DK200801232A - Method for calculating quality parameters for food products - Google Patents

Method for calculating quality parameters for food products Download PDF

Info

Publication number
DK200801232A
DK200801232A DK200801232A DKPA200801232A DK200801232A DK 200801232 A DK200801232 A DK 200801232A DK 200801232 A DK200801232 A DK 200801232A DK PA200801232 A DKPA200801232 A DK PA200801232A DK 200801232 A DK200801232 A DK 200801232A
Authority
DK
Denmark
Prior art keywords
color
quality parameters
individual
food
measurement instrument
Prior art date
Application number
DK200801232A
Other languages
Danish (da)
Inventor
Breivik Oerjan
Holt Siv Kristin
Fjellanger Kurt
Kallelid Evy Vikene
Original Assignee
Trouw Int Bv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trouw Int Bv filed Critical Trouw Int Bv
Publication of DK200801232A publication Critical patent/DK200801232A/en
Application granted granted Critical
Publication of DK177150B1 publication Critical patent/DK177150B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A22BUTCHERING; MEAT TREATMENT; PROCESSING POULTRY OR FISH
    • A22BSLAUGHTERING
    • A22B5/00Accessories for use during or after slaughtering
    • A22B5/0064Accessories for use during or after slaughtering for classifying or grading carcasses; for measuring back fat
    • A22B5/007Non-invasive scanning of carcasses, e.g. using image recognition, tomography, X-rays, ultrasound
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • G01N33/12Meat; Fish

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Biophysics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Spectrometry And Color Measurement (AREA)

Claims (12)

1. Fremgangsmåde til beregning af en række kvalitetsparametre, for eksempel farve, pigmentindhold, fedt- og/eller vandindhold, af en madvare, især en madvare af animalsk oprindelse, for eksempel kød fra fisk og pattedyr, kendetegnet ved, at fremgangsmåden indeholder trinene - at tilvejebringe et repræsentativt individ af madvaren; - at bestemme individets kendetegnende størrelse, for eksempel længde, areal, volumen og/eller vægt; - at positionere et farvemålingsinstruments målelinse ved en overflade af madvaren, der er repræsentativ for kvalitetsparametrene, og at måle L*-, a*- og b*-værdierne (Chroma- og Hue-værdier) af overfladen; - at sammenligne de målte værdier for det foreliggende individs størrelse og kolorimetriske data med en på forhånd tilvejebragt multivariabel model, der er repræsentativ for en population af individets art, idet den multivariable model er dannet ved matematisk behandling af kemiske analyseresultater, visuel farvebedømmelse og individuel størrelse for populationen og omfatter korrelationsfaktorer mellem de målte kolorimetriske data og en række målte kvalitetsparametre, for derved - at udlede kvalitetsparametrene for det foreliggende individ i standardiserede måleenheder.A method for calculating a number of quality parameters, such as color, pigment content, fat and / or water content, of a food product, in particular a food product of animal origin, such as meat from fish and mammals, characterized in that the process comprises the steps of providing a representative individual of the food; determining the characteristic size of the subject, for example length, area, volume and / or weight; positioning a color measurement instrument's measurement lens at a surface of the food representative of the quality parameters and measuring the L *, a * and b * values (Chroma and Hue values) of the surface; - comparing the measured values of the subject's size and colorimetric data with a pre-existing multivariable model representative of a population of the individual, the multivariable model being formed by mathematical processing of chemical analysis results, visual color assessment and individual size for the population, and include correlation factors between the measured colorimetric data and a range of measured quality parameters, thereby - deriving the quality parameters of the subject in standardized units of measurement. 2. Fremgangsmåde ifølge krav 1,kendetegnet ved, at farvemå-lingsinstrumentet er hentet fra en gruppe bestående af farvemåler og digitalt kamera.Method according to claim 1, characterized in that the color measurement instrument is taken from a group consisting of color meter and digital camera. 3. Fremgangsmåde ifølge krav 1,kendetegnet ved, at individets størrelse er kendetegnet ved hjælp af to eller flere kendetegnede størrelser, herunder vægt.Method according to claim 1, characterized in that the size of the individual is characterized by two or more characterized sizes, including weight. 4. Fremgangsmåde ifølge krav 1, kendetegnet ved, at de kemiske analyseresultater indbefatter indholdet af karotenoider og også fedt- og vandindhold.Process according to claim 1, characterized in that the chemical analysis results include the content of carotenoids and also fat and water content. 5. Fremgangsmåde ifølge krav 1,kendetegnet ved, at karotenoi-derne er hentet fra gruppen bestående af astaxanthin, canthaxanthin, lutein og zeaxanthin.Process according to claim 1, characterized in that the carotenoids are obtained from the group consisting of astaxanthin, canthaxanthin, lutein and zeaxanthin. 6. Fremgangsmåde ifølge krav 1, kendetegnet ved, at den visuelle farvebedømmelse er angivet i en standardiseret værdi, for eksempel en farvekortværdi.Method according to claim 1, characterized in that the visual color assessment is indicated in a standardized value, for example a color map value. 7. Fremgangsmåde ifølge krav 1,kendetegnet ved, at fremgangsmåden også indbefatter det trin at registrere måledatoen for individet, idet den multivariable model også korreleres med prøvetagningsdatoer i populationen for de kemiske analyseresultater og den visuelle farvebedømmelse.Method according to claim 1, characterized in that the method also includes the step of recording the measurement date of the individual, the multivariable model also being correlated with sampling dates in the population for the chemical analysis results and the visual color assessment. 8. Fremgangsmåde ifølge et hvilket som helst af de foregående krav, kendetegnet ved, at individet er en laks.Method according to any one of the preceding claims, characterized in that the individual is a salmon. 9. Fremgangsmåde ifølge krav 1,kendetegnet ved, at den udledte farve er angivet som en Roche-farvekortværdi.Method according to claim 1, characterized in that the deduced color is indicated as a Roche color map value. 10. Anvendelse af et farvemålingsinstrument til beregning af en eller flere kvalitetsparametre for madvarer, idet Chroma- og Hue-værdier (L\ a*, b*) behandles i en på forhånd tilvejebragt matematisk multivariabel model.10. Use of a color measurement instrument for calculating one or more quality parameters for food products, in which Chroma and Hue values (L \ a *, b *) are processed in a predetermined mathematical multivariable model. 11. Anvendelse ifølge krav 10, kendetegnet ved, at farvemålingsin-strumentet er hentet fra en gruppe bestående af farvemåler og digitalt kamera.Use according to claim 10, characterized in that the color measurement instrument is taken from a group consisting of color meter and digital camera. 12. Anvendelse ifølge krav 10, kendetegnet ved, at kvalitetsparametrene er farve, pigment-, fedt- og/eller vandindhold i kød, især fiskekød.Use according to claim 10, characterized in that the quality parameters are color, pigment, fat and / or water content of meat, especially fish meat.
DKPA200801232A 2006-02-07 2008-09-05 Method for calculating food quality parameters and using a color measurement instrument DK177150B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
NO20060609 2006-02-07
NO20060609A NO324583B1 (en) 2006-02-07 2006-02-07 Method of calculating chemical and visual quality parameters for foods
PCT/NO2007/000034 WO2007091895A1 (en) 2006-02-07 2007-02-02 Method of calculating quality parameters of foodstuffs
NO2007000034 2007-02-02

Publications (2)

Publication Number Publication Date
DK200801232A true DK200801232A (en) 2008-09-05
DK177150B1 DK177150B1 (en) 2012-02-20

Family

ID=38345413

Family Applications (1)

Application Number Title Priority Date Filing Date
DKPA200801232A DK177150B1 (en) 2006-02-07 2008-09-05 Method for calculating food quality parameters and using a color measurement instrument

Country Status (8)

Country Link
EP (1) EP1984730A4 (en)
JP (1) JP2009526222A (en)
AU (1) AU2007212825B2 (en)
CA (1) CA2642482C (en)
DK (1) DK177150B1 (en)
NO (1) NO324583B1 (en)
NZ (1) NZ569591A (en)
WO (1) WO2007091895A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5164267B2 (en) * 2008-11-11 2013-03-21 島根県 How to discriminate quality of salmon
CN102353632A (en) * 2011-06-28 2012-02-15 上海谷绿旺农业投资管理有限公司 Color atla for determining pork freshness and manufacturing method thereof
CN104569273B (en) * 2015-01-21 2016-06-22 华南理工大学 The HPLC-MS/MS detection method of 11 kinds of edible synthesized coloring matters in a kind of meat or meat products
CN104931428B (en) * 2015-05-26 2017-11-28 南京中医药大学 A kind of method of cape jasmine concocting process On-line Control
JP7187931B2 (en) * 2018-09-27 2022-12-13 東芝ライテック株式会社 Light source evaluation method
CN117092041A (en) * 2023-08-22 2023-11-21 中国水产科学研究院 Rapid detection method for muscle quality of living carp based on hyperspectral imaging technology

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0246275B2 (en) * 1984-10-05 1990-10-15 Anzai Seisakusho KOKURUITONOSHIKISAISENBETSUKI
JPH07167780A (en) * 1994-10-25 1995-07-04 Makio Akimoto Food preshness-judging device
NO306652B1 (en) 1998-03-10 1999-12-06 Nutreco Aquaculture Res Centre Farmed fish feed in the form of a diet feed and the use of feed for a special feeding period
AU5967300A (en) * 1999-07-28 2001-02-19 Marine Harvest Norway As Method and apparatus for determining quality properties of fish
NO317714B1 (en) 2002-11-08 2004-12-06 Akvaforsk Inst For Akvakulturf Lighting Box

Also Published As

Publication number Publication date
CA2642482C (en) 2012-03-20
AU2007212825B2 (en) 2010-09-09
DK177150B1 (en) 2012-02-20
EP1984730A1 (en) 2008-10-29
JP2009526222A (en) 2009-07-16
AU2007212825A1 (en) 2007-08-16
WO2007091895A1 (en) 2007-08-16
NZ569591A (en) 2011-12-22
NO324583B1 (en) 2007-11-26
EP1984730A4 (en) 2013-05-22
CA2642482A1 (en) 2007-08-16
NO20060609L (en) 2007-08-08

Similar Documents

Publication Publication Date Title
DK200801232A (en) Method for calculating quality parameters for food products
Sivertsen et al. Automatic freshness assessment of cod (Gadus morhua) fillets by Vis/Nir spectroscopy
Kimiya et al. VIS/NIR spectroscopy for non-destructive freshness assessment of Atlantic salmon (Salmo salar L.) fillets
Karamucki et al. The influence of myoglobin on the colour of minced pork loin
Fukuda et al. Modelling the relationship between peel colour and the quality of fresh mango fruit using Random Forests
US20160356704A1 (en) Nondestructive meat tenderness assessment
Xiong et al. Quantitative determination of total pigments in red meats using hyperspectral imaging and multivariate analysis
CN100421823C (en) Method for grading pork based on its color and quality
Chmiel et al. The use of computer vision system to detect pork defects
Rocculi et al. Freshness assessment of European hake (Merluccius merluccius) through the evaluation of eye chromatic and morphological characteristics
Mancini et al. Interrelationships between visual and instrumental measures of ground beef color
Hegyi et al. Stable correlation structure among multiple plumage colour traits: can they work as a single signal?
Modika et al. Visual evaluation of beef tenderness by using surface structural observations and its relationship to meat colour
WO2013176114A1 (en) Meat color grade determination method
Valous et al. Quality evaluation of meat cuts
CN111289442A (en) Method for identifying specifications of sika deer antler slices based on colorimetry principle
Hu et al. Quality evaluation of fresh pork using visible and near-infrared spectroscopy with fiber optics in interactance mode
KR20110018562A (en) Cow carcass grade decision apparatus and method
Lušnic Polak et al. Effect of iodized salt on the physicochemical parameters and the sensory properties of dry-cured pork loin
Ripoll et al. Fat colour, a traceability parameter of grass feeding in lambs
KR100800599B1 (en) Method for measuring sugar content of niitaka pear and it's measuring board
CN109856080A (en) The fillet freshness Nondestructive Evaluation method of near infrared multispectral imaging multi objective collaboration
Ljungqvist et al. Classification of astaxanthin colouration of salmonid fish using spectral imaging and tricolour measurement
Ottestad et al. Effect of varying optical properties on the modeling of astaxanthin concentration in salmon by visible spectroscopy
Ke et al. An improved method of detecting pork freshness based on CRR features