JP2008089529A - Nondestructive measurement method of frozen ground fish meat component by near infrared analysis - Google Patents

Nondestructive measurement method of frozen ground fish meat component by near infrared analysis Download PDF

Info

Publication number
JP2008089529A
JP2008089529A JP2006273616A JP2006273616A JP2008089529A JP 2008089529 A JP2008089529 A JP 2008089529A JP 2006273616 A JP2006273616 A JP 2006273616A JP 2006273616 A JP2006273616 A JP 2006273616A JP 2008089529 A JP2008089529 A JP 2008089529A
Authority
JP
Japan
Prior art keywords
frozen
protein
fish meat
ground fish
infrared analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006273616A
Other languages
Japanese (ja)
Inventor
Emiko Okazaki
恵美子 岡崎
Uddin Musleh
ムスレ・ウディン
Takashi Kimiya
隆 木宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fisheries Research Agency
Original Assignee
Fisheries Research Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fisheries Research Agency filed Critical Fisheries Research Agency
Priority to JP2006273616A priority Critical patent/JP2008089529A/en
Publication of JP2008089529A publication Critical patent/JP2008089529A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for simply and accurately measuring moisture and protein in frozen ground fish meat. <P>SOLUTION: In this near infrared analysis method of the ground fish meat, the ground fish meat to be measured is frozen, and a raw spectrum is subjected to WSC processing by using a fiber probe at a temperature below -5°C in the frozen state of the ground fish meat, and its secondary differential processing spectrum is subjected to PLS regression analysis. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、冷凍すり身に含まれる蛋白質などの成分の測定方法に関する。   The present invention relates to a method for measuring components such as proteins contained in frozen surimi.

冷凍すり身の品質測定は、水産庁の指定した品質検査基準(水産庁通達、6水漁第1065号、平成6年4月1日)に従って行われ、冷凍すり身の水分は必須検査項目、タンパク質は任意測定項目となっている。これは、水分やタンパク質の含有量が、すり身の品質特性としてもっとも重要であるゲル形成能に直接的に影響する重要な因子であるためであり、国際的にも、CODEX規格によって水産庁の品質検査基準とほぼ同様の品質検査基準が定められている。
タンパク質の測定法は、前記CODEX規格ではケルダール法で測定することとなっており、ケルダール法によって総窒素量を求め、これに「窒素−タンパク質換算係数(魚肉の場合には6.25)」を乗じて粗タンパク質量を算出している。
ケルダール法は、分析精度が高く汎用性の高い方法であるが、分析試験が煩雑であり、また測定に時間を要することから、迅速性・簡便性の求められる製造現場において迅速かつ正確に測定可能な手法が求められてきた。
The quality of frozen surimi is measured in accordance with the quality inspection standards specified by the Fisheries Agency (Fisheries Agency notification, 6 water fishery No. 1065, April 1, 1994). Water content of frozen surimi is an essential test item, and protein is an optional measurement. It is an item. This is because the water and protein content is an important factor that directly affects the gel-forming ability, which is the most important quality characteristic of surimi. Quality inspection standards that are almost the same as the standards are established.
In the CODEX standard, the protein measurement method is the Kjeldahl method, and the total nitrogen content is obtained by the Kjeldahl method and multiplied by the "nitrogen-protein conversion factor (6.25 for fish)" The amount of crude protein is calculated.
The Kjeldahl method is a highly versatile method with high analytical accuracy, but the analysis test is complicated, and it takes time to measure, so it can be measured quickly and accurately at the manufacturing site where quickness and simplicity are required. New methods have been demanded.

近年、迅速な成分分析法として近赤外分光分析が注目され、係る分析法により蛋白質含有量を測定する方法が提案されている(特許文献1〜3)。これらのうち特許文献1,2に記載される方法は、比較的水分含有量の低い小麦粉等の穀類を対象としたものであり、これら対象物については水の存在による吸収スペクトルの妨害なくタンパク質によるピークを低波長領域(570-1120nm)で観察できた(特許文献2)が、水分含有量の高い水産物に適した方法ではなかった。また特許文献3においては水分が比較的多く含まれる小麦粉ドゥを対象として高波長領域(1100-2500nm)における観察を行っているが、ファイバープローブ(近赤外光の減衰のため1100nm以下の低波長領域の観察にしか適用できない)を使用せざるを得ない大きなブロック状の製品の測定には転用不可能であった。   In recent years, near-infrared spectroscopy has attracted attention as a rapid component analysis method, and methods for measuring protein content by such analysis methods have been proposed (Patent Documents 1 to 3). Among these, the methods described in Patent Documents 1 and 2 are intended for cereals such as wheat flour having a relatively low water content, and for these objects, there is no interference in the absorption spectrum due to the presence of water. Although the peak could be observed in the low wavelength region (570-1120 nm) (Patent Document 2), it was not a method suitable for seafood with a high water content. In Patent Document 3, the flour dough containing a relatively large amount of water is observed in the high wavelength region (1100-2500 nm), but the fiber probe (low wavelength of 1100 nm or less for the attenuation of near infrared light). It was not applicable to the measurement of large block products that had to be used only for area observation.

本発明者らは、1100nm以下の低波長領域においてファイバープローブを用いたインタラクタンス法による近赤外分光分析により迅速なタンパク質測定法を検討すべく、すり身成分中の水分及びタンパク質を分析することを試みた(非特許文献1)。ファイバープローブを用いた場合の波長領域としては、400-1100nmが対象となるが、この範囲において、水を示すピークは970nm付近に認められ、その影響から、910nm付近に観察されるべきタンパク質そのもののピークは確認することが出来ず、水分量からの逆相関によってタンパク質量を推定するしかなかった。   The present inventors analyzed water and protein in surimi components in order to investigate a rapid protein measurement method by near-infrared spectroscopic analysis by an interactance method using a fiber probe in a low wavelength region of 1100 nm or less. Tried (Non-Patent Document 1). The wavelength range when using a fiber probe is 400-1100 nm, but in this range, a peak indicating water is recognized around 970 nm, and from the influence, the protein itself to be observed around 910 nm The peak could not be confirmed, and the protein amount could only be estimated by the inverse correlation from the water content.

一方、冷凍カツオや冷凍マアジの脂肪分を、光ファイバープローブを備えた近赤外分光法で測定する方法が提案されている(非特許文献2、3)。これらの方法は、冷凍魚の皮下0-5mmの脂肪含有量を精度よく測定でき、表皮に近い部分に脂肪を多く含有している魚の選別に適しているが、解凍によって発生する水のスペクトルによる測定誤差が生じること(非特許文献2)や、生・冷凍試料の検量線の評価では冷凍試料の方が生試料より劣ることが報告されており(非特許文献3)、他の測定に、広く応用されることを示唆するものではなかった。
このように、冷凍すり身中の水分およびタンパク質量をそのままの状態で精度よく測定する方法は知られていなかった。
特開平5−60685号公報 特表2003−526079号公報 特表2001−527646号公報 Udden M, Okazaki E, Fukushima H, Turza S, Yamashita Y,and Fukuda Y :Food Chem. 96, 491-495 (2006) 山内悟、澤田敏雄、河野澄夫、日本水産学会誌、65[4]、1999年、水産学会、747-752 嶌本淳司、長谷川薫、井出圭、河野澄夫、日本水産学会誌、67[4]、2001年、水産学会、717-722
On the other hand, methods for measuring the fat content of frozen bonito and frozen jack mackerel by near infrared spectroscopy equipped with an optical fiber probe have been proposed (Non-Patent Documents 2 and 3). These methods can accurately measure the fat content of frozen fish, 0-5mm subcutaneously, and are suitable for sorting fish that contain a lot of fat near the epidermis, but are measured by the spectrum of water generated by thawing. It has been reported that errors occur (Non-Patent Document 2) and that the frozen sample is inferior to the raw sample in the evaluation of the calibration curve of the raw / frozen sample (Non-Patent Document 3). It did not suggest application.
Thus, there has been no known method for accurately measuring the moisture and protein content in the frozen surimi as it is.
Japanese Patent Application Laid-Open No. 560685 Japanese translation of PCT publication No. 2003-526079 JP-T-2001-527646 Udden M, Okazaki E, Fukushima H, Turza S, Yamashita Y, and Fukuda Y: Food Chem. 96, 491-495 (2006) Satoru Yamauchi, Toshio Sawada, Sumio Kawano, Journal of the Fisheries Society of Japan, 65 [4], 1999, Fisheries Society of Japan, 747-752 Koji Enomoto, Satoshi Hasegawa, Satoshi Ide, Sumio Kono, Journal of Japanese Society of Fisheries Science, 67 [4], 2001, Japan Society of Fisheries Science, 717-722

本発明の目的は、冷凍すり身中の水分およびタンパク質を精度よく簡単に測定する方法を提供することである。   An object of the present invention is to provide a method for accurately and easily measuring moisture and protein in frozen surimi.

本発明者らは、測定すべきすり身を冷凍し、すり身を凍結状態のままで近赤外分析を行うと、1026nm付近に水の存在を示すと思われる大きなピークが観察され、910nm付近にタンパク質を示すピークが明瞭に観察され、しかも測定精度が解凍後のものより優れていることを見出し、本発明に至った。
非凍結のときに観察できなかったタンパク質のピークが明瞭に観察されたのは、非凍結のときに970nm付近にあった水のピークが1026nm付近まで移動したため、水のピークに隠れていたタンパク質のピークが観察されるようになったものである。
When the surimi to be measured is frozen and the near-infrared analysis is performed while the surimi is in a frozen state, the inventors have observed a large peak that appears to indicate the presence of water near 1026 nm, and the protein near 910 nm. It was found that a peak indicating γ was clearly observed and the measurement accuracy was superior to that after thawing, and the present invention was achieved.
The protein peaks that could not be observed when unfrozen were clearly observed because the water peak that was around 970 nm moved to around 1026 nm when unfrozen. A peak is observed.

本発明によれば、凍結状態のままのすり身中の水分とタンパク質を測定するので操作が簡単であり、1100nm以下の波長を使用するので光ファイバープローブによる測定が可能であり、冷凍すり身を大きなブロック状態のまま測定でき、しかもタンパク質のピークから直接その含量を測定するので、精度の高い測定が可能となった。   According to the present invention, it is easy to operate because it measures moisture and protein in surimi in a frozen state, and can be measured with an optical fiber probe because it uses a wavelength of 1100 nm or less, and frozen surimi is in a large blocked state In addition, the content can be measured directly from the peak of the protein, so that highly accurate measurement is possible.

本発明で使用する冷凍すり身としては、現在世界中で流通している種々の製品が対象となる。例えば、北米、ロシア、北海道では、スケトウダラ、ホッケ、パシフィックホワイティング等、東南アジア、インドでは、イトヨリダイ、キントキ、グチ、エソ等、ニュージーランド、南米では、ミナミダラ、ホキ、アジ等が挙げられる。   As the frozen surimi used in the present invention, various products currently distributed all over the world are targeted. For example, in North America, Russia, and Hokkaido, walleye pollock, hockey, and pacific whiting, etc., in Southeast Asia and India, Itoyodai, Kintoki, Guchi, Ezo, etc., and in New Zealand and South America, southern bluefish, hoki, horse mackerel, etc. are mentioned.

本発明で使用される近赤外分光分析装置としては、市販されている装置が使用できるが、取り扱いの便から、ファイバープローブを備えた装置が好ましい。
冷凍すり身の一部を切り取って測定することは非常に困難であり現実的でないが、本発明では、ファイバープローブを使用することによって冷凍すり身の塊のまま非破壊的に水分及びタンパク質含有量を精度高く測定することが可能である。
As the near-infrared spectroscopic analysis apparatus used in the present invention, a commercially available apparatus can be used, but an apparatus equipped with a fiber probe is preferable for convenience of handling.
Although it is very difficult and practical to cut and measure a portion of frozen surimi, in the present invention, the fiber and probe are used to accurately determine the moisture and protein contents in a frozen surimi mass. It is possible to measure high.

近赤外分析装置における統計処理として、重回帰分析(MLR:第1波長に926nm(魚油の吸収波長)、第2〜4波長は、700-1100nmの範囲でコンピュータにより自動的に選択される波長とする)する方法と、生スペクトルをMSC処理し、その二次微分処理スペクトルをPLS回帰分析(partial least squares regression)する方法が考えられ、本発明ではいずれも適用可能であるが、すり身は、各種成分を含むために多くのピークが複合的に影響するので、PLS回帰分析のほうが好ましい。   As statistical processing in the near-infrared analyzer, multiple regression analysis (MLR: 926nm (fish oil absorption wavelength) at the first wavelength, wavelength 2 to 4 is automatically selected by the computer in the range of 700-1100nm) And a method of MSC processing the raw spectrum, and a method of PLS regression analysis (partial least squares regression) of the second derivative spectrum, both of which can be applied in the present invention, PLS regression analysis is preferred because many peaks have multiple effects because they contain various components.

本発明の分析は、すり身が冷凍状態であれば何度でも差し支えないが、−5℃〜0℃の間で1024nm(氷)から970nm(水)への急激なピークのシフトが生じるので、−5℃以下、より好ましくは−10℃以下の温度で行なうことが精度を高くするためには必要である。   The analysis of the present invention can be performed any number of times as long as the surimi is frozen. However, a sharp peak shift from 1024 nm (ice) to 970 nm (water) occurs between −5 ° C. and 0 ° C. In order to increase the accuracy, it is necessary to carry out at a temperature of 5 ° C. or lower, more preferably −10 ° C. or lower.

≪検量線の作成≫
市場に流通している各種冷凍すり身(スケトウダラ冷凍すり身、52製品)を試料として使用した。近赤外スペクトルの測定では、近赤外分析計NIRSystems 6500(NIRSystems Inc., Silver Spring, MD, USA)に装着したインタラクタンス型光ファイバープローブ(直径9mm)を、試料表面に接触させて32回スキャンを行った。試料測定前のリファレンススペクトル測定には白色セラミック板を使用した。装置の操作およびスペクトルの収集は、Vision software(Version 3.20, NIRSystems Inc., MD, USA)を用いて行った。得られたスペクトルデータ(700-1100nm)は、The Unscrambler software(Version 8.05, CAMO, NJ, USA)により解析した。測定したすり身の近赤外スペクトル(タンパク質:910nm、水分:1026nm)を図1に示す。
≪Creation of calibration curve≫
Various types of frozen surimi distributed in the market (Sumitou Frozen Surimi, 52 products) were used as samples. For near-infrared spectrum measurement, an interactance optical fiber probe (9 mm in diameter) attached to the near-infrared analyzer NIRSystems 6500 (NIRSystems Inc., Silver Spring, MD, USA) is contacted with the sample surface and scanned 32 times. Went. A white ceramic plate was used for reference spectrum measurement before sample measurement. Instrument operation and spectrum collection were performed using Vision software (Version 3.20, NIRSystems Inc., MD, USA). The obtained spectrum data (700-1100 nm) was analyzed by The Unscrambler software (Version 8.05, CAMO, NJ, USA). The near-infrared spectrum of the surimi measured (protein: 910 nm, moisture: 1026 nm) is shown in FIG.

図2は、図1に示されるオリジナルスペクトルの二次微分値をプロットした図で、水分由来のピーク(1026nm)とタンパク質由来のピーク(910nm)が見られる。   FIG. 2 is a plot of the second derivative value of the original spectrum shown in FIG. 1 and shows a water-derived peak (1026 nm) and a protein-derived peak (910 nm).

図3は、これらのピーク値から検量線を用いて求めたタンパク質の含有量の値と、ケルダール法によって求めたタンパク質の含有量の値との相関を示すグラフであり、R2=0.96という高精度でタンパク質の含有量が測定できたことを示している。 FIG. 3 is a graph showing the correlation between the protein content value obtained from these peak values using a calibration curve and the protein content value obtained by the Kjeldahl method, and R 2 = 0.96. This indicates that the protein content could be measured with high accuracy.

≪測定精度の比較≫
冷凍及び解凍すり身の近赤外スペクトルを実施例1と同様に測定した。対照分析値となる水分含量およびタンパク質含量は、それぞれ常圧加熱乾燥法およびケルダール法により測定した。得られた近赤外スペクトルデータおよび化学分析値を用いて検量線を作成し、各モデルの精度を検証した。その結果を表1に示す。
表1の数値が示すようにタンパク質及び水分のいずれも、予測精度は冷凍状態の方が解凍状態より優れていた。これは、冷凍状態ではタンパク質と水分のピーク波長が離間し、相互に影響を及ぼさないことが原因と考えられる。
≪Comparison of measurement accuracy≫
Near-infrared spectra of frozen and thawed surimi were measured as in Example 1. The water content and protein content as control analysis values were measured by the atmospheric pressure heat drying method and the Kjeldahl method, respectively. A calibration curve was created using the obtained near-infrared spectrum data and chemical analysis values, and the accuracy of each model was verified. The results are shown in Table 1.
As the numerical values in Table 1 indicate, the prediction accuracy of the protein and water was better in the frozen state than in the thawed state. This is considered to be because the peak wavelengths of protein and water are separated in the frozen state and do not affect each other.

近赤外分析において、温度変化に伴う970nm(水)及び1024nm(氷)における吸光度の変化を調べるため、すり身の解凍過程における近赤外スペクトルを実施例1と同様に測定した。スケトウダラ冷凍すり身(約50×50×50 mmのブロック)を、表面より深さ約 5 mmの温度をモニターしながら、種々の温度(−20℃〜5℃:全45点)における近赤外スペクトルを測定した。解凍および測定は、保冷材を詰めた発泡スチロール中で行った。得られたスペクトルデータを二次微分処理した後、970nm(水)及び1024nm(氷)の値をプロットした結果を図4に示す。
図4から明らかなように、−5℃〜0℃の間で吸光度が急激に変化していることがわかる。
したがって、本発明を実施するには、−5℃以下、より好ましくは−10℃以下で行なうことが望ましい。
In the near-infrared analysis, the near-infrared spectrum in the thawing process of surimi was measured in the same manner as in Example 1 in order to examine the change in absorbance at 970 nm (water) and 1024 nm (ice) with temperature change. Near-infrared spectra of walleye pollock frozen surimi (approx. 50 x 50 x 50 mm block) at various temperatures (from -20 ° C to 5 ° C: 45 points) while monitoring the temperature about 5 mm deep from the surface. Was measured. Thawing and measurement were performed in a polystyrene foam filled with a cold insulation material. FIG. 4 shows the results of plotting the values of 970 nm (water) and 1024 nm (ice) after second-order differentiation of the obtained spectrum data.
As is clear from FIG. 4, it can be seen that the absorbance changes abruptly between −5 ° C. and 0 ° C.
Therefore, in order to carry out the present invention, it is desirable to carry out at -5 ° C or lower, more preferably -10 ° C or lower.

本発明によれば、冷凍すり身のリアルタイムのグレーディングが可能となり、より品質の安定した冷凍すり身の生産を実現することができる。また、製造前の原料の品質管理を厳密に行なうことができ、加工品の品質向上に大いに役立つ。   According to the present invention, real-time grading of frozen surimi is possible, and production of frozen surimi with more stable quality can be realized. Moreover, the quality control of the raw material before manufacture can be strictly performed, which is very useful for improving the quality of processed products.

すり身中の水分及びタンパク質のスペクトルWater and protein spectra of surimi 図1に示されるオリジナルスペクトルの微分値をプロットした図A plot of the differential value of the original spectrum shown in FIG. ピーク値から検量線を用いて求めたタンパク質の含有量の値と、ケルダール法によって求めたタンパク質の含有量の値との相関を示すグラフGraph showing the correlation between the protein content value obtained from the peak value using the calibration curve and the protein content value obtained by the Kjeldahl method 温度変化に伴う970nm(水)及び1024nm(氷)における吸光度の変化を示すグラフGraph showing changes in absorbance at 970nm (water) and 1024nm (ice) with temperature change

Claims (4)

各種魚介類から製造されたすり身中の水分及びタンパク質を、凍結状態で測定することを特徴とする近赤外分析方法。   A near-infrared analysis method characterized by measuring moisture and protein in surimi produced from various seafood in a frozen state. −5℃以下の温度で測定することを特徴とする請求項1記載の近赤外分析方法。   The near-infrared analysis method according to claim 1, wherein measurement is performed at a temperature of −5 ° C. or lower. ファイバープローブを使用することを特徴とする請求項1又は2記載の近赤外分析方法。   3. The near infrared analysis method according to claim 1, wherein a fiber probe is used. 生スペクトルをMSC処理し、その二次微分処理スペクトルをPLS回帰分析することを特徴とする請求項1〜3のいずれかに記載の近赤外分析方法。   The near-infrared analysis method according to any one of claims 1 to 3, wherein the raw spectrum is subjected to MSC processing, and the secondary differential processing spectrum is subjected to PLS regression analysis.
JP2006273616A 2006-10-05 2006-10-05 Nondestructive measurement method of frozen ground fish meat component by near infrared analysis Withdrawn JP2008089529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006273616A JP2008089529A (en) 2006-10-05 2006-10-05 Nondestructive measurement method of frozen ground fish meat component by near infrared analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006273616A JP2008089529A (en) 2006-10-05 2006-10-05 Nondestructive measurement method of frozen ground fish meat component by near infrared analysis

Publications (1)

Publication Number Publication Date
JP2008089529A true JP2008089529A (en) 2008-04-17

Family

ID=39373831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006273616A Withdrawn JP2008089529A (en) 2006-10-05 2006-10-05 Nondestructive measurement method of frozen ground fish meat component by near infrared analysis

Country Status (1)

Country Link
JP (1) JP2008089529A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010112887A (en) * 2008-11-07 2010-05-20 Astellas Pharma Inc Principal component analysis method, principal component analyzer, different kind article detection device, principal component analysis program, and recording medium for recording the principal component analysis program
JP2010117177A (en) * 2008-11-11 2010-05-27 Shimane Prefecture Quality determining method of crab
CN101806730A (en) * 2010-04-13 2010-08-18 江苏大学 Vinegar residue organic matrix moisture content detection method
CN101881729A (en) * 2010-06-10 2010-11-10 上海海洋大学 Method for predicting moisture and protein content in minced pollock
JP2011214940A (en) * 2010-03-31 2011-10-27 Caloria Japan Co Ltd Method and device for discriminating foreign matter contamination in object
CN102353644A (en) * 2011-06-30 2012-02-15 上海海洋大学 Rapid near infrared spectroscopy method for simultaneously detecting moisture content and protein content of Trichiurus japonicus surimi
CN102564964A (en) * 2011-12-29 2012-07-11 南京林业大学 Spectral image-based meat quality visual non-contact detection method
CN102590131A (en) * 2012-01-18 2012-07-18 中国农业大学 Fresh meat deep water nondestructive on-line detection device and method
CN102590103A (en) * 2012-02-29 2012-07-18 翟学智 Near-infrared detector for meat and detection method thereof
CN102636451A (en) * 2012-04-24 2012-08-15 上海海洋大学 Method for fast determination of phosphate content in hairtail surimi and fish paste
CN103207154A (en) * 2013-03-18 2013-07-17 安徽工程大学 Method for quantitatively analyzing proteins
CN103412103A (en) * 2013-08-01 2013-11-27 浙江工商大学 Nondestructive fast detection method for quality of channa argus
CN103424374A (en) * 2013-06-19 2013-12-04 浙江省海洋开发研究院 Method for quickly detecting freshness level of hairtail by using near-infrared spectrum technology
CN103592255A (en) * 2013-11-22 2014-02-19 山东东阿阿胶股份有限公司 Soft method for measuring total protein content of donkey-hide gelatin skin solution on basis of near infrared spectrum technology
CN104089902A (en) * 2014-03-31 2014-10-08 浙江工商大学 Beef freshness detection device and detection method
CN104089907A (en) * 2014-03-31 2014-10-08 浙江工商大学 Detection device and detection method for chicken freshness
CN104089898A (en) * 2014-03-31 2014-10-08 浙江工商大学 Detection device and detection method for spliced chicken
CN104089909A (en) * 2014-03-31 2014-10-08 浙江工商大学 Device and method for detecting spliced beef
CN104251829A (en) * 2014-03-31 2014-12-31 浙江工商大学 Device and method for detecting splicing mutton
CN104251828A (en) * 2014-03-31 2014-12-31 浙江工商大学 Device and method for rapid detection of splicing mutton
CN104251830A (en) * 2014-03-31 2014-12-31 浙江工商大学 Device and method for detecting splicing chicken
CN104880427A (en) * 2015-05-29 2015-09-02 华南理工大学 Rapid pork product moisture content detection method
CN105136709A (en) * 2015-06-05 2015-12-09 华南理工大学 Method and device for measuring freezing parameters of frozen meat
CN105548062A (en) * 2015-12-21 2016-05-04 中国肉类食品综合研究中心 A multi-index rapid nondestructive synchronous detection method for fresh beef
WO2016147879A1 (en) * 2015-03-18 2016-09-22 株式会社前川製作所 Device for detecting phase transition changes and method for detecting phase transition changes in moisture-containing food sample
CN111122492A (en) * 2019-11-29 2020-05-08 中国农业科学院北京畜牧兽医研究所 Near-infrared detection-based fast water-injected meat screening method

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010112887A (en) * 2008-11-07 2010-05-20 Astellas Pharma Inc Principal component analysis method, principal component analyzer, different kind article detection device, principal component analysis program, and recording medium for recording the principal component analysis program
JP2010117177A (en) * 2008-11-11 2010-05-27 Shimane Prefecture Quality determining method of crab
JP2011214940A (en) * 2010-03-31 2011-10-27 Caloria Japan Co Ltd Method and device for discriminating foreign matter contamination in object
CN101806730A (en) * 2010-04-13 2010-08-18 江苏大学 Vinegar residue organic matrix moisture content detection method
CN101881729A (en) * 2010-06-10 2010-11-10 上海海洋大学 Method for predicting moisture and protein content in minced pollock
CN102353644A (en) * 2011-06-30 2012-02-15 上海海洋大学 Rapid near infrared spectroscopy method for simultaneously detecting moisture content and protein content of Trichiurus japonicus surimi
CN102564964A (en) * 2011-12-29 2012-07-11 南京林业大学 Spectral image-based meat quality visual non-contact detection method
CN102590131A (en) * 2012-01-18 2012-07-18 中国农业大学 Fresh meat deep water nondestructive on-line detection device and method
CN102590103A (en) * 2012-02-29 2012-07-18 翟学智 Near-infrared detector for meat and detection method thereof
CN102636451A (en) * 2012-04-24 2012-08-15 上海海洋大学 Method for fast determination of phosphate content in hairtail surimi and fish paste
CN103207154A (en) * 2013-03-18 2013-07-17 安徽工程大学 Method for quantitatively analyzing proteins
CN103424374A (en) * 2013-06-19 2013-12-04 浙江省海洋开发研究院 Method for quickly detecting freshness level of hairtail by using near-infrared spectrum technology
CN103424374B (en) * 2013-06-19 2015-10-21 浙江省海洋开发研究院 A kind of near-infrared spectrum technique detects the method for hairtail freshness fast
CN103412103A (en) * 2013-08-01 2013-11-27 浙江工商大学 Nondestructive fast detection method for quality of channa argus
CN103592255A (en) * 2013-11-22 2014-02-19 山东东阿阿胶股份有限公司 Soft method for measuring total protein content of donkey-hide gelatin skin solution on basis of near infrared spectrum technology
CN104089902A (en) * 2014-03-31 2014-10-08 浙江工商大学 Beef freshness detection device and detection method
CN104089907A (en) * 2014-03-31 2014-10-08 浙江工商大学 Detection device and detection method for chicken freshness
CN104089909A (en) * 2014-03-31 2014-10-08 浙江工商大学 Device and method for detecting spliced beef
CN104251829A (en) * 2014-03-31 2014-12-31 浙江工商大学 Device and method for detecting splicing mutton
CN104251828A (en) * 2014-03-31 2014-12-31 浙江工商大学 Device and method for rapid detection of splicing mutton
CN104251830A (en) * 2014-03-31 2014-12-31 浙江工商大学 Device and method for detecting splicing chicken
CN104251830B (en) * 2014-03-31 2017-01-18 浙江工商大学 Device and method for detecting splicing chicken
CN104089898A (en) * 2014-03-31 2014-10-08 浙江工商大学 Detection device and detection method for spliced chicken
WO2016147879A1 (en) * 2015-03-18 2016-09-22 株式会社前川製作所 Device for detecting phase transition changes and method for detecting phase transition changes in moisture-containing food sample
JPWO2016147879A1 (en) * 2015-03-18 2017-11-24 株式会社前川製作所 Phase transition detection apparatus and phase transition detection method for food samples containing moisture
CN104880427A (en) * 2015-05-29 2015-09-02 华南理工大学 Rapid pork product moisture content detection method
CN104880427B (en) * 2015-05-29 2017-08-25 华南理工大学 A kind of quick moisture detecting method of pork product
CN105136709A (en) * 2015-06-05 2015-12-09 华南理工大学 Method and device for measuring freezing parameters of frozen meat
CN105548062A (en) * 2015-12-21 2016-05-04 中国肉类食品综合研究中心 A multi-index rapid nondestructive synchronous detection method for fresh beef
CN111122492A (en) * 2019-11-29 2020-05-08 中国农业科学院北京畜牧兽医研究所 Near-infrared detection-based fast water-injected meat screening method

Similar Documents

Publication Publication Date Title
JP2008089529A (en) Nondestructive measurement method of frozen ground fish meat component by near infrared analysis
Cheng et al. Non-destructive and rapid determination of TVB-N content for freshness evaluation of grass carp (Ctenopharyngodon idella) by hyperspectral imaging
Wang et al. Spectral detection techniques for non-destructively monitoring the quality, safety, and classification of fresh red meat
Büning-Pfaue Analysis of water in food by near infrared spectroscopy
Collell et al. Feasibility of near-infrared spectroscopy to predict aw and moisture and NaCl contents of fermented pork sausages
Xu et al. An overview on nondestructive spectroscopic techniques for lipid and lipid oxidation analysis in fish and fish products
Cozzolino et al. Effect of sample presentation and animal muscle species on the analysis of meat by near infrared reflectance spectroscopy
Nilsen et al. Visible/near‐infrared spectroscopy: a new tool for the evaluation of fish freshness?
Liao et al. On-line prediction of fresh pork quality using visible/near-infrared reflectance spectroscopy
Cheng et al. Visible/near-infrared hyperspectral imaging prediction of textural firmness of grass carp (Ctenopharyngodon idella) as affected by frozen storage
Iqbal et al. An overview on principle, techniques and application of hyperspectral imaging with special reference to ham quality evaluation and control
Xu et al. Factors influencing near infrared spectroscopy analysis of agro-products: a review
Brown Rapid compositional analysis of oysters using visible-near infrared reflectance spectroscopy
Cheng et al. Interpretation and rapid detection of secondary structure modification of actomyosin during frozen storage by near-infrared hyperspectral imaging
Ding et al. Rapid and nondestructive evaluation of fish freshness by near infrared reflectance spectroscopy combined with chemometrics analysis
Aheto et al. Combination of spectra and image information of hyperspectral imaging data for fast prediction of lipid oxidation attributes in pork meat
von Gersdorff et al. Method comparison between real-time spectral and laboratory based measurements of moisture content and CIELAB color pattern during dehydration of beef slices
Duan et al. Sensitive variables extraction, non-destructive detection and visualization of total viable count (TVC) and pH in vacuum packaged lamb using hyperspectral imaging
Yue et al. Identification of sea bass freshness grades using laser-induced breakdown spectroscopy coupled with multivariable analysis
Peng et al. Application of near-infrared spectroscopy for assessing meat quality and safety
Mlcek et al. Application of FT NIR spectroscopy in the determination of basic chemical composition of pork and beef
Woolf et al. Measuring avocado maturity; ongoing developments
Sun et al. Improved partial least squares regression for rapid determination of reducing sugar of potato flours by near infrared spectroscopy and variable selection method
Uddin et al. Applications of vibrational spectroscopy to the analysis of fish and other aquatic food products
Herrero et al. Vibrational spectroscopy for quality assessment of meat

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100105