determing wellbore properties
US10619470B2 (en) * 2016-01-13 2020-04-14 Halliburton Energy Services, Inc. High-pressure jetting and data communication during subterranean perforation operations
US10295452B2 (en) * 2016-01-22 2019-05-21 Praxair Technology, Inc. Photometer/nephelometer device and method of using to determine proppant concentration
US10858897B2 (en) * 2016-01-27 2020-12-08 Halliburton Energy Services, Inc. Downhole armored optical cable tension measurement
US10584555B2 (en) 2016-02-10 2020-03-10 Schlumberger Technology Corporation System and method for isolating a section of a well
US10370956B2 (en) 2016-02-18 2019-08-06 Weatherford Technology Holdings, Llc Pressure gauge insensitive to extraneous mechanical loadings
WO2017151090A1 (en) 2016-02-29 2017-09-08 Halliburton Energy Services, Inc. Fixed-wavelength fiber optic telemetry
US10954777B2 (en) * 2016-02-29 2021-03-23 Halliburton Energy Services, Inc. Fixed-wavelength fiber optic telemetry for casing collar locator signals
US10358915B2 (en) 2016-03-03 2019-07-23 Halliburton Energy Services, Inc. Single source full-duplex fiber optic telemetry
RU2619605C1 (ru) * 2016-03-29 2017-05-17 Публичное акционерное общество "Татнефть" имени В.Д. Шашина Способ доставки оптико-волоконного кабеля в горизонтальный ствол скважины
CN107304673A (zh) * 2016-04-21 2017-10-31 中国石油天然气股份有限公司 油气井监测管柱
US10301903B2 (en) * 2016-05-16 2019-05-28 Schlumberger Technology Corporation Well treatment
GB2550867B (en) * 2016-05-26 2019-04-03 Metrol Tech Ltd Apparatuses and methods for sensing temperature along a wellbore using temperature sensor modules connected by a matrix
US10049789B2 (en) 2016-06-09 2018-08-14 Schlumberger Technology Corporation Compression and stretch resistant components and cables for oilfield applications
CN109564296B (zh) 2016-07-01 2021-03-05 斯伦贝谢技术有限公司 用于检测反射液压信号的井中对象的方法和系统
CA3031635C (en) * 2016-09-30 2021-09-21 Halliburton Energy Services, Inc. Optical wireless rotary joint
WO2018067121A1 (en) 2016-10-04 2018-04-12 Halliburton Energy Services, Inc. Telemetry system using frequency combs
NZ753554A (en) * 2016-11-08 2020-05-29 Baker Hughes A Ge Co Llc Dual telemetric coiled tubing system
US11054536B2 (en) * 2016-12-01 2021-07-06 Halliburton Energy Services, Inc. Translatable eat sensing modules and associated measurement methods
US10794125B2 (en) * 2016-12-13 2020-10-06 Joseph D Clark Tubing in tubing bypass
US20180163512A1 (en) * 2016-12-14 2018-06-14 Schlumberger Technology Corporation Well treatment
EP3571371B1 (en) 2017-01-18 2023-04-19 Minex CRC Ltd Mobile coiled tubing drilling apparatus
WO2018217217A1 (en) * 2017-05-26 2018-11-29 Halliburton Energy Services, Inc. Fatigue monitoring of coiled tubing in downline deployments
CN107143328A (zh) * 2017-07-21 2017-09-08 西南石油大学 一种随钻光纤通信装置
WO2019075290A1 (en) * 2017-10-12 2019-04-18 Schlumberger Technology Corporation MULTILATERAL ELECTRONICALLY CONTROLLED COLUMN CONTROL ACCESS TO WELLS WITH EXTENDED RANGE
CA2994290C (en) 2017-11-06 2024-01-23 Entech Solution As Method and stimulation sleeve for well completion in a subterranean wellbore
WO2019094140A1 (en) * 2017-11-10 2019-05-16 Halliburton Energy Services, Inc. System and method to obtain vertical seismic profiles in boreholes using distributed acoustic sensing on optical fiber deployed using coiled tubing
US10815774B2 (en) * 2018-01-02 2020-10-27 Baker Hughes, A Ge Company, Llc Coiled tubing telemetry system and method for production logging and profiling
US10955264B2 (en) 2018-01-24 2021-03-23 Saudi Arabian Oil Company Fiber optic line for monitoring of well operations
US11346178B2 (en) 2018-01-29 2022-05-31 Kureha Corporation Degradable downhole plug
US10822942B2 (en) 2018-02-13 2020-11-03 Baker Hughes, A Ge Company, Llc Telemetry system including a super conductor for a resource exploration and recovery system
US10494222B2 (en) * 2018-03-26 2019-12-03 Radjet Services Us, Inc. Coiled tubing and slickline unit
JP7231453B2 (ja) * 2018-04-06 2023-03-01 東洋建設株式会社 検出装置及び検出方法
US10801281B2 (en) * 2018-04-27 2020-10-13 Pro-Ject Chemicals, Inc. Method and apparatus for autonomous injectable liquid dispensing
US20190345780A1 (en) * 2018-05-14 2019-11-14 Oceaneering International, Inc. Subsea Flowline Blockage Remediation Using Internal Heating Device
WO2020076436A1 (en) * 2018-10-09 2020-04-16 Exxonmobil Upstream Research Company Methods of acoustically and optically distributed probing an elongate region and hydrocarbon conveyance systems that utilize the methods
US11428097B2 (en) 2019-02-11 2022-08-30 Halliburton Energy Services, Inc. Wellbore distributed sensing using fiber optic rotary joint
US11319803B2 (en) 2019-04-23 2022-05-03 Baker Hughes Holdings Llc Coiled tubing enabled dual telemetry system
US11365958B2 (en) 2019-04-24 2022-06-21 Saudi Arabian Oil Company Subterranean well torpedo distributed acoustic sensing system and method
US10883810B2 (en) 2019-04-24 2021-01-05 Saudi Arabian Oil Company Subterranean well torpedo system
US10995574B2 (en) 2019-04-24 2021-05-04 Saudi Arabian Oil Company Subterranean well thrust-propelled torpedo deployment system and method
CN110094197B (zh) * 2019-05-13 2022-04-22 重庆科技学院 预防水平井管柱光缆射孔损伤的方法
US11053781B2 (en) 2019-06-12 2021-07-06 Saudi Arabian Oil Company Laser array drilling tool and related methods
EP3924600A4 (en) * 2019-06-19 2022-08-24 Halliburton Energy Services, Inc. DRILLING SYSTEM
CN114127519A (zh) * 2019-07-16 2022-03-01 日本电气株式会社 光纤感测系统、光纤感测装置和用于检测管道劣化的方法
US11933127B2 (en) 2019-10-11 2024-03-19 Schlumberger Technology Corporation System and method for controlled downhole chemical release
CN110761775B (zh) * 2019-11-22 2023-07-18 四川派盛通石油工程技术有限公司 生产中采油井的油藏信息收集装置
CN110863823B (zh) * 2019-11-22 2023-09-12 扬州川石石油机械科技有限责任公司 生产中采油井的油藏信息收集方法
CN110836110A (zh) * 2019-12-06 2020-02-25 西安恩诺维新石油技术有限公司 一种基于连续油管光纤技术的测井系统
US20210201178A1 (en) * 2019-12-26 2021-07-01 Baker Hughes Oilfield Operations Llc Multi-phase characterization using data fusion from multivariate sensors
US11920464B2 (en) 2020-01-31 2024-03-05 Halliburton Energy Services, Inc. Thermal analysis of temperature data collected from a distributed temperature sensor system for estimating thermal properties of a wellbore
US11566487B2 (en) 2020-01-31 2023-01-31 Halliburton Energy Services, Inc. Systems and methods for sealing casing to a wellbore via light activation
US11661838B2 (en) 2020-01-31 2023-05-30 Halliburton Energy Services, Inc. Using active actuation for downhole fluid identification and cement barrier quality assessment
US11512581B2 (en) 2020-01-31 2022-11-29 Halliburton Energy Services, Inc. Fiber optic sensing of wellbore leaks during cement curing using a cement plug deployment system
US11692435B2 (en) * 2020-01-31 2023-07-04 Halliburton Energy Services, Inc. Tracking cementing plug position during cementing operations
US11512584B2 (en) 2020-01-31 2022-11-29 Halliburton Energy Services, Inc. Fiber optic distributed temperature sensing of annular cement curing using a cement plug deployment system
US11846174B2 (en) 2020-02-01 2023-12-19 Halliburton Energy Services, Inc. Loss circulation detection during cementing operations
CN111510177B (zh) * 2020-04-23 2020-12-22 中国科学院地质与地球物理研究所 一种井下工具、信号传输系统及信号传输方法
US11459881B2 (en) * 2020-05-26 2022-10-04 Halliburton Energy Services, Inc. Optical signal based reservoir characterization systems and methods
US11293268B2 (en) 2020-07-07 2022-04-05 Saudi Arabian Oil Company Downhole scale and corrosion mitigation
CA3141288A1 (en) 2020-12-11 2022-06-11 Heartland Revitalization Services Inc. Portable foam injection system
CN112727447A (zh) * 2020-12-31 2021-04-30 四川安东油气工程技术服务有限公司 基于连续油管分布式光纤测井系统及深度校正方法
US20230041700A1 (en) * 2021-08-04 2023-02-09 Defiant Engineering, Llc LiDAR TOOL FOR OIL AND GAS WELLBORE DATA ACQUISITION
CN114991706B (zh) * 2021-12-31 2024-05-24 中国石油天然气集团有限公司 可溶桥塞性能模拟试验装置、系统和方法及相关应用
US20240209731A1 (en) * 2022-12-26 2024-06-27 Weatherford Technology Holdings, Llc Nested Splice Tubes for Integrating Spoolable Gauges with Downhole Cables
CN117490003B (zh) * 2024-01-02 2024-03-12 福伦瑞生科技(苏州)有限公司 感油光纤传感系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2275953A (en) * 1992-09-01 1994-09-14 Halliburton Co Downhole logging tool
US6009216A (en) * 1997-11-05 1999-12-28 Cidra Corporation Coiled tubing sensor system for delivery of distributed multiplexed sensors
US6192983B1 (en) * 1998-04-21 2001-02-27 Baker Hughes Incorporated Coiled tubing strings and installation methods
US20020007945A1 (en) * 2000-04-06 2002-01-24 David Neuroth Composite coiled tubing with embedded fiber optic sensors

Family Cites Families (147)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2558427A (en) 1946-05-08 1951-06-26 Schlumberger Well Surv Corp Casing collar locator
US2651027A (en) 1949-10-01 1953-09-01 Shell Dev Well logging
US3348616A (en) 1965-06-11 1967-10-24 Dow Chemical Co Jetting device
DE2818656A1 (de) 1978-04-27 1979-10-31 Siemens Ag Breitbandkommunikationssystem
US4619323A (en) 1981-06-03 1986-10-28 Exxon Production Research Co. Method for conducting workover operations
SU1236098A1 (ru) 1984-06-01 1986-06-07 Научно-Производственное Объединение По Рудной Геофизике "Рудгеофизика" Устройство дл доставки каротажного прибора в скважину
DE8515470U1 (de) 1985-05-25 1985-12-19 Felten & Guilleaume Energietechnik Gmbh, 5000 Koeln Starkstromkabel, insbesondere für Spannungen von 6 bis 60 kV, mit eingelegten Lichtwellenleitern
JPS622412A (ja) 1985-06-28 1987-01-08 株式会社フジクラ 光ファイバ複合架空線
US4859054A (en) 1987-07-10 1989-08-22 The United States Of America As Represented By The United States Department Of Energy Proximity fuze
US4904865A (en) 1988-04-01 1990-02-27 Exploration Logging, Inc. Externally mounted radioactivity detector for MWD
US4856584A (en) 1988-08-30 1989-08-15 Conoco Inc. Method for monitoring and controlling scale formation in a well
US4926940A (en) 1988-09-06 1990-05-22 Mobil Oil Corporation Method for monitoring the hydraulic fracturing of a subsurface formation
FR2661762B1 (fr) 1990-05-03 1992-07-31 Storck Jean Procede et dispositif de transaction entre un premier et au moins un deuxieme supports de donnees et support a cette fin.
US5140319A (en) * 1990-06-15 1992-08-18 Westech Geophysical, Inc. Video logging system having remote power source
US5042903A (en) 1990-07-30 1991-08-27 Westinghouse Electric Corp. High voltage tow cable with optical fiber
GB9110451D0 (en) 1991-05-14 1991-07-03 Schlumberger Services Petrol Cleaning method
US5485745A (en) * 1991-05-20 1996-01-23 Halliburton Company Modular downhole inspection system for coiled tubing
US5320181A (en) 1992-09-28 1994-06-14 Wellheads & Safety Control, Inc. Combination check valve & back pressure valve
US5332048A (en) 1992-10-23 1994-07-26 Halliburton Company Method and apparatus for automatic closed loop drilling system
US5419395A (en) 1993-11-12 1995-05-30 Baker Hughes Incorporated Eccentric fluid displacement sleeve
US5542471A (en) 1993-11-16 1996-08-06 Loral Vought System Corporation Heat transfer element having the thermally conductive fibers
NO940493D0 (no) 1994-02-14 1994-02-14 Norsk Hydro As Lokomotiv eller traktor for fremtrekking av utstyr i et rör eller borehull
US5573225A (en) 1994-05-06 1996-11-12 Dowell, A Division Of Schlumberger Technology Corporation Means for placing cable within coiled tubing
US6868906B1 (en) 1994-10-14 2005-03-22 Weatherford/Lamb, Inc. Closed-loop conveyance systems for well servicing
PT718602E (pt) 1994-12-20 2002-12-31 Schlumberger Ind S R L Contador de liquido com jacto unico com sensibilidade e efeito de regulacao melhorados
US5597042A (en) 1995-02-09 1997-01-28 Baker Hughes Incorporated Method for controlling production wells having permanent downhole formation evaluation sensors
US6116345A (en) 1995-03-10 2000-09-12 Baker Hughes Incorporated Tubing injection systems for oilfield operations
US6581455B1 (en) * 1995-03-31 2003-06-24 Baker Hughes Incorporated Modified formation testing apparatus with borehole grippers and method of formation testing
US6157893A (en) * 1995-03-31 2000-12-05 Baker Hughes Incorporated Modified formation testing apparatus and method
US5495547A (en) 1995-04-12 1996-02-27 Western Atlas International, Inc. Combination fiber-optic/electrical conductor well logging cable
DE69531747D1 (de) 1995-07-25 2003-10-16 Nowsco Well Service Inc Gesichertes verfahren und vorrichtung zum fluidtransport mit gewickeltem rohr, mit anwendung im testen von bohrgestängen
FR2737563B1 (fr) 1995-08-04 1997-10-10 Schlumberger Ind Sa Compteur de liquide a jet unique a couple moteur ameliore
AU738031B2 (en) 1995-08-22 2001-09-06 Wwt North America Holdings, Inc. Puller-thruster downhole tool
GB9517378D0 (en) 1995-08-24 1995-10-25 Sofitech Nv Hydraulic jetting system
US5898517A (en) * 1995-08-24 1999-04-27 Weis; R. Stephen Optical fiber modulation and demodulation system
US5921285A (en) * 1995-09-28 1999-07-13 Fiberspar Spoolable Products, Inc. Composite spoolable tube
FR2741108B1 (fr) 1995-11-10 1998-01-02 Inst Francais Du Petrole Dispositif d'exploration d'une formation souterraine traversee par un puits horizontal comportant plusieurs sondes ancrables
KR100270143B1 (ko) * 1996-01-12 2000-10-16 포시바 오이 유량계
GB9606673D0 (en) * 1996-03-29 1996-06-05 Sensor Dynamics Ltd Apparatus for the remote measurement of physical parameters
EP0904479B1 (en) 1996-06-11 2001-09-19 Smith International, Inc. Multi-cycle circulating sub
US5794703A (en) 1996-07-03 1998-08-18 Ctes, L.C. Wellbore tractor and method of moving an item through a wellbore
GB9621235D0 (en) 1996-10-11 1996-11-27 Head Philip Conduit in coiled tubing system
US6112809A (en) 1996-12-02 2000-09-05 Intelligent Inspection Corporation Downhole tools with a mobility device
US5913003A (en) 1997-01-10 1999-06-15 Lucent Technologies Inc. Composite fiber optic distribution cable
US6281489B1 (en) * 1997-05-02 2001-08-28 Baker Hughes Incorporated Monitoring of downhole parameters and tools utilizing fiber optics
GB2364382A (en) * 1997-05-02 2002-01-23 Baker Hughes Inc Optimising hydrocarbon production by controlling injection according to an injection parameter sensed downhole
GB2324818B (en) 1997-05-02 1999-07-14 Sofitech Nv Jetting tool for well cleaning
US6296066B1 (en) 1997-10-27 2001-10-02 Halliburton Energy Services, Inc. Well system
US6923273B2 (en) 1997-10-27 2005-08-02 Halliburton Energy Services, Inc. Well system
US6173771B1 (en) 1998-07-29 2001-01-16 Schlumberger Technology Corporation Apparatus for cleaning well tubular members
US6392151B1 (en) 1998-01-23 2002-05-21 Baker Hughes Incorporated Fiber optic well logging cable
US6229453B1 (en) * 1998-01-26 2001-05-08 Halliburton Energy Services, Inc. Method to transmit downhole video up standard wireline cable using digital data compression techniques
GB2335213B (en) 1998-03-09 2000-09-13 Sofitech Nv Nozzle arrangement for well cleaning apparatus
US5962819A (en) * 1998-03-11 1999-10-05 Paulsson Geophysical Services, Inc. Clamped receiver array using coiled tubing conveyed packer elements
US6247536B1 (en) * 1998-07-14 2001-06-19 Camco International Inc. Downhole multiplexer and related methods
DE29816469U1 (de) 1998-09-14 1998-12-24 Huang, Wen-Sheng, Tung Hsiao Chen, Miao Li Stahlseilstruktur mit Lichtleitfasern
GB2378468B (en) 1998-12-18 2003-04-02 Western Well Tool Inc Electrically sequenced tractor
BR9908000A (pt) 1998-12-18 2002-01-15 Western Well Tool Inc Hélice de tração eletro-hidraulicamente controlada
US6347674B1 (en) 1998-12-18 2002-02-19 Western Well Tool, Inc. Electrically sequenced tractor
US6467557B1 (en) 1998-12-18 2002-10-22 Western Well Tool, Inc. Long reach rotary drilling assembly
GB2345199B (en) 1998-12-22 2003-06-04 Philip Head Tubing and conductors or conduits
US6273189B1 (en) 1999-02-05 2001-08-14 Halliburton Energy Services, Inc. Downhole tractor
GB2362909B (en) * 1999-02-16 2003-05-28 Schlumberger Holdings Method of installing a sensor in a well
US6325146B1 (en) * 1999-03-31 2001-12-04 Halliburton Energy Services, Inc. Methods of downhole testing subterranean formations and associated apparatus therefor
US6534449B1 (en) 1999-05-27 2003-03-18 Schlumberger Technology Corp. Removal of wellbore residues
GB9913037D0 (en) 1999-06-05 1999-08-04 Abb Offshore Systems Ltd Actuator
US6519568B1 (en) 1999-06-15 2003-02-11 Schlumberger Technology Corporation System and method for electronic data delivery
WO2001009478A1 (en) 1999-07-30 2001-02-08 Western Well Tool, Inc. Long reach rotary drilling assembly
US6349768B1 (en) 1999-09-30 2002-02-26 Schlumberger Technology Corporation Method and apparatus for all multilateral well entry
US6399546B1 (en) 1999-10-15 2002-06-04 Schlumberger Technology Corporation Fluid system having controllable reversible viscosity
US6367366B1 (en) 1999-12-02 2002-04-09 Western Well Tool, Inc. Sensor assembly
AU782553B2 (en) * 2000-01-05 2005-08-11 Baker Hughes Incorporated Method of providing hydraulic/fiber conduits adjacent bottom hole assemblies for multi-step completions
US6321845B1 (en) 2000-02-02 2001-11-27 Schlumberger Technology Corporation Apparatus for device using actuator having expandable contractable element
US6394184B2 (en) * 2000-02-15 2002-05-28 Exxonmobil Upstream Research Company Method and apparatus for stimulation of multiple formation intervals
US6464003B2 (en) 2000-05-18 2002-10-15 Western Well Tool, Inc. Gripper assembly for downhole tractors
US6935423B2 (en) 2000-05-02 2005-08-30 Halliburton Energy Services, Inc. Borehole retention device
US6419014B1 (en) 2000-07-20 2002-07-16 Schlumberger Technology Corporation Apparatus and method for orienting a downhole tool
US6789621B2 (en) * 2000-08-03 2004-09-14 Schlumberger Technology Corporation Intelligent well system and method
US20040035199A1 (en) * 2000-11-01 2004-02-26 Baker Hughes Incorporated Hydraulic and mechanical noise isolation for improved formation testing
US6474152B1 (en) 2000-11-02 2002-11-05 Schlumberger Technology Corporation Methods and apparatus for optically measuring fluid compressibility downhole
AU3062302A (en) 2000-12-01 2002-06-11 Western Well Tool Inc Tractor with improved valve system
US7121364B2 (en) 2003-02-10 2006-10-17 Western Well Tool, Inc. Tractor with improved valve system
US6655461B2 (en) 2001-04-18 2003-12-02 Schlumberger Technology Corporation Straddle packer tool and method for well treating having valving and fluid bypass system
WO2003006779A2 (en) 2001-07-12 2003-01-23 Sensor Highway Limited Method and apparatus to monitor, control and log subsea oil and gas wells
US6629568B2 (en) 2001-08-03 2003-10-07 Schlumberger Technology Corporation Bi-directional grip mechanism for a wide range of bore sizes
US6715559B2 (en) 2001-12-03 2004-04-06 Western Well Tool, Inc. Gripper assembly for downhole tractors
WO2003062590A1 (en) 2002-01-22 2003-07-31 Presssol Ltd. Two string drilling system using coil tubing
US6834722B2 (en) 2002-05-01 2004-12-28 Bj Services Company Cyclic check valve for coiled tubing
US6889771B1 (en) 2002-07-29 2005-05-10 Schlumberger Technology Corporation Selective direct and reverse circulation check valve mechanism for coiled tubing
AU2003255294A1 (en) 2002-08-15 2004-03-11 Sofitech N.V. Use of distributed temperature sensors during wellbore treatments
US7066283B2 (en) 2002-08-21 2006-06-27 Presssol Ltd. Reverse circulation directional and horizontal drilling using concentric coil tubing
US20040040707A1 (en) * 2002-08-29 2004-03-04 Dusterhoft Ronald G. Well treatment apparatus and method
US7140435B2 (en) 2002-08-30 2006-11-28 Schlumberger Technology Corporation Optical fiber conveyance, telemetry, and/or actuation
AU2003267553A1 (en) 2002-08-30 2004-03-19 Sensor Highway Limited Method and apparatus for logging a well using fiber optics
AU2003267555A1 (en) 2002-08-30 2004-03-19 Sensor Highway Limited Method and apparatus for logging a well using a fiber optic line and sensors
US6978832B2 (en) * 2002-09-09 2005-12-27 Halliburton Energy Services, Inc. Downhole sensing with fiber in the formation
US6888972B2 (en) 2002-10-06 2005-05-03 Weatherford/Lamb, Inc. Multiple component sensor mechanism
US7090020B2 (en) 2002-10-30 2006-08-15 Schlumberger Technology Corp. Multi-cycle dump valve
AU2004210989B2 (en) 2003-02-10 2008-12-11 Wwt North America Holdings, Inc. Downhole tractor with improved valve system
MXPA05013420A (es) * 2003-06-20 2006-06-23 Schlumberger Technology Bv Metodo y aparato para desplegar una linea en tuberia continua.
US7140437B2 (en) * 2003-07-21 2006-11-28 Halliburton Energy Services, Inc. Apparatus and method for monitoring a treatment process in a production interval
US7150318B2 (en) 2003-10-07 2006-12-19 Halliburton Energy Services, Inc. Apparatus for actuating a well tool and method for use of same
US7124819B2 (en) 2003-12-01 2006-10-24 Schlumberger Technology Corporation Downhole fluid pumping apparatus and method
US7308941B2 (en) 2003-12-12 2007-12-18 Schlumberger Technology Corporation Apparatus and methods for measurement of solids in a wellbore
US7143843B2 (en) 2004-01-05 2006-12-05 Schlumberger Technology Corp. Traction control for downhole tractor
US7073582B2 (en) 2004-03-09 2006-07-11 Halliburton Energy Services, Inc. Method and apparatus for positioning a downhole tool
US7392859B2 (en) 2004-03-17 2008-07-01 Western Well Tool, Inc. Roller link toggle gripper and downhole tractor
GB2434819B (en) 2004-04-01 2008-11-05 Bj Services Co Apparatus to facilitate a coiled tubing tractor to traverse a horizontal wellbore
US20050236161A1 (en) 2004-04-23 2005-10-27 Michael Gay Optical fiber equipped tubing and methods of making and using
US7077200B1 (en) 2004-04-23 2006-07-18 Schlumberger Technology Corp. Downhole light system and methods of use
US8522869B2 (en) 2004-05-28 2013-09-03 Schlumberger Technology Corporation Optical coiled tubing log assembly
US20090151936A1 (en) 2007-12-18 2009-06-18 Robert Greenaway System and Method for Monitoring Scale Removal from a Wellbore
US20080066963A1 (en) 2006-09-15 2008-03-20 Todor Sheiretov Hydraulically driven tractor
US9500058B2 (en) 2004-05-28 2016-11-22 Schlumberger Technology Corporation Coiled tubing tractor assembly
US7617873B2 (en) 2004-05-28 2009-11-17 Schlumberger Technology Corporation System and methods using fiber optics in coiled tubing
US7311153B2 (en) 2004-06-18 2007-12-25 Schlumberger Technology Corporation Flow-biased sequencing valve
US7420475B2 (en) 2004-08-26 2008-09-02 Schlumberger Technology Corporation Well site communication system
US20060152383A1 (en) 2004-12-28 2006-07-13 Tsutomu Yamate Methods and apparatus for electro-optical hybrid telemetry
US7515774B2 (en) 2004-12-20 2009-04-07 Schlumberger Technology Corporation Methods and apparatus for single fiber optical telemetry
US7614452B2 (en) 2005-06-13 2009-11-10 Schlumberger Technology Corporation Flow reversing apparatus and methods of use
GB2433112B (en) 2005-12-06 2008-07-09 Schlumberger Holdings Borehole telemetry system
US7448448B2 (en) * 2005-12-15 2008-11-11 Schlumberger Technology Corporation System and method for treatment of a well
US20070215345A1 (en) 2006-03-14 2007-09-20 Theodore Lafferty Method And Apparatus For Hydraulic Fracturing And Monitoring
US8573313B2 (en) 2006-04-03 2013-11-05 Schlumberger Technology Corporation Well servicing methods and systems
US7654318B2 (en) 2006-06-19 2010-02-02 Schlumberger Technology Corporation Fluid diversion measurement methods and systems
US20080041594A1 (en) 2006-07-07 2008-02-21 Jeanne Boles Methods and Systems For Determination of Fluid Invasion In Reservoir Zones
US20080053663A1 (en) 2006-08-24 2008-03-06 Western Well Tool, Inc. Downhole tool with turbine-powered motor
US8540027B2 (en) 2006-08-31 2013-09-24 Geodynamics, Inc. Method and apparatus for selective down hole fluid communication
US7600419B2 (en) 2006-12-08 2009-10-13 Schlumberger Technology Corporation Wellbore production tool and method
US7827859B2 (en) 2006-12-12 2010-11-09 Schlumberger Technology Corporation Apparatus and methods for obtaining measurements below bottom sealing elements of a straddle tool
US7597142B2 (en) 2006-12-18 2009-10-06 Schlumberger Technology Corporation System and method for sensing a parameter in a wellbore
US8770303B2 (en) 2007-02-19 2014-07-08 Schlumberger Technology Corporation Self-aligning open-hole tractor
US7841412B2 (en) 2007-02-21 2010-11-30 Baker Hughes Incorporated Multi-purpose pressure operated downhole valve
US9915131B2 (en) 2007-03-02 2018-03-13 Schlumberger Technology Corporation Methods using fluid stream for selective stimulation of reservoir layers
US8230915B2 (en) 2007-03-28 2012-07-31 Schlumberger Technology Corporation Apparatus, system, and method for determining injected fluid vertical placement
US7565834B2 (en) 2007-05-21 2009-07-28 Schlumberger Technology Corporation Methods and systems for investigating downhole conditions
US20080308272A1 (en) 2007-06-12 2008-12-18 Thomeer Hubertus V Real Time Closed Loop Interpretation of Tubing Treatment Systems and Methods
US7950454B2 (en) 2007-07-23 2011-05-31 Schlumberger Technology Corporation Technique and system for completing a well
US8627890B2 (en) 2007-07-27 2014-01-14 Weatherford/Lamb, Inc. Rotating continuous flow sub
US8733438B2 (en) 2007-09-18 2014-05-27 Schlumberger Technology Corporation System and method for obtaining load measurements in a wellbore
US7757755B2 (en) 2007-10-02 2010-07-20 Schlumberger Technology Corporation System and method for measuring an orientation of a downhole tool
US7793732B2 (en) 2008-06-09 2010-09-14 Schlumberger Technology Corporation Backpressure valve for wireless communication
US20100051289A1 (en) * 2008-08-26 2010-03-04 Baker Hughes Incorporated System for Selective Incremental Closing of a Hydraulic Downhole Choking Valve
US8844653B2 (en) 2010-06-18 2014-09-30 Dual Gradient Systems, Llc Continuous circulating sub for drill strings
US8789585B2 (en) * 2010-10-07 2014-07-29 Schlumberger Technology Corporation Cable monitoring in coiled tubing
CA2971101C (en) * 2014-12-15 2020-07-14 Baker Hughes Incorporated Systems and methods for operating electrically-actuated coiled tubing tools and sensors
US10711591B2 (en) * 2015-06-24 2020-07-14 Magiq Technologies, Inc. Sensing umbilical

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2275953A (en) * 1992-09-01 1994-09-14 Halliburton Co Downhole logging tool
US6009216A (en) * 1997-11-05 1999-12-28 Cidra Corporation Coiled tubing sensor system for delivery of distributed multiplexed sensors
US6192983B1 (en) * 1998-04-21 2001-02-27 Baker Hughes Incorporated Coiled tubing strings and installation methods
US20020007945A1 (en) * 2000-04-06 2002-01-24 David Neuroth Composite coiled tubing with embedded fiber optic sensors

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9500058B2 (en) 2004-05-28 2016-11-22 Schlumberger Technology Corporation Coiled tubing tractor assembly
RU2669818C1 (ru) * 2013-11-15 2018-10-16 Бейкер Хьюз Инкорпорейтед Противодействие изгибаниям кабеля с трубчатой оболочкой в процессе его ввода
RU2651677C1 (ru) * 2014-07-10 2018-04-23 Халлибертон Энерджи Сервисез, Инк. Установка многоствольного сопряжения для интеллектуального заканчивания скважины
RU2649195C1 (ru) * 2017-01-23 2018-03-30 Владимир Николаевич Ульянов Способ определения параметров трещины гидроразрыва пласта

Also Published As

Publication number Publication date
US20050263281A1 (en) 2005-12-01
EP1753934B1 (en) 2010-06-09
EP1753934B8 (en) 2010-09-29
NO20065838L (no) 2006-12-27
CA2566221C (en) 2013-04-09
WO2005116388A1 (en) 2005-12-08
DK1753934T3 (da) 2010-10-11
EA200602252A1 (ru) 2007-04-27
ATE470782T1 (de) 2010-06-15
US20190017333A1 (en) 2019-01-17
BRPI0511469A (pt) 2007-12-26
JP4764875B2 (ja) 2011-09-07
PL1753934T3 (pl) 2011-03-31
CA2566221A1 (en) 2005-12-08
JP2008501078A (ja) 2008-01-17
MXPA06013223A (es) 2007-02-28
US7617873B2 (en) 2009-11-17
US10697252B2 (en) 2020-06-30
DE602005021780D1 (de) 2010-07-22
US20170314341A1 (en) 2017-11-02
US9708867B2 (en) 2017-07-18
US10077618B2 (en) 2018-09-18
US20100018703A1 (en) 2010-01-28
NO339196B1 (no) 2016-11-14
US10815739B2 (en) 2020-10-27
US20130025878A1 (en) 2013-01-31
EP1753934A1 (en) 2007-02-21
BRPI0511469B1 (pt) 2016-12-20

Similar Documents

Publication Publication Date Title
US10815739B2 (en) System and methods using fiber optics in coiled tubing
AU2008249022B2 (en) Method and apparatus for measuring a parameter within the well with a plug
US8573313B2 (en) Well servicing methods and systems
CA2620016C (en) Methods, systems and apparatus for coiled tubing testing
CN1993533B (zh) 利用挠性管中光纤的系统和方法
US11208885B2 (en) Method and system to conduct measurement while cementing
US20210238979A1 (en) Method and system to conduct measurement while cementing
US11668153B2 (en) Cement head and fiber sheath for top plug fiber deployment
US20240060373A1 (en) Logging a deviated or horizontal well

Legal Events

Date Code Title Description
MM4A Lapse of a eurasian patent due to non-payment of renewal fees within the time limit in the following designated state(s)

Designated state(s): AM BY KG MD TJ

QB4A Registration of a licence in a contracting state
QB4A Registration of a licence in a contracting state