DK3048092T3 - Fremgangsmåde til katalytisk fremstilling af myresyre ved et oxygenpartialtryk under 1 Bar og regenerering af katalysatoren anvendt deri - Google Patents

Fremgangsmåde til katalytisk fremstilling af myresyre ved et oxygenpartialtryk under 1 Bar og regenerering af katalysatoren anvendt deri Download PDF

Info

Publication number
DK3048092T3
DK3048092T3 DK15152518.5T DK15152518T DK3048092T3 DK 3048092 T3 DK3048092 T3 DK 3048092T3 DK 15152518 T DK15152518 T DK 15152518T DK 3048092 T3 DK3048092 T3 DK 3048092T3
Authority
DK
Denmark
Prior art keywords
liquid solution
partial pressure
bar
oxygen partial
oxygen
Prior art date
Application number
DK15152518.5T
Other languages
English (en)
Inventor
Dr Hermann Wolf Jbach
Original Assignee
Jbach Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jbach Gmbh filed Critical Jbach Gmbh
Application granted granted Critical
Publication of DK3048092T3 publication Critical patent/DK3048092T3/da

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/23Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/23Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
    • C07C51/235Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups of —CHO groups or primary alcohol groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/195Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
    • B01J27/198Vanadium
    • B01J27/199Vanadium with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/28Regeneration or reactivation
    • B01J27/285Regeneration or reactivation of catalysts comprising compounds of phosphorus
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C53/00Saturated compounds having only one carboxyl group bound to an acyclic carbon atom or hydrogen
    • C07C53/02Formic acid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

METHOD FOR CATALYTIC GENERATION OF FORMIC ACID AT AN OXYGEN PARTIAL PRESSURE BELOW 1 BAR AND REGENERATION OF THE CATALYST USED THEREIN
The invention relates to a method for catalytic generation of formic acid and regeneration of the catalyst used therein. Such a method is known from EP 2 473 467 B1, wherein a polyoxometallate ion of the general formula [PMoxVy04o]5', which serves as the catalyst is brought into contact with an alpha-hydroxyaldehyde, an alpha-hydroxycarboxylic acid, a carbohydrate or a glycoside in a liquid solution at a temperature above 70 °C and below 120 °C in a vessel, wherein 6 < x < 11 and 1 < y < 6 and x + y = 12, wherein x and y are each integers. The catalyst thereby reduced is returned to its starting state by oxidation.
According to EP 2 473 467 B1, it is advantageous if the contacting takes place under an oxygen partial pressure of 1 to 500 bar. The higher the oxygen partial pressure, the more rapid is the oxidation of the catalyst, which becomes reduced in this process. However, it has now been found that the pressure vessels made of steel that are used to carry out this process develop heavy corrosion. To avoid this, highly corrosion-resistant but relatively expensive nickel-chromium-molybdenum alloys, such as the so-called "Hastelloy C" from the company Haynes International, Inc., Kokomo, USA, can be used. If the vessel is made of such an alloy, it becomes relatively expensive to carry out this process. The object of the present invention is therefore to provide a less expensive option for carrying out this process.
This object is achieved through the features of patent claim 1. Expedient embodiments are derived from the features of patent claims 2 to 13.
According to the invention, a method for catalytic generation of formic acid at an oxygen partial pressure of less than 1 bar and for regeneration of the catalyst used in this process is provided, wherein a polyoxometallate ion of the general formula [ΡΜ0χννΟ40]η' is brought in contact with an alpha-hydroxyaldehyde, an alpha-hydroxycarboxylic acid, a carbohydrate, a glycoside or a polymer containing a carbon chain with at least one OH group bound repeatedly to the carbon chain as a substituent and/or with an O, N or S atom occurring repeatedly in the carbon chain, in a liquid solution in a vessel at temperatures above 70 °C and below 120 °C, wherein 6 < x < 11 and 1 < y < 6 and 3 < n < 10 and x + y = 12, wherein x and y each are integers. The catalyst, which is thereby reduced, is returned to its starting state by oxidation. In the sense of the invention, a catalyst is thus also understood to be a substance that changes due to reduction during the process and is returned to its starting state by oxidation. The contacting takes place at an oxygen partial pressure of less than 1 bar in the vessel. For oxidation of the catalyst, some of the liquid solution is discharged out of the vessel, exposed to oxygen or a gas mixture containing oxygen at an oxygen partial pressure of 1 to 500 bar and then returned to the remainder of the liquid solution. In doing so, the oxygen partial pressure in the vessel is always kept below 1 bar. The oxygen partial pressure acting upon that portion of the liquid solution is reduced from 1 to 500 bar to less than 5 bar before that portion of the liquid solution is returned to the remainder of the liquid solution.
It is also possible that the portion of the liquid solution under oxygen partial pressure of 1 to 500 bar is supplied to the remainder of the liquid solution at this pressure or at an only partly reduced pressure. In doing so, the portion of the liquid solution that is supplied is degassed because of the lower pressure to which the remainder of the liquid solution is exposed. To prevent an increase in pressure to 1 bar or more, the gas escaping from the liquid must be allowed to escape from the vessel in a sufficient amount. Supplying that portion of the liquid solution, which is under oxygen partial pressure of 1 to 500 bar or under a partly reduced pressure, to the remainder of the liquid solution at this pressure can also be configured as an influx of that portion of the liquid solution into the remainder of the liquid solution and utilized to achieve a thorough mixing of the liquid solution because of the pressure difference between that portion of the liquid solution and the remainder of the liquid solution. The influx may take place through suitably designed nozzles, in particular nozzles that can be varied in the direction of flow and/or in the outlet diameter. By varying the outlet diameter, the outflow velocity of that portion of the liquid solution out of the nozzle can be varied.
The gas mixture containing oxygen may be air, for example. The gas mixture may contain more than 10 vol% oxygen. The exposure to the oxygen or the gas mixture may take place for example by injecting the oxygen or the gas mixture into that portion of the liquid solution.
The solution may comprise a solvent. It is not necessary to provide a solvent if the alpha-hydroxyaldehyde, the alpha-hydroxycarboxylic acid, the carbohydrate, the glycoside or the polymer is already in liquid form. An alpha-hydroxyaldehyde is understood to be a molecule in which an OH group is bound directly to a C atom, wherein the C atom of an aldehyde group is also bound directly to the C atom. An alpha-hydroxycarboxylic acid is understood to be a molecule in which an OH group is bound directly to a C atom, where the C atom of a carboxy group is also bound directly to the C atom. An alpha-hydroxyaldehyde and an alpha-hydroxycarboxylic acid may also each be understood to be a substance which contains an alpha-hydroxyaldehyde or an alpha-hydroxycarboxylic acid, respectively.
The inventors of the present invention have recognized that the corrosion is greatly promoted by the interaction of the elevated oxygen partial pressure and a temperature higher than 70 °C and lower than 120 °C. They have also recognized that, for effective oxidation of the reduced catalyst, it is not necessary for the exposure to oxygen or a gas mixture containing oxygen to take place at an oxygen partial pressure of 1 to 500 bar at a temperature above 70 °C and below 120 °C.
The method according to the invention makes it possible to cool that part of the liquid solution and then expose it to the elevated oxygen partial pressure, so that, in this way, another vessel that contacts that portion of the liquid solution during the exposure to the oxygen or the gas mixture containing oxygen is not therefore subject to a greatly increased corrosion. Alternatively, the cooling step may also be omitted, and then only a relatively small additional vessel may be used for the exposure to the oxygen or the gas mixture. The relatively high cost of a highly corrosion-resistant material is not as significant for a relatively small additional vessel as would be the case when providing a relatively large vessel made of such a highly corrosion-resistant material in which the catalytic reaction with the alpha-hydroxyaldehyde, the alpha-hydroxycarboxylic acid, the carbohydrate or the glycoside takes place. The vessel in which the catalytic reaction takes place can be made of a very inexpensive material. It may even be open at the top because the catalytic reaction can also take place at atmospheric pressure. Therefore, the vessel need not be pressure-resistant.
To retain the solids distributed in the liquid, when a portion of the liquid solution is discharged out of the vessel, a filter may be provided to retain the solids. Such a filter can prevent solids from entering the downstream portion of the device for carrying out the process and may cause clogging of the valves or other parts of the device there or otherwise interfere with their function.
In one embodiment of the method according to the invention, the alpha-hydroxyaldehyde, the alpha-hydroxycarboxylic acid, the carbohydrate, the glycoside or the polymer is present in the liquid solution in the form of solids distributed therein. These solids may be finely distributed or coarsely distributed in the liquid solution.
The polymer may be a polyester, a polyamine or a polyamide, in particular polyhexamethylene adipamide (nylon). The polymer may be a polymer without a plasticizer. Plasticizers can have a negative effect on the activity of the catalyst.
Alpha-hydroxyaldehydes, alpha-hydroxycarboxylic acids, carbohydrates and glycosides occur in a large number of renewable raw materials, such as starch, cellulose or hemicellulose, for example. Cellulose and hemicellulose are obtained in large quantities as by-products of crop plants or in industrial digestion of wood for making paper, for example.
The alpha-hydroxyaldehyde, alpha-hydroxycarboxylic acid, carbohydrate or glycoside may be a monosaccharide, in particular an aldose, disaccharide, oligosaccharide or polysaccharide, starch, cellulose, hemicellulose, glucose, sucrose, xylose, cellobiose, xylan, a hetero-oligosaccharide, a heteropolysaccharide, glycolic acid or lactic acid or a residual material or raw material that contains the alpha-hydroxyaldehyde, alpha-hydroxycarboxylic acid, carbohydrate or glycoside or in particular renewable raw materials, in particular those that are untreated. "Untreated" here means that the raw material has not first been chemically digested. The residual material or the renewable raw material may be a plant, a fungus or bacteria or components of plants, fungi or bacteria, wood, in particular in the form of sawdust or wood shavings, paper, in particular waste paper, scrap paper and recycled paper, algae, cyanobacteria or silage. The alpha-hydroxyaldehyde, alpha-hydroxycarboxylic acid, carbohydrate or glycoside may also be present in the form of a mixture of at least two of the aforementioned substances or at least one of the aforementioned substances or a mixture, as is the case with lignite or peat, for example.
Many of the aforementioned raw materials are obtained as by-products, for example, in papermaking or in wood processing. They are thus available as an inexpensive starting material for the method according to the invention. The method according to the invention can therefore be carried out very inexpensively. Therefore, the oxidation of the catalyst that is reduced in the catalytic reaction (= reoxidation) also contributes to this and allows the catalyst to remain in use for a very long time.
The contacting in the vessel may take place at atmospheric pressure, wherein the gas pressure in the vessel is always kept at atmospheric pressure. Therefore, the vessel can be provided very inexpensively because it need not withstand an elevated pressure. It may be a plastic vessel, for example, which can withstand a temperature above 70 °C and below 120 °C. The corrosion problems mentioned above do not occur with such a plastic vessel. Atmospheric pressure is understood to be the pressure of air prevailing when the process is carried out in the surroundings of the vessel outside of a building at the same altitude above sea level at which the process is carried out.
In the vessel, the solution may be reacted at an oxygen partial pressure of less than 1 bar, in particular at atmospheric pressure, over a period of hours, days or even weeks. It is not necessary to limit the contact time with the vessel to prevent corrosion of the vessel.
To keep the gas pressure in the vessel always at atmospheric pressure, the vessel may have an opening that leads to the outside, for example, by simply having open at the top. To prevent any formic acid that is formed from escaping from such a vessel in vapor form through this opening, the vessel may have a condensation device at the opening, at which any formic acid vapor that is formed can condense, so that any condensate thereby formed can simply drip back or run back into the vessel.
Oxidation of the catalyst in that part of the liquid solution may take place within a few minutes or even seconds. For example, it is possible to expose the liquid solution to the oxygen or the gas mixture at an oxygen partial pressure of 1 to 500 bar for at most 10 minutes, in particular at most 5 minutes, in particular at most 2 minutes, in particular at most 1 minute, in particular at most 40 seconds, in particular at most 30 seconds, in particular at most 20 seconds, in particular at most 10 seconds, in particular at most 5 seconds.
That part of the liquid solution may be discharged from the vessel continuously or in intervals, in particular at regular intervals, oxidized at an oxygen partial pressure of 1 to 500 bar and then fed back to the remainder of the liquid solution either continuously or at intervals, in particular at regular intervals. The oxidation may also take place continuously or in intervals, in particular at regular intervals. This makes it possible to provide the catalyst contained in the vessel in sufficient amount during the entire process, in particular in oxidized form and thus in a form for conversion of the alpha-hydroxyaldehyde, alpha-hydroxycarboxylic acid, carbohydrate, glycoside or polymer of a suitable form without having to use a very large amount of the relatively expensive catalyst. For example, to carry out the oxidization in intervals, it is possible to introduce a portion of the liquid solution into another vessel, to inject the oxygen or the gas mixture into that part of the liquid solution there and then to expose that part of the liquid solution by means of a hydraulic press, for example, to an oxygen partial pressure of 1 to 500 bar for up to 5 minutes. Then that portion of the liquid solution can be discharged out of the additional vessel after releasing the pressure and fed back to the remainder of the liquid solution.
The entire process may also be carried out continuously or in intervals, in particular at regular intervals. To do so, for example, another portion of the liquid solution may be discharged from the vessel at intervals, in particular at regular intervals, while the formic acid contained therein, for example, in the form of a formate, and the remaining portion of the liquid solution may be fed back to the remainder of the liquid solution. A suitable process for doing so is described for example in the as yet unpublished International Patent Application PCT/EP2014/074930.
In another embodiment of the method according to the invention, that portion of the liquid solution is cooled before being exposed to the oxygen, or the gas mixture, and is exposed to the oxygen partial pressure of 1 to 500 bar at a temperature of max. 95 °C, in particular max. 85 °C, in particular max. 75 °G, in particular max. 65 °C, in particular max. 55 °C, in particular max. 45 °C, in particular max. 35 °C, in particular max. 25 °C. The greater the cooling of the portion of the liquid solution and the lower the temperature at which that portion of the liquid solution is exposed to the oxygen partial pressure of 1 to 500 bar, the lower are the corrosion resistance requirements of the material of an additional vessel in which the exposure to the oxygen or the gas mixture takes place. The cooling may take place by means of a heat exchanger, which makes it possible to supply the heat withdrawn from the portion of the liquid solution to that portion of the liquid solution before it is returned to the remainder of the liquid solution. This may be accomplished with the help of a heat pump, for example.
That portion of the liquid solution can be pumped by means of at least one pump, in particular a high-density solids pump. The pumping can take place before and/or after the exposure to the oxygen partial pressure of 1 to 500 bar. A high-density solids pump makes it possible to pump that portion of the liquid solution without having to filter out the solids distributed in the liquid solution.
That portion of the liquid solution may be exposed to the oxygen partial pressure of 1 to 500 bar in another vessel. The additional vessel may therefore be designed to be relatively small. A method known from EP 0090128 A1 for gassing liquids is suitable for exposing that portion of the liquid solution to the oxygen partial pressure of 1 to 500 bar. Another possibility of gassing, for example, consists of having that portion of the liquid solution flow over a relatively large surface to be wetted by the solution, thereby exposing the gas mixture containing oxygen to the oxygen partial pressure of 1 to 500 bar. The oxygen or the gas mixture containing oxygen can then flow in countercurrent to the solution.
The oxygen partial pressure of 1 to 500 bar acting on that portion of the liquid solution may be reduced to less than 1 bar, in particular to the oxygen partial pressure prevailing at atmospheric pressure, before that portion of the liquid solution is fed back to the remainder of the liquid solution.
In one embodiment of the method, the oxygen or the gas mixture is supplied to that portion of the liquid solution, the additional vessel is a housing of a screw compactor, and the oxygen partial pressure is built up due to the fact that that the portion of the liquid solution together with the oxygen or the gas mixture is compacted by means of the screw compactor. The oxygen or the gas mixture may be contained in that part of the liquid solution in the form of gas bowls. A screw compactor is an apparatus in which a conveyor screw rotating in a housing, for example, presses the liquid solution against an outlet bordered in the passage and thereby exerts a pressure on the solution. Instead of a conveyor screw, two intermeshing conveyor screws may also be provided in one housing. The screw compactor may also fulfill the function of the pump or of the high-density solids pump. In one embodiment, the screw compactor may additionally be equipped with a pulverizing apparatus - similar to a meat grinder. For example, a rotating blade may be provided directly behind the outlet as the shredding machine. This rotating plate blade shreds the solids optionally present in that part of the liquid solution when they emerge from the outlet. Shredding and digestion of the solids distributed in the solution at the same time are therefore possible. The screw compactor may be made of a highly corrosion-resistant material, such as the aforementioned "Hastelloy C" alloy.
During or after reduction of the oxygen partial pressure acting upon that portion of the liquid solution or after that portion of the liquid solution has again been supplied to the remainder of the liquid solution, a gas which outgases out of that portion of the liquid solution or the liquid solution itself must be allowed to escape from an apparatus suitable for carrying out the process or it must be removed. If that portion of the liquid solution is supplied to the remainder of the liquid solution in the vessel, then the outgassing gas can escape into the atmosphere when the vessel is open toward the atmosphere or is closed with an excess pressure valve which prevents a pressure increase to 1 bar or more.
The present invention will now be explained in greater detail on the basis of an exemplary embodiment.
Figure 1 shows a schematic diagram of an apparatus suitable for carrying out the process.
Figure 1 shows a vessel 10 with a liquid solution 12 contained therein. The liquid solution 12 contains the catalyst and an alpha-hydroxyaldehyde, an alpha-hydroxycarboxylic acid, a carbohydrate, or a glycoside and is regulated at a temperature above 70 °C and below 120 °C. An outlet line 16 with a filter 14 connected in front of it for removing a portion of the liquid solution 12 is provided on the vessel 10. A portion of the liquid solution goes through the outlet line 16 into the housing 18 of the screw compactor, where the screw compactor 20 driven by the drive 22 by means of the driveshaft 23 compresses that portion of the liquid solution 12 introduced into the housing 18 of the screw compactor with the air 25 introduced into it through the air inlet connection 24. That portion of the liquid solution 12 is pressed against the perforated mask 26. In doing so, an oxygen partial pressure of definitely more than 1 bar is built up in the screw compactor.
The pressure depends on the resistance with which the perforated mask 26 opposes that portion of the liquid solution 12 and on the design of the screw compactor, in particular the pitch of the compressor screw 20 and the rotational speed at which the compressor screw 20 is rotated by the drive 22. Downstream from the perforated mask 26, that portion of the liquid solution 12 collects at a reduced oxygen partial pressure, wherein outgassing gas 29 can escape through the vent connection 28. That portion of the liquid solution 12 then passes through the inlet line 30 back to the remainder of the liquid solution 12 in the vessel 10. To do so, that portion of the liquid solution 12 can be conveyed through the inlet 30 by means of a pump (not shown here).
List of Reference Numerals 10 vessel 12 liquid solution 14 filter 16 outlet line 18 housing of a screw compactor 20 compressor screw 22 drive 23 driveshaft 24 air inlet connection 25 air 26 perforated mask 28 degassing connection 29 gas 30 inlet line

Claims (13)

1. Fremgangsmåde til katalytisk fremstilling af myresyre ved et oxygenpartialtryk på mindre end 1 Bar og regenerering af den deri anvendte katalysator, hvor en polyoxometalation, der tjener som katalysator, me den almene formel [PMoxVyO40]n, ved en temperatur over 70 °C og under 120 °C bringes i kontakt med en alfa-hydroxyaldehyd, en alfa-hydroxycarboxylsyre, et kulhydrat, en glykosid eller en polymer indeholdendt en kulstofkæde og med mindst en OH-gruppe bundet til kulstofkæden gentagne gange, som en erstatning og/eller har et O-, N- eller S-atom indeholdt gentagne gange i nævnte kulstofkæde i en væskeopløsning (li i en beholder (10), hvori 6 < x < 11 og 1 < y < 6 og 3 <n <10 og x + y = 12, hvor n, x og y alle er hele tal, hvor nævnte katalysator reduceret på denne måde returnerer til sin oprindelige tilstand ved oxidation, hvori kontakten i beholderen (10) udføres ved et oxygenpartialtryk på mindre end 1 Bar, hvorved, for at opnå oxidation af nævnte katalysator, en andel af den nævnte væskeopløsning (12) ledes ud af beholderen (10), får tilsat oxygen eller en gasblanding indeholdende oxygen ved et oxygenpartialtryk på 1 til 500 Bar og efterfølgende tilbageføres til resten af væskeopløsningen (12), hvor oxygenpartialtrykket i beholderen til enhver tid holdes under 1 bar, hvor oxygen partialtrykket på 1 til 500 bar, som påføres andelen af væskeopløsningen (12) reduceres til under 5 Bar, før den nævnte andel af væskeopløsning (12) tilbageføre til resten af væskeopløsningen (12).
2. Fremgangsmåden ifølge krav 1, hvor alfa-hydroxyaldehydet, alfa-hydroxycarboxylsyren, kulhydratet, glykosiden eller polymeren er til stede i væskeopløsningen (12) i form af dispergerede faste stoffer.
3. Fremgangsmåden ifølge ethvert af de foregående krav, hvor polymeren er en polyester, en polyamin eller et polyamid, især polyhexamethylenadipamid.
4. Fremgangsmåden ifølge ethvert af de foregående krav, hvor kontakten udføres i beholderen (10) ved atmosfærisk tryk, hvor gastrykket i beholderen til enhver tid opretholdes til atmosfærisk tryk.
5. Fremgangsmåden ifølge ethvert af de foregående krav, hvor andelen af væskeopløsningen (12) kontinuerligt ledes ud af beholderen (10), oxideres ved et oxygenpartialtryk på 1 til 500 Bar og efterfølgende kontinuerligt tilbageføres til resten af væskeopløsningen (12).
6. Fremgangsmåden ifølge krav 4, hvor oxidationen udføres kontinuerligt.
7. Fremgangsmåden ifølge ethvert af de foregående krav, hvor andelen af væskeopløsningen (12) afkøles forud for tilførslen af nævnte oxygen eller nævnte gasblanding, og at andelen eksponeres for oxygenpartialtrykket på 1 til 500 Bar ved en temperatur på højest 95 °C, højest 85 °C, højest 75 °C, højest 65 °C, højest 55 °C, højest 45 °C, højest 35 °C eller højest 25 °C.
8. Fremgangsmåden ifølge ethvert af de foregående krav, hvor andelen af væskeopløsningen (12) transporteres ved hjælp af mindst en pumpe eller slampumpe.
9. Fremgangsmåden ifølge ethvert af de foregående krav, hvor andelen af væskeopløsningen (12) eksponeres for oxygenpartialtrykket på 1 til 500 Bar i en yderligere beholder.
10. Fremgangsmåden ifølge krav 9, hvor nævnte oxygen eller nævnte gasblanding tilføres andelen af væskeopløsningen (12), hvor den yderligere beholder er et hus (18) i en skruekompressor, og hvor oxygenpartialtrykket er opbygget ved, at andelen af væskeopløsningen (12) sammen med nævnte oxygen eller nævnte gasblanding komprimeres ved hjælp af skruekompressoren.
11. Fremgangsmåden ifølge ethvert af de foregående krav, hvor oxygenpartialtrykket på 1 til 500 Bar, der påføres andelen af væskeløsningen (12), reduceres til under 1 Bar eller til oxygenpartialtrykket, der eksisterer ved atmosfærisk tryk, før den nævnte andel af væskeopløsningen (12) tilbageføres til resten af væskeopløsningen (12).
12. Fremgangsmåde ifølge ethvert af de foregående krav, hvor - under eller efter reduktionen af det oxygenpartialtryk, der påføres væskeopløsningsandelen, eller efter at væskeopløsningsandelen (12) igen e tilført resten af væskeopløsningen (12) - gas (29), som frigives fra væskeopløsningsandelen (12) eller væskeopløsningen (12), tillades at undslippe eller udledes fra en til udøvelse af fremgangsmåden egnet indretning.
13. Fremgangsmåden ifølge ethvert af de foregående krav, hvor polymeren er en polymer uden blødgører.
DK15152518.5T 2015-01-26 2015-01-26 Fremgangsmåde til katalytisk fremstilling af myresyre ved et oxygenpartialtryk under 1 Bar og regenerering af katalysatoren anvendt deri DK3048092T3 (da)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP15152518.5A EP3048092B1 (de) 2015-01-26 2015-01-26 Verfahren zur katalytischen Erzeugung von Ameisensäure bei einem Sauerstoffpartialdruck unter 1 bar und Regeneration des dabei eingesetzten Katalysators

Publications (1)

Publication Number Publication Date
DK3048092T3 true DK3048092T3 (da) 2017-07-31

Family

ID=52391881

Family Applications (2)

Application Number Title Priority Date Filing Date
DK15152518.5T DK3048092T3 (da) 2015-01-26 2015-01-26 Fremgangsmåde til katalytisk fremstilling af myresyre ved et oxygenpartialtryk under 1 Bar og regenerering af katalysatoren anvendt deri
DK16701460.4T DK3250544T3 (da) 2015-01-26 2016-01-22 Fremgangsmåde til katalytisk dannelse af myresyre ved et oxygenpartialtryk på mindre end 1 bar og regenerering af den anvendte katalysator

Family Applications After (1)

Application Number Title Priority Date Filing Date
DK16701460.4T DK3250544T3 (da) 2015-01-26 2016-01-22 Fremgangsmåde til katalytisk dannelse af myresyre ved et oxygenpartialtryk på mindre end 1 bar og regenerering af den anvendte katalysator

Country Status (8)

Country Link
US (1) US10035748B2 (da)
EP (2) EP3048092B1 (da)
JP (1) JP6653335B2 (da)
KR (1) KR20170108051A (da)
CN (1) CN107531603B (da)
DK (2) DK3048092T3 (da)
ES (1) ES2747927T3 (da)
WO (1) WO2016120169A1 (da)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3854778A1 (de) 2020-01-27 2021-07-28 Friedrich-Alexander-Universität Erlangen-Nürnberg Verfahren zur katalytischen erzeugung eines alkylformiats

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH655673B (da) 1982-03-30 1986-05-15
US5302248A (en) * 1992-08-28 1994-04-12 The United States Of America As Represented By The Secretary Of Agriculture Delignification of wood pulp by vanadium-substituted polyoxometalates
JP5207510B2 (ja) * 2007-05-07 2013-06-12 国立大学法人東北大学 バイオマスの湿式酸化によるギ酸の製造方法
DE102011077232B4 (de) * 2010-09-17 2021-09-09 Jbach Gmbh Verfahren zur katalytischen Erzeugung von Ameisensäure
JP6534444B2 (ja) 2014-11-18 2019-06-26 ヨットバッハ ゲーエムベーハー 反応混合物からギ酸塩を得るためのプロセス

Also Published As

Publication number Publication date
US10035748B2 (en) 2018-07-31
CN107531603A (zh) 2018-01-02
DK3250544T3 (da) 2019-10-14
JP6653335B2 (ja) 2020-02-26
JP2018504278A (ja) 2018-02-15
KR20170108051A (ko) 2017-09-26
CN107531603B (zh) 2020-10-23
EP3250544B1 (de) 2019-07-03
US20180022678A1 (en) 2018-01-25
EP3048092B1 (de) 2017-04-12
EP3250544A1 (de) 2017-12-06
ES2747927T3 (es) 2020-03-12
EP3048092A1 (de) 2016-07-27
WO2016120169A1 (de) 2016-08-04

Similar Documents

Publication Publication Date Title
RU2540886C2 (ru) Способ и устройство для подачи материала в реактор
US20100056774A1 (en) Method for low water hydrolysis or pretreatment of polysaccharides in a lignocellulosic feedstock
CN102112619B (zh) 含有木质素纤维素或纤维素的物质的处理方法
US10344342B2 (en) Method of and apparatus for producing saccharified solution by using biomass as raw material, and continuous reactor
US20110281298A1 (en) Method and apparatus to extracted and reduce dissolved hemi-cellulosic solids in biomass following pre-hydrolysis
JP2011019483A (ja) 糖化液製造方法及び糖化反応装置
DK3048092T3 (da) Fremgangsmåde til katalytisk fremstilling af myresyre ved et oxygenpartialtryk under 1 Bar og regenerering af katalysatoren anvendt deri
EP3438084A1 (en) Method for producing hydroxycinnamic acid
JP5425348B1 (ja) バイオマスの処理システム、バイオマス原料を用いた糖液生産方法、アルコール製造方法
US10870092B2 (en) Apparatus including rotor and stator having teeth with surfaces of a parabolic profile and method for enhancing phase contact and chemical reactions
CN111206450B (zh) 一种同时分离纤维素、半纤维素和木质素的设备及方法
JP2013163796A (ja) リグノセルロース系バイオマスからの樹脂原料の製造方法及びその装置
EP3103886B1 (en) Method for producing sugar solution
CN109641827B (zh) 在低过压下催化生产甲酸和再生该过程中所用催化剂的方法
US20130302870A1 (en) Flowthrough Pretreatment Of Lignocellulosic Biomass And Selective Separation Of Components Using High-Temperature Nanoporous Membranes
CN220696689U (zh) 一种充分混合的加氢反应装置
JP2005272644A (ja) 含水系バイオマスのガス化方法
JP4339975B2 (ja) 発電方法
JP2008133333A (ja) 含水系バイオマスのガス化方法