JP5164267B2 - How to discriminate quality of salmon - Google Patents

How to discriminate quality of salmon Download PDF

Info

Publication number
JP5164267B2
JP5164267B2 JP2008289017A JP2008289017A JP5164267B2 JP 5164267 B2 JP5164267 B2 JP 5164267B2 JP 2008289017 A JP2008289017 A JP 2008289017A JP 2008289017 A JP2008289017 A JP 2008289017A JP 5164267 B2 JP5164267 B2 JP 5164267B2
Authority
JP
Japan
Prior art keywords
value
solid content
quality
state
crab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008289017A
Other languages
Japanese (ja)
Other versions
JP2010117177A (en
Inventor
智之 清川
裕司 藤川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimane Prefecture
Original Assignee
Shimane Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimane Prefecture filed Critical Shimane Prefecture
Priority to JP2008289017A priority Critical patent/JP5164267B2/en
Publication of JP2010117177A publication Critical patent/JP2010117177A/en
Application granted granted Critical
Publication of JP5164267B2 publication Critical patent/JP5164267B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

この発明は、蟹の品質を非破壊で判別する蟹の品質判別方法に関する。   The present invention relates to a method for discriminating the quality of a cocoon that discriminates the quality of the cocoon nondestructively.

日本近海で捕獲される蟹は、漁業関係者がその外観や触れた感覚等から品質を判別し、品質に応じて選別を行っている。例えば、ズワイガニは、最終脱皮から所定期間を経過して甲羅(殻)が硬く殻内の蟹肉(肉)の身入り状態が良い(殻の内部に蟹肉が良く詰った状態で殻の内部における蟹肉の充填率が高い)高品質の硬ガニと、最終脱皮から所定期間が経過しておらず甲羅が軟らかく殻内の蟹肉の身入り状態が悪い低品質の水ガニとに大別され、この判別を漁業関係者等が行っている。   The traps caught in the waters near Japan are discriminated according to their quality based on the appearance and touch of fishermen. For example, snow crab has a hard shell (shell) after a certain period of time since the final molting, and has a well-filled state of shell meat (meat) in the shell. High quality hard crabs and high quality hard crabs that have not been passed since the final molting and the shell is soft and the shell is not well-filled. This discrimination is made by fishermen.

上記判別は、例えば、蟹の脚を途中から切断して殻内の身入り状態を目視する等、蟹を破壊すれば比較的容易に行うことが可能であるが、蟹を破壊してしまうとその蟹が売り物にならないことがあり、通常は蟹を破壊すること無く行う必要がある。このため蟹の品質判別の正確さは漁業関係者等の経験に依るところが大きく、蟹の品質を非破壊で誰にでも正確に判別可能な蟹の品質判別方法が切望されていた。   The above determination can be made relatively easily by destroying the heel, for example, by cutting the heel leg from the middle and visually observing the state of the inside of the shell, but if the heel is destroyed, The kite may not be for sale and usually needs to be done without destroying the kite. For this reason, the accuracy of the quality determination of the reed largely depends on the experience of fishermen and others, and a method for determining the quality of the reed that can accurately determine the quality of the reed without being broken by anyone has been desired.

この要望に対して、上記硬ガニと水ガニとで水分含有率や、色調が異なることを見出し、この特性から蟹の品質を判別できる可能性があることを示唆した非特許文献1に示す研究結果が公知になっている。
原田、大谷、「ズワイガニの硬ガニおよび水ガニの品質評価手法に関する検討」、日本水産学会誌、社団法人日本水産学会2006年11月、第72巻、第6号、p.1103−1107
In response to this request, the research shown in Non-Patent Document 1 has found that the water content and color tone of the hard crabs and water crabs differ, and suggests that there is a possibility of discriminating the quality of the cocoon from this characteristic. The result is known.
Harada, Otani, “Study on Quality Evaluation Methods for Snow Crabs Hard Crabs and Water Crabs”, Journal of the Japanese Fisheries Society, Japanese Society of Fisheries Science, November 2006, Vol. 72, No. 6, p. 1103-1107

しかし、上記文献では、既に選別された硬ガニと水ガニとで、水分含有率が異なる点には言及しているが、水分含有率と殻内の蟹肉の身入り状態とにどのような相関があるのかを具体的に検討しておらず、例えば、前述の硬ガニの中でも品質の違いがあるが、この品質の違いを判断することは困難である。くわえて、水分含有率を検出するために、殻内から蟹肉を実際に取出して乾燥させており、蟹の品質を非破壊で判別するという観点から課題がある。   However, the above-mentioned document mentions that the moisture content is different between the hard crabs and the water crabs that have already been selected, but what is the moisture content and the state of the shark meat in the shell? Whether or not there is a correlation is not specifically examined. For example, there is a difference in quality among the above-mentioned hard crabs, but it is difficult to determine this difference in quality. In addition, in order to detect the moisture content, the salmon meat is actually taken out from the shell and dried, and there is a problem from the viewpoint of determining the quality of the salmon nondestructively.

また、色調についても、既に選別された硬ガニと水ガニとで、色調値が異なる点には言及しているが、具体的に色調値と殻内の蟹肉の身入り状態とにどのような相関があるのかについては言及していない。くわえて、色調値の測定は、太陽光や蛍光灯の影響を受け易く、精度の高い測定を行うことが困難な場合がある。   In addition, regarding the color tone, it is mentioned that the color value differs between the hard crabs and water crabs that have already been selected, but how are the color values and the state of the crab meat in the shell? There is no mention of whether there is any correlation. In addition, the measurement of the color tone value is easily affected by sunlight or a fluorescent lamp, and it may be difficult to perform a highly accurate measurement.

すなわち、上記文献は、蟹の色調や水分含有率が蟹の品質を判別する指標になる可能性がある旨は言及しているが、具体的にどのような手段により蟹の品質を判別するのかについては言及していない。
本発明は、上記課題を解決し、蟹の殻内の身入り状態に対して高い相関を示す指標を用いて、蟹の品質を非破壊で正確且つ安定的に判別可能な蟹の品質判別方法を提供することを目的とする。
In other words, the above-mentioned document mentions that the color tone and moisture content of cocoon may be an index for determining the quality of cocoon, but what means is specifically used to determine the quality of cocoon? Is not mentioned.
The present invention solves the above-mentioned problems, and uses an index that shows a high correlation with the state of consumption in the cocoon shell, so that the quality of the cocoon can be determined accurately and stably in a non-destructive manner. The purpose is to provide.

上記目的を達成するため本発明は、第1に、殻の外側から蟹に向かって照射した近赤外線を含む判別光の吸収された度合によって水分含有率を検出し、この水分含有率が低い程身入り状態が良い特性を利用して殻内の蟹肉の身入り状態を判定することにより蟹の品質を非破壊で判別することを特徴としている。   In order to achieve the above object, the present invention firstly detects the moisture content based on the degree of absorption of the discrimination light including the near infrared ray irradiated from the outside of the shell toward the ridge, and the lower the moisture content, It is characterized by discriminating the quality of the cocoon in a non-destructive manner by determining the state of the cocoon meat in the shell using the characteristics of the good occupancy.

第2に、判別光が600乃至1100ナノメートルの波長成分よりなることを特徴としている。   Second, the discrimination light is composed of a wavelength component of 600 to 1100 nanometers.

第3に、蟹の胸又は脚に判別光を照射して蟹の水分含有率を検出することを特徴としている。   Thirdly, the moisture content of the heel is detected by irradiating the chest or leg of the heel with discrimination light.

第4に、胸の身入り状態から脚の身入り状態又は脚の身入り状態から胸の身入り状態を検出することを特徴としている。   Fourthly, it is characterized in that a leg wear state is detected from a chest wear state or a leg wear state from a leg wear state.

以上のように構成される本発明の蟹の品質判別方法によれば、蟹の殻内の身入り状態に対して相関が高い水分含有率を、判別光を照射することによって検出して蟹の品質を判定するため、蟹の品質を非破壊で正確且つ安定的に判別できるという効果がある。   According to the quality determination method of the cocoon of the present invention configured as described above, the moisture content having a high correlation with the state of being put in the shell of the cocoon is detected by irradiating the discrimination light to detect the moisture content. Since the quality is determined, there is an effect that the quality of the cocoon can be determined accurately and stably without destruction.

また、蟹の胸又は脚に判別光を照射して蟹の水分含有率を検出することにより、より正確に、蟹の品質を判定できるという効果がある。   Moreover, there is an effect that the quality of the eyelid can be determined more accurately by irradiating the chest or leg of the eyelid with the discrimination light and detecting the moisture content of the eyelid.

さらに、胸の身入り状態から脚の身入り状態又は脚の身入り状態から胸の身入り状態を検出することにより、2箇所の身入り状態を1箇所の水分含有率を検出することにより、判定可能であるため、作業性が向上するという効果がある。   Furthermore, by detecting the state of wear of the legs from the state of wearing the legs or the state of wearing the legs from the state of wearing the legs, by detecting the moisture content of one place, Since determination is possible, there is an effect that workability is improved.

本願発明者らは、蟹の品質を殻内の身入り状態から判別するにあたり、蟹の水分含有率が低くなるに従って蟹の殻内の身入り状態が良好になることを見出し、近赤外線を多く含む判別光を照射することによって蟹の水分含有率を検出して蟹の品質を判別する蟹の品質判別方法を発明した。以下、蟹の身入り状態と蟹の水分含有率との相関関係について説明し、続いて、水分含有率の測定手段について説明する。   The inventors of the present application have found that the quality of the cocoon shell becomes better as the moisture content of the cocoon becomes lower in determining the quality of the cocoon from the state of the cocoon in the shell. We have invented a method for discriminating the quality of soot by detecting the moisture content of the soot by irradiating the discriminating light containing it and discriminating the quality of the soot. Hereinafter, the correlation between the state of the cocoon and the moisture content of the cocoon will be described, and then the means for measuring the moisture content will be described.

まず、図1乃至2に基づき、蟹の水分含有率と身入り状態との相関関係について説明する。
図1は、仰向けにした状態のズワイガニの全体平面図である。本願発明者らは、蟹としてズワイガニを用いた。ズワイガニは、一般の蟹と略同一の構造を有し、頭胸部(胴体)1から延びる左右一対の鋏脚(脚,鉗脚)2,2と、この鋏脚2に最も近い歩脚である左右一対の第1歩脚(脚,歩脚)3,3と、第1歩脚3に近く第1歩脚3に比べて鋏脚2から遠ざかる左右一対の第2歩脚(脚,歩脚)4,4と、第2歩脚4に近く第1歩脚4に比べて鋏脚2から遠ざかる左右一対の第3歩脚(脚,歩脚)6,6と、第3歩脚6に近く鋏脚2から最も遠く且つ他の脚2,3,4,6に比べて長さが短い左右一対の第4歩脚(脚,歩脚)7,7とを備えている。
First, based on FIG. 1 thru | or 2, the correlation with the moisture content rate of a strawberry and a state-of-wearing is demonstrated.
FIG. 1 is an overall plan view of a snow crab in a state of being turned upside down. The present inventors used snow crab as a bowl. The snow crab has substantially the same structure as a general heel, and is a pair of left and right heel legs (legs, forceps legs) 2 and 2 extending from the craniothoracic part (torso) 1 and a pedestrian closest to the heel leg 2. A pair of left and right first pedestals (legs, pedestrians) 3, 3 and a pair of left and right second pedestrians (legs, pedestrians) that are close to the first pedestal 3 and farther from the limb 2 than the first pedestal 3 ) 4, 4 and a pair of left and right third limbs (legs, pedestals) 6, 6 which are close to the second pedestal 4 and away from the heel leg 2 compared to the first pedestal 4, and the third pedestal 6 A pair of left and right fourth pedestrians (legs, pedestrians) 7 and 7 that are farthest from the saddle leg 2 and shorter in length than the other legs 2, 3, 4, and 6

上記各歩脚3,4,6,7は、基端(胴体1側端)側に近い方から順に基節(歩脚基節)Aと、座節(歩脚座節)Bと、長節(歩脚長節)Cと、腕節(歩脚腕節)Dと、前節(歩脚前節)Eと、指節(歩脚指節)Fとを有している。歩脚3,4,6,7中で一番蟹肉量の多い長節Cは、基節Aに対して折れ曲り可能で、前節Eは長節Cに対して折れ曲り可能で、指節Fは前節Eに対して折れ曲り可能である。   Each of the pedestrian legs 3, 4, 6, and 7 has a base (pedestal base) A, a base (pedal base) B, and a length from the side closer to the base (body 1 side end). It has a node (long limbs) C, an arm (step limbs) D, a front (front limbs) E, and a finger (step limbs) F. The long segment C, which has the largest sword thickness among the pedestrians 3, 4, 6 and 7, can be bent with respect to the base segment A, and the front segment E can be bent with respect to the long segment C. F can be bent with respect to the previous section E.

上記頭胸部1は、歩脚3,4,6,7による歩行の際に歩行面と対向する側である腹側における左右の各第1歩脚3,3及び第2歩脚4,4の付根部箇所及び付根箇所近傍に胸部(胸)8を有しており、この左右の胸部8,8からも多くの蟹肉を採取することが可能である。くわえて、上記鋏脚2も、歩脚3,4,6,7と同様に複数の節により構成され、中途箇所に折れ曲り可能な箇所を有する。ちなみに、蟹肉は生の状態では半液状であり、加熱処理によって凝固して固体化する。   The craniothoracic region 1 includes the left and right first limbs 3, 3 and the second limbs 4, 4 on the ventral side, which is the side facing the walking surface when walking with the limbs 3, 4, 6, 7. A chest part (chest) 8 is provided at the base part and in the vicinity of the base part, and it is possible to collect a large amount of meat from the left and right breast parts 8 and 8. In addition, the heel leg 2 is also composed of a plurality of nodes like the pedestrian legs 3, 4, 6, and 7, and has a portion that can be bent in the middle. By the way, salmon meat is semi-liquid in the raw state and solidifies by solidification by heat treatment.

本願発明者らは、身入り状態の異なるズワイガニを用意し、各ズワイガニに対して、冷凍状態で、左右の第1歩脚3,3及び第2歩脚4,4の各長節Cにおける基端から先端に至る中央部を測定箇所M(図1参照)とし、この測定箇所Mを切断し、その切断面を観察するとともに、上記測定箇所M付近の蟹肉を採取してその水分含有率を測定した。ちなみに、蟹肉が生の状態では半液状であるため、生の状態で脚2,3,4,6,7を切断すると、蟹肉が漏れ出して正確な水分含有率の測定ができない。このため、ズワイガニを冷凍させている。   The inventors of the present application prepare snow crab with different wearing conditions, and for each snow crab, in the frozen state, the base in each long section C of the left and right first pedestal legs 3 and 3 and the second pedestrian legs 4 and 4. The central portion from the end to the tip is the measurement location M (see FIG. 1), the measurement location M is cut, the cut surface is observed, and the fillet near the measurement location M is sampled to obtain its moisture content. Was measured. By the way, since the salmon meat is semi-liquid in the raw state, if the legs 2, 3, 4, 6 and 7 are cut in the raw state, the salmon meat leaks out and the moisture content cannot be accurately measured. For this reason, snow crab is frozen.

水分含有率の測定は、従来公知の常圧加熱乾燥法(常圧105℃乾燥法)を用いることにより行う。具体的には、常圧加熱乾燥法による処理前の水分を含んだ状態の蟹肉の重量を湿重量Wとし、上記常圧加熱乾燥法による処理後の蟹肉の重量を乾重量Wとした場合、水分含有率Xは下記式によって求められる。 The moisture content is measured by using a conventionally known normal pressure heating drying method (normal pressure 105 ° C. drying method). Specifically, the weight W 1 wet weight of crab meat in the state containing water pretreatment normal pressure heat drying method, the normal pressure heat drying method dry weight the weight of the crab meat after treatment with W 2 In this case, the moisture content X is obtained by the following formula.

なお、本実験では、便宜上、水分含有率Xに代えて下記式によって定義される固形分Yを用いた。   In this experiment, for the sake of convenience, the solid content Y defined by the following formula was used instead of the moisture content X.

上記実験の結果、固形分Yの値が高く、水分含有率Xが低い程、身入り状態が良くなることが観察された。そして、ズワイガニはケガニ等の十脚目の短尾類に属する蟹であるが、ズワイガニの体の構造は十脚目の短尾類に属する一般的な蟹が有する体の構造と変わりがないため、ズワイガニ以外の十脚目の短尾類に属する蟹も上記特性を有するものと推定され、実際に、他の種類の十脚目短尾類に属する蟹でも固形分Yの値が高い程身入り状態が良くなる現象が観察された。さらに、ズワイガニは、タラバガニやハナサキガニ等の十脚目異尾類に属する蟹と比較しても、その体の構造に大きな違いがあるわけでは無いため、十脚目異尾類に属する蟹も、上記特性を有するものと考えられる。すなわち、上記特性は、蟹全般が有している特性であると推定される。   As a result of the above experiment, it was observed that the higher the solid content Y and the lower the moisture content X, the better the dressing state. And the snow crab is a moth belonging to the decapodal short tail, such as a crab, but the body structure of the snow crab is not different from the structure of the body of a general moth belonging to the decapod short tail. It is estimated that moths belonging to the ten-legged short-tailed crab other than the snow crab also have the above-mentioned characteristics. A phenomenon that the entering state is improved was observed. In addition, snow crab does not have a big difference in the structure of its body even when compared with moths belonging to decapods such as king crab and octopus crab. It is considered to have the above characteristics. That is, it is estimated that the above characteristic is a characteristic of the entire bag.

図2は、ズワイガニの脚の固形分と胸の固形分との相関関係を示すグラフである。本願発明者らは、大きさや状態の異なる複数の冷凍状態のズワイガニに対して、左及び右の胸8における固形分Yの値と、第1歩脚3及び第2歩脚4の上記測定箇所Mにおける固形分Yの値とを常圧加熱乾燥法によって測定した。   FIG. 2 is a graph showing the correlation between the solid content of the snow crab leg and the solid content of the breast. The inventors of the present application, for a plurality of frozen crab in different sizes and states, the value of the solid content Y in the left and right breasts 8 and the measurement points of the first and second pedestals 3 and 4. The value of the solid content Y in M was measured by a normal pressure heating drying method.

具体的には、左側の胸8内の蟹肉における固形分Yの値を測定するとともに、その蟹の左側の第1歩脚3及び第2歩脚4の測定箇所Mの蟹肉における測定された固形分Yの平均値を測定して、「カニ胸の固形分Y」と「カニ脚の固形分」の組合せを1セット取得する一方で、右側の胸8内の蟹肉における固形分Yの値を測定するとともにその蟹の右側の第1歩脚3及び第2歩脚4の測定箇所Mの蟹肉における測定された固形分Yの平均値を測定して、「カニ胸の固形分Y」と「カニ脚の固形分」の組合せを1セット取得する。すなわち、1尾のズワイガニに対して、「カニ胸の固形分Y」と「カニ脚の固形分」の値の組合せデータを2セット取得し、この測定を複数のズワイガニに対して行った。   Specifically, the value of the solid content Y in the fillet in the left breast 8 is measured, and the measurement is performed in the fillet at the measurement point M on the first pedestal 3 and the second pedestal 4 on the left side of the heel. The average value of the solid content Y was measured to obtain one set of the combination of “crab breast solid content Y” and “crab leg solid content”, while the solid content Y in the ribs in the right breast 8 And the average value of the solid content Y measured in the fillet at the measurement point M of the first pedestal 3 and the second pedestal 4 on the right side of the heel is measured. One set of “Y” and “crab leg solids” is acquired. That is, two sets of combination data of the values of “crab breast solid content Y” and “crab leg solid content” were obtained for one snow crab, and this measurement was performed for a plurality of snow crab.

その結果は、同図に示すように、第1歩脚3及び第2歩脚4の固形分Yの値に対して胸部8の固形分Yの値が全体的に少し高くはなったものの、第1歩脚3及び第2歩脚4と胸部8の固形分Yの値は略同一であり、同一個体の蟹では、第1歩脚3及び第2歩脚4の固形分Yと胸8の固形分Yの値に高い相関関係があることが示された。また、第1歩脚3及び第2歩脚4の構造は他の脚2,6,7と略同じであるため、他の脚2,6,7と胸部8の固形分Yの値も略一致し、高い相関関係があることが推測される。くわえて、ズワイガニの体の構造は前述したように一般的な蟹と変わらないため、この特性は他の蟹でも同様であるものと考えられる。   As a result, as shown in the figure, although the solid content Y value of the chest 8 is slightly higher than the solid content Y value of the first pedestal 3 and the second pedestal 4 as a whole, The value of the solid content Y of the first pedestal 3 and the second pedestal 4 and the chest 8 is substantially the same, and the solid content Y and the chest 8 of the first pedestal 3 and the second pedestal 4 are in the same individual's heel. It was shown that there is a high correlation in the value of the solid content Y. Further, since the structures of the first pedestal 3 and the second pedestal 4 are substantially the same as those of the other legs 2, 6, 7, the solid content Y of the other legs 2, 6, 7 and the chest 8 is also substantially the same. It is inferred that there is a high correlation. In addition, since the structure of the snow crab body is not different from that of a general moth as described above, this characteristic is considered to be the same for other moths.

ちなみに、同図の例では、胸8から蟹肉部分のみを取出すことができず、水分の含有量の少ない殻が付いた状態で、蟹肉の固形分Yの値を常圧加熱乾燥法により測定したため、脚3,4部分よりも胸8部分の方が蟹肉の固形分Yの値が高くなったものと考えられ、脚2,3,4,6,7と胸8の固形分Yの値は略一致することが推測される。   By the way, in the example of the figure, only the fillet portion cannot be taken out from the breast 8, and the solid content Y value of the fillet is measured by the atmospheric pressure heating drying method with the shell having a low water content. Because of the measurement, it is considered that the solid content Y of the fillet was higher in the chest 8 part than in the legs 3 and 4 part, and the solids Y in the legs 2, 3, 4, 6, 7 and the breast 8 It is estimated that the values of are substantially the same.

上記事実から、本願発明者らは、蟹の品質を示す指標として水分含有率Xを用いるとともに、胸8の水分含有率Xを測定することにより脚2,3,4,6,7の水分含有率Xを検出する一方で、脚2,3,4,6,7の水分含有率Xを測定することにより胸8の水分含有率Xを検出する蟹の品質判別方法を見出した。   Based on the above facts, the inventors of the present application use the moisture content X as an index indicating the quality of sputum and measure the moisture content X of the breast 8 to measure the moisture content of the legs 2, 3, 4, 6, 7 While detecting the rate X, the present inventors have found a method for discriminating the quality of wrinkles that detects the moisture content X of the breast 8 by measuring the moisture content X of the legs 2,3,4,6,7.

次に、判別光による蟹の水分含有率Xの測定手段について説明する。
蟹の水分含有率Xは、前述した常圧加熱乾燥法により測定可能であるが、この測定法は、蟹肉を殻から取出す必要があることから蟹の品質を非破壊では判別できない他、測定対象物を加熱処理等する必要があり測定に時間と手間が掛かることから実用性に乏しいという欠点がある。くわえて、生きた状態又は生きた状態に近い状態である生鮮状態の蟹肉は半液状であり、そのような蟹肉の固形分Yの値を常圧加熱乾燥法により測定するためには、前述したように蟹を冷凍処理する必要があるという欠点もある。このため、本発明では、600〜1100nmの波長域の光から構成され近赤外線を多く含む判別光を用いて、冷凍処理も加熱処置もしない生状態の蟹の固形分Yを検出測定する。
Next, a means for measuring the moisture content X of soot using the discrimination light will be described.
The moisture content X of salmon can be measured by the above-mentioned atmospheric pressure heating drying method, but this measurement method requires the removal of the salmon meat from the shell, so the quality of the salmon cannot be determined non-destructively. Since it is necessary to heat-treat the object and the measurement takes time and labor, there is a drawback that it is not practical. In addition, the fresh state of the shark meat that is in a living state or a state close to the living state is semi-liquid, and in order to measure the solid content Y of such shark meat by atmospheric pressure heating drying method, As described above, there is also a drawback that it is necessary to freeze the straw. For this reason, in this invention, the solid content Y of the raw cocoon which does not perform a freezing process and a heat treatment is detected and measured using the discrimination light comprised of light in the wavelength region of 600 to 1100 nm and containing a lot of near infrared rays.

固形分Yの計測手段としては、蟹の特定部位に殻の外側から判別光を照射し、蟹から反射した光を受光する近赤外分光法の理論を用いたインタラクタンス法を用いる。具体的には、波長をλ、照射光のスペクトルをSin(λ)、反射光のスペクトルをSout(λ)とした場合、吸光度L(λ)は以下の式で示される。 As a means for measuring the solid content Y, an interactance method using a near-infrared spectroscopy theory that irradiates a specific part of the cocoon with discrimination light from the outside of the shell and receives light reflected from the cocoon is used. Specifically, when the wavelength is λ, the spectrum of irradiated light is S in (λ), and the spectrum of reflected light is S out (λ), the absorbance L (λ) is expressed by the following equation.

この際に、近赤外線が吸収される性質を利用して測定可能な測定値は、波長λを用いて、以下の検量式で算出されることが従来公知である。ちなみに、この測定値は、ここでは、固形分Yの値になる。   At this time, it is conventionally known that a measurement value that can be measured using the property of absorbing near infrared rays is calculated by the following calibration formula using the wavelength λ. Incidentally, this measured value is the value of the solid content Y here.

ここでD〜Dは、選択された所定波長λ〜λでの吸光度L(λ)の二次微分値であり、a〜aは定数である。そして、対象の蟹に対して、前述した蟹の脚2,3,4,6,7又は胸8の固形分Yを常圧加熱乾燥法等の従来公知の手段によって測定するとともに、判別光を照射して所定波長λ〜λでの吸光度L(λ)の二次微分値D〜Dを計測算出する。上記処理を複数の同種の蟹における同一箇所でそれぞれ行うことにより、固形分Yと、所定波長λ〜λでの吸光度L(λ)の二次微分値D〜Dとからなるデータを複数組用意しサンプルデータとし、このサンプルデータから重回帰分析を行い、定数a〜aの値を算出する。 Wherein D 1 to D n is the second derivative of absorbance L (lambda) at the selected predetermined wavelengths λ 1 ~λ n, a 0 ~a n are constants. Then, the solid content Y of the above-described heel legs 2, 3, 4, 6, 7 or chest 8 is measured with respect to the subject heel by a conventionally known means such as an atmospheric pressure heating drying method, and the discrimination light is Irradiated to measure and calculate the second derivative values D 1 to D n of the absorbance L (λ) at the predetermined wavelengths λ 1 to λ n . By performing the above-described processing at the same location in a plurality of same types of soot, data comprising solid content Y and second order differential values D 1 to D n of absorbance L (λ) at predetermined wavelengths λ 1 to λ n was a plurality of sets prepared sample data, performing a multiple regression analysis from the sample data to calculate the value of the constant a 0 ~a n.

ちなみに、所定波長λ〜λの選定は、正確な固形分Yの値が算出可能になるように従来公知の手段により最適化されているとともに、変数D〜Dの個数nも、正確な固形分Yの値が算出されるように従来公知の手段により最適化されており、一般的には数個になる。そして、変数が1個になる場合もあり、この場合には重回帰分析では無く、単回帰分析を行うことにより、検量式の定数a,aを求める。 Incidentally, the selection of a predetermined wavelength lambda 1 to [lambda] n, with are optimized by a known means such that the value of the exact solids Y is can be calculated, also the number n of the variable D 1 to D n, It is optimized by a conventionally known means so that an accurate value of the solid content Y is calculated, and is generally several. In some cases, the number of variables is one. In this case, the constants a 0 and a 1 of the calibration formula are obtained by performing a single regression analysis instead of a multiple regression analysis.

この検量式が一度求まると、あとは、所定波長λ〜λでの吸光度L(λ)の二次微分値D〜Dを計測算出することにより、固形分Yを算出することが可能になり、蟹の脚2,3,4,6,7又は胸8での固形分Yを算出することにより、蟹の品質の判断を行う。 Once this calibration equation is obtained, the solid content Y can be calculated by measuring and calculating the second derivative values D 1 to D n of the absorbance L (λ) at the predetermined wavelengths λ 1 to λ n. It is possible to determine the quality of the heel by calculating the solid content Y in the heel legs 2, 3, 4, 6, 7 or the chest 8.

また、この手段では、蟹の同一箇所からのサンプルデータによって検量式を求め、そして、この同一箇所に判定光を照射して固形分Yの値を測定するため、蟹のどの箇所を測定箇所とするかが固形分Yを測定する上で重要になる。そして、本願発明者らは、鋭利検討の結果、生状態の蟹における脚2,3,4,6,7、その中でも特に、第1歩脚3及び第2歩脚4における長節C中央部の腹側面の殻外面側及び胸8の殻外面側を照射箇所とすることが、判別光による固形分Yの測定を行う上で、有効である事実を見出した。   Further, in this means, a calibration formula is obtained from sample data from the same portion of the soot, and the determination light is irradiated to the same location to measure the value of the solid content Y. This is important in measuring the solid content Y. Then, the inventors of the present application have studied the leg 2, 3, 4, 6, 7 in the heel in the raw state as a result of the sharp examination, and in particular, the long section C central portion in the first pedestal 3 and the second pedestal 4 among them. It has been found that it is effective to use the outer shell side of the ventral side and the outer shell side of the chest 8 as the irradiation site in measuring the solid content Y by the discrimination light.

上記箇所が判別光の照射箇所として有効な理由は、その部分が蟹の各種部位の中でも一番白っぽく且つ他の部分と比べて殻も薄いため、光を良く通して判別光が効率良く蟹肉に達する点、蟹の各部位の中でも蟹肉量が最も多い部位の1つと考えられる点、形状に個体差が少なく安定したスペクトル測定が可能である点等が挙げられる。   The reason why the above part is effective as the irradiation part of the discrimination light is that the part is the most whitish among the various parts of the cocoon and the shell is thinner than the other part, so the discrimination light is efficiently passed through the light. And the like, a point considered to be one of the parts having the largest amount of meat among the parts of the cocoon, and a point that the spectrum can be measured stably with little individual difference.

そして、実際に、甲羅の背中側(腹側と反対側)等、上記箇所と別の箇所を照射箇所として、同一個体の同一箇所に判定光を照射し、反射した光又は透過する光を受光してそのスペクトル成分を測定した結果、脚2,3,4,6,7及び胸8と比較して、測定毎に同一のスペクトル成分を安定して得ることができなかった。   Actually, the same part of the same individual is irradiated with the determination light with the other part such as the back side of the shell (on the opposite side of the stomach) as the irradiation part, and the reflected or transmitted light is received. As a result of measuring the spectral components, the same spectral components could not be stably obtained for each measurement as compared with the legs 2, 3, 4, 6, 7 and the chest 8.

なお、判別光の蟹への照射によって固形分Yを測定する手段は、前述した手段に限定されるものではなく、特定波長λの光(特に赤外線領域の光)が蟹(蟹肉)に良く吸収されるという特徴を利用した測定手段であればよい。くわえて、判別光を照射してから、固形分Yを算出測定するまでの間の処理を、上記アルゴリズムを搭載したソフトフェア等により自動化してもよい。   The means for measuring the solid content Y by irradiating the discriminating light with the discriminating light is not limited to the above-mentioned means, and the light of the specific wavelength λ (especially the light in the infrared region) is good for the salmon (soak). Any measuring means that uses the feature of absorption may be used. In addition, the processing from the irradiation of the discrimination light to the calculation and measurement of the solid content Y may be automated by software or the like equipped with the above algorithm.

以上のように構成される蟹の品質判別方法によれば、殻内の身入り状態を、蟹を破壊すること無く迅速且つ正確に判定できるため、効率良く高精度で、蟹の品質を判別することが可能になる。   According to the quality determination method of the cocoon configured as described above, since the state of the inside of the shell can be determined quickly and accurately without destroying the cocoon, the quality of the cocoon is determined efficiently and accurately. It becomes possible.

大きさや状態の異なる複数のズワイガニに対して、図1に符号Mで示す第1歩脚3の長節C中央部及び第2歩脚4の長節C中央部における腹側の固形分Yの値を、上記蟹の品質判別方法によって測定するとともに、前述の常圧加熱乾燥法によって測定した。この際に、判別光を発光する発光素子と、蟹からの反射光を受光する受光素子とを備え、それぞれのスペクトルSin(λ)、Sout(λ)を計測可能な装置としては、600〜1100nmの波長成分からなり、特に近赤外線領域の光を多く含む判別光を照射可能なFANTEC社のポータブル型近赤外分光光度計である「NIR−GUN」を用いた。 For a plurality of snow crab having different sizes and states, the solid content Y on the ventral side in the center of the long C of the first pedestal 3 and the center of the long C of the second pedestal 4 shown in FIG. The value was measured by the above-described normal pressure heating drying method as well as by the above-described soot quality discrimination method. In this case, an apparatus that includes a light emitting element that emits discrimination light and a light receiving element that receives reflected light from the eyelid and that can measure the spectra S in (λ) and S out (λ) is 600. “NIR-GUN”, which is a portable near-infrared spectrophotometer manufactured by FANTEC, which has a wavelength component of ˜1100 nm and can radiate discrimination light containing a lot of light in the near-infrared region in particular, was used.

具体的には、各ズワイガニに対して、水揚げ後1日目に、上記蟹の品質判別方法により左右の第1歩脚3及び第2歩脚4の各測定箇所Mにおける蟹肉の固形分Yの値を2回測定してその測定値を検出値とするとともに、前述の常圧加熱乾燥法により左右の第1歩脚3及び第2歩脚4の各測定箇所Mにおける蟹肉の固形分Yの値を1回測定してその測定値を分析値とし、1尾のズワイガニから検出値と分析値の組合せのデータを8セット取得した。詳しくは、4本の各脚3,3,4,4について、1つの分析値と2つの検出値を得て2セットの検出値と分析値の組合せデータを取得する。ちなみに、固形分Yの値を上記蟹の品質判別方法により2回測定する際には、判別光の照射箇所を1回目と2回目で微妙にずらして測定を行った。このように照射箇所を微妙にずらすことにより、照射箇所がずれることによる測定誤差を抑制している。   Specifically, for each snow crab, on the first day after landing, the solid content Y of the salmon meat at each measurement location M of the left and right first pedestal 3 and second pedestal 4 by the quality determination method of the heel. Is measured twice, and the measured value is used as a detected value, and the solid content of the salmon meat at each measurement point M of the left and right first pedestal 3 and second pedestal 4 by the atmospheric pressure heating and drying method described above. The Y value was measured once, and the measured value was used as an analysis value, and eight sets of data of combinations of detected values and analysis values were obtained from one snow crab. Specifically, for each of the four legs 3, 3, 4 and 4, one analysis value and two detection values are obtained, and two sets of detection value and analysis value combination data are acquired. Incidentally, when measuring the value of the solid content Y twice by the quality discrimination method of the above-mentioned soot, the measurement was performed by slightly shifting the irradiation position of the discrimination light between the first time and the second time. Thus, by slightly shifting the irradiation location, measurement errors due to the shift of the irradiation location are suppressed.

くわえて、全ズワイガニ中の一部の個体については、水揚げ後2日目も同様の手段により検出値と分析値の組合せのデータを8セット取得した。すなわち、1尾のズワイガニに対して最大16セットの検出値と分析値の組合せのデータを取得した。このように1日経過したズワイガニに対して固形分Yの値を測定することにより、鮮度が落ちた蟹にも本発明が適用できるか否かの検証を行った。   In addition, for some individuals in all snow crab, 8 sets of data of combinations of detection values and analysis values were obtained on the second day after landing by the same means. That is, a maximum of 16 sets of combinations of detection values and analysis values were obtained for one snow crab. In this way, by measuring the value of the solid content Y for the snow crab that has passed for one day, it was verified whether or not the present invention can be applied to the freshly-soiled crab.

なお、水揚げ後2日目における検出値と分析値の組合せデータを取得する場合には、水揚げ後1日目に分析値の測定を行わず、水揚げ後2日目に分析値の測定を行い、この分析値を用いて16セットの組合せデータを取得する。すなわち、水揚げ後1日目で測定を完了するズワイガニも、水揚げ後2日目まで測定を続けるズワイガニも、常圧加熱乾燥法により分析値を測定する回数は同一になる。   In addition, when acquiring the combination data of the detected value and the analytical value on the second day after landing, the analytical value is not measured on the first day after landing, the analytical value is measured on the second day after landing, Using this analysis value, 16 sets of combination data are acquired. That is, both the snow crab that completes the measurement on the first day after landing and the snow crab that continues the measurement until the second day after landing have the same number of times of measuring the analytical value by the atmospheric pressure heating drying method.

図3は、ズワイガニの脚部分の固形分を、常圧加熱乾燥法によって測定した場合の測定値である分析値と、近赤外線によって測定した場合の測定値である検出値との相関関係を示すグラフである。同図では上記分析値と検出値が略一致しており、判別光による固形分Y測定の精度の高さを示す結果になっている。くわえて、1日経過したズワイガニでも同様の結果となったため、鮮度がある程度落ちても上記蟹の品質判別方法が適用可能であることが確認された。ちなみに、同図に示す結果を得るために用いられた検量式は下記に示す通りであり、Dが850nmでの吸光度L(λ)の二次微分値を示し、Dが886nmでの吸光度L(λ)の二次微分値を示し、Dが1014nmでの吸光度L(λ)の二次微分値を示している。 FIG. 3 shows the correlation between the analysis value, which is a measurement value when the solid content of the snow crab legs is measured by a normal pressure heating drying method, and the detection value, which is a measurement value when measurement is performed by near infrared rays. It is a graph. In the figure, the analysis value and the detection value substantially coincide with each other, and the result shows the high accuracy of the solid content Y measurement by the discrimination light. In addition, since the same result was obtained even for snow crab that had passed one day, it was confirmed that the quality determination method of the koji can be applied even if the freshness drops to some extent. Incidentally, the calibration formula used to obtain the results shown in the figure is as shown below, D 1 represents the second derivative of absorbance L (λ) at 850 nm, and D 2 represents absorbance at 886 nm. The second derivative value of L (λ) is shown, and D 3 is the second derivative value of absorbance L (λ) at 1014 nm.

大きさや状態の異なる複数のズワイガニに対して、左右の胸8における固形分Yの値を、前述の「NIR−GUN」を用いた上記蟹の品質判別方法によって測定するとともに、前述の常圧加熱乾燥法によって測定した。   For a plurality of snow crab having different sizes and conditions, the solid content Y value in the left and right breasts 8 is measured by the above-described method for determining the quality of sputum using “NIR-GUN”, and the above-described normal pressure heating is performed. It was measured by the drying method.

具体的には、各ズワイガニに対して、水揚げ後1日目に、上記蟹の品質判別方法により左右の胸8における蟹肉の固形分Yの値を2回測定してその測定値を検出値とするとともに、前述の常圧加熱乾燥法により左右の胸8における蟹肉の固形分Yの値を1回測定してその測定値を分析値とし、1尾のズワイガニから検出値と分析値の組合せのデータを4セット取得した。詳しくは、左右の各胸8,8について、1つの分析値と2つの検出値を得て、2セットの検出値と分析値の組合せデータを取得する。ちなみに、固形分Yの値を上記蟹の品質判別方法により2回測定する際には、判別光の照射箇所を1回目と2回目で微妙にずらして測定を行った。このように照射箇所を微妙にずらすことにより、照射箇所がずれることによる測定誤差を抑制している。   Specifically, for each snow crab, on the first day after landing, the value of the solid content Y of the salmon meat in the left and right breasts 8 is measured twice by the quality determination method of the salmon and the measured value is detected. In addition, the value of the solid content Y of the salmon meat in the left and right breasts 8 is measured once by the above-mentioned atmospheric pressure heating and drying method, and the measured value is used as an analytical value. Four sets of combination data were acquired. Specifically, for each of the left and right breasts 8 and 8, one analysis value and two detection values are obtained, and two sets of detection value and analysis value combination data are acquired. Incidentally, when measuring the value of the solid content Y twice by the quality discrimination method of the above-mentioned soot, the measurement was performed by slightly shifting the irradiation position of the discrimination light between the first time and the second time. Thus, by slightly shifting the irradiation location, measurement errors due to the shift of the irradiation location are suppressed.

くわえて、全ズワイガニ中の一部の個体については、水揚げ後2日目も同様の手段により検出値と分析値の組合せのデータを4セット取得した。すなわち、1尾のズワイガニに対して最大8セットの検出値と分析値の組合せのデータを取得した。このように1日経過したズワイガニに対して固形分Yの値を測定することにより、鮮度が落ちた蟹にも本発明が適用できるか否かの検証を行った。   In addition, for some individuals in all snow crab, 4 sets of combination data of detection values and analysis values were obtained on the second day after landing by the same means. In other words, a maximum of eight sets of combinations of detection values and analysis values were obtained for one snow crab. In this way, by measuring the value of the solid content Y for the snow crab that has passed for one day, it was verified whether or not the present invention can be applied to the freshly-soiled crab.

なお、水揚げ後2日目における検出値と分析値の組合せデータを取得する場合には、水揚げ後1日目に分析値の測定を行わず、水揚げ後2日目に分析値の測定を行い、この分析値を用いて8セットの組合せデータを取得する。すなわち、水揚げ後1日目で測定を完了するズワイガニも、水揚げ後2日目まで測定を続けるズワイガニも、常圧加熱乾燥法により分析値を測定する回数は同一になる。   In addition, when acquiring the combination data of the detected value and the analytical value on the second day after landing, the analytical value is not measured on the first day after landing, the analytical value is measured on the second day after landing, Using this analysis value, eight sets of combination data are acquired. That is, both the snow crab that completes the measurement on the first day after landing and the snow crab that continues the measurement until the second day after landing have the same number of times of measuring the analytical value by the atmospheric pressure heating drying method.

図4は、ズワイガニの胸部分の固形分を、常圧加熱乾燥法によって測定した場合の測定値である分析値と、近赤外線によって測定した場合の測定値である検出値との相関関係を示すグラフである。同図では上記分析値と検出値が略一致しており、判別光による固形分Y測定の精度の高さを示す結果になっている。くわえて、1日経過したズワイガニでも同様の結果となったため、鮮度がある程度落ちても上記蟹の品質判別方法が適用可能であることが確認された。ちなみに、同図に示す結果を得るために用いられた検量式は下記に示す通りであり、Dが854nmでの吸光度L(λ)の二次微分値を示し、Dが886nmでの吸光度L(λ)の二次微分値を示し、Dが918nmでの吸光度L(λ)の二次微分値を示している。 FIG. 4 shows the correlation between the analytical value, which is a measured value when the solid content of the snow crab breast is measured by a normal pressure heating drying method, and the detected value, which is a measured value when measured by near infrared rays. It is a graph. In the figure, the analysis value and the detection value substantially coincide with each other, and the result shows the high accuracy of the solid content Y measurement by the discrimination light. In addition, since the same result was obtained even for snow crab that had passed one day, it was confirmed that the quality determination method of the koji can be applied even if the freshness drops to some extent. Incidentally, the calibration formula used to obtain the results shown in the figure is as shown below, D 1 represents the second derivative of absorbance L (λ) at 854 nm, and D 2 represents absorbance at 886 nm. The second derivative value of L (λ) is shown, and D 3 is the second derivative value of absorbance L (λ) at 918 nm.

図5(A)乃至(E)は、状態の異なる複数のズワイガニを蒸して胸部分の殻を取外すことにより、各ズワイガニにおける胸内の蟹肉の身入り程度を示した底面図であり、図6(A)乃至(E)は、図5のズワイガニにおける切断した脚の本体側の身入り状態をそれぞれ示す断面図であり、図7(A)乃至(E)は、それぞれ図5のズワイガニにおける切断した脚の頭胸部1側の身入り状態をそれぞれ示す断面図である。大きさや状態が異なり且つ市場で硬ガニと判断された5尾のズワイガニを用意し、生状態の各ズワイガニに対して左右の胸8に判別光を照射して検出算出された固形分Yの平均値をカニ胸の固形分Yの値とする一方で、これらのズワイガニをそれぞれ蒸した後、各ズワイガニの向かって右側の胸8における殻内の蟹肉の身入り状態を確認した。   5 (A) to 5 (E) are bottom views showing the level of crab meat in each of the snow crab by steaming a plurality of snow crab in different states and removing the chest shell. 6 (A) to (E) are cross-sectional views respectively showing the state of the body of the cut leg in the snow crab of FIG. 5, and FIGS. 7 (A) to (E) are respectively the snow crab in FIG. It is sectional drawing which respectively shows the state of the cut | disconnected leg by the side of the thoracic region 1 side. The average of the solid content Y detected and calculated by preparing five snow crab different in size and condition and judged to be hard crabs in the market, and irradiating the left and right chest 8 with discriminating light for each raw snow crab While the value was set to the value of the solid content Y of the crab breast, after each of these snow crabs was steamed, the state of crab meat in the shell in the right breast 8 toward each snow crab was confirmed.

図5(A)では左右の胸8における蟹肉の固形分Yの平均値が23.7%になり、同図(B)では左右の胸8における蟹肉の固形分Yの平均値が23.3%になり、同図(C)では左右の胸8における蟹肉の固形分Yの平均値が19.0%になり、同図(D)では左右の胸8における蟹肉の固形分Yの平均値が20.2%になり、同図(E)では左右の胸8における蟹肉の固形分Yの平均値が19.0%になった。   5A, the average value of the solid content Y of the fillet in the left and right breasts 8 is 23.7%, and in FIG. 5B, the average value of the solid content Y of the fillet in the left and right breasts 8 is 23. The average value of the solid content Y of the salmon meat in the left and right breasts 8 is 19.0% in the figure (C), and the solid content of the salmon meat in the left and right breasts 8 in the figure (D). The average value of Y was 20.2%, and in FIG. 5E, the average value of the solid content Y of the fillet in the left and right breasts 8 was 19.0%.

同図に示すように、(A),(B)に示す固形分Yの値が高いズワイガニでは、殻と蟹肉との間に殆ど隙間がなく、身が良く詰っているのに対して、(A),(B)のズワイガニよりも固形分Yの値が低い(D)のズワイガニでは、殻と蟹肉との間に隙間が多く、蟹の身入り状態が(A),(B)のズワイガニと比較して、良くないことが分かる。さらに、(D)のズワイガニよりも固形分Yの値が低い(C),(E)のズワイガニでは、殻と蟹肉との間に隙間が多く、蟹の身入り状態が(D)のズワイガニと比較して、良くないことが分かる。   As shown in the figure, in the snow crab with a high solid content Y shown in (A) and (B), there is almost no gap between the shell and the fillet, and the body is well packed, In the snow crab of (D) whose solid content Y is lower than that of the snow crab of (A), (B), there are many gaps between the shell and the salmon meat, and the state of the salmon is (A), (B) Compared to the snow crab, it is not good. Furthermore, in the snow crab of (C) and (E) where the value of the solid content Y is lower than that of the snow crab of (D), there are many gaps between the shell and the salmon meat, and the crab is in the state of (D) snow crab It turns out that it is not good compared with.

続いて、上記蒸した状態の5尾の各ズワイガニにおける第1歩脚3,3及び第2歩脚4,4の長節C腹側の図1に示す各測定箇所Mを切断し、その切断面を観察して殻内の蟹肉の身入り状態を確認した。図6及び7に示すように、図6及び7の(A),(B)に示す固形分Yの値が高いズワイガニでは、殻と蟹肉との間に殆ど隙間がなく、身が良く詰っているのに対して、図6及び7の(A),(B)のズワイガニよりも固形分Yの値が低い図6及び7の(D)のズワイガニでは、殻と蟹肉との間に隙間が多く、蟹の身入り状態が図6及び7の(A),(B)のズワイガニと比較して、良くないことが分かる。さらに、図6及び7の(D)のズワイガニよりも固形分Yの値が低い図6及び7の(C),(E)のズワイガニでは、殻と蟹肉との間に隙間が多く、蟹の身入り状態が図6及び7の(D)のズワイガニと比較して、良くないことが分かる。すなわち、脚3,4の蟹肉の身入り状態は、胸8の固形分Yの値が高くなるに従って良くなっている。   Subsequently, the measurement points M shown in FIG. 1 on the long side C of the first pedestal legs 3 and 3 and the second pedestal legs 4 and 4 in each of the five steamed snow crabs are cut and cut. By observing the surface, the state of the fillet in the shell was confirmed. As shown in FIGS. 6 and 7, in the snow crab having a high solid content Y shown in FIGS. 6 and 7 (A) and (B), there is almost no gap between the shell and the fillet, and the body is well packed. On the other hand, in the snow crab of FIG. 6 and 7 (D) whose solid content Y is lower than the snow crab of FIGS. 6 and 7 (A) and (B), between the shell and the salmon meat It can be seen that there are many gaps, and the state of the cocoon is not good compared to the snow crab in FIGS. 6 and 7 (A) and (B). Further, in the snow crab of FIGS. 6 and 7 (C) and (E) having a lower solid content Y than the snow crab of FIGS. 6 and 7, there are many gaps between the shell and the salmon meat, It can be seen that the state of wearing is not good as compared with the snow crab of FIGS. 6 and 7 (D). That is, the state of the meat filling of the legs 3 and 4 becomes better as the value of the solid content Y of the breast 8 becomes higher.

以上のように、上記蟹の品質判別方法により測定した固形分Yの値が高いズワイガニの方が身入り状態が良い結果となるとともに、市場で硬ガニと呼ばれる品質の良いズワイガニであってもその品質を判別可能であることが示された。くわえて、胸8の固形分Yの値から脚2,3,4,6,7の身入り状態が判別可能であることも示された。   As described above, the snow crab having a higher solid content Y measured by the quality determination method of the koji gives better results, and even a snow crab of good quality called a hard crab in the market It was shown that the quality can be discriminated. In addition, it was shown that the state of the legs 2, 3, 4, 6, and 7 can be distinguished from the value of the solid content Y of the chest 8.

なお、蟹が生きている場合は脚2,3,4,6,7が動くため、胸8の方がうまく固形分Yの値を測定できるので、この胸8部分の蟹肉の固形分Yの値を測定することにより、脚2,3,4,6,7の殻内の身入り状態が検出できる本発明の蟹の品質判別方法は、利便性が高い。   Since the legs 2, 3, 4, 6, and 7 move when the heel is alive, the chest 8 can measure the solid content Y better. The quality determination method of the bag according to the present invention, which can detect the state of wear of the legs 2, 3, 4, 6, and 7 by measuring the value of, is highly convenient.

仰向けにした状態のズワイガニの全体平面図である。It is a whole top view of the snow crab in the state turned to the back. ズワイガニの脚の固形分と胸の固形分との相関関係を示すグラフである。It is a graph which shows the correlation with the solid content of a snow crab leg, and the solid content of a breast. ズワイガニの脚部分の固形分を、常圧加熱乾燥法によって測定した場合の測定値である分析値と、近赤外線によって測定した場合の測定値である検出値との相関関係を示すグラフである。It is a graph which shows the correlation with the analytical value which is a measured value at the time of measuring solid content of a snow crab leg part by a normal-pressure heat drying method, and the detected value which is a measured value when measured by near infrared rays. ズワイガニの胸部分の固形分を、常圧加熱乾燥法によって測定した場合の測定値である分析値と、近赤外線によって測定した場合の測定値である検出値との相関関係を示すグラフである。It is a graph which shows the correlation with the analytical value which is a measured value when the solid content of the snow crab breast part is measured by a normal-pressure heat drying method, and the detected value which is a measured value when measured by near infrared rays. (A)乃至(E)は、ズワイガニを蒸して胸部分の殻を取外すことにより、各ズワイガニにおける胸内の蟹肉の身入り程度を示した底面図である。(A) thru | or (E) is the bottom view which showed the degree of the meat fillet in the breast in each snow crab by steaming snow crab and removing the shell of a breast part. (A)乃至(E)は、図5のズワイガニにおける切断した脚の本体側の身入り状態をそれぞれ示す断面図である。(A) thru | or (E) are sectional drawings which each show the state of the body side of the cut leg in the snow crab of FIG. (A)乃至(E)は、それぞれ図5のズワイガニにおける切断した脚の頭胸部1側の身入り状態をそれぞれ示す断面図である。(A) thru | or (E) is sectional drawing which respectively shows the state of the state of the craniothoracic part 1 side of the cut leg in the snow crab of FIG.

符号の説明Explanation of symbols

1 頭胸部(胴体)
2 鋏脚(脚,鉗脚)
3 第1歩脚(脚,歩脚)
4 第2歩脚(脚,歩脚)
6 第3歩脚(脚,歩脚)
7 第4歩脚(脚,歩脚)
8 胸部(胸)
A 基節(歩脚基節)
B 座節(歩脚座節)
C 長節(歩脚長節)
D 腕節(歩脚腕節)
E 前節(歩脚前節)
F 指節(歩脚指節)
1 Head and chest (torso)
2 leg (leg, forceps)
3 First limbs (legs, pedestrians)
4 Second limbs (legs, pedestrians)
6 3rd limb (leg, pedestrian)
7 4th leg (leg, pedestrian)
8 Chest (chest)
A group (pedestal group)
B Zodiac (step leg)
C Long (long leg)
D brachial arm (pedal brachial arm)
E Previous paragraph (front leg)
F phalanx (step phalanx)

Claims (4)

殻の外側から蟹に向かって照射した近赤外線を含む判別光の吸収された度合によって水分含有率を検出し、この水分含有率が低い程身入り状態が良い特性を利用して殻内の蟹肉の身入り状態を判定することにより蟹の品質を非破壊で判別する蟹の品質判別方法。   The moisture content is detected by the degree of absorption of the discrimination light including the near infrared ray irradiated from the outside of the shell toward the cocoon. A method for discriminating the quality of salmon, in which the quality of the salmon is determined nondestructively by determining the state of meat. 判別光が600乃至1100ナノメートルの波長成分よりなる請求項1の蟹の品質判別方法。   The method for discriminating the quality of wrinkles according to claim 1, wherein the discrimination light comprises a wavelength component of 600 to 1100 nanometers. 蟹の胸又は脚に判別光を照射して蟹の水分含有率を検出する請求項1又は2の蟹の品質判別方法。   The method for discriminating the quality of the heel according to claim 1 or 2, wherein the moisture content of the heel is detected by irradiating the chest or leg of the heel with discrimination light. 胸の身入り状態から脚の身入り状態又は脚の身入り状態から胸の身入り状態を検出する請求項3の蟹の品質判別方法。   4. The method for determining the quality of a heel according to claim 3, wherein the state of the leg is detected from the state of the chest and the state of the breast is detected from the state of the leg.
JP2008289017A 2008-11-11 2008-11-11 How to discriminate quality of salmon Expired - Fee Related JP5164267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008289017A JP5164267B2 (en) 2008-11-11 2008-11-11 How to discriminate quality of salmon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008289017A JP5164267B2 (en) 2008-11-11 2008-11-11 How to discriminate quality of salmon

Publications (2)

Publication Number Publication Date
JP2010117177A JP2010117177A (en) 2010-05-27
JP5164267B2 true JP5164267B2 (en) 2013-03-21

Family

ID=42304951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008289017A Expired - Fee Related JP5164267B2 (en) 2008-11-11 2008-11-11 How to discriminate quality of salmon

Country Status (1)

Country Link
JP (1) JP5164267B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101923069B (en) * 2010-06-28 2012-12-12 中国水产科学研究院淡水渔业研究中心 Method for discriminating Chinese mitten crabs in different producing areas
AU2013377779B2 (en) * 2013-02-06 2017-01-05 Clearwater Seafoods Limited Partnership Imaging for determination of crustacean physical attributes
CN108254324B (en) * 2017-12-18 2020-09-22 中国农业大学 Method and device for rapidly detecting freshness of crab meat
CN110274888B (en) * 2019-06-28 2021-10-08 江苏大学 Smart phone based eriocheir sinensis internal edible quality nondestructive testing method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2539653B2 (en) * 1988-01-12 1996-10-02 ハウス食品株式会社 Process for producing seafood and meat used as raw materials for foods subjected to heat sterilization
JP2001264249A (en) * 2000-03-16 2001-09-26 Kochi Prefecture Fleshy substance estimation method by near-infrared spectroanalysis and its application
JP2002186464A (en) * 2000-12-20 2002-07-02 Japan Science & Technology Corp Nondestructive inspection method for dried laver and apparatus therefor
JP4383747B2 (en) * 2003-01-15 2009-12-16 株式会社石野製作所 Freshness management system for foods and beverages circulated
GB0409691D0 (en) * 2004-04-30 2004-06-02 Titech Visionsort As Apparatus and method
JP2005341895A (en) * 2004-06-04 2005-12-15 Japan Tobacco Inc Heat-treated crustacean excellent in palatability
JP2007093506A (en) * 2005-09-30 2007-04-12 Green Foods Co Ltd Raw fish body quality determining method
NO324583B1 (en) * 2006-02-07 2007-11-26 Trouw Internat Bv Method of calculating chemical and visual quality parameters for foods
JP2008089529A (en) * 2006-10-05 2008-04-17 Fisheries Research Agency Nondestructive measurement method of frozen ground fish meat component by near infrared analysis

Also Published As

Publication number Publication date
JP2010117177A (en) 2010-05-27

Similar Documents

Publication Publication Date Title
Cheng et al. Non-destructive and rapid determination of TVB-N content for freshness evaluation of grass carp (Ctenopharyngodon idella) by hyperspectral imaging
Bonilla et al. Development of Quality Index Method (QIM) scheme for fresh cod (Gadus morhua) fillets and application in shelf life study
JP5164267B2 (en) How to discriminate quality of salmon
Isaksson et al. Non‐destructive determination of fat, moisture and protein in salmon fillets by use of near‐infrared diffuse spectroscopy
He et al. Potential of hyperspectral imaging combined with chemometric analysis for assessing and visualising tenderness distribution in raw farmed salmon fillets
Khodabux et al. Chemical and near-infrared determination of moisture, fat and protein in tuna fishes
Bowker et al. Measurement of water-holding capacity in raw and freeze-dried broiler breast meat with visible and near-infrared spectroscopy
Prieto et al. On-line application of visible and near infrared reflectance spectroscopy to predict chemical–physical and sensory characteristics of beef quality
Samuel et al. Visible–near-infrared spectroscopy to predict water-holding capacity in normal and pale broiler breast meat
Xu et al. Rapid prediction and visualization of moisture content in single cucumber (Cucumis sativus L.) seed using hyperspectral imaging technology
Huang et al. Nondestructive prediction of moisture and sodium chloride in cold smoked Atlantic salmon (Salmo salar)
JP2005533609A5 (en)
JP2013526395A (en) Apparatus, system, method and computer accessible medium for spectral analysis of optical coherence tomography images
Oehlenschläger Seafood quality assessment
Shan et al. Comparisons of fish morphology for fresh and frozen-thawed crucian carp quality assessment by hyperspectral imaging technology
Liu et al. Identification of kiwifruits treated with exogenous plant growth regulator using near-infrared hyperspectral reflectance imaging
Ren et al. Application of volatile and spectral profiling together with multimode data fusion strategy for the discrimination of preserved eggs
Brown Rapid compositional analysis of oysters using visible-near infrared reflectance spectroscopy
Xu et al. A polarized hyperspectral imaging system for in vivo detection: Multiple applications in sunflower leaf analysis
Currò et al. Use of a portable near-infrared tool for rapid on-site inspection of freezing and hydrogen peroxide treatment of cuttlefish (Sepia officinalis)
JP2002122540A (en) Fresh product evaluating device and method
de la Roza-Delgado et al. Assessing the value of a portable near infrared spectroscopy sensor for predicting pork meat quality traits of “Asturcelta Autochthonous Swine Breed”
Vanoli et al. Non destructive detection of Internal Brown Spot in potato tubers by time-resolved reflectance spectroscopy: preliminary results on a susceptible cultivar.
Pu et al. Evaluation of the effects of vacuum cooling on moisture contents, colour and texture of mushroom (Agaricus Bisporus) using hyperspectral imaging method
VanUtrecht et al. Soybean mechanical damage detection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121217

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5164267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees