WO2019146359A1 - 分解性ダウンホールプラグ - Google Patents

分解性ダウンホールプラグ Download PDF

Info

Publication number
WO2019146359A1
WO2019146359A1 PCT/JP2018/047889 JP2018047889W WO2019146359A1 WO 2019146359 A1 WO2019146359 A1 WO 2019146359A1 JP 2018047889 W JP2018047889 W JP 2018047889W WO 2019146359 A1 WO2019146359 A1 WO 2019146359A1
Authority
WO
WIPO (PCT)
Prior art keywords
mandrel
downhole plug
hollow portion
downhole
cone
Prior art date
Application number
PCT/JP2018/047889
Other languages
English (en)
French (fr)
Inventor
慎弥 高橋
暁 漆川
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Priority to US16/960,240 priority Critical patent/US11346178B2/en
Priority to CA3087148A priority patent/CA3087148C/en
Priority to GB2012112.5A priority patent/GB2584237B/en
Priority to CN201880080889.5A priority patent/CN111492120B/zh
Publication of WO2019146359A1 publication Critical patent/WO2019146359A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs
    • E21B33/129Packers; Plugs with mechanical slips for hooking into the casing
    • E21B33/1291Packers; Plugs with mechanical slips for hooking into the casing anchor set by wedge or cam in combination with frictional effect, using so-called drag-blocks
    • E21B33/1292Packers; Plugs with mechanical slips for hooking into the casing anchor set by wedge or cam in combination with frictional effect, using so-called drag-blocks with means for anchoring against downward and upward movement
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs
    • E21B33/129Packers; Plugs with mechanical slips for hooking into the casing
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B2200/00Special features related to earth drilling for obtaining oil, gas or water
    • E21B2200/08Down-hole devices using materials which decompose under well-bore conditions

Definitions

  • the present invention relates to a degradable downhole plug used in hydraulic fracturing.
  • the hydraulic fracturing method generates perforations and fractures in the production layer by fluid pressure such as water pressure (hereinafter sometimes simply referred to as "water pressure"), and collects and recovers hydrocarbon resources through the fractures and the like.
  • the production zone is a zone producing hydrocarbon resources such as petroleum such as shale oil or natural gas such as shale gas.
  • Hydraulic fracturing generally drills vertical holes and then bends vertical holes to drill horizontal holes in several thousand meters of underground. Thereafter, a fluid such as a fracturing fluid is fed at high pressure into the wellbore to cause a crack or the like in the underground production layer by water pressure. Then, hydrocarbon resources are collected and recovered through the fracture and the like.
  • a wellbore means the hole provided in order to form a well, and it may be called a "downhole.”
  • downhole plugs are known as one of these downhole tools.
  • the downhole plug is installed in the wellbore for closing a part of the wellbore.
  • the downhole plug is referred to as a flack plug, bridge plug or packer, etc. and has at least one mandrel and one or more members mounted on the outer circumferential surface of the mandrel.
  • a predetermined member is expanded in diameter and fixed to the wellbore by coming into contact with the inner wall of the wellbore, and the seal member etc. which similarly constitute the downhole plug By sealing between the inner wall of the well and the downhole plug, the wellbore is closed.
  • Patent Document 1 discloses a hole for the purpose of providing insulation to block heat from the inner wall of the wellbore.
  • An open slip is disclosed.
  • Patent Document 2 discloses a slip in which the inside is hollow for the purpose of facilitating breakage by a drill.
  • the degradable downhole plug is at least partially formed of degradable material that degrades depending on the well environment. As a result, the entire degradable downhole plug is disassembled or disassembled after use, and as a result, removal of the downhole plug is facilitated (e.g., Patent Document 3).
  • control of degradability has been an issue, and for example, in order to promote the degradation of materials whose degradation rate is insufficient, bottom subs embedded with a degradation accelerator have also been proposed (FIG. Patent Document 4).
  • FIG. 1 and 2 are reference views for explaining a conventional downhole plug.
  • FIG. 1 is a schematic view of a portion of an axial cross section of a conventional downhole plug.
  • FIG. 2 is a view when the downhole plug shown in FIG. 1 is installed in a casing, and (a) of FIG. 2 shows before hydraulic fracturing and (b) of FIG. 2 shows after hydraulic fracturing.
  • 1 and 2 show the axial direction of the downhole plug as the left-right direction in the drawing, but in the actual use, the axial direction of the downhole plug is the same as that of the downhole plug. It may be arranged along the depth direction.
  • the downhole plug 100 includes a mandrel 101, a seal member 102, a holding member 103 disposed adjacent to the seal member 102 on one side of the seal member 102, a seal member 102 and It comprises cones 104 and 105 disposed so as to sandwich the holding member 103, a pair of slips 106a and 106b, and a pair of ring members 107a and 107b.
  • the ring member 107 a is slidable relative to the mandrel 101 in the axial direction of the mandrel 101, and the ring member 107 b is fixed to the mandrel 101.
  • the seal member 102 in the present embodiment is formed of an elastic material or rubber material that deforms when a predetermined force is applied.
  • the downhole plug 100 is installed in a wellbore (not shown) and in a casing 200 disposed inside the wellbore as shown in FIG. 2 (a).
  • the mandrel 101 is moved in the axial direction indicated by the arrow P in the figure to reduce the distance between the pair of ring members 107a and 107b in the mandrel axial direction.
  • the slips 106a and 106b move outward along the slopes of the cones 104 and 105 in a direction perpendicular to the axial direction of the mandrel 101 and abut on the inner wall of the wellbore, thereby the downhole plug 100 can be drilled.
  • the seal member 102 can be installed at a predetermined position of Further, as the mandrel 101 is moved in the axial direction and the distance between the cone 104 and the holding member 103 is reduced, the seal member 102 is deformed and expanded outward in the outer peripheral direction of the axis of the mandrel 101. When the seal member 102 abuts on the casing 200, the space between the downhole plug 100 and the casing 200 is closed. Thereafter, a well or the like (not shown) is set in the axial hollow portion of the mandrel 101 to close the wellbore. Then, the fluid is fed at high pressure from the side of the cone 104 into the closed section to perform hydraulic fracturing which causes the production layer to crack.
  • the downhole plug When the downhole plug is a degradable downhole plug formed of a degradable material which is decomposed by the fluid in the well, the downhole is exposed to the fluid in the well for a predetermined time to allow the downhole from contacting the fluid.
  • the plug is disassembled, disintegrated and dissolved, whereby the downhole plug is removed and the blocked flow path can be recovered.
  • the present invention has been made in view of the above problems, and the object of the present invention is a plug for well drilling, and the flow path is recovered in a short time by quickly disassembling after hydraulic fracturing. It is in providing a plug.
  • the fluid in the well is sufficiently formed in the degradable downhole plug by the close contact between the casing and the degradable downhole plug and the members constituting the degradable downhole plug. It has been discovered that, due to the surface of the degradable downhole plug exposed to the fluid becoming smaller, decomposition is delayed. That is, as shown in FIG. 2B, the slips 106a and 106b of the degradable downhole plug and the seal member 102 abut on the casing 200 after hydraulic fracturing. Also, the cone 104 abuts on the seal member 102 and the slip 106 a. Furthermore, the cone 105 abuts on the holding member 103 and the slip 106 b.
  • the degradation is delayed because the surface exposed to the fluid flowing along the axial direction of the mandrel, that is, the direction of the arrow F1 or F2 in FIG. 2 is limited. I found what I was doing.
  • the downhole plug according to the present invention comprises a mandrel made of a degradable material, and the mandrel And a peripheral member made of a degradable material provided on an outer peripheral surface, the peripheral member being a hollow portion through which a fluid flowing along the axial direction of the mandrel can pass, or an outer surface of the downhole plug A groove is provided on at least a part of the surface or the surface in contact with the mandrel.
  • FIG. 7 schematically shows a portion of an axial cross section of a conventional downhole plug. It is a figure at the time of installing and fixing the conventional downhole plug shown in FIG. 1 to a casing, (a) is showing before hydraulic fracturing, (b) after hydraulic fracturing. It is a figure which shows after installing the downhole plug which concerns on embodiment of this invention in a casing, and applying a pressure.
  • FIG. 5 is a perspective partial cross-sectional view schematically showing one aspect of a slip according to an embodiment of the present invention.
  • FIG. 5 is a perspective partial cross-sectional view schematically showing one aspect of a slip according to an embodiment of the present invention.
  • FIG. 5 is a perspective partial cross-sectional view schematically showing one aspect of a slip according to an embodiment of the present invention.
  • FIG. 5 is a perspective partial cross-sectional view schematically showing one aspect of a slip according to an embodiment of the present invention. It is a perspective partial sectional view showing roughly one mode of a cone concerning an embodiment of the present invention. It is a perspective partial sectional view showing roughly one mode of a cone concerning an embodiment of the present invention. It is a perspective partial sectional view showing roughly one mode of a cone concerning an embodiment of the present invention. It is a perspective partial sectional view showing roughly one mode of a cone concerning an embodiment of the present invention. It is a perspective partial sectional view showing roughly one mode of a cone concerning an embodiment of the present invention. It is a perspective partial sectional view showing roughly one mode of a cone concerning an embodiment of the present invention.
  • a downhole plug according to the present invention includes a mandrel made of a degradable material, and a plurality of peripheral members made of degradable material provided on the outer peripheral surface of the mandrel, at least one of the plurality of peripheral members Is a configuration having at least a part of a hollow portion through which a fluid can pass along the axial direction of the mandrel, or a groove on the outer surface side of the downhole plug.
  • the hollow portion is preferably provided in a peripheral member which has prevented the axial flow of fluid in the mandrel in the conventional downhole plug after hydraulic fracturing.
  • the presence of the hollow portion in such a peripheral member allows the passage of fluid and promotes the disassembly and removal of the degradable downhole plug.
  • the hollow portion is connected to at least one opening in the surface in contact with the flow in the peripheral member.
  • the through hole is in communication with two or more openings.
  • the groove of the peripheral member is a groove on the surface of the peripheral member located on the outer surface side of the downhole plug.
  • FIG. 3 is a view schematically showing only one of axis-symmetrical cross sections in the axial cross section of the mandrel of the downhole plug according to the present embodiment.
  • FIGS. 4 to 6 are perspective partial cross-sectional views schematically showing a specific aspect of the slip which is one of the peripheral members of the downhole plug according to the present embodiment.
  • 7 to 11 are perspective partial cross-sectional views schematically showing specific embodiments of the cone which is one of the peripheral members of the downhole plug according to the present embodiment.
  • the downhole plug 10 is a tool for drilling a well used for closing a wellbore (not shown), and is a cylindrical member, a mandrel 1 and a mandrel And an outer peripheral member provided on the outer peripheral surface of the outer cover.
  • the seal member 2 as the holding member, the cones 4, 5, the pair of slips 6a, 6b, the pair of ring members 7a, 7b, the pair of outer holding members 8a, 8b Is equipped.
  • the socket 3 is an optional member, and the socket 3 and the cone 5 may be integrally molded.
  • the downhole plug 10 is installed in the casing 20 arrange
  • the mandrel 1 is a member for securing the strength of the downhole plug 10.
  • the seal member 2 is an annular member formed of an elastic material or a rubber material, and is mounted on the axially outer peripheral surface of the mandrel 1 between the socket 3 and the cone 4. As the mandrel 1 moves in the axial direction and the distance between the cone 4 and the socket 3 is reduced, the seal member 2 is deformed and the seal member 2 is expanded outward in the outer peripheral direction of the axis of the mandrel 1 And abut on the casing 20. Since the inner side of the seal member 2 is in contact with the outer peripheral surface of the mandrel 1, the contact between the seal member 2 and the casing 20 closes (seals) the space between the downhole plug 10 and the casing 20.
  • the seal member 2 has a function of maintaining the seal between the downhole plug 10 and the casing 20 by maintaining the contact state with the casing 20 and the outer peripheral surface of the mandrel 1 .
  • the sealing member 2 is preferably made of a material that does not lose the function of closing the well bore by the sealing member 2 even under an environment of high temperature and high pressure, for example. Examples of preferable materials for forming the seal member 2 include nitrile rubber, hydrogenated nitrile rubber, acrylic rubber and fluororubber.
  • degradable rubbers such as polyurethane rubber, natural rubber, polyisoprene, acrylic rubber, aliphatic polyester rubber, polyester thermoplastic elastomer and polyamide thermoplastic elastomer can be used as a material for forming the sealing member 2 .
  • the socket 3 is an annular member and is mounted on the axially outer peripheral surface of the mandrel 1 adjacent to the seal member 2 and the cone 5.
  • the cones 4 and 5 are formed so that the slips 6a and 6b slide on the respective inclined surfaces of the cones 4 and 5 when a load or pressure is applied to the seal member 2 side with respect to the pair of slips 6a and 6b. It is done.
  • the slips 6 a and 6 b move outward in a direction perpendicular to the axial direction of the mandrel 1 by the application of an axial force of the mandrel 1, and abut on the inner wall of the casing 20. Fix with the inner wall.
  • the slips 6a and 6b have at least one groove in the contact portion with the inner wall of the casing 20 in order to make the closing (seal) of the space between the downhole plug 10 and the casing 20 more reliable.
  • a convex portion, a rough surface (jagged) or the like may be provided.
  • the slips 6a and 6b may be divided into a predetermined number in the circumferential direction orthogonal to the axial direction of the mandrel 1 in advance.
  • the mandrel 1 may not be divided into a predetermined number in advance, and may have a cut which ends halfway from one end to the other end along the axial direction.
  • an axial force of the mandrel 1 is applied to the cones 4 and 5 and the cones 4 and 5 enter the lower surface side of the slips 6a and 6b, whereby the slips 6a and 6b are the cut.
  • split along its extension line, and then each split piece is moved outward orthogonal to the axial direction of the mandrel 1.
  • the pair of ring members 7a and 7b are members placed on the outer peripheral surface orthogonal to the axial direction of the mandrel 1, and the expandable seal member 2 and optionally placed slips 6a and 6b and cones 4, 5 is a member provided to apply an axial force of the mandrel 1 to the combination with the socket 3;
  • the hollow portion 51, the hollow portion 64 and the hollow portion 81 are provided in the cone 5, the slips 6a and 6b and the outer holding members 8a and 8b, respectively.
  • the peripheral member or the combination thereof in which the groove is provided is not limited to this.
  • the mandrel 1, the seal member 2, the socket 3, the cones 4 and 5, the pair of slips 6 a and 6 b, and the pair of ring members 7 a and 7 b are respectively formed of degradable resin or degradable metal. Is preferred. This facilitates removal of the downhole plug 10 after well processing using the downhole plug 10.
  • degradable resin or degradable metal refers to biodegradation or hydrolysis, dissolution in water or hydrocarbon in the well, or decomposition or embrittlement by any chemical method, and so on. It means a resin or metal that can be disintegrated.
  • degradable resins examples include hydroxycarboxylic acid-based aliphatic polyesters such as polylactic acid (PLA) and polyglycolic acid (PGA), lactone-based aliphatic polyesters such as poly-caprolactone (PCL), polyethylene succinate and polybutylene Diol-dicarboxylic acid-based aliphatic polyesters such as succinate, copolymers thereof, for example, glycolic acid / lactic acid copolymers, and mixtures thereof, and fats used in combination with aromatic components such as polyethylene adipate / terephthalate Family polyester and the like.
  • a water soluble resin may be used as the degradable resin.
  • water-soluble resin examples include polyvinyl alcohol, polyvinyl butyral, polyvinyl formal, polyacrylamide (may be substituted with N and N), polyacrylic acid and polymethacrylic acid, etc.
  • Copolymers of monomers such as ethylene / vinyl alcohol copolymer (EVOH), and acrylamide / acrylic acid / methacrylic acid interpolymer, etc. may be mentioned.
  • degradable metals include alloys containing magnesium, aluminum and calcium as main components.
  • the peripheral member provided with the hollow portion or the groove is preferably formed of a material that is surface-degraded.
  • the material that decomposes on the surface is a material that loses weight only by decomposition on the surface that contacts the cause of decomposition (such as oxygen and water).
  • a material having a high water barrier property such as degradable metals and polyglycolic acid, falls on the surface.
  • the hollow portion or groove expands as the decomposition progresses, and the surface area of the peripheral member is increased to accelerate the decomposition rapidly.
  • the hollow portion or the groove expands at a lower speed than the peripheral member formed of the surface decomposition material, and therefore the effect of accelerating the decomposition as much as the surface decomposition material can not be obtained.
  • hollows or grooves be provided in the slips 6a and 6b or the cones 4 and 5 among the peripheral members.
  • a hollow part or groove may be provided in both the slips 6a and 6b and the cones 4 and 5, it is preferable to provide only one of the slip and the cone from the viewpoint of strength.
  • the slips 6a, 6b include hollow portions 64 through which fluid in the axial direction of the mandrel 1 can pass.
  • the size of the hollow portion 64 is not limited as long as the effects of the present invention can be obtained.
  • the cross section of the hollow portion 64 is circular, the diameter is small to secure the strength of the slips 6a and 6b.
  • 10 mm or less is preferable, 7 mm or less is more preferable, 6 mm or less is more preferable, and 5 mm or less is particularly preferable.
  • the diameter is preferably 1 mm or more, more preferably 3 mm or more, and particularly preferably 4 mm or more.
  • the alloy which has magnesium, aluminum or calcium as a main component as a decomposable material it is preferable to be referred to as 3 mm or more in diameter.
  • the “hollow portion 64 through which the fluid along the axial direction of the mandrel 1 can pass” may be the center of the hollow portion 64 as long as the fluid along the axial direction of the mandrel 1 can pass through. It is not intended to be limited to a configuration in which the axis coincides with the axial direction of the mandrel 1.
  • the number of hollow portions 64 is not limited as long as the desired effect can be obtained, but because the decomposition promoting effect is high, for example, one or more is preferable, and two or more is more preferable, and three or more are preferable. Particularly preferred. Further, the arrangement of the hollow portion 64 is not limited as long as a desired effect can be obtained, but the outer surfaces of the slips 6a and 6b and the inner surfaces of the slips 6a and 6b, the mandrel outer peripheral surface or the mandrel outer peripheral surface and the slip And an inner surface in contact with another peripheral member disposed therebetween.
  • the hollow portion 64 is a straight line passing through the central axis of the mandrel 1 in a cross section perpendicular to the axial direction of the mandrel 1 of the downhole plug 10, and the point A on the inner periphery of the slip 6a, 6b and the point B on the outer periphery 91% to 47% of the “maximum slip thickness” represented by the maximum length from point A to point B, where the maximum value of “slip continuous thickness” indicating the length of portions other than the hollow portion 64 on a straight line passing through It is preferable to be disposed in the range of 80% to 47%, more preferably in the range of 80% to 47%, and particularly preferably in the range of 70% to 47%.
  • the “maximum slip thickness” can also be expressed as the thickness in the radial direction of the slips 6 a and 6 b in the cross section.
  • the “slip continuous thickness” can also be expressed as the maximum length of a continuous portion in the thickness direction of the slips 6a, 6b excluding the hollow portion 64 portion.
  • the slips 6a and 6b have grooves on the outer surface side through which fluid in the axial direction of the mandrel 1 can pass.
  • the size of the groove is not limited as long as the effects of the present invention can be obtained.
  • the width of the groove is preferably a small width to secure strength, for example, 10 mm or less is preferable, 7 mm or less is more preferable, and 5 mm or less Particularly preferred.
  • 45% or less of the maximum slip thickness is preferable, 40% or less is more preferable, and 25% or less is particularly preferable.
  • the shape of the groove is easy to process if it is a straight line from end to end of one surface of the slips 6a and 6b, but for example, among the above-mentioned surfaces, a portion in contact with the casing 20 after hydraulic fracturing.
  • the ends of the grooves of the slips 6a and 6b are preferably in a plane perpendicular to the axial direction of the mandrel 1 because the introduction of fluid along the axial direction of the mandrel is easy, and in particular on the side to which the fluid is supplied. It is preferable to be in the near surface.
  • the slip 61 shown in FIG. 4 is constituted by a plurality of slip division pieces 612 divided by a cut 611 which is terminated on the way from one end to the other end in the axial direction.
  • Each slip divided piece 612 is provided with a plurality of projections 613 on the surface in contact with the casing 20 and one hollow portion 614 through which the fluid along the axial direction of the mandrel 1 can pass.
  • the slip 6b may have the same configuration. The same applies to the following other aspects.
  • the slip 62 shown in FIG. 5 is provided with a plurality of hollow portions 614 in each slip divided piece 612. As a result, the area in contact with the fluid increases, and the downhole plug 10 becomes easier to disassemble and remove.
  • each slip split piece 612 is provided with a groove 637 along the axial direction of the mandrel 1 located on the surface that abuts on the casing 20. Since the fluid also penetrates into the groove 637 and the fluid comes in contact with the surface of the groove 637, the decomposition progresses also from the surface of the groove 637. As described above, the area in contact with the fluid is increased, and the downhole plug 10 becomes easier to disassemble and remove.
  • a hollow or grooved cone In one aspect of the cones 4 and 5 in the present embodiment, the cones 4 and 5 are provided with hollow portions through which a fluid flowing along the axial direction of the mandrel 1 can pass.
  • the size of the hollow portion is not limited as long as the effect of the present invention can be obtained.
  • the cross section of the hollow portion is circular, it is preferable to have a small diameter in order to secure the strength of the cones 4 and 5
  • 10 mm or less is preferable, 7 mm or less is more preferable, 6 mm or less is more preferable, and 5 mm or less is particularly preferable.
  • the diameter is preferably 1 mm or more, more preferably 3 mm or more, and particularly preferably 4 mm or more.
  • the number of hollow portions per cone is not limited as long as the desired effect can be obtained, but it is preferably 4 or more, more preferably 8 or more, and particularly preferably 12 or more, because the decomposition promoting effect is high.
  • the position of the hollow portion is not limited as long as the desired effect can be obtained, but the outer surfaces of the cones 4, 5 and the inner surfaces of the cones 4, 5 and the outer peripheral surface of the mandrel 1 or the mandrel 1 and its cone It is located between the other peripheral member disposed between it and the inner surface in contact with it.
  • the hollow portion is a straight line passing through the central axis of the mandrel 1 in a cross section perpendicular to the axial direction of the mandrel 1 of the downhole plug 10, and the point A on the inner periphery of the cones 4 and 5 and the point B on the outer periphery
  • the maximum value of "cone continuous thickness" indicating the length of the part other than the hollow part on the passing straight line ranges from 91% to 47% of the "cone maximum thickness" represented by the maximum length from point A to point B It is preferable that the composition be arranged such that the range of 80% to 47% is more preferable, and the range of 70% to 47% is particularly preferable.
  • the “cone maximum thickness” can also be expressed as the radial thickness of the cones 4 and 5 in the cross section.
  • the “cone continuous thickness” can also be expressed as the maximum length of a continuous portion in the thickness direction of the cones 4 and 5 excluding the hollow portion.
  • the cones 4 and 5 are provided on the outer surface side with grooves through which fluid can pass along the axial direction or circumferential direction of the mandrel 1.
  • the size of the groove is not limited as long as the effects of the present invention can be obtained.
  • the width of the groove is preferably a small width to secure strength, for example, 10 mm or less is preferable, 7 mm or less is more preferable, and 5 mm or less Particularly preferred.
  • the groove depth is preferably 45% or less of the maximum thickness of the cone, more preferably 40% or less, and particularly preferably 25% or less.
  • the cones 4 and 5 are provided with grooves in the surface that abuts the sealing member 2 or the socket 3.
  • This groove allows the movement of fluid in the direction perpendicular to the axis of the downhole plug 10.
  • a plurality of radially arranged ones are on a straight line passing from the central axis of the mandrel 1 to the outer periphery of the cones 4 and 5. It is preferable that it is a groove of The size of the groove is not limited as long as the desired effect of the present invention can be obtained.
  • the width of the groove is preferably a small width to secure strength, for example, 10 mm or less is preferable, 7 mm or less is more preferable, 5 mm The following are particularly preferred.
  • the groove depth is preferably 45% or less of the maximum thickness of the cone, more preferably 40% or less, and particularly preferably 25% or less.
  • a cone 51 shown in FIG. 7 includes a plurality of hollow portions 511 through which fluid in the axial direction of the mandrel 1 can pass. After hydraulic fracturing, the fluid does not contact the portion of the surface 512 of the cone 51 that partially abuts the slip 6 b, the surface 513 that abuts the socket 3, and the surface 514 that abuts the mandrel 1.
  • the hollow portion 511 is connected to an opening at the other end along the axial direction of the mandrel 1 from the surface 513 which abuts on the socket 3. Therefore, the fluid intrudes from the opening and the fluid contacts the inner wall of the hollow portion 511, so the downhole plug 10 is easily disassembled and removed.
  • the cone 52 shown in FIG. 8 further comprises a groove 525 along the circumferential direction of the surface 512 which partially abuts the slip 6b. Therefore, after hydraulic fracturing, a gap is formed between the slip 6b and the cone 52 by the groove 525, and the fluid in the cut portion of the slip 6b infiltrates the gap. Accordingly, since the cone 52 is disintegrated from the gap formed by the inner wall of the hollow portion 511 in contact with the fluid and the groove 525, the downhole plug 10 can be easily disassembled and removed.
  • FIG. 9 Another aspect of the cone 5 according to the present embodiment will be described with reference to FIG.
  • the cone 53 shown in FIG. 9 is provided with a groove 535 along the axial direction of the mandrel 1 located on the surface 532 partially abutting the slip 6 b. After hydraulic fracturing, the groove 535 forms a gap along the axial direction of the mandrel 1 between the slip 6b and the cone 53, and the fluid penetrates the gap.
  • the disassembly of the cone 53 proceeds from the gap created by the groove 535 in contact with the fluid, so the disassembly and removal of the downhole plug 10 is facilitated.
  • the cone 54 shown in FIG. 10 further comprises a groove 545 along the axial direction of the mandrel 1 located on the surface 512 partially abutting the slip 6b. After hydraulic fracturing, a gap is formed between the slip 6b and the cone 54 by the groove 545, and the fluid penetrates the gap. Accordingly, since the cone 54 is disintegrated from the gap formed by the inner wall of the hollow portion 511 in contact with the fluid and the groove 545, the downhole plug 10 can be easily disassembled and removed.
  • the cone 55 shown in FIG. 11 further comprises, on the surface 513 abutting the socket 3, a radial, flowable channel 555 directed from the central axis of the mandrel 1 to the outer surface of the cone 55. Furthermore, as compared with the hollow portion 511 in the cone 51 of the first aspect, the hollow portion 511 is also provided at a position farther from the mandrel 1. After hydraulic fracturing, the intruding fluid flows through a groove 555 provided on the surface 513 abutting the socket 3 from the central axis of the mandrel 1 to the outer surface of the cone 55. Accordingly, since the cone 55 is disassembled from the gap formed by the inner wall of the hollow portion 511 in contact with the fluid and the groove 555, the downhole plug 10 can be easily disassembled and removed.
  • the downhole plug 10 of the present embodiment is manufactured by assembling a conventionally known method using the mandrel 1 and the peripheral member.
  • the mandrel 1 can be manufactured by a conventionally known method according to the material.
  • a conventionally known method can be selected according to the material of the peripheral member, and usually, after forming the base material, a hole or a groove is formed by cutting, drilling or the like. Manufacture by making.
  • the downhole plug of the present embodiment includes the mandrel made of the degradable material, and the plurality of peripheral members made of the degradable material provided on the outer peripheral surface of the mandrel. At least one has a hollow portion through which a fluid flowing in the axial direction of the mandrel can pass, or a groove in at least a part of a surface to be an outer surface of the downhole plug or a surface in contact with the mandrel is there.
  • the hollow portion is connected to at least one opening in the surface of the peripheral member provided with the hollow portion.
  • the opening appears on the outer surface side of the downhole plug after the installation of the downhole plug.
  • the hollow portion is a through hole.
  • the cross section of the hollow portion is circular.
  • the peripheral member also has at least one opening in the surface in contact with the mandrel, and the hollow portion is connected to the opening in the surface in contact with the mandrel.
  • the peripheral member also has at least one groove on the surface in contact with the mandrel.
  • the at least one peripheral member is a slip or a cone.
  • the at least one peripheral member has the hollow portion, is a cross section perpendicular to the axial direction of the mandrel, and includes the hollow portion.
  • the maximum length of the continuous portion in the thickness direction of the peripheral member excluding the hollow portion is 47% or more and 91% or less of the thickness of the peripheral member in the radial direction.
  • one aspect of the downhole plug of the present embodiment is a downhole plug including a mandrel and a peripheral member provided on the outer peripheral surface of the mandrel, wherein the peripheral member is made of a degradable material, and the peripheral member is It can be expressed that the ratio of the continuous thickness maximum value to the maximum thickness is 47% or more and 91% or less.
  • the present invention has industrial applicability because it provides a degradable downhole tool utilized in hydraulic fracturing, which is a technique of shale gas oil drilling.
  • Mandrel 2 Seal member (peripheral member) 3: Socket (peripheral members) 4, 5, 51, 52, 53, 54, 55: cone (peripheral member) 6a, 6b, 61, 62, 63: Slip (peripheral members) 7a, 7b: Ring members 8a, 8b: Outer side holding members (peripheral members) 10: downhole plug 20: casing 64: hollow portion 100: conventional downhole plug 101: mandrel 102: sealing member 103: holding member 104, 105: conventional cone 106a, 106b: conventional slip 200: casing 511, 614 Hollow part 525, 535, 545, 637: Groove

Abstract

坑井掘削用のダウンホールプラグであって、水圧破砕後に速やかに分解されることにより、短時間で流路が回復されるダウンホールプラグを提供する。ダウンホールプラグ(10)であって分解性材料からなるマンドレル(1)と、マンドレル(1)の外周面上に設けられた分解性材料からなる複数の周辺部材(2,3,4,5,6a,6b,8a,8b)とを含み、複数の周辺部材の少なくとも一つ(6a,6b)は、マンドレル(1)の軸方向に沿って流れる流体が通過可能な中空部(64)、またはダウンホールプラグ(10)の外表面となる面もしくはマンドレル(1)と接する面の少なくとも一部に溝を有する。

Description

分解性ダウンホールプラグ
 本発明は、水圧破砕法に用いられる分解性ダウンホールプラグに関する。
 水圧破砕法は、水圧等の流体圧(以下、単に「水圧」ということがある。)により生産層に穿孔および亀裂(フラクチャ)等を発生させ、該フラクチャ等を通して炭化水素資源を採取・回収するための生産層の刺激方法である。なお、生産層とは、シェールオイル等の石油またはシェールガス等の天然ガスなどの炭化水素資源を産出する層のことである。水圧破砕法は、一般に、垂直な孔を掘削し、続けて、垂直な孔を曲げて、地下数千mの地層内に水平な孔を掘削する。その後、それらの坑井孔内にフラクチャリング流体等の流体を高圧で送り込み、地下の生産層に水圧によって亀裂等を生じさせる。そして、該フラクチャ等を通して炭化水素資源を採取・回収する。なお、坑井孔とは、坑井を形成するために設ける孔を意味し、「ダウンホール」ということもある。
 高圧で送り込まれる流体を使用して、地下の生産層に水圧によって亀裂および穿孔を生じさせるためには、通常、以下の方法が採用されている。すなわち、地下数千mの地層内に掘削した坑井孔(ダウンホール)に対して、坑井孔の先端部から順次、所定区画を部分的に閉塞し、その閉塞した区画内に流体を高圧で送入して、生産層に亀裂および穿孔を生じさせる。次いで、次の所定区画(通常は、先行する区画より手前、すなわち地上側の区画)を閉塞して亀裂および穿孔を生じさせる。以下、この工程を、必要な区画すべてにおいて亀裂および穿孔の形成が完了するまで繰り返し実施する。
 坑井孔において固定され、坑井孔を閉塞するものとして、種々のダウンホールツールが開発され、用いられている。これらのダウンホールツールの1種として、ダウンホールプラグが知られている。ダウンホールプラグは坑井孔の一部を閉塞するために坑井孔内に設置されるものである。ダウンホールプラグは、フラックプラグ、ブリッジプラグまたはパッカーなどと呼ばれ、少なくとも1つのマンドレル、およびマンドレルの外周面上に取り付けられる1つ以上の部材を持つ。
 ダウンホールプラグを坑井孔に導入後、所定の部材が拡径し、坑井孔の内壁に当接することで坑井孔に固定されるとともに、同じくダウンホールプラグを構成するシール部材などが坑井孔の内壁とダウンホールプラグの間をシールすることで坑井孔が閉塞される。
 このようなダウンホールプラグを構成する部材は、その機能に応じてさまざまな設計がなされており、たとえば特許文献1には坑井孔の内壁からの熱を遮断する断熱性をもたせる目的で穴をあけたスリップが開示されている。また、特許文献2にはドリルによる破壊を容易にする目的で、内部が空洞になったスリップが開示されている。
 ところで、ダウンホールプラグは、工法によっては坑井孔の一時的な閉塞に用いられるため、使用後にダウンホールプラグを除去する必要がある。除去を容易にするために、種々の分解性ダウンホールプラグが提案されている。分解性ダウンホールプラグはその構成部材の少なくとも一部が、坑井環境に応じて分解する分解性材料で形成されている。これにより、使用後に分解性ダウンホールプラグ全体が分解または解体し、その結果、ダウンホールプラグの除去が容易となるものである(例えば、特許文献3)。このような分解性ダウンホールプラグにおいては分解性の制御が課題となっており、たとえば分解速度が不足している材料の分解を促進するため、分解促進剤を埋め込んだボトムサブも提案されている(特許文献4)。
米国特許出願公開2015/0101796号 米国特許出願公開2002/0029880号 米国特許出願公開2017/0234103号 米国特許出願公開2016/0160611号
 図1および2は、従来のダウンホールプラグを説明するための参考図である。図1は、従来のダウンホールプラグの軸方向の断面の一部分を概略的に示す図である。図2は、図1に示すダウンホールプラグをケーシングに設置した際の図であり、図2の(a)は水圧破砕前、図2の(b)は水圧破砕後を示している。なお、説明の都合上、図1および2では、ダウンホールプラグの軸方向を紙面左右方向として示しているが、実際の使用時には、ダウンホールプラグは、ダウンホールプラグの軸方向が坑井孔の深さ方向に沿うようにして配置されることもある。
 はじめに、図1に示すように、ダウンホールプラグ100は、マンドレル101と、シール部材102と、シール部材102の一方側においてシール部材102に隣接して配置された保持部材103と、シール部材102および保持部材103を挟むようにして配置されたコーン104,105と、一対のスリップ106a,106bと、一対のリング部材107a,107bとを備えている。リング部材107aはマンドレル101に対してマンドレル101の軸方向に摺動可能であり、リング部材107bはマンドレル101に固定されている。本実施形態におけるシール部材102は、所定の力を加えると変形する弾性材料またはゴム材料で形成されている。
 ダウンホールプラグ100は、坑井孔(図示せず)において、図2の(a)に示すように、坑井孔の内部に配置されたケーシング200内に設置される。ダウンホールプラグ100をケーシング200に設置する際には、マンドレル101を図中矢印Pで示す軸方向に移動させて一対のリング部材107a,107b同士のマンドレル軸方向の距離を縮小させる。これにより、スリップ106a,106bがコーン104,105の斜面に沿ってマンドレル101の軸方向と直交する外方に移動し、坑井孔の内壁と当接することで、ダウンホールプラグ100を坑井孔の所定位置に設置することができる。また、マンドレル101が軸方向に移動してコーン104と保持部材103との間の距離が縮小することに伴い、シール部材102は変形してマンドレル101の軸の外周方向外側へと拡がる。そしてシール部材102がケーシング200と当接することで、ダウンホールプラグ100とケーシング200との間が閉塞される。その後、マンドレル101の軸方向の中空部にボール等(図示せず)をセットすることにより坑井孔は閉塞される。次いで閉塞した区画内にコーン104側から流体を高圧で送入して、生産層に亀裂を生じさせる水圧破砕を行う。
 ダウンホールプラグが坑井中の流体によって分解される分解性材料から形成された分解性ダウンホールプラグである場合は、所定時間坑井中の流体に曝されることにより、流体との接触部分からダウンホールプラグが分解され、崩壊、溶解することでダウンホールプラグが除去され、閉塞されていた流路を回復させることができる。
 ところが、本発明者らの検討により、分解性ダウンホールプラグの分解が想定よりも遅延し、流路の回復が遅れる虞があることがわかった。
 本発明は上記の問題点に鑑みてなされたものであり、その目的は、坑井掘削用のプラグであって、水圧破砕後に、速やかに分解することにより、短時間で流路が回復されるプラグを提供することにある。
 本発明者らが鋭意検討した結果、ケーシングと分解性ダウンホールプラグ、および分解性ダウンホールプラグを構成する部材どうしが密着していることにより、分解性ダウンホールプラグに坑井中の流体が十分にいきわたらず、流体に曝される分解性ダウンホールプラグの表面が小さくなることで分解の遅延を生じさせていることを見出した。すなわち、図2の(b)に示すように、水圧破砕後には分解性ダウンホールプラグのスリップ106a,106bおよびシール部材102がケーシング200と当接する。また、コーン104はシール部材102とスリップ106aと当接する。さらに、コーン105は保持部材103とスリップ106bと当接する。そうすると、水圧破砕後の分解性ダウンホールプラグにおいて、マンドレルの軸方向、すなわち図2中の矢印F1またはF2の方向に沿って流れる流体に曝される表面が限定されているために、分解が遅延していることを見出した。
 本発明は、上記の課題を解決するために本発明者らが見出した新規知見に基づき完成されたものであり、本発明に係るダウンホールプラグは、分解性材料からなるマンドレルと、該マンドレルの外周面上に設けられた分解性材料からなる周辺部材とを含み、上記周辺部材は、上記マンドレルの軸方向に沿って流れる流体が通過可能な中空部、または上記ダウンホールプラグの外表面となる面もしくは上記マンドレルと接する面の少なくとも一部に溝を有する。
 本発明によれば、水圧破砕後に短時間で流路が回復される分解性ダウンホールプラグを提供することができる。
従来のダウンホールプラグの軸方向の断面の一部分を概略的に示す図である。 図1に示す従来のダウンホールプラグをケーシングに設置、固定した際の図であり、(a)は水圧破砕前、(b)は水圧破砕後を示している。 本発明の実施形態に係るダウンホールプラグをケーシングに設置し、圧力を加えた後を示す図である。 本発明の実施形態に係るスリップの一態様を概略的に示す斜視部分断面図である。 本発明の実施形態に係るスリップの一態様を概略的に示す斜視部分断面図である。 本発明の実施形態に係るスリップの一態様を概略的に示す斜視部分断面図である。 本発明の実施形態に係るコーンの一態様を概略的に示す斜視部分断面図である。 本発明の実施形態に係るコーンの一態様を概略的に示す斜視部分断面図である。 本発明の実施形態に係るコーンの一態様を概略的に示す斜視部分断面図である。 本発明の実施形態に係るコーンの一態様を概略的に示す斜視部分断面図である。 本発明の実施形態に係るコーンの一態様を概略的に示す斜視部分断面図である。
 1.ダウンホールプラグ
 本発明に係るダウンホールプラグは、分解性材料からなるマンドレルと、マンドレルの外周面上に設けられた分解性材料からなる複数の周辺部材とを含み、複数の周辺部材の少なくとも一つは、マンドレルの軸方向に沿う流体が通過可能な中空部、またはダウンホールプラグの外表面側の溝を、少なくとも一部に有する構成である。
 上記中空部は、従来の水圧破砕後のダウンホールプラグにおいて、マンドレルの軸方向の流体の流れを妨げていた周辺部材に設けられることが好ましい。そのような周辺部材に上記中空部があることで流体が通過可能となり、分解性ダウンホールプラグの分解、除去が促進される。また、本発明のダウンホールプラグの分解初期から流体の通過が容易になるため、上記中空部は、上記周辺部材の中で上記流れに接する面にある、少なくとも1つの開口とつながっていることが好ましく、2つ以上の開口とつながっている貫通孔であることがさらに好ましい。
 また、上記周辺部材の溝は、上記周辺部材の、上記ダウンホールプラグの外表面側に位置する表面にある溝である。特に、水圧破砕後にケーシングと当接している面にあることが好ましい。
 以下、本発明に係るダウンホールプラグの具体的な実施形態について図3~11を参照しながら説明する。
 図3は、本実施形態に係るダウンホールプラグのマンドレルの軸方向の断面における、軸に対して対称な断面のうち一方のみを概略的に示す図である。図4~6は本実施形態に係るダウンホールプラグの周辺部材のひとつであるスリップの具体的な態様を概略的に示す斜視部分断面図である。図7~11は本実施形態に係るダウンホールプラグの周辺部材のひとつであるコーンの具体的な態様を概略的に示す斜視部分断面図である。
 これらの図を参照して説明すると、ダウンホールプラグ10は坑井孔(図示せず)の閉塞を行うために用いられる坑井掘削用の工具であり、筒状部材であるマンドレル1と、マンドレル1の外周面上に設けられた周辺部材とを備えている。周辺部材としては、シール部材2と、保持部材であるソケット3と、コーン4,5と、一対のスリップ6a,6bと、一対のリング部材7a,7bと、一対の外側保持部材8a,8bとを備えている。なお、ソケット3は任意の部材であり、ソケット3とコーン5とが一体成型されていてもよい。また、図3では、ダウンホールプラグ10は、坑井孔の内部に配置されたケーシング20内に設置されている。
 マンドレル1は、ダウンホールプラグ10の強度を確保するための部材である。
 シール部材2は、弾性材料またはゴム材料で形成される環状の部材であって、ソケット3とコーン4との間において、マンドレル1の軸方向外周面上に取り付けられている。マンドレル1が軸方向に移動してコーン4とソケット3との間の距離が縮小することに伴い、シール部材2は変形し、シール部材2はマンドレル1の軸の外周方向外側へと拡径してケーシング20に当接する。シール部材2の内方はマンドレル1の外周面と当接しているため、シール部材2のケーシング20への当接により、ダウンホールプラグ10とケーシング20との間の空間を閉塞(シール)する。次いでフラクチャリングが遂行されている間、シール部材2は、ケーシング20およびマンドレル1の外周面との当接状態を維持することにより、ダウンホールプラグ10とケーシング20とのシールを維持する機能を有する。シール部材2は、例えば高温高圧下の環境下においても、シール部材2による坑井孔の閉塞機能が失われない材料から形成されていることが好ましい。シール部材2を形成する好ましい材料としては、例えばニトリルゴム、水素化ニトリルゴム、アクリルゴムおよびフッ素ゴム等が挙げられる。また、シール部材2を形成する材料として、ポリウレタンゴム、天然ゴム、ポリイソプレン、アクリルゴム、脂肪族ポリエステルゴム、ポリエステル系熱可塑性エラストマーおよびポリアミド系熱可塑性エラストマー等の分解性ゴムを使用することができる。
 ソケット3は、環状の部材であって、マンドレル1の軸方向外周面上において、シール部材2とコーン5とに隣接して取り付けられている。
 コーン4,5は、一対のスリップ6a,6bに対してシール部材2側へと荷重または圧力が加えられる場合に、スリップ6a,6bがコーン4,5それぞれの傾斜面を摺動するように形成されている。
 スリップ6a,6bは、マンドレル1の軸方向の力が加えられることにより、マンドレル1の軸方向と直交する外方に移動し、ケーシング20の内壁に当接して、ダウンホールプラグ10とケーシング20の内壁との固定を行う。スリップ6a,6bには、ダウンホールプラグ10とケーシング20との間の空間の閉塞(シール)を一層確実なものとするために、ケーシング20の内壁との当接部に、1以上の溝、凸部、および粗面(ギザギザ)などを設けてもよい。また、スリップ6a,6bは、予めマンドレル1の軸方向に直交する円周方向において所定の数に分割されているものでもよい。あるいは、予め所定の数に分割されてはおらず、軸方向に沿う一端部から他端部に向かい途中で終了する切れ目を有するものでもよい。切れ目を有する場合は、コーン4,5にマンドレル1の軸方向の力が加えられて、コーン4,5がスリップ6a,6bの下面側に進入することにより、スリップ6a,6bが、前記の切れ目およびその延長線に沿って割られて分割し、次いで各分割片がマンドレル1の軸方向と直交する外方に移動する。
 一対のリング部材7a,7bは、マンドレル1の軸方向と直交する外周面上に置かれた部材であり、拡径可能なシール部材2、および、所望により置かれるスリップ6a,6bとコーン4,5、ソケット3との組み合わせに対して、マンドレル1の軸方向の力を加えるために備えられた部材である。
 また、図3に示すダウンホールプラグ10では、コーン5、スリップ6a,6bおよび外側保持部材8a,8bに、それぞれ、中空部51、中空部64および中空部81が設けられているが、中空部または溝が設けられる周辺部材またはその組み合わせはこれに限定されるものではない。
 本実施形態において、マンドレル1、シール部材2、ソケット3、コーン4,5、一対のスリップ6a,6b、および一対のリング部材7a,7bは、それぞれ分解性樹脂または分解性金属によって形成されていることが好ましい。これにより、ダウンホールプラグ10を用いて坑井処理を行った後に、ダウンホールプラグ10の除去が容易となる。
 なお、本明細書において、「分解性樹脂または分解性金属」とは、生分解または加水分解、水または坑井内の炭化水素に溶解、さらには何らかの化学的な方法によって分解または脆化して簡単に崩壊させることのできる樹脂または金属を意味する。分解性樹脂としては、例えば、ポリ乳酸(PLA)およびポリグリコール酸(PGA)等のヒドロキシカルボン酸系脂肪族ポリエステル、ポリ-カプロラクトン(PCL)等のラクトン系脂肪族ポリエステル、ポリエチレンサクシネートおよびポリブチレンサクシネート等のジオール・ジカルボン酸系脂肪族ポリエステル、これらの共重合体、例えば、グリコール酸・乳酸共重合体、ならびに、これらの混合物、ポリエチレンアジペート/テレフタレート等の芳香族成分を組み合わせて使用する脂肪族ポリエステル等が挙げられる。また、分解性樹脂として水溶性樹脂を用いてもよい。水溶性樹脂としては、ポリビニルアルコール、ポリビニルブチラール、ポリビニルホルマール、ポリアクリルアミド(N,N置換物でもよい。)、ポリアクリル酸およびポリメタクリル酸等が挙げられ、さらには、これらの樹脂を形成する単量体の共重合体、例えば、エチレン・ビニルアルコール共重合体(EVOH)、およびアクリルアミド・アクリル酸・メタクリル酸インターポリマー等が挙げられる。分解性金属としては、例えば、マグネシウム、アルミニウムおよびカルシウム等を主要成分とした合金が挙げられる。
 本実施形態の一態様において、中空部または溝が設けられている周辺部材は、表面分解する材料によって形成されていることが好ましい。表面分解する材料とは、分解を起こす原因(酸素および水など)と接触する表面においてのみ分解することで重量減少していく材料である。加水分解性材料の場合、分解性金属およびポリグリコール酸など、水に対するバリア性の高い材料が表面分解する材料に該当する。表面分解する材料の場合、分解に伴って中空部または溝が拡がるため、周辺部材の表面積が増加して加速度的に分解が速くなる。一方、バルク分解する材料の場合は、表面分解する材料で形成された周辺部材と比べると中空部または溝の拡がる速度が遅いので、表面分解する材料ほどの分解を速める効果は得られない。
 以下、スリップまたはコーンにおいて、中空部または溝が設けられている場合の一態様について説明する。なお、分解促進の観点から、周辺部材の中でも、スリップ6a,6bまたはコーン4,5において中空部または溝が設けられていることが好ましい。また、スリップ6a,6bおよびコーン4,5の両方に中空部または溝を設けてもよいが、強度の観点からスリップおよびコーンの何れか一方にのみ設けることが好ましい。
 2.中空部または溝のあるスリップ
 本実施形態におけるスリップ6a,6bの一態様では、スリップ6a,6bはマンドレル1の軸方向に沿う流体が通過可能な中空部64を備えている。中空部64の大きさは本発明の効果が得られる限り制限はないが、例えば、中空部64の断面が円形の場合には、スリップ6a,6bの強度を担保するために小さな直径であることが好ましく、たとえば10mm以下が好ましく、7mm以下がより好ましく、6mm以下がさらに好ましく、5mm以下が特に好ましい。また、大きな中空部64はスリップ6a,6bの分解促進効果が高いため、たとえば円形の場合は直径1mm以上が好ましく、3mm以上がさらに好ましく、4mm以上が特に好ましい。なお、分解性材料としてマグネシウム、アルミニウムまたはカルシウムを主要成分とした合金を用いた場合には、直径3mm以上とすることが好ましい。直径を3mm以上とすることにより、分解により生じる分解副生物(例えば、水酸化マグネシウム)によって中空部64が詰まることを防ぐことができ、中空部64を有することによる効果を確実に得ることができる。
 本明細書において、「マンドレル1の軸方向に沿う流体が通過可能な中空部64」とは、マンドレル1の軸方向に沿う流体が中空部64を通過可能であればよく、中空部64の中心軸がマンドレル1の軸方向と一致する形態に限定することを意図したものではない。
 中空部64の数については所望の効果が得られる限り制限はないが、分解促進効果が高いため、例えば分割片1つあたりに1つ以上が好ましく、2つ以上がさらに好ましく、3つ以上が特に好ましい。さらに中空部64の配置については、所望の効果が得られる限り制限はないが、スリップ6a,6bの外表面と、スリップ6a,6bの内表面であってマンドレル外周面またはマンドレル外周面とそのスリップとの間に配置された他の周辺部材と接触する内表面との間に配置される。中空部64は、ダウンホールプラグ10のマンドレル1の軸方向と垂直な断面において、マンドレル1の中心軸を通る直線であって、スリップ6a,6b内周上の点Aおよび外周上の点Bを通る直線上で、中空部64以外の部分の長さを示す「スリップ連続厚み」の最大値が、点Aから点Bの最大長さで表される「スリップ最大厚み」の91%~47%の範囲となるように配置されることが好ましく、80%~47%の範囲がさらに好ましく、70%~47%の範囲が特に好ましい。なお、「スリップ最大厚み」は、断面における、スリップ6a,6bの放射方向の厚みとも表現することができる。また、「スリップ連続厚み」は、中空部64部分を除いたスリップ6a,6bの厚み方向において連続する部分の最大長さとも表現することができる。
 本実施形態の別の態様においては、スリップ6a,6bは外表面側にマンドレル1の軸方向に沿う流体が通過可能な溝を備えている。溝の大きさは本発明の効果が得られる限り制限はないが、例えば、溝の幅は強度を担保するために小さな幅が好ましく、たとえば10mm以下が好ましく、7mm以下がさらに好ましく、5mm以下が特に好ましい。また、溝深さも強度を担保する観点から、スリップ最大厚みの45%以下が好ましく、40%以下がさらに好ましく、25%以下が特に好ましい。また、溝の形状は、スリップ6a,6bのひとつの面の端から端までの直線であれば加工が容易であるが、たとえば上記の面のうち、水圧破砕後にケーシング20と当接している部分の端から端を結ぶ直線であった場合は、長さがより短いため、本発明の効果を得つつ強度が担保されるので好ましい。スリップ6a,6bの溝の端は、マンドレルの軸方向に沿う流体の導入が容易となることから、マンドレル1の軸方向と垂直な面にあることが好ましく、なかでも流体が供給される側に近い面にあることが好ましい。
 〔スリップの第1の態様〕
 本実施形態にかかるスリップ6aの第1の態様について、図4を参照して説明する。図4に示すスリップ61は、軸方向に沿う一端部から他端部に向かい途中で終了する切れ目611で分割される複数のスリップ分割片612によって構成されている。各スリップ分割片612は、ケーシング20と当接する表面に複数の凸部613と、マンドレル1の軸方向に沿う流体が通過可能な1つの中空部614とを備えている。水圧破砕後、スリップ61のケーシング20と当接する表面、およびコーン4と当接する表面615における当接部分は分解を促進する流体との接触が阻害されているため、分解が進まない。一方、コーン4と当接する表面615からマンドレル1の軸方向に沿う他端部616は流体と接しているため、端部616の面にある開口とつながっている中空部614には流体が侵入し、中空部614の内壁に流体が接触する。また、切れ目611部分にも流体が侵入する。従って、スリップ61は、流体と接する切れ目611が形成する表面と、端部616と、中空部614の内壁から分解が進行するため、ダウンホールプラグ10の分解・除去が容易となる。なお、スリップ6bにおいても同様の構成を有し得る。このことは、以下の別の態様についても同様である。
 〔スリップの第2の態様〕
 本実施形態にかかるスリップ6aの別の態様について、図5を参照して説明する。なお、本態様では、第1の態様との相違点について説明するため、前記態様において説明した部材と同一の機能を有する部材には同一の部材番号を付し、その説明を省略する。
 図5に示すスリップ62は、各スリップ分割片612において中空部614が複数設けられている。これにより、流体と接する面積が増加し、ダウンホールプラグ10の分解・除去がより容易となる。
 〔スリップの第3の態様〕
 本実施形態にかかるスリップ6aの別の態様について、図6を参照して説明する。なお、本態様では、第1の態様との相違点について説明するため、前記態様において説明した部材と同一の機能を有する部材には同一の部材番号を付し、その説明を省略する。
 図6に示すスリップ63は、各スリップ分割片612において中空部614が複数設けられている。さらにスリップ63では、各スリップ分割片612が、ケーシング20と当接する表面上に位置する、マンドレル1の軸方向に沿った溝637を備えている。この溝637にも流体が侵入し、溝637の表面に流体が接触することになるため、溝637の表面からも分解が進行する。以上により、流体と接する面積が増加し、ダウンホールプラグ10の分解・除去がより容易となる。
 3.中空部または溝のあるコーン
 本発実施形態におけるコーン4,5の一態様では、コーン4,5はマンドレル1の軸方向に沿って流れる流体が通過可能な中空部を備えている。中空部の大きさは本発明の効果が得られる限り制限はないが、例えば、中空部の断面が円形の場合には、コーン4,5の強度を担保するために小さな直径であることが好ましく、たとえば10mm以下が好ましく、7mm以下がより好ましく、6mm以下がさらに好ましく、5mm以下が特に好ましい。また、大きな中空部はコーン4,5の分解促進効果が高いため、たとえば円形の場合は直径1mm以上が好ましく、3mm以上がさらに好ましく、4mm以上が特に好ましい。コーン1つあたりの中空部の数については所望の効果が得られる限り制限はないが、分解促進効果が高いため、例えば4以上が好ましく、8以上がさらに好ましく、12以上が特に好ましい。さらに中空部の位置については所望の効果が得られる限り制限はないが、コーン4,5の外表面と、コーン4,5の内表面であってマンドレル1外周面またはマンドレル1とそのコーンとの間に配置された他の周辺部材と接触する内表面との間に位置する。中空部は、ダウンホールプラグ10のマンドレル1の軸方向と垂直な断面において、マンドレル1の中心軸を通る直線であって、コーン4,5の内周上の点Aおよび外周上の点Bを通る直線上で、中空部以外の部分の長さを示す「コーン連続厚み」の最大値が、点Aから点Bの最大長さであらわされる「コーン最大厚み」の91%~47%の範囲となるように配置されることが好ましく、80%~47%の範囲がさらに好ましく、70%~47%の範囲が特に好ましい。なお、「コーン最大厚み」は、断面における、コーン4,5の放射方向の厚みとも表現することができる。また、「コーン連続厚み」は、中空部部分を除いたコーン4,5の厚み方向において連続する部分の最大長さとも表現することができる。
 本実施形態の別の態様においては、コーン4,5は外表面側に、マンドレル1の軸方向または周方向に沿った、流体が通過可能な溝を備えている。溝の大きさは本発明の効果が得られる限り制限はないが、例えば、溝の幅は強度を担保するために小さな幅が好ましく、たとえば10mm以下が好ましく、7mm以下がさらに好ましく、5mm以下が特に好ましい。また、溝深さはコーン最大厚みの45%以下が好ましく、40%以下がさらに好ましく、25%以下が特に好ましい。
 本実施形態のさらに別の態様においては、コーン4,5はシール部材2またはソケット3に当接する表面に溝を備えている。この溝があることで、ダウンホールプラグ10の軸に垂直な方向への流体の移動を可能としている。コーン4,5における溝の形状および配置としては、ダウンホールプラグ10の軸に直交する断面において、マンドレル1の中心軸からコーン4,5の外周を通る直線上にあり、放射状に配置される複数の溝であることが好ましい。溝の大きさは所望の本発明の効果が得られる限り制限はないが、例えば、溝の幅は強度を担保するために小さな幅が好ましく、たとえば10mm以下が好ましく、7mm以下がさらに好ましく、5mm以下が特に好ましい。また、溝深さはコーン最大厚みの45%以下が好ましく、40%以下がさらに好ましく、25%以下が特に好ましい。
 〔コーンの第1の態様〕
 本実施形態にかかるコーン5の第1の態様について、図7を参照して説明する。図7に示すコーン51は、マンドレル1の軸方向に沿う流体が通過可能な複数の中空部511を備えている。水圧破砕後、コーン51の表面512のうち部分的にスリップ6bと当接する部分と、ソケット3と当接する表面513、およびマンドレル1と当接する表面514には流体が接触しない。中空部511は、ソケット3と当接する表面513からマンドレル1の軸方向に沿った他端部にある開口とつながっている。そのため、当該開口部から流体が侵入し、中空部511の内壁と流体が接触するため、ダウンホールプラグ10の分解・除去が容易となる。
 〔コーンの第2の態様〕
 本実施形態にかかるコーン5の別の態様について、図8を参照して説明する。なお、本態様では、第1の態様との相違点について説明するため、前記態様において説明した部材と同一の機能を有する部材には同一の部材番号を付し、その説明を省略する。
 図8に示すコーン52は、部分的にスリップ6bと当接する表面512の周方向に沿った溝525をさらに備えている。よって、水圧破砕後、スリップ6bとコーン52との間には溝525により間隙ができ、その間隙に、スリップ6bの切れ目部分にある流体が侵入する。従って、コーン52は流体と接触する中空部511の内壁と溝525により作られた間隙から分解が進むため、ダウンホールプラグ10の分解・除去が容易となる。
 〔コーンの第3の態様〕
 本実施形態にかかるコーン5の別の態様について、図9を参照して説明する。図9に示すコーン53は、スリップ6bと部分的に当接する表面532に位置する、マンドレル1の軸方向に沿った溝535を備えている。水圧破砕後、スリップ6bとコーン53との間には溝535によりマンドレル1の軸方向に沿った間隙ができ、その間隙に流体が侵入する。コーン53は流体と接触する溝535により作られた間隙から分解が進むため、ダウンホールプラグ10の分解・除去が容易となる。
 〔コーンの第4の態様〕
 本実施形態にかかるコーン5の別の態様について、図10を参照して説明する。なお、本態様では、第1の態様との相違点について説明するため、前記態様において説明した部材と同一の機能を有する部材には同一の部材番号を付し、その説明を省略する。
 図10に示すコーン54は、スリップ6bと部分的に当接する表面512に位置する、マンドレル1の軸方向に沿った溝545をさらに備えている。水圧破砕後、スリップ6bとコーン54との間には溝545により間隙ができ、その間隙に、流体が侵入する。従って、コーン54は流体と接触する中空部511の内壁と溝545により作られた間隙から分解が進むため、ダウンホールプラグ10の分解・除去が容易となる。
 〔コーンの第5の態様〕
 本実施形態にかかるコーンの別の態様について、図11を参照して説明する。なお、本態様では、第1の態様との相違点について説明するため、前記態様において説明した部材と同一の機能を有する部材には同一の部材番号を付し、その説明を省略する。
 図11に示すコーン55は、ソケット3に当接する表面513にマンドレル1の中心軸からコーン55の外表面へ向かう放射状の、流体が通過可能な溝555をさらに備えている。さらに、第1の態様のコーン51における中空部511と比較し、マンドレル1からより離れた位置にも中空部511が設けられている。水圧破砕後、侵入した流体は、ソケット3に当接する表面513に備えられた、マンドレル1の中心軸からコーン55の外表面へと向かう溝555を通じて流体が流れる。従って、コーン55は流体と接触する中空部511の内壁と溝555により作られた間隙から分解が進むため、ダウンホールプラグ10の分解・除去が容易となる。
 4.ダウンホールプラグの製造方法
 本実施形態のダウンホールプラグ10は、マンドレル1および周辺部材を用い、従来公知の方法で組み立てて製造される。マンドレル1の製造方法としては、材質に応じて従来公知の方法で製造することができる。また、上記周辺部材の製造方法としては、上記周辺部材の材質に合わせて従来周知の方法を選択することができ、通常は基材を成形してから、切削および穴あけ加工等により穴または溝を作ることで製造する。
 (まとめ)
 上述の通り、本実施形態のダウンホールプラグは、分解性材料からなるマンドレルと、該マンドレルの外周面上に設けられた分解性材料からなる複数の周辺部材とを含み、上記複数の周辺部材の少なくとも一つは、上記マンドレルの軸方向に沿って流れる流体が通過可能な中空部、または上記ダウンホールプラグの外表面となる面もしくは上記マンドレルと接する面の少なくとも一部に溝を有する、構成である。
 また、本実施形態のダウンホールプラグの一態様では、上記中空部は、上記中空部が設けられた上記周辺部材の表面にある少なくとも1つの開口とつながっている。
 また、本実施形態のダウンホールプラグの一態様では、上記開口は、上記ダウンホールプラグの設置後に上記ダウンホールプラグの外表面側に現れる。
 また、本実施形態のダウンホールプラグの一態様では、上記中空部が貫通孔である。
 また、本実施形態のダウンホールプラグの一態様では、上記中空部の断面は円形である。
 また、本実施形態のダウンホールプラグの一態様では、上記周辺部材は、上記マンドレルと接する面にも少なくとも1つの開口をもち、上記中空部は上記マンドレルと接する面における上記開口とつながっている。
 また、本実施形態のダウンホールプラグの一態様では、上記周辺部材は、上記マンドレルと接する面にも少なくとも1つの溝をもつ。
 また、本実施形態のダウンホールプラグの一態様では、上記少なくとも一つの周辺部材は、スリップまたはコーンである。
 また、本実施形態のダウンホールプラグの一態様では、上記少なくとも一つの上記周辺部材は上記中空部を有しており、上記マンドレルの軸方向に垂直な断面であって、上記中空部を含む断面において、上記周辺部材の放射方向の厚みに対する、上記中空部部分を除いた上記周辺部材の上記厚み方向における連続部分の最大長さが、47%以上、91%以下である。
 また、本実施形態のダウンホールプラグの一態様は、マンドレルとマンドレルの外周面上に設けられた周辺部材とを含むダウンホールプラグであって、上記周辺部材は分解性材料からなり、上記周辺部材の連続厚み最大値の、最大厚みに対する比が47%以上、91%以下である構成である、と表現できる。
 本発明は、シェールガス・オイル掘削の一手法である水圧破砕法に利用される分解性ダウンホールツールを提供するので、産業上の利用可能性を有する。
1:マンドレル
2:シール部材(周辺部材)
3:ソケット(周辺部材)
4,5,51、52、53、54、55:コーン(周辺部材)
6a,6b,61、62、63:スリップ(周辺部材)
7a,7b:リング部材
8a,8b:外側保持部材(周辺部材)
10:ダウンホールプラグ
20:ケーシング
64:中空部
100:従来のダウンホールプラグ
101:マンドレル
102:シール部材
103:保持部材
104、105:従来のコーン
106a、106b:従来のスリップ
200:ケーシング
511、614:中空部
525、535、545、637:溝

Claims (9)

  1.  ダウンホールプラグであって、分解性材料からなるマンドレルと、該マンドレルの外周面上に設けられた分解性材料からなる複数の周辺部材とを含み、
     上記複数の周辺部材の少なくとも一つは、上記マンドレルの軸方向に沿って流れる流体が通過可能な中空部、または上記ダウンホールプラグの外表面となる面もしくは上記マンドレルと接する面の少なくとも一部に溝を有する、ダウンホールプラグ。
  2.  上記中空部は、上記中空部が設けられた上記周辺部材の表面にある少なくとも1つの開口とつながっている、請求項1に記載のダウンホールプラグ。
  3.  上記開口は、上記ダウンホールプラグの設置後に上記ダウンホールプラグの外表面側に現れる、請求項2に記載のダウンホールプラグ。
  4.  上記中空部が貫通孔である、請求項2に記載のダウンホールプラグ。
  5.  上記中空部の断面は円形である、請求項1に記載のダウンホールプラグ。
  6.  上記中空部が設けられた上記周辺部材は、上記マンドレルと接する面にも少なくとも1つの開口をもち、上記中空部は上記マンドレルと接する面における上記開口ともつながっている、請求項2に記載のダウンホールプラグ。
  7.  上記周辺部材は、上記マンドレルと接する面にも少なくとも1つの溝をもつ、請求項1に記載のダウンホールプラグ。
  8.  上記少なくとも一つの周辺部材は、スリップまたはコーンである、請求項1に記載のダウンホールプラグ。
  9.  上記少なくとも一つの上記周辺部材は上記中空部を有しており、上記マンドレルの軸方向に垂直な断面であって、上記中空部を含む断面において、上記周辺部材の放射方向の厚みに対する、上記中空部部分を除いた上記周辺部材の上記厚み方向における連続部分の最大長さが、47%以上、91%以下である、請求項1に記載のダウンホールプラグ。
     
PCT/JP2018/047889 2018-01-29 2018-12-26 分解性ダウンホールプラグ WO2019146359A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/960,240 US11346178B2 (en) 2018-01-29 2018-12-26 Degradable downhole plug
CA3087148A CA3087148C (en) 2018-01-29 2018-12-26 Degradable downhole plug
GB2012112.5A GB2584237B (en) 2018-01-29 2018-12-26 Degradable downhole plug
CN201880080889.5A CN111492120B (zh) 2018-01-29 2018-12-26 分解性井下堵塞器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-012943 2018-01-29
JP2018012943 2018-01-29

Publications (1)

Publication Number Publication Date
WO2019146359A1 true WO2019146359A1 (ja) 2019-08-01

Family

ID=67394883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047889 WO2019146359A1 (ja) 2018-01-29 2018-12-26 分解性ダウンホールプラグ

Country Status (5)

Country Link
US (1) US11346178B2 (ja)
CN (1) CN111492120B (ja)
CA (1) CA3087148C (ja)
GB (1) GB2584237B (ja)
WO (1) WO2019146359A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130327545A1 (en) * 2012-06-12 2013-12-12 Schlumberger Technology Corporation System and method utilizing frangible components
WO2017110610A1 (ja) * 2015-12-25 2017-06-29 株式会社クレハ 組成物、ダウンホールツール用組成物、ダウンホールツール用分解性ゴム部材、ダウンホールツール、及び坑井掘削方法
US20170234103A1 (en) * 2014-04-02 2017-08-17 Magnum Oil Tools International, Ltd. Dissolvable downhole tools comprising both degradable polymer acid and degradable metal alloy elements

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6578633B2 (en) 2000-06-30 2003-06-17 Bj Services Company Drillable bridge plug
US20090151936A1 (en) 2007-12-18 2009-06-18 Robert Greenaway System and Method for Monitoring Scale Removal from a Wellbore
US20080066963A1 (en) 2006-09-15 2008-03-20 Todor Sheiretov Hydraulically driven tractor
US7617873B2 (en) 2004-05-28 2009-11-17 Schlumberger Technology Corporation System and methods using fiber optics in coiled tubing
US8211247B2 (en) 2006-02-09 2012-07-03 Schlumberger Technology Corporation Degradable compositions, apparatus comprising same, and method of use
US8522869B2 (en) 2004-05-28 2013-09-03 Schlumberger Technology Corporation Optical coiled tubing log assembly
US9500058B2 (en) 2004-05-28 2016-11-22 Schlumberger Technology Corporation Coiled tubing tractor assembly
US10316616B2 (en) 2004-05-28 2019-06-11 Schlumberger Technology Corporation Dissolvable bridge plug
US9540889B2 (en) 2004-05-28 2017-01-10 Schlumberger Technology Corporation Coiled tubing gamma ray detector
US8567494B2 (en) * 2005-08-31 2013-10-29 Schlumberger Technology Corporation Well operating elements comprising a soluble component and methods of use
US20110067889A1 (en) 2006-02-09 2011-03-24 Schlumberger Technology Corporation Expandable and degradable downhole hydraulic regulating assembly
US8220554B2 (en) 2006-02-09 2012-07-17 Schlumberger Technology Corporation Degradable whipstock apparatus and method of use
US8651179B2 (en) 2010-04-20 2014-02-18 Schlumberger Technology Corporation Swellable downhole device of substantially constant profile
US8770261B2 (en) 2006-02-09 2014-07-08 Schlumberger Technology Corporation Methods of manufacturing degradable alloys and products made from degradable alloys
US7837427B2 (en) 2006-07-07 2010-11-23 Schlumberger Technology Corporation Method of transporting and storing an oilfield proppant
US7542543B2 (en) 2006-09-15 2009-06-02 Schlumberger Technology Corporation Apparatus and method for well services fluid evaluation using x-rays
US7647980B2 (en) 2006-08-29 2010-01-19 Schlumberger Technology Corporation Drillstring packer assembly
US7639781B2 (en) 2006-09-15 2009-12-29 Schlumberger Technology Corporation X-ray tool for an oilfield fluid
US7874366B2 (en) 2006-09-15 2011-01-25 Schlumberger Technology Corporation Providing a cleaning tool having a coiled tubing and an electrical pump assembly for cleaning a well
US20080069307A1 (en) 2006-09-15 2008-03-20 Rod Shampine X-Ray Tool For An Oilfield Fluid
US9133673B2 (en) 2007-01-02 2015-09-15 Schlumberger Technology Corporation Hydraulically driven tandem tractor assembly
US9518442B2 (en) * 2011-05-19 2016-12-13 Baker Hughes Incorporated Easy drill slip with degradable materials
US9777551B2 (en) 2011-08-22 2017-10-03 Downhole Technology, Llc Downhole system for isolating sections of a wellbore
WO2016003759A1 (en) * 2014-07-01 2016-01-07 Magnum Oil Tools International, Ltd. Dissolvable aluminum downhole plug
US9835016B2 (en) 2014-12-05 2017-12-05 Baker Hughes, A Ge Company, Llc Method and apparatus to deliver a reagent to a downhole device
CN104989317A (zh) 2015-06-16 2015-10-21 中国石油天然气股份有限公司 一种套管压裂用桥塞
CN106522869B (zh) 2016-12-30 2019-06-07 新疆能新科油气技术有限公司 井筒投堵器及其安装方法
CN206522118U (zh) 2017-03-07 2017-09-26 杨朝杰 一种可溶封隔器
CN107013181B (zh) 2017-05-25 2023-09-19 克拉玛依启源石油科技有限公司 可溶解桥塞及桥塞压裂系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130327545A1 (en) * 2012-06-12 2013-12-12 Schlumberger Technology Corporation System and method utilizing frangible components
US20170234103A1 (en) * 2014-04-02 2017-08-17 Magnum Oil Tools International, Ltd. Dissolvable downhole tools comprising both degradable polymer acid and degradable metal alloy elements
WO2017110610A1 (ja) * 2015-12-25 2017-06-29 株式会社クレハ 組成物、ダウンホールツール用組成物、ダウンホールツール用分解性ゴム部材、ダウンホールツール、及び坑井掘削方法

Also Published As

Publication number Publication date
CA3087148C (en) 2023-09-12
US20210062609A1 (en) 2021-03-04
GB2584237A (en) 2020-11-25
GB2584237B (en) 2022-04-06
CA3087148A1 (en) 2019-08-01
CN111492120A (zh) 2020-08-04
US11346178B2 (en) 2022-05-31
CN111492120B (zh) 2022-12-23
GB202012112D0 (en) 2020-09-16

Similar Documents

Publication Publication Date Title
US20170218720A1 (en) Plug for well drilling provided with ring-shaped ratchet structure
US10975655B2 (en) Self-removing plug for pressure isolation in tubing of well
US9835006B2 (en) Wellbore plug isolation system and method
US20150068728A1 (en) Downhole Tool Having Slip Composed of Composite Ring
WO2014192885A1 (ja) 分解性材料から形成されるマンドレルを備える坑井掘削用プラグ
US20160123100A1 (en) Angled segmented backup ring
US11002105B2 (en) Downhole tool with recessed buttons
CA3089143C (en) Zonal isolation device with expansion ring
CN105064953B (zh) 具有促降解中心管的快速降解桥塞
US20190382520A1 (en) Method for producing rubber member for downhole tool
RU2693059C2 (ru) Буровое долото с вращающимися коническими шарошками и способ разбуривания пробки
US11293244B2 (en) Slip assembly for a downhole tool
RU2717466C1 (ru) Устройство для закупоривания скважины и способ временной закупорки скважины
WO2020101976A1 (en) Degradable plugs
US9879500B2 (en) Well treatment method by disintegrating elastic material by contacting seal member for downhole tools comprising elastic material with well treatment fluid
WO2019146359A1 (ja) 分解性ダウンホールプラグ
CA2927080C (en) Plug for well drilling
US20130213665A1 (en) Apparatus Including Water-Soluble Material for Use Downhole
US20220220824A1 (en) Voided moldable buttons
US9719319B2 (en) Disintegrating packer slip/seal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18901828

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3087148

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 202012112

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20181226

122 Ep: pct application non-entry in european phase

Ref document number: 18901828

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP