DK178727B1 - Wind turbine and method for determining parameters of wind turbine - Google Patents

Wind turbine and method for determining parameters of wind turbine Download PDF

Info

Publication number
DK178727B1
DK178727B1 DKPA201470474A DKPA201470474A DK178727B1 DK 178727 B1 DK178727 B1 DK 178727B1 DK PA201470474 A DKPA201470474 A DK PA201470474A DK PA201470474 A DKPA201470474 A DK PA201470474A DK 178727 B1 DK178727 B1 DK 178727B1
Authority
DK
Denmark
Prior art keywords
wind turbine
mimu
rotor
parameter
blade
Prior art date
Application number
DKPA201470474A
Other languages
English (en)
Inventor
Ken Yoon
Brandon Shane Gerber
Lisa Kamdar Ammann
Hai Qiu
Yong Yang
Zhilin Wu
Xu Fu
Lihan He
Na Ni
Qiang Li
Original Assignee
Gen Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gen Electric filed Critical Gen Electric
Publication of DK201470474A publication Critical patent/DK201470474A/da
Application granted granted Critical
Publication of DK178727B1 publication Critical patent/DK178727B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/048Automatic control; Regulation by means of an electrical or electronic controller controlling wind farms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0204Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for orientation in relation to wind direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0244Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for braking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0264Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for stopping; controlling in emergency situations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/043Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic
    • F03D7/044Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic with PID control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/043Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic
    • F03D7/045Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic with model-based controls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/043Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic
    • F03D7/046Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic with learning or adaptive control, e.g. self-tuning, fuzzy logic or neural network
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/06Controlling wind motors  the wind motors having rotation axis substantially perpendicular to the air flow entering the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/40Ice detection; De-icing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/80Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/80Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
    • F05B2270/807Accelerometers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Claims (21)

1. Fremgangsmåde ti! bestemmelse af parametre for en vindmølle (10, 20), hvilken fremgangsmåde omfatter: at modtage med en behandlingsenhed (19) signaler fra mindst en mikro-inerti-måieenhed (MIMU) (18) monteret på eller i en komponent af vindmøllen (10,20), hvor den mindst ene MIMU (18) indeholder en temperatursensor, som er konfigureret ti! at tilvejebringe en temperaturmåling på en lokation af den mindst ene MIMU (18); og at bestemme med behandlingsenheden (19) mindst en parameter for vind-møllen (10, 20) baseret på signalerne modtaget fra den mindst ene MIMU (18) ved anvendelse afen matematisk model, hvor behandlingsenheden (19) er konfigureret til at justere en materialeegenskab af komponenten af vindmøiien (10, 20) anvendt i den matematiske model baseret på temperaturmåiingen tilvejebragt af temperatursensoren.
2. Fremgangsmåde ifølge krav 1, hvorved modtagelse af signaler fra mindst en MIMU (18), som er monteret på eller i en komponent af vindmøllen (10, 20), omfatter modtagelse af signaler fra mindst en MIMU (18), som er monteret på eller i mindst et af et tårn (14, 24), en nacelle (13), et nav (11), en aksel (16, 26) og en rotorvinge (12, 22) af vindmøiien (10, 20).
3. Fremgangsmåde ifølge krav 1 eller 2, hvorved bestemmelse af mindst en parameter for vindmøllen (10, 20) baseret på de signaler, der er modtaget fra den mindst ene MIMU (18), omfatter bestemmelse af mindst en af vingepitch, vingerotationshastighed, konstruktionsmæssig vibration, vingebøjningsmo-ment, vingevridningsmoment, spidsforskydning, tredimensional bevægelsessti, tåmbøjningsmoment, krøjning, rotorhastighed, generatorhastighed, drej- ningsmoment, trykkraft, belastning, tårnhældning og rotorposition.
4. Fremgangsmåde ifølge et hvilket som heist af kravene 1-3, hvorved bestemmelse af mindst en parameter for vindmøllen (10, 20) baseret på de signaler, der er modtaget fra den mindst ene MIMU (18), omfatter bestemmelse af mindst en parameter for vindmøllen (10, 20) med behandlingsenheden (19) baseret på signalerne modtaget fra den mindst ene MIMU (18) ved anvendelse af en modelbaseret estimeringsalgoritme.
5. Fremgangsmåde ifølge krav 4, hvorved den modelbaserede estimerings-algoritme omfatter mindst en af en fysisk-baseret matematisk model eller en datadrevet matematisk model.
6. Fremgangsmåde ifølge et hvilket som helst af kravene 1-5, yderligere omfattende styring af driften af vindmøllen (10, 20) baseret på den mindst ene parameter.
7. Fremgangsmåde ifølge krav 6, hvorved styring af driften af vindmøllen (10, 20) baseret på den mindst ene parameter omfatter pitching af mindst en rotorvinge (12, 22) af vindmøllen (10, 20) baseret på den mindst ene parameter.
8. Fremgangsmåde ifølge krav 6 eller 7, hvorved styring af driften af vindmøl-len (10, 20) baseret på den mindst ene parameter omfatter justering af et drejningsmomentbehov på en generator (224) af vindmøllen (10, 20) baseret på den mindst ene parameter.
9. Fremgangsmåde ifølge et hvilket som helst af kravene 6-8, hvorved styring af driften af vindmøllen (10) baseret på den mindst ene parameter omfatter krøjning af en nacelle (13) af vindmøllen (10) baseret på den mindst ene parameter.
10. Fremgangsmåde ifølge et hvilket som helst af kravene 6-10, hvorved styring af driften af vindmøllen (10, 20) baseret på den mindst ene parameter omfatter mindst en af en reduktion af en rotationshastighed af vindmøilen (10, 20), aktivering af en mekanisk bremse af vindmøilen (10, 20), standsning af vindmøilen (10, 20) og aktivering af et automatisk rense- eller afisningssystem af vindmøilen (10, 20).
11. Fremgangsmåde ifølge krav 1, hvorved komponenten af vindmøilen (10, 20) er mindst en rotorvinge (12, 22) af vindmøllen (10, 20) og den mindst ene parameter af vindmøllen (10, 20) er en spidsforskydning af den mindst ene rotorvinge (12, 22) til bestemmelse af spidsforskydningen af vindmøilen (10, 20), hvilken fremgangsmåde omfatter: at modtage med en behandlingsenhed (19) signaler fra den mindst ene mikro-inerti-måleenhed (MIMU) (18) monteret på eller i den mindst ene rotorvinge (12, 22) af vindmøilen (10, 20), hvor den mindst ene MIMU (18) indeholder temperatursensoren, som er konfigureret til at tilvejebringe tempera-turmåiingen på en lokation af den mindst ene MIMU (18); og at bestemme med behandlingsenheden (19) en spidsforskydning af den mindst ene rotorvinge (12, 22) baseret på signalerne modtaget fra den mindst ene MIMU (18) ved anvendelse afen matematisk model, hvor behandlingsenheden (19) er konfigureret til at justere en materialeegenskab af den mindst ene rotorvinge (12, 22) anvendt i den matematiske model baseret på temperaturmålingen tilvejebragt af temperatursensoren.
12. Fremgangsmåde ifølge krav 11, hvorved modtagelse af signaler fra mindst en MIMU (18), som er monteret på eller i mindst en rotorvinge (12, 22) af vindmøllen (10, 20), omfatter modtagelse af signaler fra en første MIMU (18) monteret på eller i den mindst ene rotorvinge (12) ved eller tilstødende til en vingerod (202) af den mindst ene rotorvinge (12) og modtagelse af signaler fra en anden MIMU (18) monteret på eller i den mindst ene rotorvinge (12) ved eller tilstødende til en midterdel (204) eller en vingespids (206) af den mindst ene rotorvinge (12).
13. Fremgangsmåde ifølge krav 11 eller 12, yderligere omfattende styring af driften af vindmølien (10, 20) baseret på spidsforskydningen af den mindst ene rotorvinge (12, 22).
14. Fremgangsmåde ifølge krav 13, hvorved styring afdriften af vindmølien (10, 20) baseret på spidsforskydningen af den mindst ene rotorvinge (12, 22) omfatter mindst en af pitching af den mindst ene rotorvinge (12, 22), justering af et drejningsmomentbehov på en generator (224) af vindmølien (10, 20), krøjning af en nacelle (13) af vindmøllen (10) og reduktion af en rotationshastighed af vindmøllen (10, 20) for at justere spidsforskydningen.
15. Vindmølle (10), som omfatter: et tårn (14); en nacelle (13) monteret øverst på tårnet (14); en rotor, som er koblet til naceilen (13), hvor rotoren indeholder en aksel (16), et nav (11) og en flerhed af rotorvinger (12), der strækker sig fra navet (11); mindst en mikro-inerti-måleenhed (MIMU) (18) monteret på eller i mindst et af tårnet (14), naceilen (13), navet (11), akslen (16) og flerheden af rotorvinger (12), hvor den mindst ene MIMU (18) er konfigureret til at generere signaler associeret med mindst en parameter for vindmøllen (10), og en behandlingsenhed (19), som er koblet ti! den mindst ene MIMU, kendetegnet ved, at den mindst ene MIMU yderligere er konfigureret til at generere signaler associeret med en temperaturmåling tilvejebragt af en temperatursensor på en lokation af den mindst ene MIMU; og behandlingsenheden (19) er konfigureret ti! at bestemme den mindst ene parameter baseret på signalerne genereret af den mindst ene MIMU ved anvendelse afen matematisk model; hvor behandlingsenheden (19) er konfigureret ti! at justere en materialeegenskab af komponenten af vindmøllen (10), hvor den mindst ene MIMU (18) er monteret på eller i komponenten, anvendt i den matematiske model baseret på temperaturmålingen tilvejebragt af temperatursensoren.
16. Vindmølle ifølge krav 15, hvor behandiingsenheden (19) er konfigureret til at modtage signaler associeret med den mindst ene parameter fra den mindst ene MIMU (18), hvor behandlingsenheden (19) er konfigureret til at bestemme den mindst ene parameter baseret på signalerne modtaget fra den mindst ene MIMU (18).
17. Vindmølle ifølge krav 15 eller 16, hvor den mindst ene parameter omfatter mindst en af en vingepitch, vingerotationshastighed, konstruktionsmæssig vibration, vingebøjningsmoment, vingevridningsmoment, spidsforskydning, tredimensional bevægelsessti, tårnbøjningsmoment, krøjning, rotorhastighed, generatorhastighed, drejningsmoment, trykkraft, belastning, tårnhældning og rotorposition.
18. Vindmølle ifølge et hvilket som helst af kravene 15-17, yderligere omfattende en flerhed af MIMU'er (18), hvor mindst to af flerheden af MIMU'er (18) er monteret på eller i hver af flerheden af rotorvinger (12).
19. Vindmølle ifølge krav 18, hvor en første sensor af flerheden af MIMU'er er monteret på eller tilstødende til en vingerod (202) af rotorvingen (12), og en anden sensor af flerheden af MIMU'er (18) er monteret på eller tilstødende til en af en vingespids (206) eller en midterdel af rotorvingen (12).
20. Fremgangsmåde ifølge et hvilket som helst af kravene 1-10, hvorved materialeegenskaben er af komponenten af vindmøilen (10, 20).
21. Fremgangsmåde ifølge et hvilket som helst af kravene 11-14, hvorved materialeegenskaben er af den mindst ene rotorvinge (12, 22).
DKPA201470474A 2012-01-27 2014-08-07 Wind turbine and method for determining parameters of wind turbine DK178727B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/070724 WO2013110215A1 (en) 2012-01-27 2012-01-27 Wind turbine and method for determining parameters of wind turbine

Publications (2)

Publication Number Publication Date
DK201470474A DK201470474A (en) 2014-08-07
DK178727B1 true DK178727B1 (en) 2016-12-05

Family

ID=48872874

Family Applications (1)

Application Number Title Priority Date Filing Date
DKPA201470474A DK178727B1 (en) 2012-01-27 2014-08-07 Wind turbine and method for determining parameters of wind turbine

Country Status (5)

Country Link
US (1) US20150118047A1 (da)
CN (1) CN104081043A (da)
DE (1) DE112012005771T5 (da)
DK (1) DK178727B1 (da)
WO (1) WO2013110215A1 (da)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011119466A1 (de) * 2011-11-25 2013-05-29 Robert Bosch Gmbh Verfahren zur Bestimmung einer Gesamtschädigung wenigstens einer rotierenden Komponente eines Antriebsstrangs
US9528493B2 (en) * 2013-05-28 2016-12-27 Siemens Aktiengesellschaft Apparatus to detect aerodynamic conditions of blades of wind turbines
DE102013014622A1 (de) * 2013-09-02 2015-03-05 Northrop Grumman Litef Gmbh System und Verfahren zum Bestimmen von Bewegungen und Schwingungen bewegter Strukturen
CN104454350B (zh) * 2013-09-23 2019-01-08 通用电气公司 风力涡轮机及其降低转子不平衡载荷的控制方法
JP6258339B2 (ja) * 2013-09-25 2018-01-10 株式会社日立製作所 風車装置、風車装置の異常検出装置及び風車装置の異常検出方法
CN104595112B (zh) * 2013-10-30 2018-01-16 通用电气公司 风力涡轮机及评估其上叶片健康状态的方法
CN105089931A (zh) 2014-05-13 2015-11-25 通用电气公司 风机及其叶片对准方法
US9534583B2 (en) * 2014-06-17 2017-01-03 General Electric Company Methods and systems to operate a wind turbine
EP3180514B1 (en) 2014-08-15 2019-11-20 Vestas Wind Systems A/S Control of a wind turbine with a fault condition
WO2016023554A1 (en) * 2014-08-15 2016-02-18 Vestas Wind Systems A/S Turbine over-rating using turbulence prediction
US10253758B2 (en) * 2014-09-23 2019-04-09 General Electric Company System and method for optimizing wind farm performance
ES2780689T3 (es) * 2014-10-01 2020-08-26 Ge Renewable Tech Máquina rotativa e instalación para convertir energía que comprende tal máquina
DK178505B1 (en) * 2014-12-19 2016-04-18 Wind Solutions As Kk Model based wind turbine component monitoring
ES2923904T3 (es) 2014-12-23 2022-10-03 Vestas Wind Sys As Método y sistema para determinar la torsión dinámica de una pala de turbina eólica
US10156224B2 (en) * 2015-03-13 2018-12-18 General Electric Company System and method for controlling a wind turbine
DE102015206515A1 (de) * 2015-04-13 2016-10-13 Wobben Properties Gmbh Verfahren zum Bestimmen einer Restlebensdauer einer Windenergieanlage
GR20150100209A (el) * 2015-05-12 2017-01-17 Εστια Συμβουλοι Και Μηχανικοι Α.Ε. Βελτιωση του βαθμου αποδοσης ανεμομηχανων καθετου αξονα
CN104948384B (zh) * 2015-06-16 2019-01-29 新疆金风科技股份有限公司 风力发电机组偏航角度校准方法和系统
CN204851950U (zh) * 2015-07-22 2015-12-09 李圣用 一种减少风力发电机螺栓定期维护次数的系统
US9920743B2 (en) * 2015-10-21 2018-03-20 General Electric Company Wind turbine deceleration method and system
DK179416B1 (en) * 2016-03-16 2018-06-18 Deif As Electrical pitch control system and a method for operating at least one rotor blade and use of the system for performing the method.
US10975845B2 (en) 2016-03-30 2021-04-13 Vestas Wind Systems A/S Control of a wind turbine using real-time blade model
CN107327375B (zh) * 2016-04-28 2019-08-02 北京天诚同创电气有限公司 风机叶片参数确定方法及装置
US10247170B2 (en) * 2016-06-07 2019-04-02 General Electric Company System and method for controlling a dynamic system
CN106194580A (zh) * 2016-07-13 2016-12-07 广东明阳风电产业集团有限公司 一种风力发电机组的推力消减控制算法
DE102016012060A1 (de) * 2016-09-29 2018-03-29 Guido Becker Windkraftanlage
CN108071562B (zh) * 2016-11-17 2021-01-15 中国电力科学研究院 一种基于能量流的风电机组能效状态诊断方法
EP3339639A1 (en) 2016-12-21 2018-06-27 Vestas Wind Systems A/S System for monitoring a wind turbine blade
DE102017118133A1 (de) * 2017-08-09 2019-02-14 Wobben Properties Gmbh System zur Erfassung und Überwachung einer Drehzahl eines Rotors
DE102018009549A1 (de) * 2018-12-10 2020-06-10 Senvion Gmbh Verfahren und System zum Parametrieren eines Reglers einer Windenergieanlage und/oder Betreiben einer Windenergieanlage
JP7123838B2 (ja) 2019-03-15 2022-08-23 株式会社東芝 異常判定装置、風力発電装置、およびその異常判定方法
DE102019109908A1 (de) * 2019-04-15 2020-10-15 Wobben Properties Gmbh Verfahren zum Bestimmen von Betriebsdaten einer Windenergieanlage sowie Vorrichtung und System dafür
US11372384B2 (en) * 2019-09-17 2022-06-28 General Electric Company System and method for adjusting a multi-dimensional operating space of a wind turbine
EP3808971A1 (en) 2019-10-18 2021-04-21 General Electric Company System for contactless displacement measurement of a blade root of a wind turbine
AT523919B1 (de) * 2020-08-14 2022-01-15 Eologix Sensor Tech Gmbh Messvorrichtung für Windkraftanlagen
CN112523942B (zh) * 2020-12-01 2021-10-22 中国船舶重工集团海装风电股份有限公司 一种保护塔筒扭转的控制方法
CN113153631A (zh) * 2021-04-09 2021-07-23 北京国电思达科技有限公司 风电机组叶轮防超速系统、及方法
US11790081B2 (en) 2021-04-14 2023-10-17 General Electric Company Systems and methods for controlling an industrial asset in the presence of a cyber-attack
EP4299901A1 (de) * 2022-06-30 2024-01-03 Wobben Properties GmbH Verfahren zum enteisen wenigstens eines rotorblattes einer windenergieanlage

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040057828A1 (en) * 2002-09-23 2004-03-25 Bosche John Vanden Wind turbine blade deflection control system
US20060070435A1 (en) * 2003-02-03 2006-04-06 Lemieux David L Method and apparatus for condition-based monitoring of wind turbine components
US20060140761A1 (en) * 2004-12-23 2006-06-29 Lemieux David L Methods and apparatuses for wind turbine fatigue load measurement and assessment
US20110150649A1 (en) * 2008-05-13 2011-06-23 Jon Raymond White Monitoring of wind turbines
WO2011134473A1 (en) * 2010-04-29 2011-11-03 Vestas Wind Systems A/S A method and system for detecting angular deflection in a wind turbine blade or component
US20110285129A1 (en) * 2008-10-23 2011-11-24 Vestas Wind Systems A/S wind turbine and a method for monitoring a wind turbine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070182162A1 (en) * 2005-07-27 2007-08-09 Mcclintic Frank Methods and apparatus for advanced windmill design
EP1988284B1 (en) * 2007-05-03 2018-09-12 Siemens Aktiengesellschaft Method of operating a wind turbine and wind turbine
GB2461532A (en) * 2008-07-01 2010-01-06 Vestas Wind Sys As Sensor system and method for detecting deformation in a wind turbine component
US20110229320A1 (en) * 2008-08-29 2011-09-22 Vestas Wind Systems A/S Wind turbine blade with device for modifying the blade aerodynamic surface
US8025476B2 (en) * 2009-09-30 2011-09-27 General Electric Company System and methods for controlling a wind turbine
US8120757B2 (en) * 2010-03-12 2012-02-21 Catch the Wind, Inc. Remote lens unit assembly for laser doppler velocimeter
CN102797634A (zh) * 2011-05-27 2012-11-28 通用电气公司 风力涡轮机及监测风力涡轮机参数的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040057828A1 (en) * 2002-09-23 2004-03-25 Bosche John Vanden Wind turbine blade deflection control system
US20060070435A1 (en) * 2003-02-03 2006-04-06 Lemieux David L Method and apparatus for condition-based monitoring of wind turbine components
US20060140761A1 (en) * 2004-12-23 2006-06-29 Lemieux David L Methods and apparatuses for wind turbine fatigue load measurement and assessment
US20110150649A1 (en) * 2008-05-13 2011-06-23 Jon Raymond White Monitoring of wind turbines
US20110285129A1 (en) * 2008-10-23 2011-11-24 Vestas Wind Systems A/S wind turbine and a method for monitoring a wind turbine
WO2011134473A1 (en) * 2010-04-29 2011-11-03 Vestas Wind Systems A/S A method and system for detecting angular deflection in a wind turbine blade or component

Also Published As

Publication number Publication date
DE112012005771T5 (de) 2014-10-30
US20150118047A1 (en) 2015-04-30
CN104081043A (zh) 2014-10-01
WO2013110215A1 (en) 2013-08-01
DK201470474A (en) 2014-08-07

Similar Documents

Publication Publication Date Title
DK178727B1 (en) Wind turbine and method for determining parameters of wind turbine
US9366230B2 (en) System and method for reducing loads acting on a wind turbine in response to transient wind conditions
EP3276164B1 (en) System and method for controlling a wind turbine
EP3056726B1 (en) System and method for operating a wind turbine based on rotor blade margin
EP2588752B1 (en) Wind turbine system for detection of blade icing
EP3218600B1 (en) System and method for estimating rotor blade loads of a wind turbine
EP3597907A1 (en) System and method for controlling thrust and/or tower loads of a wind turbine
US9018788B2 (en) Wind sensor system using blade signals
EP3077668B1 (en) System and method for assessing the performance impact of wind turbine upgrades
EP2531722B1 (en) A method for in situ calibrating load sensors of a wind turbine blade and a wind turbine
US8210811B2 (en) Apparatus and method for operation of a wind turbine
US9797374B2 (en) Wind turbines
US9551321B2 (en) System and method for controlling a wind turbine
CN102767476B (zh) 用于控制风力涡轮机推力的方法和设备
EP2678556B1 (en) A safety system for a wind turbine
US20130302161A1 (en) Controller of wind turbine and wind turbine
US20170058870A1 (en) Method For Estimating The Surface Condition Of A Rotating Blade
EP3781807B1 (en) Method of tip clearance control of a wind turbine generator and corresponding computer program product, control system and generator
EP2644888A2 (en) Control system and method for avoiding overspeed of a wind turbine
US20130183151A1 (en) Calibration of Blade Load Sensors
EP2543876B1 (en) Controlling the amplitude modulation of noise generated by wind turbines
DK201470587A1 (en) Control system and method for mitigating rotor imbalance on a wind turbine
JP2023008841A (ja) 風力タービンにおけるアジマスセンサ
CN113494418A (zh) 用于减轻作用于风力涡轮的转子叶片的负载的系统和方法
BR102014005474A2 (pt) System and method for the reduction of working loads in a wind turbine

Legal Events

Date Code Title Description
PBP Patent lapsed

Effective date: 20190127