DK174837B1 - Process for producing hirudin as well as transformed yeast which can be used in the process - Google Patents
Process for producing hirudin as well as transformed yeast which can be used in the process Download PDFInfo
- Publication number
- DK174837B1 DK174837B1 DK198606343A DK634386A DK174837B1 DK 174837 B1 DK174837 B1 DK 174837B1 DK 198606343 A DK198606343 A DK 198606343A DK 634386 A DK634386 A DK 634386A DK 174837 B1 DK174837 B1 DK 174837B1
- Authority
- DK
- Denmark
- Prior art keywords
- yeast
- hirudin
- sequence
- gene
- plasmid
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/81—Protease inhibitors
- C07K14/815—Protease inhibitors from leeches, e.g. hirudin, eglin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/02—Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/37—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
- C07K14/39—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/37—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
- C07K14/39—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts
- C07K14/395—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts from Saccharomyces
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/80—Vectors or expression systems specially adapted for eukaryotic hosts for fungi
- C12N15/81—Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/01—Fusion polypeptide containing a localisation/targetting motif
- C07K2319/02—Fusion polypeptide containing a localisation/targetting motif containing a signal sequence
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Mycology (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Medicinal Chemistry (AREA)
- Biomedical Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Gastroenterology & Hepatology (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Diabetes (AREA)
- Animal Behavior & Ethology (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Tropical Medicine & Parasitology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Hematology (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Peptides Or Proteins (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Instructional Devices (AREA)
- Developing Agents For Electrophotography (AREA)
- Adhesives Or Adhesive Processes (AREA)
Abstract
Description
i DK 174837 B1in DK 174837 B1
Den foreliggende opfindelse angår gær transformeret med vektorer til ekspression af en DNA-sekvens, der koder for hirudin eller hirudinanaloge, samt en fremgangsmåde til fremstilling af hirudin, hvilken fremgangsmåde er ejendommelig ved det i krav 16's kendetegnende del angivne.The present invention relates to yeasts transformed with vectors for expression of a DNA sequence encoding hirudin or hirudin analogs, and to a method of producing hirudin which is characterized by the characterizing part of claim 16.
55
Den antikoagulerende virkning, som findes i spytkirtlerne hos lægeigler, Hirudo medicinalis, stammer fra et lille polypeptid, som kaldes hirudin (l). Denne meget specifikke og meget effektive inhibitor af thrombin er i den senere tid blevet studeret indgående, da den potentielt udgør et meget interessant terapeutisk middel. De betragtelige vanskeligheder 10 og omkostninger, der er forbundet med at isolere og oprense inhibitoren, har imidlertid forhindret, at den er bfevet anvendt i større udstrækning, og at den kan undersøges på klinisk niveau.The anticoagulant effect found in the salivary glands of medical gills, Hirudo medicinalis, is derived from a small polypeptide called hirudin (1). This very specific and very effective inhibitor of thrombin has been studied extensively in recent times as it potentially represents a very interesting therapeutic agent. However, the considerable difficulties and costs associated with isolating and purifying the inhibitor have prevented it from being used more widely and can be investigated at the clinical level.
Muligheden for at producere hirudin ved kloning af gener og ekspression af generne ved 15 rekombinant DNA-teknik er blevet påvist ved kloning af et naturligt igle-gen, der koder for hirudin, og ved ekspression af genet i mikroorganismen E. coli {fransk patentansøgning nr.The ability to produce hirudin by cloning genes and expression of the genes by recombinant DNA technology has been demonstrated by cloning of a natural Igle gene encoding hirudin and by expression of the gene in the E. coli microorganism (French patent application no. .
84 04755 i navnet Transgéne S.A., indleveret den 27. marts 1984). Skønt det har været muligt at fremstille et peptid med biologisk aktivitet i E. coli, er det meget vigtigt at fremstille hirudin i andre typer mikroorganismer. Klinisk anvendelse af hirudin kræver nemlig 20 en meget stor grad af produktets renhed, og eliminering af pyrogene kontaminanter kunne volde problemer ved oprensning af hirudin ud fra ekstrakter af colibakterien.84 04755 in the name of Transgéne S.A., filed March 27, 1984). Although it has been possible to prepare a peptide with biological activity in E. coli, it is very important to prepare hirudin in other types of microorganisms. Indeed, clinical use of hirudin requires a very high degree of purity of the product, and elimination of pyrogenic contaminants could cause problems in purifying hirudin from extracts of the colibacteria.
Desuden forbliver hirudin, der er syntetiseret af E. coli, intracellulært og skal således oprenses fra et meget stort antal peptider fra E. coli. Det er derfor interessant at lade 25 hirudin-genet udtrykkes i gær, som ikke danner stoffer, som er pyrogene eller toxiske for mennesker, og som er i stand til at secernere proteiner i dyrkningsmediet.In addition, hirudin synthesized by E. coli remains intracellular and thus must be purified from a very large number of E. coli peptides. It is therefore interesting to allow the hirudin gene to be expressed in yeasts which do not form substances which are pyrogenic or toxic to humans and which are capable of secreting proteins in the culture medium.
Hirudins virkningsmekanisme som antikoagulans er først for nylig blevet erkendt. Substratet for fiksering af hirudin er thrombin, som er et proteolytisk enzym, der ved aktive-30 ring (med den aktiverede faktor X) ud fra sin zymogenform, prothrombin, spalter fibrino* genet i kredsløbet og omdanner det til fibrin, som er nødvendigt til dannelse af koagel.Hirudin's mechanism of action as an anticoagulant has only recently been recognized. The substrate for hirudin fixation is thrombin, which is a proteolytic enzyme that, upon activation (with the activated factor X) from its zymogenic form, prothrombin, cleaves the fibrin gene in the circuit and converts it into fibrin which is required for formation of clot.
Dissocieringskonstanten for complexet thrombin/hirudin 1:1 (0,8 x 10-10) tyder på en meget stærk binding mellem disse molekyler (2). I praksis kan det ikke-covalente complex mellem disse to molekyler betragtes som ikke-dissocierbart in vivo.The dissociation constant of complex thrombin / hirudin 1: 1 (0.8 x 10-10) suggests a very strong bond between these molecules (2). In practice, the non-covalent complex between these two molecules can be considered as non-dissociable in vivo.
3535
Hirudin er en meget specifik inhibitor af thrombin med en meget større affinitet end det naturlige substrat, fibrinogen. Desuden er det ikke nødvendigt at have andre koagulationsfaktorer eller andre plasmabestanddele. Hirudins specifikke og meget store antithrom-bin-aktivitet forklarer dets kliniske anvendelighed som antikoagulans.Hirudin is a very specific inhibitor of thrombin with a much greater affinity than the natural substrate, fibrinogen. Furthermore, it is not necessary to have other coagulation factors or other plasma components. Hirudin's specific and very large antithromic bin activity explains its clinical utility as anticoagulants.
4040
Hirudin er blevet undersøgt meget grundigt i dyr for sine antikoagulationsegenskaber. Den mest detaljerede undersøgelse (3) beskriver hirudins aktivitet ved forebyggelse af ve-nethromboser, vasculære okklusioner og disseminerede intravasculære koagulationer (DIC) hos rotter. Hirudin tåles godt af rotter, hunde, kaniner og mus, når det foreligger i 2 DK 174837 B1 meget oprenset form og injiceres intravenøst. LD50 i mus er over 500.000 U/kg legemsvægt (dvs. 60 mg/kg). En anden undersøgelse (4) viser, at mus tåler doser op til 1 g/kg, og at kaniner tåler op til 10 mg/kg både intravenøst og subkutant. Hos mus fører gentagne injektioner i løbet af et tidsrum på 2 uger ikke til sensibiliseringsreaktioner.Hirudin has been studied very extensively in animals for its anticoagulant properties. The most detailed study (3) describes hirudin's activity in preventing vein thrombosis, vascular occlusions and disseminated intravascular coagulations (DIC) in rats. Hirudin is well tolerated by rats, dogs, rabbits and mice when in highly purified form and injected intravenously. LD50 in mice is over 500,000 U / kg body weight (ie 60 mg / kg). Another study (4) shows that mice can tolerate doses up to 1 g / kg and that rabbits can tolerate up to 10 mg / kg both intravenously and subcutaneously. In mice, repeated injections over a 2-week period do not result in sensitization reactions.
55
Desuden elimineres hirudin hurtigt i forsøgsdyr (halveringstid i størrelsesordenen 1 time) også i biologisk aktiv form via nyrerne (3).Furthermore, hirudin is rapidly eliminated in experimental animals (half-life in the order of 1 hour) also in biologically active form via the kidneys (3).
To andre uafhængige undersøgelser, én, der anvender hunde (5), og en anden (6), der 10 påviser hirudins virkning ved forebyggelse af DIC hos rotter, stemmer godt overens med Markwardt et al.'s positive resultater. Disse forskere har for nylig udgivet den første in vivo-analyse af naturligt hirudins virkninger pi menneskers hæmostatiske system (7).Two other independent studies, one using dogs (5) and another (6), demonstrating the efficacy of hirudin in the prevention of DIC in rats, are in good agreement with the positive results of Markwardt et al. These researchers have recently published the first in vivo analysis of natural hirudin's effects on human hemostatic system (7).
Materialet viser de opnåede biologiske virkninger og indikerer ikke toxiske bivirkninger.The material shows the biological effects obtained and does not indicate toxic side effects.
15 Det har også kunnet påvises, at hirudin forebygger DIC induceret af endotoxiner i svin (8) og således udgør en mulig løsning på de meget alvorlige problemer, der skyldes endotoxi-næmier, hvilket fører til en meget høj dødelighed hos svin.15 It has also been shown that hirudin prevents DIC induced by endotoxins in pigs (8) and thus provides a possible solution to the very serious problems caused by endotoxemia, leading to a very high mortality rate in pigs.
En nylig udkommet publikation (9) beskriver intravenøs og subkutan administration af 20 hirudin til mennesker. Seks frivillige forsøgspersoner blev anvendt til at vurdere farmako-kinetikken og virkningerne på det hæmostatiske system af en enhedsdosis (1000 antithrombin-enheder/kg) hirudin. Hirudin administreret intravenøst har en halveringstid på 50 minutter, og 50% af hirudinet findes i aktiv form i urinen i 24 timer efter injektionen. Der ses en forlængelse af koagulationstiden (målt in vitro for thrombin, thrombo-25 plastin og prothrombin) som en funktion af hirudinkoncentrationen i plasmaet, hvilket viser, at molekylet bevarer sin biologiske aktivitet i personens kredsløb. Der ses ingen ændring i antallet af blodplader, i mængden af fibrinogen eller i det fibrinolytiske system. Subkutane og intravenøse injektioner af hirudin tåles godt og giver ingen bivirkninger. Til undersøgelse af eventuel forekomst af allergiske reaktioner blev 2 intrakutane injektioner 30 administreret til de samme personer med 4 ugers interval; der sås ingen tegn på sensibilisering. Desuden detekteres ingen anti-hirudin-antistoffer i serummet.A recent publication (9) describes intravenous and subcutaneous administration of 20 hirudin to humans. Six volunteers were used to assess the pharmacokinetics and effects on the haemostatic system of a single dose (1000 antithrombin units / kg) of hirudin. Hirudin administered intravenously has a half-life of 50 minutes and 50% of the hirudin is in active form in the urine for 24 hours after injection. An extension of the coagulation time (measured in vitro for thrombin, thromboplasticin and prothrombin) is seen as a function of the hirudin concentration in the plasma, which shows that the molecule retains its biological activity in the person's orbit. There is no change in the number of platelets, in the amount of fibrinogen or in the fibrinolytic system. Subcutaneous and intravenous injections of hirudin are well tolerated and produce no side effects. To investigate the possible occurrence of allergic reactions, 2 intracutaneous injections 30 were administered to the same individuals at a 4-week interval; no signs of sensitization were seen. In addition, no anti-hirudin antibodies are detected in the serum.
Disse undersøgelser tyder på, at hirudin kan være et interessant klinisk middel som anti-koagulans. Præfasen af blodkoagulationen påvirkes ikke under hensyntagen til hirudins 35 høje virkningsspecificitet. Anti-thrombin-aktiviteten er afhængig af dosen, og hirudinets virkning er hurtigt reversibel som følge af dets hurtige eliminering i nyrerne. Det har kunnet påvises, at hirudin er meget bedre end heparin til behandling af DIC (3, 6), hvilket kunne forventes under hensyntagen til, at DIC ledsages af et fald i antithrombin III (en cofaktor, der er nødvendig for heparins virkning) og en forøgelse af blodpladefaktor 4, der 40 er et meget effektivt antiheparinmiddel.These studies suggest that hirudin may be an interesting clinical agent such as anti-coagulant. The phase of blood coagulation is not affected, taking into account the high efficacy specificity of hirudin. The anti-thrombin activity is dose dependent and the effect of hirudin is rapidly reversible due to its rapid renal elimination. It has been shown that hirudin is much better than heparin for the treatment of DIC (3, 6), which could be expected given that DIC is accompanied by a decrease in antithrombin III (a cofactor needed for the effect of heparin) and an increase in platelet factor 4 which is a very effective antiheparin agent.
En undersøgelse har påvist den mulighed, at hirudin kan absorberes af menneskehud (10), selv om de opnåede resultater er noget vanskelige at fortolke.One study has shown the possibility that hirudin can be absorbed by human skin (10), although the results obtained are somewhat difficult to interpret.
3 DK 174837 B13 DK 174837 B1
Præparater af acellulære riekstrakter fra igler findes i handelen som salver (Hirucréme,Preparations of acellular rich extracts from leeches are commercially available as ointments (Hirucréme,
Société Nicholas, Frankrig; Exhirud-Blutgel, Plantorgan Werke, Vesttyskland), men der kræves yderligere tests med større doser af et højoprenset materiale for at fastslå, om dette er en interessant administrationsvej. De foretrukne administrationsveje er generelt 5 intravenøst, intramuskulaert og perkutant. Andre administrationsveje er beskrevet for hirudin, især den orale vej (BSM nr. 3792 M).Société Nicholas, France; Exhirud-Blutgel, Plant Organ Werke, West Germany), but further tests are required with larger doses of a highly purified material to determine if this is an interesting route of administration. The preferred routes of administration are generally intravenous, intramuscular and percutaneous. Other routes of administration are described for hirudin, especially the oral route (BSM No. 3792 M).
Dette produkt kan ligeledes i kombination med andre bestanddele anvendes til behandling af psoriasis og andre hudsygdomme af samme type, hvilket er beskrevet i DE-OS 2 101 10 393.This product can also be used in combination with other ingredients to treat psoriasis and other skin diseases of the same type, as described in DE-OS 2 101 10 393.
Hirudin kan desuden anvendes som antikoagulans i kliniske forsøg i laboratorier og som forskningsværktøj. I dette tilfælde kan den høje specificitet over for et unikt trin i blodkoagulationen frembyde en betydelig fordel i forhold til de mest almindeligt anvendte antikoa-15 gulanser, hvis virkning er meget mindre specifik.Hirudin can also be used as anticoagulant in clinical trials in laboratories and as a research tool. In this case, the high specificity for a unique step in blood coagulation can offer a significant advantage over the most commonly used anticoagulants, the effect of which is much less specific.
Desuden kan hirudin være meget nyttigt som antikoagulerende middel i kredsløb uden for kroppen og i dialysesystemer, hvor det kan have betydelige fordele i forhold til andre anti-koagulanser, især hvis det kan immobtliseres i aktiv form på overfladen af disse kunstige 20 kredsløbssystemer.In addition, hirudin can be very useful as an anticoagulant in extracorporeal and in dialysis systems, where it can have significant advantages over other anticoagulants, especially if it can be immobilized in active form on the surface of these artificial circulatory systems.
Hirudins fikseringsaktivitet på thrombin kan også muliggøre indirekte beskyttelse af koagulationsfaktorer såsom faktor VIII under oprensningen deraf.Hirudin's fixation activity on thrombin may also allow indirect protection of coagulation factors such as factor VIII during its purification.
25 Endelig kan anvendelsen af mærket hirudin udgøre en enkel og effektiv metode til måling af mængderne af thrombin og prothrombin. Mærket hirudin kan specielt anvendes til at visualisere blodpropper under dannelse, da koagulationsfænomenet medfører omdannelse af cirkulerende prothrombin til thrombin ved dannelsesstedet, og det mærkede hirudin fik-seres til thrombinet og kan visualiseres.Finally, the use of labeled hirudin may represent a simple and effective method for measuring the amounts of thrombin and prothrombin. In particular, labeled hirudin can be used to visualize blood clots during formation as the coagulation phenomenon results in the conversion of circulating prothrombin to thrombin at the site of formation and the labeled hirudin is fixed to the thrombin and can be visualized.
3030
Det er endvidere muligt at forestille sig direkte anvendelse af transformeret gær som lægemiddel, der afgiver hirudin, fx ved på huden at smøre en creme indeholdende denne gær, der secernerer hirudin.It is furthermore possible to envisage the direct use of transformed yeast as a drug that releases hirudin, for example by applying to the skin a cream containing this yeast which secretes hirudin.
35 Kort fortalt har hirudin en lang række mulige anvendelsesområder: 1) som antikoagulans ved kritiske thrombotiske lidelser til profylakse og forebyggelse af udbredelse af allerede eksisterende thromboser, 2) som antikoagulans til reduktion af blodansamlinger og hævelser efter mikrokirurgi, idet 40 der i vid udstrækning anvendes levende igler, 3) som antikoagulans i kredsløbssystemer uden for kroppen og som antikoagulationsmid-del til at dække syntetiske biomaterialer, 4) som antikoagulans i kliniske tests af blodprøver ved laboratorieforsøg, 5) som antikoagulans ved klinisk forskning angående koagulation og som forsøgsværktøj, 4 DK 174837 B1 6) som et muligt topisk middel til kutan påføring ved behandling af hæmorrhoider, åreknuder og ødemer, 7) som bestanddel ved behandling af psoriasis og andre beslægtede lidelser, og 8) endelig kan hirudin anvendes til at fiksere thrombin ved opbevaring af blod og fremstil-5 ling af blodderivater (blodplader, faktor VIII og IX).35 In short, hirudin has a wide range of potential uses: 1) as anticoagulants for critical thrombotic disorders for prophylaxis and prevention of prevalence of preexisting thromboses; 2) as anticoagulants for reducing blood clotting and swelling after microsurgery, with 40 being widely used. live mammals, 3) as anticoagulants in extracorporeal circulatory systems, and as anticoagulants to cover synthetic biomaterials, 4) as anticoagulants in clinical tests of blood tests in laboratory tests, 5) as anticoagulants in clinical research on coagulation and as a test tool, 4 DK 6) as a possible topical agent for cutaneous application in the treatment of hemorrhoids, varicose veins and edema; 7) as a component in the treatment of psoriasis and other related disorders; and 8) finally, hirudin can be used to fix thrombin in blood storage and preparation of blood derivatives (platelets, factors VIII and IX).
Som et eksempel kan hirudin anvendes i terapeutiske præparater i koncentrationer svarende til 100-50.000 antithrombin-enheder/kg/dag.As an example, hirudin can be used in therapeutic compositions at concentrations equal to 100-50,000 antithrombin units / kg / day.
10 Da hirudin er vandopløseligt, er det let at opnå farmaceutiske præparater, der er injicer-bare eller kan påføres ad andre veje under anvendelse af farmaceutisk acceptable grundlag og bærere.Since hirudin is water-soluble, it is easy to obtain pharmaceutical compositions which are injectable or can be applied by other means using pharmaceutically acceptable bases and carriers.
Det er endelig muligt at anvende mærket hirudin enten ved en radioaktiv mærkning eller 15 ved en helt anden type enzymatisk eller fluorescerende mærkning, der er udført ved kendte teknikker, for at foretage dosering in vitro eller visualisering in vivo, især til visualisering af dannelsen af blodpropper.Finally, it is possible to use labeled hirudin either by radioactive labeling or by a completely different type of enzymatic or fluorescent labeling performed by known techniques to do in vitro dosing or visualization in vivo, especially to visualize blood clot formation. .
Et hirudinpræparat på basis af hele dyret blev anvendt til bestemmelse af proteinets ami-20 nosyresekvens (11, 12). I følgende forsøg blev der klonet et gen, der udtrykkes som mes-senger-RNA i hoveder på fastende igler. Dette gen bærer information for et protein (hirudin variant 2 eller HV-2), hvis sekvens på afgørende måde er forskellig fra den sekvens, der findes i hele dyrets krop (proteinvariant med betegnelsen HV-1). Der er 9 forskelle i aminosyrerester mellem HV-1 og HV-2, og forskellene mellem de to NH2-terminale 25 rester (val-val eller ile-thr) kan forklare de åbenlyse modsætninger i litteraturen med hensyn til hirudins NH2-terminal (13).A whole animal hirudin preparation was used to determine the amino acid sequence of the protein (11, 12). In the following experiments, a gene that is expressed as mes-beds RNA was cloned into the heads of fasting owls. This gene carries information for a protein (hirudin variant 2 or HV-2), whose sequence is significantly different from the sequence found throughout the animal's body (protein variant designated HV-1). There are 9 differences in amino acid residues between HV-1 and HV-2, and the differences between the two NH2 terminal 25 residues (val-val or ile-thr) may explain the obvious contradictions in the literature regarding hirudin's NH2 terminal (13 ).
Fig. 1 viser de DNA-sekvenser i det rekombinante plasmid pTG717, som indeholderen kopi af cDNA svarende til mRNA fra HV-2 samt en aminosyresekvens afledt af DNA-sekvensen 30 ved b) og forskellene mellem denne sekvens og HV-l's aminosyresekvens ved c).FIG. Figure 1 shows the DNA sequences of the recombinant plasmid pTG717 which contain a copy of cDNA corresponding to mRNA from HV-2 as well as an amino acid sequence derived from the DNA sequence 30 at b) and the differences between that sequence and the HV-1 amino acid sequence at c).
Det skal bemærkes, at sekvensen af cDNA sandsynligvis ikke er komplet, og at der kan forekomme en signalsekvens oven for begyndelsen af det modne protein.It should be noted that the sequence of cDNA is probably incomplete and that a signal sequence may be present above the beginning of the mature protein.
35 Ekspressionen af cDNA fra HV-2 i mikroorganismer viser, at det tilsvarende protein har antithrombin-aktivitet.The expression of cDNA from HV-2 in microorganisms shows that the corresponding protein has antithrombin activity.
Skønt følgende forsøg blev udført med varianten HV-2, betegnes i det følgende begge varianter, dvs. HV-i eller HV-2, og eventuelt andre varianter samt tilsvarende sekvenser 40 "hirudin" og "gen, der koder for hirudin", medmindre andet er angivet.Although the following experiments were performed with the variant HV-2, both variants are referred to hereinafter, viz. HV-i or HV-2, and optionally other variants as well as corresponding sequences 40 "hirudin" and "gene encoding hirudin", unless otherwise indicated.
Et af formålene med den foreliggende opfindelse er produktion af hirudin ved hjælp af gær.One of the objects of the present invention is the production of hirudin by yeast.
5 DK 174837 B1 Gær er éncellede eukaryote organismer. Gærslægten Saccharomyces omfatter stammer, hvis biokemi og genetik er blevet studeret indgående i laboratorier; den omfatter desuden stammer, der anvendes i levnedsmiddelindustrien (brød, alkoholiske drikke, etc.), og som således produceres i meget store mængder.5 DK 174837 B1 Yeast are single-celled eukaryotic organisms. The yeast genus Saccharomyces includes strains whose biochemistry and genetics have been studied extensively in laboratories; it also includes strains used in the food industry (bread, alcoholic beverages, etc.), which are thus produced in very large quantities.
55
Den lethed, hvormed man kan manipulere med genetikken i celler fra Saccharomyces ce-revisiae, enten ved klassiske teknikker eller ved teknikker afledt af de genetiske metoder og endnu bedre ved en kombination af disse to typer teknik, og denne arts lange industrielle historie gør den til en foretrukken vært ved produktion af fremmede polypeptider.The ease with which one can manipulate the genetics of cells from Saccharomyces ce-revisioniae, either by classical techniques or by techniques derived from the genetic methods and even better by a combination of these two types of techniques, and the long industrial history of this species makes it a preferred host in the production of foreign polypeptides.
10 EP-A-123 294 beskriver vektorer til transformation af gær, som sikrer sekretion af hybride precursor peptider og tillader oprensning af det ønskede polypeptid.EP-A-123 294 discloses vectors for transforming yeasts that ensure secretion of hybrid precursor peptides and allow purification of the desired polypeptide.
EP-A-116 201 beskriver gærvektorer som indeholder ledersekvensen fra faktor alpha.EP-A-116 201 describes yeast vectors containing the leader sequence from factor alpha.
15 EP-A-129 073 beskriver udtrykkeisen af GRF i gær især under anvendelse af elementer fra genet for faktor alpha.EP-A-129 073 describes the expression of GRF in yeast, especially using elements of the factor alpha gene.
EP-A-123 544 beskriver sekretion af proteiner under anvendelse af elementer som 20 stammer fra genet for faktor alpha.EP-A-123 544 discloses secretion of proteins using elements such as 20 derived from the factor alpha gene.
Den foreliggende opfindelse angår derfor mere specifikt en gær transformeret med en funktionel DNA-blok integreret i et plasmid indeholdende et gær replikationsinitieringssted ("origin of replication"), eller integreret i et kromosom i gæren, hvilken blok i det mindste 25 indeholder: en DNA-sekvens som koder for hirudin (H-gen), mindst et spaltningssted (SC|j som ligger umiddelbart opstrøms fra H-genet, en leder-sekvens (Lex) indeholdende nødvendige elementer for at opnå sekretion 30 af genproduktet, en DNA-sekvens (Str) indeholdende signaler, der sikrer transkription af H-genet ved hjælp af gær.Therefore, the present invention relates more specifically to a yeast transformed with a functional DNA block integrated into a plasmid containing a yeast origin of replication, or integrated into a yeast chromosome containing at least 25: sequence encoding hirudin (H gene), at least one cleavage site (SC | j located immediately upstream of the H gene, a leader sequence (Lex) containing necessary elements to achieve secretion of the gene product, a DNA sequence (Str) containing signals that ensure transcription of the H gene by yeast.
3535
Denne funktionelle blok, der er integreret i et plasmid eller i kromosomerne pi en gær, fortrinsvis af slægten Saccharomyces, kan efter transformation af gæren gøre det muligt at udtrykke hirudin, enten i aktiv form eller i form af en inaktiv precursor, der ved aktivering kan regenerere hirudin.This functional block, embedded in a plasmid or in the chromosomes of a yeast, preferably of the genus Saccharomyces, may, after transformation of the yeast, allow hirudin to be expressed, either in active form or in the form of an inactive precursor, which upon activation can regenerate hirudin.
Det interessante ved Saccharomyces cerevisiae er, at denne gær er i stand til at secernere nogle proteiner i dyrkningsmediet; undersøgelsen af de mekanismer, der er ansvarlige for denne sekretion, er i fuld gang, og det er påvist, at det efter relevante manipulationer var 40 6 DK 174837 B1 muligt at få gær til at secernere humane hormoner, der var korrekt dannede og på alle punkter lignede de hormoner, som findes i humant serum (14, 15).The interesting thing about Saccharomyces cerevisiae is that this yeast is able to secrete some proteins in the culture medium; the investigation of the mechanisms responsible for this secretion is in full swing and it has been shown that, after relevant manipulations, it was possible to induce yeast to secrete human hormones that were properly formed and at all points were similar to the hormones found in human serum (14, 15).
Inden for den foreliggende opfindelses rammer udnyttes denne egenskab til at opnå se-5 kretion af hirudin, idet dette giver mange fordele.Within the scope of the present invention, this property is utilized to achieve secretion of hirudin, providing many advantages.
Først og fremmest secernerer gær få proteiner, hvilket har den fordel, hvis det lykkes at styre sekretionen af et givet fremmed protein i højt niveau, at der i dyrkningsmediet kan opnås et produkt, der kan udgøre en stor procentdel af det samlede antal secernerede 10 proteiner, hvilket således letter arbejdet med oprensning af det ønskede protein.First and foremost, yeast secretes few proteins, which has the advantage of succeeding in controlling the secretion of a given high-level foreign protein that a culture can be obtained in the culture medium that can constitute a large percentage of the total number of secreted 10 proteins. thus facilitating the work of purification of the desired protein.
Der findes flere proteiner eller polypeptider, der secerneres af gær. I alle de kendte tilfælde syntetiseres disse proteiner i form af en længere precursor, hvis IMF^-terminaie sekvens er afgørende for dens indtræden i den metaboliske vej, der fører til sekretion.There are several proteins or polypeptides secreted by yeast. In all the known cases, these proteins are synthesized in the form of a longer precursor, whose IMF 1 -terminal sequence is essential for its entry into the metabolic pathway leading to secretion.
1515
Syntese i gær af hybride proteiner, der indeholder den NF^-terminale sekvens for én af disse precursorer efterfulgt af sekvensen for det fremmede protein, kan i visse tilfælde føre til sekretion af dette fremmede protein. Det forhold, at dette protein syntetiseres i form af en precursor, som almindeligvis er inaktiv, gør det muligt at beskytte cellen mod det øn-20 skede molekyles eventuelle toxiske virkninger, idet den spaltning, der frigør det aktive protein, kun forekommer i de vesikler, der stammer fra Golgi-legemet, og som isolerer proteinet fra cytoplasmaet.Yeast synthesis of hybrid proteins containing the NF N terminal sequence of one of these precursors followed by the sequence of the foreign protein may in some cases lead to secretion of this foreign protein. The fact that this protein is synthesized in the form of a precursor, which is generally inactive, makes it possible to protect the cell from the possible toxic effects of the desired molecule, since the cleavage that releases the active protein occurs only in the vesicles. derived from the Golgi body and which isolates the protein from the cytoplasm.
Anvendelse af de metaboliske veje, der fører til sekretion, til at få gæren til at producere 25 et fremmed protein har således en række fordele: 1) det er muligt at isolere et rimeligt rent produkt i supernatanten fra kulturen, 2) det er muligt at beskytte cellen mod det modne proteins mulige toxiske virkninger, 3) på den anden side kan de secernerede proteiner i visse tilfælde undergå modifikationer 30 (glycosylering, sulfatering, etc.).Thus, using the metabolic pathways leading to secretion to induce the yeast to produce a foreign protein has a number of advantages: 1) it is possible to isolate a reasonably pure product in the supernatant from the culture; 2) it is possible to protecting the cell from the possible toxic effects of the mature protein; 3) on the other hand, the secreted proteins may in some cases undergo modifications 30 (glycosylation, sulfation, etc.).
Ekspressionsblokkene som er indeholdt i gæren ifølge opfindelsen har således mere specifikt følgende struktur: 35 - S(r - LgX - Sc) - H-gen hvor LgX koder for en leder-sekvens, der er nødvendig for sekretionen af et protein svarende til H-genet; SC| er en DNA-sekvens, der koder for et spaltningssted; segmentet Sc| - H-gen kan desuden være gentaget flere gange.Thus, the expression blocks contained in the yeast of the invention have more specifically the following structure: 35 - S (r - LgX - Sc) - H gene where LgX encodes a leader sequence necessary for the secretion of a protein corresponding to H gene; SC | is a DNA sequence encoding a cleavage site; the segment Sc | - The H gene can also be repeated several times.
Som eksempel på sekretionssystemet er valgt α-pheromonet, dvs. at i ovenstående sekvens stammer sekvensen Lex fra genet for α-kønspheromonet fra gær, men andre systemer vil kunne anvendes (fx systemet fra Killer-proteinet) (14).As an example of the secretory system, the α-pheromone, i.e. that in the above sequence, the sequence Lex is derived from the gene for the α-sex pheromone from yeast, but other systems could be used (e.g. the system from the Killer protein) (14).
40 7 DK 174837 B1 α-Kønspheromonet fra gær er et peptid på 13 aminosyrer (indrammet i fig. 2), som secerneres i dyrkningsmediet af gæren S. ærevisiae med kønstypen Mata. a-Faktoren standser cellerne med den modsatte kønstype (Mata) i fase GI og inducerer biokemiske og 5 morfologiske ændringer, der er nødvendige for parringen af de to typer celler. Kurjan og Herskowitz (17) har klonet strukturgenet for α-faktoren og har ud fra sekvensen af dette gen sluttet, at α-faktoren på 13 aminosyrer blev syntetiseret i form af et præ-pro-precursorprotein på 165 aminosyrer (fig. 2). Precursoren indeholder en aminoterminal hydrofob sekvens på 22 rester (understreget med stiplet linje) fulgt af en sekvens på 61 10 aminosyrer indeholdende 3 glycosylenngssteder og endelig fulgt af 4 kopier af a-faktoren.40 7 DK 174837 B1 The α-sex pheromone from yeast is a 13 amino acid peptide (enclosed in Figure 2) which is secreted into the culture medium by the yeast S. erevisiae with the mata genus type. The α-factor stops cells of the opposite sex type (Mata) in phase GI and induces biochemical and morphological changes necessary for the mating of the two types of cells. Kurjan and Herskowitz (17) have cloned the α-factor structural gene and concluded from the sequence of this gene that the α-factor of 13 amino acids was synthesized in the form of a 165 amino acid pre-precursor protein (Fig. 2). The precursor contains an amino terminal hydrophobic sequence of 22 residues (underlined with dashed line) followed by a sequence of 6110 amino acids containing 3 glycosylation sites and finally followed by 4 copies of the α-factor.
De 4 kopier er adskilt af "spacer"-sekvenser, og det modne protein frigøres fra precursoren ved følgende enzymatiske aktiviteter: 1) en endopeptidase af typen cathepsin B, som spalter dipeptiderne Lys-Arg til COOH 15 (spaltningssted vist med en fed pil), 2) en exopeptidase af typen carboxypeptidase B, som spalter baseresterne tii COOH i de udskårne peptider, 3) en dipeptidyl-aminopeptidase (betegnet A), som fjerner resterne Glu-Ala og Asp-Ala.The 4 copies are separated by "spacer" sequences and the mature protein is released from the precursor by the following enzymatic activities: 1) a cathepsin B type endopeptidase, which cleaves the Lys-Arg dipeptides to COOH 15 (cleavage site shown with a bold arrow) , 2) an exopeptidase of type carboxypeptidase B which cleaves the base residues of COOH in the excised peptides; 3) a dipeptidylaminopeptidase (designated A) which removes the residues Glu-Ala and Asp-Ala.
20 Denne precursors nukleotidsekvens omfatter desuden 4 Hindlll-restriktionssteder vist med en pil H.The nucleotide sequence of this precursor further comprises 4 HindIII restriction sites shown by an arrow H.
Der er udført flere fusioner mellem genet for α-pheromonet og den modne hirudin-se-kvens. Gærceller af typen Mata kan udtrykke disse fusionerede gener. De tilsvarende 25 hybride proteiner kan derpå oparbejdes ved hjælp af de signaler, som de indeholder, og som stammer fra præ-pro-sekvenserne fra precursoren for α-pheromonet. Man kan derfor forvente, at man i supernatanten fra kulturen kan isolere polypeptider med sekvensen for hirudin.Several fusions have been made between the gene for the α-pheromone and the mature hirudin sequence. Mata yeast cells can express these fused genes. The corresponding 25 hybrid proteins can then be processed by the signals they contain and which originate from the pre-pro sequences of the α-pheromone precursor. Therefore, one can expect that in the supernatant from the culture polypeptides with the sequence of hirudin can be isolated.
30 1 én af konstruktionerne omfatter sekvensen Sc| ved 3'-enden en ATG-kodon før H-genet; det fusionerede protein indeholder således methionin umiddelbart oven for den første aminosyre af den modne hirudin-sekvens. Efter spaltning med cyanogenbromid frembringer dette polypeptid et hirudinmolekyie, som kan gøres aktivt efter et renatureringstrin.One of the constructs comprises the sequence Sc | at the 3 'end an ATG codon before the H gene; thus, the fused protein contains methionine immediately above the first amino acid of the mature hirudin sequence. After cleavage with cyanogen bromide, this polypeptide produces a hirudin molecule which can be made active after a renaturation step.
35 I andre konstruktioner tjener de spaltningssignaler, der normait anvendes til at producere α-pheromonet, til i supernatanten fra kulturen at producere polypeptider med antithrombin-aktivitet. Dette er tilfældet, når sekvensen Sc| ved sin 3'-ende omfatter to kodoner, som koder for Lys-Arg, dvs. AAA eller AAG med AGA eller AGG; polypeptidet spaltes af en endopeptidase, som spalter dipeptiderne Lys-Arg til COOH, hvilket således 40 frigiver hirudin.In other constructs, the cleavage signals normally used to produce the α-pheromone serve to produce in the culture supernatant polypeptides with antithrombin activity. This is the case when the sequence Sc | at its 3 'end comprises two codons which encode Lys-Arg, i. AAA or AAG with AGA or AGG; the polypeptide is cleaved by an endopeptidase which cleaves the dipeptides Lys-Arg to COOH, thus releasing hirudin.
Opfindelsen angår især konstruktioner, i hvilke sekvensen før hirudin-genet koder for én af følgende aminosyresekvenser: 8 DK 174837 B1 1) Lys Arg Glu Ala Glu Ala Trp Leu Gin Val Asp Gly Ser Met hirudin ..., 2) Lys Arg Glu Ala Glu Ala hirudin 3) Lys Arg Glu Ala Glu Ala Lys Arg hirudin ..., 4) Lys Arg Glu Ala Glu Ser Leu Asp Tyr Lys Arg hirudin ... eller 5 5) Lys Arg hirudin ....The invention relates particularly to constructs in which the sequence before the hirudin gene encodes one of the following amino acid sequences: 1) Lys Arg Glu Ala Glu Ala Trp Leu Gin Val Asp Gly Ser Met hirudin ..., 2) Lys Arg Glu Ala Glu Ala hirudin 3) Lys Arg Glu Ala Glu Ala Lys Arg hirudin ..., 4) Lys Arg Glu Ala Glu Ser Leu Asp Tyr Lys Arg hirudin ... or 5 5) Lys Arg hirudin ....
Det er naturligvis muligt at anvende andre sekvenser, som på aminosyreniveau spaltes selektivt af et enzym, med det forbehold, at dette spaltningssted ikke også findes i selve hirudinet.Of course, it is possible to use other sequences that, at the amino acid level, are selectively cleaved by an enzyme, with the proviso that this cleavage site is also not found in the hirudin itself.
1010
Ekspressionsblokkene kan endelig efter H-genet have en terminatorsekvens fra gær, fx fra PGK-genet.Finally, the expression blocks after the H gene may have a yeast terminator sequence, e.g., from the PGK gene.
Ekspressionsblokkene ifølge opfindelsen kan generelt indsættes i en gær, især Saccha-15 romyces, enten i et plasmid med autonom replikation eller i gærens kromosom.The expression blocks of the invention can generally be inserted into a yeast, especially Saccharomyces, either in a plasmid with autonomic replication or in the yeast chromosome.
Når plasmidet er autonomt, omfatter det segmenter, der sørger for dets replikation, dvs. et replikationsinitieringssted såsom initieringsstedet fra plasmidet 2μ. Desuden kan plasmidet omfatte selektionssegmenter såsom genet URA3 eller LEU2, som sørger for kom- 20 plementering af gærstammerne ura3‘ eller Ieu2\ Disse plasmider kan desuden omfatte segmenter, der sørger for deres replikation i bakterier, når plasmidet skal være et shuttle-plasmid, fx et replikationsinitieringssted såsom stedet fra pBR322, et markørgen såsom Ampr og/eller andre segmenter, der er kendte for fagfolk.When the plasmid is autonomous, it comprises segments that provide for its replication, viz. a replication initiation site such as the initiation site from the plasmid 2μ. In addition, the plasmid may comprise selection segments such as the gene URA3 or LEU2 which provide for complementation of the yeast strains ura3 'or Ieu2. These plasmids may additionally comprise segments which provide for their replication in bacteria when the plasmid is to be a shuttle plasmid, e.g. a replication initiation site such as the site of pBR322, a marker gene such as Ampr and / or other segments known to those skilled in the art.
25 Den foreliggende opfindelse angår ligeledes gærstammer transformeret med en ekspressionsblok ifølge opfindelsen, enten båret på et plasmid eller integreret i dets kromosomer.The present invention also relates to yeast strains transformed with an expression block of the invention, either carried on a plasmid or integrated into its chromosomes.
Blandt disse gærer kan der især nævnes gær af slægten Saccharomyces, specielt S. cere-visiae.Among these yeasts may be mentioned especially yeasts of the genus Saccharomyces, especially S. cere-visiae.
30 Nar promotoren er promotoren fra genet for α-pheromonet, har gæren fortrinsvis kønstypen Mata. Der kan fx anvendes en stamme med genotypen ura3* eller Ieu2" eller en anden, komplementeret af plasmidet for at sikre bevaring af plasmidet i gæren ved et passende selektionstryk.When the promoter is the promoter of the gene for the α-pheromone, the yeast preferably has the sex type Mata. For example, a strain of the genotype ura3 * or Ieu2 "or another, complemented by the plasmid, may be used to ensure preservation of the plasmid in the yeast at an appropriate selection pressure.
35 Selv om det er muligt at fremstille hirudin ved fermentation af ovennævnte transformerede stammer i et tilpasset dyrkningsmedium ved akkumulation af hirudin i cellerne, foretrækkes det ikke desto mindre, hvilket fremgår af ovenstående beskrivelse, at lade hirudin secernere i mediet, enten i moden form eller i form af en precursor, som skal oparbejdes in vitro.Although it is possible to prepare hirudin by fermentation of the above transformed strains in an adapted culture medium by accumulation of hirudin in the cells, it is nevertheless preferred, as can be seen from the above description, to allow hirudin to secrete in the medium, either in mature form or in the form of a precursor to be worked up in vitro.
Denne modning kan ske i flere trin. Først kan det være nødvendigt at afspalte visse segmenter, der stammer fra translationen af sekvensen Lex; denne spaltning foretages på niveau med den sekvens, der svarer til SC|. Som anført ovenfor kan der før det modne 40 9 DK 174837 B1 hirudin være en methioninrest, som spaltes selektivt med cyanogenbromid. Denne proces kan anvendes, fordi den sekvens, der koder for hirudin, ikke omfatter methionin.This maturation can occur in several steps. First, it may be necessary to decouple certain segments that originate from the translation of the sequence Lex; this cleavage is performed at the level of the sequence corresponding to SC |. As stated above, before the mature 40 hirudin may be a methionine residue which is selectively cleaved with cyanogen bromide. This process can be used because the sequence encoding hirudin does not include methionine.
Det er også muligt ved N-enden at tilvejebringe dipeptidet Lys-Arg, som spaltes til COOH 5 af en specifik endopeptidase; da dette enzym er aktivt i sekretionsprocessen, kan det modne protein således opnås direkte i mediet. I visse tilfælde kan det dog være nødvendigt at foretage en enzymatisk spaltning efter sekretionen ved at tilsætte et specifikt enzym.It is also possible to provide the N-end dipeptide Lys-Arg which cleaves to COOH 5 by a specific endopeptidase; thus, since this enzyme is active in the secretion process, the mature protein can be obtained directly in the medium. However, in some cases, it may be necessary to perform an enzymatic cleavage after secretion by adding a specific enzyme.
10 I visse tilfælde, specielt efter en behandling med cyanogenbromid, kan det være nødvendigt at renaturere proteinet ved at genskabe disulfid-broerne. Til dette formål denatureres peptidet, fx med guanidinium-chlorhydrat, og renatureres derefter i nærværelse af reduceret og oxideret glutathion.In some cases, especially after treatment with cyanogen bromide, it may be necessary to renaturate the protein by restoring the disulfide bridges. For this purpose, the peptide is denatured, for example, with guanidinium chlorohydrate, and then renaturated in the presence of reduced and oxidized glutathione.
15 Andre karakteristika og fordele ved den foreliggende opfindelse fremgår af nedenstående eksempler og af tegningen, hvor fig. 1 viser nukleotidsekvensen af hirudin-cDNA-fragmentet klonet i pTG717, fig. 2 viser nukleotidsekvensen af precursoren for a-kønspheromonet, 20 fig. 3 viser konstruktionen af pTG834, fig. 4 viser konstruktionen af pTG880, fig. 5 viser konstruktionen af pTG882, fig. 6 viser konstruktionen af M13TG882, fig. 7 viser konstruktionen af pTG874, 25 fig. 8 viser konstruktionen af pTG876, fig. 9 viser konstruktionen af pGT881, fig. 10 viser konstruktionen af pTG886, fig. 11 viser konstruktionen af pTG897, fig. 12 viser elektroforese på acrylamidgel af proteiner med en molekylvægt på > 1000 30 vundet i mediet efter dyrkning af gær transformeret med pTG886 og pTG897, fig. 13 viser elektroforese på acrylamidgel af proteiner med en molekylvægt på > 1000 vundet i mediet efter dyrkning af gær transformeret med pTG886 og pTG897, fig. 14 viser konstruktionen af pTGl805, fig. 15 viser elektroforese på acrylamidgel af proteiner med en molekylvægt på > 1000 35 vundet i mediet efter dyrkning af gær transformeret med pTG847 og pTG1805, og fig. 16 viser et skema, der sammenligner aminosyresekvenserne neden for det første spaltningssted (Lys-Arg) i forskellige konstruktioner.Other features and advantages of the present invention will become apparent from the following examples and from the drawings, in which: Figure 1 shows the nucleotide sequence of the hirudin cDNA fragment cloned in pTG717; Figure 2 shows the nucleotide sequence of the precursor of the α-sex pheromone; 3 shows the construction of pTG834; FIG. 4 shows the construction of pTG880; FIG. 5 shows the construction of pTG882; FIG. 6 shows the construction of M13TG882; FIG. 7 shows the construction of pTG874, FIG. 8 shows the construction of pTG876; FIG. 9 shows the construction of pGT881; FIG. 10 shows the construction of pTG886; FIG. 11 shows the construction of pTG897; FIG. Figure 12 shows electrophoresis on acrylamide gel of proteins with a molecular weight of> 1000 obtained in the medium after culture of yeast transformed with pTG886 and pTG897; Figure 13 shows electrophoresis on acrylamide gel of proteins with a molecular weight of> 1000 gained in the medium after culture of yeast transformed with pTG886 and pTG897; 14 shows the construction of pTG1805; FIG. Figure 15 shows electrophoresis on acrylamide gel of proteins with a molecular weight of> 1000 obtained in the medium after culture of yeast transformed with pTG847 and pTG1805; Figure 16 shows a scheme comparing the amino acid sequences below the first cleavage site (Lys-Arg) in different constructs.
Aminosyre- og nukleotidsekvenserne er ikke vist i den foreliggende beskrivelse for ikke at 40 gøre den for tung.The amino acid and nucleotide sequences are not shown in the present specification so as not to make it too heavy.
10 DK 174837 B1 EKSEMPEL 1EXAMPLE 1
Konstruktion af pTG882 5Construction of pTG882 5
Et cDNA-fragment fra hirudin HV-2 blev ekstraheret fra en gel efter spaltning af plasmidet pTG7l7 med PstI og blev derefter spaltet med enzymerne Hinfl og Ahalll. Enzymet Hinfl spalter neden for den første kodon af den modne sekvens for hirudin HV-2. Enzymet Ahalll spalter ca. 30 basepar efter (3’) stopkodonen af hirudin-sekvensen. Det således 10 vundne HinfI*AhallI-fragment blev isoleret på agarosegel og blev derefter elueret fra denne gel.A cDNA fragment from hirudin HV-2 was extracted from a gel after cleavage of the plasmid pTG717 with PstI and then cleaved with the enzymes Hinf1 and Ahalll. The enzyme Hinfl cleaves below the first codon of the mature sequence of hirudin HV-2. The Ahalll enzyme cleaves approx. 30 base pairs after the (3 ') stop codon of the hirudin sequence. The thus-obtained HinfI * AhallI fragment was isolated on agarose gel and then eluted from this gel.
Den sekvens, der koder for det modne protein, blev indsat i vektoren pTG880. Vektoren pTG880 er et derivat af vektoren pTG838 (fig. 3). Plasmidet pTG838 er identisk med 15 pTG833 bortset fra Bglll-stedet, der findes nær ved transkriptionsterminatoren fra PGK.The sequence encoding the mature protein was inserted into the vector pTG880. The vector pTG880 is a derivative of the vector pTG838 (Fig. 3). Plasmid pTG838 is identical to 15 pTG833 except for the BglII site found near the transcriptional terminator of PGK.
Dette sted blev fjernet ved udfyldning med Klenow-polymerase, hvilket gav pTG838.This site was removed by filling with Klenow polymerase to give pTG838.
Plasmidet pTG833 er et gær/E. coli shuttle-plasmid. Dette plasmid blev fremstillet for at udtrykke fremmede gener i gær. De grundlæggende segmenter i denne vektor (fig. 3) er 20 følgende: genet URA3 som selektionsmarkør i gær, replikationsinitieringsstedet fra gær-plasmidet 2μ, genet for ampicillinresistens og replikationsinitieringsstedet fra plasmidet pBR322 fra E. coli (disse to sidstnævnte segmenter muliggør replikation og selektion af dette plasmid i colibakterien), det flankerende område ved 5’ i PGK-gærgenet med den sekvens, der koder for dette gen, op til Sall-stedet, Sall-PvuII-fragmentet fra pBR322 og 25 terminatoren fra PGK-genet (20). Dette plasmid er beskrevet i fransk patentansøgning nr.The plasmid pTG833 is a yeast / E. coli shuttle plasmid. This plasmid was prepared to express foreign genes in yeast. The basic segments of this vector (Fig. 3) are as follows: the gene URA3 as a selection marker in yeast, the replication initiation site from the yeast plasmid 2μ, the gene for ampicillin resistance, and the replication initiation site from the plasmid pBR322 from E. coli (these latter two segments allow for replication and selection of this plasmid in the coli bacterium), the flanking region at 5 'of the PGK yeast gene with the sequence encoding this gene, up to the SalI site, the SalI-PvuII fragment of pBR322 and the terminator of the PGK gene (20) . This plasmid is described in French patent application no.
84 07125 i navnet Transgéne S.A., indleveret den 9. maj 1984.84 07125 in the name of Transgéne S.A., filed May 9, 1984.
Plasmidet pTG880 blev konstrueret ud fra pTG838 (fig. 4) ved indsætning af et kort poly-linker-område (stammende fra bakteriofagen M13) i pTG838 spaltet med EcoRI og Bglll, 30 hvilket gør det muligt at anbringe en række kloningssteder i rækkefølge: Bglll, PstI, Hin-dlll, BamHI, Smal og EcoRI, umiddelbart efter 5'-området, der flankerer PGK-gærgenet.Plasmid pTG880 was constructed from pTG838 (Fig. 4) by inserting a short poly-linker region (originating from the bacteriophage M13) into pTG838 digested with EcoRI and Bglll, allowing a number of cloning sites to be sequenced: BglII , PstI, Hin-dlll, BamHI, SmaI and EcoRI, immediately following the 5 'region flanking the PGK yeast gene.
DNA fra plasmidet pTG880 blev spaltet med Bglll og Smal, og det store fragment, der blev vundet ved denne spaltning, blev isoleret og udvalgt fra en gel. Hinfl/AhaNI-fragmentet fra pTG717, som indeholder størstedelen af den sekvens, der koder for hirudin HV-2, blev 35 blandet med pTG880, der blev spaltet på samme tid som 3 syntetiske oligonukleotider (fig.DNA from plasmid pTG880 was digested with BglII and SmaI, and the large fragment recovered by this cleavage was isolated and selected from a gel. The hinfl / AhaNI fragment from pTG717, which contains most of the sequence encoding hirudin HV-2, was mixed with pTG880, which was cleaved at the same time as 3 synthetic oligonucleotides (Figs.
5), der var beregnet til at rekonstituere det NH2*terminale område fra hirudin-sekvensen, og som forbinder Bglll-stedet i vektoren med Hinfl-stedet i det fragment, der indeholder hirudinet. Denne blanding blev underkastet ligationsbehandling og tjente derefter til transformation af E. coli-celler. Plasmidet pTG882 blev isoleret fra transformanterne.5), which was intended to reconstitute the NH2 * terminal region from the hirudin sequence and which associates the BglII site in the vector with the Hinfl site in the fragment containing the hirudin. This mixture was subjected to ligation treatment and then served to transform E. coli cells. Plasmid pTG882 was isolated from the transformants.
4040
Dette plasmid blev anvendt til at transformere gærceller for at producere hirudin under kontrol af PGK-promotoren. Der kunne imidlertid ikke påvises nogen hirudin-aktivitet i råekstrakterne fra celler transformeret med denne vektor. Grunden til fraværelsen af produktion af aktivt hirudin er endnu ikke klarlagt. Konstruktionen pTG882 tjente imidlertid 11 DK 174837 B1 som kilde til en sekvens, der koder for hirudin, for de nedenfor beskrevne vektorer til sekretion af gær.This plasmid was used to transform yeast cells to produce hirudin under the control of the PGK promoter. However, no hirudin activity could be detected in the crude extracts of cells transformed with this vector. The reason for the absence of active hirudin production has not yet been clarified. However, the construct pTG882 served as source for a sequence encoding hirudin for the vectors for yeast secretion described below.
5 EKSEMPEL 2EXAMPLE 2
Konstruktion af pTG886 og pTG897 Først blev Bglll-EcoRI-fragmentet (230 bp) fra pTG882 indeholdende hirudin-sekvensen 10 overført til bakteriofagen Ml3mp8 (fig. 6) mellem BamHI- og EcoRI-stederne. Dette gav fagen M13TG882, ud fra hvilken der kunne isoleres et EcoRi-Hindlll-fragment (ca. 245 bp). Dette fragment indeholder hele den sekvens, der koder for hirudin HV-2, fusionsstedet BamHI/Bglll og hæfteenderne (Hindlll-EcoRI), der muliggør kloning i gærsekretionsvektoren pTG881 (fig. 9).Construction of pTG886 and pTG897 First, the BglII-EcoRI fragment (230 bp) from pTG882 containing the hirudin sequence 10 was transferred to the bacteriophage M13mp8 (Fig. 6) between the BamHI and EcoRI sites. This yielded the phage M13TG882 from which an EcoRi-HindIII fragment (approximately 245 bp) could be isolated. This fragment contains the entire sequence encoding hirudin HV-2, the fusion site BamHI / Bglll, and the staple ends (HindIII-EcoRI) that allow cloning in the yeast secretion vector pTG881 (Fig. 9).
1515
Plasmidet pTG881 (10 kb) er et E. coli/gær shuttle-plasmid, der replikerer autonomt både i E. coli og i gærstammerne Saccharomyces cerevisiae, uvarum og carlsbergensis.The plasmid pTG881 (10 kb) is an E. coli / yeast shuttle plasmid that replicates autonomously in both E. coli and in the yeast strains Saccharomyces cerevisiae, uvarum and carlsbergensis.
Indsætning af dette plasmid i E. coli gør det mufigt at opnå resistens over for ampicillin (og 20 andre antibiotika af beta-lactam-typen). Desuden bærer plasmidet gærgenerne LEU2 og URA3, der udtrykkes i stammer af E. coli og af Saccharomyces. Tilstedeværelsen af dette plasmid i E. coli eller i Saccharomyces gør det således muligt at opnå komplementering af stammer, der mangler beta-isopropylmalat-dehydrogenase eller OMP-decarboxylase.Insertion of this plasmid into E. coli makes it difficult to achieve resistance to ampicillin (and 20 other beta-lactam antibiotics). In addition, the plasmid carries the yeast genes LEU2 and URA3 expressed in strains of E. coli and of Saccharomyces. Thus, the presence of this plasmid in E. coli or in Saccharomyces allows complementation of strains lacking beta-isopropyl malate dehydrogenase or OMP decarboxylase.
25 Plasmidet pTG881 konstrueres på følgende måde:The plasmid pTG881 is constructed as follows:
Udgangsplasmidet er pTG848 (identisk med pTG849 beskrevet i fransk patent nr. 83 15716 med undtagelse af URA3-genet, hvis orientering er omvendt), og det udgøres af følgende DNA-fra g menter (fig. 7): 30 1) EcoRI-Hindlll-fragmentet på ca. 3,3 kb, der stammer fra plasmidet pJDB207 (18). Hin-dlll-stedet svarer til koordinaten 1505 i plasmidet 2p, B-form, og EcoRI-stedet til koordinat 2243. I dette fragment findes LEU2-genet indsat ved polydeoxyadenilat/poly-deoxy-thymidilat-forlængelse i Pstl-stedet pi fragmentet fra 2p, B-form (18).The starting plasmid is pTG848 (identical to pTG849 described in French Patent No. 83,15716 with the exception of the URA3 gene, the reverse of which is constituted by the following DNA from gents (Fig. 7): 30 1) EcoRI-HindIII fragment of approx. 3.3 kb, derived from plasmid pJDB207 (18). The Hin dIII site corresponds to the coordinate 1505 of plasmid 2p, B form, and the EcoRI site to coordinate 2243. In this fragment, the LEU2 gene is inserted by polydeoxyadenilate / polydeoxy-thymidilate extension into the Pst1 site of the fragment from 2p, B-form (18).
35 2) Hindlll-fragmentet fra URA3-genet (19).2) The HindIII fragment of the URA3 gene (19).
3) Det store EcoRI-(koordinat 0)-SalI-(koordinat 650)-fragment fra pBR322. I PvuII-stedet i dette fragment blev 510 bp EcoRI-Hindlll-fragmentet indsat (hvis ender i forvejen var 40 gjort stumpe ved hjælp af Klenow i nærværelse af de 4 nukleotider) svarende til enden af PGK-genet (20). EcoRl-enden, der er afskåret fra PGK-genet, regenererer et EcoRI-sted, når den forbindes til Pvull-enden af pBR322.3) The large EcoRI (coordinate 0) -SalI (coordinate 650) fragment from pBR322. In the PvuII site of this fragment, the 510 bp Eco RI-HindIII fragment was inserted (whose ends had already been blunted by Klenow in the presence of the 4 nucleotides) corresponding to the end of the PGK gene (20). The Eco RI end, which is cut off from the PGK gene, regenerates an Eco RI site when connected to the Pvull end of pBR322.
4) Hindlll-Sall-fragmentet (2,15 kb) fra PGK-genet (20).4) The HindIII-SalI fragment (2.15 kb) from the PGK gene (20).
12 DK 174837 B112 DK 174837 B1
Plasmidet pTG848 blev spaltet med Hindlll, og enderne fra de to således frigjorte fragmenter gøres stumpe ved behandling med Klenow i nærværelse af de 4 deoxyribonukleoti-der. De to fragmenter ligeres, og før transformation underkastes denne ligationsblanding 5 behandling med Hindlll, hvilket gør det muligt at eliminere enhver form for plasmid, der har bevaret ét (eller to) HindHI-steder. Stammen E. coli BJ5183 (pyrF) transformeres, og transformanterne selekteres for ampicillinresistens og for pyr+-karakter. Herved fås plasmidet pTG874 (fig. 7), hvor de to Hindlll-steder er fjernet, og orienteringen af URA3-ge-net giver anledning til transkription i samme orientering som orienteringen af genet for 10 phosphoglycerat-kinase (PGK).Plasmid pTG848 was digested with HindIII and the ends of the two thus released fragments blunted by treatment with Klenow in the presence of the 4 deoxyribonucleotides. The two fragments are ligated and, prior to transformation, this ligation mixture is subjected to treatment with HindIII, which allows the elimination of any plasmid that has retained one (or two) HindHI sites. The strain E. coli BJ5183 (pyrF) is transformed and the transformants selected for ampicillin resistance and for pyr + character. This yields plasmid pTG874 (Fig. 7), where the two HindIII sites are removed, and the orientation of the URA3 gene gives rise to transcription in the same orientation as the orientation of the phosphoglycerate kinase (PGK) gene.
Plasmidet pTG874 spaltes med Smal og Sall, og et fragment på 8,6 kb isoleres derefter fra en agarosegel. Plasmidet pGT864, som omfatter EcoRI-Sall-fragmentet (ca. 1,4 kb) fra genet MFal klonet i samme pBR322-steder, spaltes med EcoRI. Enderne på det således 15 lineariserede plasmid gøres stumpe ved hjælp af Klenow i nærværelse af de 4 nukleotider.The plasmid pTG874 is digested with SmaI and SalI, and a fragment of 8.6 kb is then isolated from an agarose gel. The plasmid pGT864, which comprises the EcoRI-SalI fragment (about 1.4 kb) from the gene MFal cloned in the same pBR322 sites, is digested with EcoRI. The ends of the thus-linearized plasmid are blunted by Klenow in the presence of the 4 nucleotides.
Der udføres derefter spaltning med enzymet Sall, og EcoRI (stump ende)-SalI-fragmentet svarende til genet MFal isoleres. Dette fragment ligeres med Smal-Sall-fragmentet (8,6 kb) fra pTG874, hvilket giver plasmidet pTG876 (fig. 8).Cleavage is then performed with the enzyme SalI and the EcoRI (blunt end) SalI fragment corresponding to the gene MFal is isolated. This fragment is ligated to the Sma I-Sal I fragment (8.6 kb) of pTG874 to give the plasmid pTG876 (Fig. 8).
20 Til fjernelse af Bglll-stedet tæt ved sekvensen af MFal-promotoren blev en delvis spaltning med Bglll af plasmidet pTG876 fulgt af behandling med Klenow i nærværelse af de 4 deoxyribonukleotider. Det vundne nye plasmid, pTG881 (fig. 9), gør det muligt at indsætte fremmede kodende sekvenser mellem det første Hindll-sted i MFal-genet og Bglll-stedet ved enden af PGK-genet.To remove the BglII site close to the sequence of the MFα1 promoter, a partial cleavage with BglII of the plasmid pTG876 was followed by treatment with Klenow in the presence of the 4 deoxyribonucleotides. The new plasmid obtained, pTG881 (Fig. 9), allows the insertion of foreign coding sequences between the first HindIII site of the MFα1 gene and the BglII site at the end of the PGK gene.
2525
Nar fusionen ved HindNI-stedet af det fremmede kodende DNA gør det muligt at opnå translation i samme læseramme, omfatter det vundne hybride protein præ-pro-delene af a-pheromonet.When the fusion at the HindNI site of the foreign coding DNA allows translation in the same reading frame to be obtained, the hybrid protein obtained comprises the pre-parts of the α-pheromone.
30 Kloning i pTG881 af Hindlll-EcoRl-fragmentet, som bærer genet for hirudin, fører til plasmidet pTG886 (fig. 10). Efter at kloningen er udført, findes der et Bglll-sted neden for fragmentet, hvilket gør det muligt at udtage fragmentet i form af Hinfl-BgIII, idet Hinfl-stedet er det samme som det, der blev anvendt ovenfor. Da Bglll er unikt i pTG881, er det meget enkelt at rekonstituere 5'-enden af den sekvens, der koder for hirudin, under an-35 vendelse af 3 oligonukleotider, der rekonstituerer 5'-sekvensen af hirudin og gør det muligt i fase at læse præ-pro-sekvensen af α-pheromonet efterfulgt af den modne hirudin-sekvens.Cloning in pTG881 of the HindIII-EcoR1 fragment carrying the hirudin gene leads to plasmid pTG886 (Fig. 10). After the cloning is performed, a BglII site is located below the fragment, which allows the fragment to be extracted in the form of Hinfl-BgIII, the Hinfl site being the same as that used above. Since BglII is unique in pTG881, it is very simple to reconstitute the 5 'end of the hirudin-coding sequence using 3 oligonucleotides that reconstitute the 5' sequence of hirudin and enable it in phase to read the pre-pro sequence of the α-pheromone followed by the mature hirudin sequence.
Dette nye plasmid betegnes pTG897 (fig. 11).This new plasmid is designated pTG897 (Fig. 11).
40 EKSEMPEL 3EXAMPLE 3
Ekspression af hirudin i gær 13 DK 174837 B1 DNA fra pTG897 blev anvendt til transformation af en gær TGYlsp4 {Mata, ura3 - 251 -373 - 328, his3 - 11-15) til ura+ ifølge en allerede beskrevet teknik (21).Expression of hirudin in yeast 13 was used to transform a yeast TGY1sp4 (Mata, ura3 - 251 -373 - 328, his3 - 11-15) into ura + according to a technique already described (21).
5 En transformeret koloni blev udpladet og anvendt til podning af 10 mt minimalmedium plus casaminosyrer (0,5%). Efter 20 timers dyrkning blev cellerne centrifugeret, og superna-tanten blev dialyseret mod destilleret vand og koncentreret ved inddampning (centrifugering i vakuum).A transformed colony was plated and used for inoculation of 10 mt of minimal medium plus casamino acids (0.5%). After 20 hours of culture, the cells were centrifuged and the supernatant dialyzed against distilled water and concentrated by evaporation (centrifugation in vacuo).
10 En kultur af TGYlsp4 transformeret med PTG886 og en kultur af TGYlsp4 transformeret med et plasmid, der ikke bar en hirudin-sekvens (TGYlsp4 pTG856), blev parallelt behandlet på samme måde. Det tørre bundfald blev hældt i 50 pi vand, og 20 μΙ blev kogt i nærværelse af 2,8% SDS og 100 mM mercaptoethanol og blev derefter anbragt på en acrylamid-SDS-gel (15% acrylamid, 0,1% SDS) (22). Efter fiksering og farvning med 15 Coomassie-blåt kan der påvises polypeptider, som akkumuleres i supernatanterne fra kulturerne af TGYlsp4/pTG886 og TGYlsp4/pTG897, og som ikke er til stede i supernatanten fra kontrolkulturen (fig. 12). Desuden mærkes disse serier af supplerende peptider kraftigt med -^S-cystein, hvilket kunne forventes for hirudin-peptider, idet dette molekyle er meget rigt på cystein (fig. 10).A culture of TGY1sp4 transformed with PTG886 and a culture of TGY1sp4 transformed with a plasmid that did not carry a hirudin sequence (TGY1sp4 pTG856) were treated in the same way in parallel. The dry precipitate was poured into 50 µl of water, and 20 µΙ boiled in the presence of 2.8% SDS and 100 mM mercaptoethanol and then applied to an acrylamide SDS gel (15% acrylamide, 0.1% SDS) ( 22). After fixation and staining with Coomassie Blue, polypeptides can be detected which accumulate in the supernatants from the cultures of TGY1sp4 / pTG886 and TGY1sp4 / pTG897 and are not present in the supernatant from the control culture (Fig. 12). In addition, these series of supplemental peptides are strongly labeled with - ^ S-cysteine, as might be expected for hirudin peptides, as this molecule is very rich in cysteine (Fig. 10).
2020
De i fig. 12 og 13 viste elektroforeser blev udført som følger:The 12 and 13 electrophoresis were performed as follows:
Ti! fig. 12 blev ekstrakterne fremstillet på følgende måde: 10 ml minimalmedium (Yeast Nitrogen Base Difco uden aminosyre (6,7 g/l), 10 g/l glucose beriget med 0,5% casamino-25 syrer blev podet med forskellige stammer og dyrket i 20 timer (stationær fase). Cellerne blev centrifugeret, og supernatanten blev dialyseret mod vand (minimal retention: molekylvægt 1000) og derefter tørret ved centrifugering i vakuum. Prøverne blev derefter forsynet med 50 μ I påføringspuffer, hvoraf 20 μΙ var behandlet som beskrevet ovenfor, og blev anbragt på acrylamid-SDS-gel (15% acrylamid, 0,1% SDS) (22).Ten! FIG. The extracts were prepared as follows: 10 ml of minimal medium (Yeast Nitrogen Base Difco without amino acid (6.7 g / l), 10 g / l glucose enriched with 0.5% casamino acids were seeded with various strains and grown in The cells were centrifuged and the supernatant dialyzed against water (minimal retention: molecular weight 1000) and then dried by centrifugation in vacuo. The samples were then loaded with 50 μl of application buffer, of which 20 μΙ was treated as described above. , and was applied to acrylamide SDS gel (15% acrylamide, 0.1% SDS) (22).
3030
De anvendte stammer er: brønd 2: TGYlsp4 transformeret med et plasmid, der ikke indeholder hirudin-sekvensen (kontrol), 35 brønd 3: TGYlsp4 transformeret med pTG886, brønd 4: TGYlsp4 transformeret med pTG897, brønd 1: i brønd 1 anbragtes reference-markører (LMW-kit fra Pharmacia; fra neden og opefter: 94.000, 67.000, 43.000, 30.000, 20.100, 14.000).The strains used are: well 2: TGY1sp4 transformed with a plasmid not containing the hirudin sequence (control), well 3: TGY1sp4 transformed with pTG886, well 4: TGY1sp4 transformed with pTG897, well 1: in well 1 markers (Pharmacia LMW kit; bottom and bottom: 94,000, 67,000, 43,000, 30,000, 20,100, 14,000).
40 Bandene blev fremkaldt ved farvning med Coomasie-blåt R-250.The bands were induced by staining with Coomasie Blue R-250.
Til fig. 13 blev ekstrakterne fremstillet som følger: 100 ml minimalmedium + 40 pg/ml histidin blev podet med forskellige stammer til kulturer natten over. Nar celletætheden når ca. 5xl06 (eksponentiel vækstfase), sættes 40 μΙ 35S-cystein (9,8 mCi/ml, 1015 Ci/mmol) DK 174837 B1 14 til hver kultur. Efter 10 minutter centrifugeres cellerne, anbringes i 10 ml komplet miljø (30°C) og inkuberes ved 30°C under agitation. Efter 3 timer dialyseres 10 ml af supernatanten mod vand og koncentreres til et volumen på 0,5 ml som beskrevet for fig.In FIG. 13, the extracts were prepared as follows: 100 ml of minimal medium + 40 µg / ml of histidine were seeded with different strains for overnight cultures. When the cell density reaches approx. 5x106 (exponential growth phase), 40 μΙ of 35 S-cysteine (9.8 mCi / ml, 1015 Ci / mmol) is added to each culture. After 10 minutes, the cells are centrifuged, placed in 10 ml complete environment (30 ° C) and incubated at 30 ° C with agitation. After 3 hours, 10 ml of the supernatant is dialyzed against water and concentrated to a volume of 0.5 ml as described for FIG.
12. Ca. 35.000 cpm (40 pi) anbringes på acrylamid-SDS-gel (15% acrylamid, 0,1% SDS).12. Approx. 35,000 cpm (40 µl) is applied to acrylamide SDS gel (15% acrylamide, 0.1% SDS).
5 Proteinbåndene visualiseres efter fluorografi.The protein bands are visualized after fluorography.
De anvendte stammer er: brønd 2: TGYlsp4 transformeret med et plasmid, der ikke indeholder hirudin-sekvensen, 10 brønd 3: TGYlsp4 transformeret med pTG886, brønd 4: TGYlsp4 transformeret med pTG897, brønd 1: i brønd 1 anbragtes markører, hvis molekylvægt er anført (xlO3).The strains used are: well 2: TGY1sp4 transformed with a plasmid not containing the hirudin sequence, 10 well 3: TGY1sp4 transformed with pTG886, well 4: TGY1sp4 transformed with pTG897, well 1: in well 1, markers whose molecular weight is listed (x103).
Nar supernatanterne indeholdende disse polypeptider blev testet for deres antithrombin-15 aktivitet, kunne der imidlertid ikke detekteres nogen aktivitet.However, when the supernatants containing these polypeptides were tested for their antithrombin activity, no activity could be detected.
I tilfælde af det polypeptid, der udskilles af TGYlsp4/pTG886 forventes det, at det gennemgår de normale spaltningstrin for precursoren for α-pheromonet, hvilket giver et hirudin-molekyle, der er forlænget med 8 aminosyrer ved sin Nl-^-ende. Det er derfor ikke 20 overraskende, at det polypeptid, der secerneres af TGYlsp4/pTG886-celIeme, ikke er aktivt.In the case of the polypeptide secreted by TGY1sp4 / pTG886, it is expected to undergo the normal cleavage steps of the α-pheromone precursor, yielding a hirudin molecule that is extended by 8 amino acids at its N1 - end. Therefore, it is not surprising that the polypeptide secreted by the TGY1sp4 / pTG886 cells is not active.
1 tilfælde af det polypeptid, der udskilles af TGYlsp4/pTG897, forventes det derimod, at polypeptidet er identisk med det naturlige protein og således er aktivt. Flere hypoteser kan 25 forklare fraværelsen af aktivitet: 1) Proteinets modning er ikke fuldstændig; der kan være Glu-Ala-rester tilbage ved NH2, hvilket er beskrevet for EGF (16).In contrast, in the case of the polypeptide secreted by TGY1sp4 / pTG897, the polypeptide is expected to be identical to the natural protein and thus active. Several hypotheses may explain the absence of activity: 1) Protein maturation is not complete; there may be Glu-Ala residues left at NH 2, as described for EGF (16).
30 2) Proteinet er ikke aktivt, for det har ikke den rigtige konformation, eller også findes der i supernatanten fra kulturen proteiner eller molekyler med en molekylvægt på 1000, som inhiberer aktiviteten.2) The protein is not active, because it does not have the correct conformation, or in the culture supernatant proteins or molecules with a molecular weight of 1000 which inhibit the activity are found.
3) Proteinet er ikke komplet, fordi det har undergået en intracellulær og/eller ekstracellu-35 lær proteolyse.3) The protein is incomplete because it has undergone intracellular and / or extracellular proteolysis.
EKSEMPEL 4 40 Aktivering ved spaltning med cyanogenbromidEXAMPLE 4 40 Activation by cleavage with cyanogen bromide
Hvis årsagen til fraværelsen af aktivitet er forbundet med tilstedeværelsen af yderligere aminosyrer ved NH2*terminalen, burde det være muligt at genoprette aktiviteten ved at underkaste det peptid, der er secerneret fra TGYlsp4/pTG886, spaltning med cyanogen- 15 DK 174837 B1 bromid. Dette reagens er nemlig specifikt for methioninrester, og det fusionerede protein, der indkodes af pTG886, indeholder kun én methioninrest. Denne reaktion blev udført pi følgende måde: gær indeholdende enten plasmidet pTG886 eller et kontrolplasmid, der ikke indeholder hirudin-indsætning, dyrkes i 10 ml medium i 24 timer. På dette tidspunkt 5 når kulturen en tæthed på 7-10xl07 celler/ml. Supernatanten adskilles fra cellerne, dialyseres grundigt mod destilleret vand og lyofiliseres. Det tørre pulver opløses i 1 ml 70% myresyre, og en alikvot anvendes til bestemmelse af indholdet af totale proteiner (ved metoden med farvning med Coomassie-blåt med de af Biorad forhandlede reagenser); resten af præparationen behandles med 1 ml frisk cyanogenbromid-opløsning (30 mg/ml) i 10 70% myresyre.If the cause of the absence of activity is associated with the presence of additional amino acids at the NH 2 * terminal, it should be possible to restore the activity by subjecting the peptide secreted from TGYlsp4 / pTG886 to cyanogen-bromide cleavage. Namely, this reagent is specific for methionine residues, and the fused protein encoded by pTG886 contains only one methionine residue. This reaction was carried out in the following manner: yeast containing either the plasmid pTG886 or a control plasmid containing no hirudin insert is grown in 10 ml of medium for 24 hours. At this time, the culture reaches a density of 7-10x107 cells / ml. The supernatant is separated from the cells, thoroughly dialyzed against distilled water and lyophilized. The dry powder is dissolved in 1 ml of 70% formic acid, and an aliquot is used to determine the total protein content (by the Coomassie Blue staining method with the Biorad reagents); the rest of the preparation is treated with 1 ml of fresh cyanogen bromide solution (30 mg / ml) in 70% formic acid.
Efter eliminering af oxygen med en nitrogenstrøm inkuberes reagensglassene i mørke i 4 timer ved omgivelsestemperatur. Alle manipulationerne med cyanogenbromid udføres med passende forholdsregler og i et ventileret stinkskab. Spaltningsreaktionen med cyanogen-15 bromid standses ved tilsætning af 10 volumen destilleret vand, hvorefter opløsningen lyo-filiseres.After eliminating oxygen with a nitrogen stream, the tubes are incubated in the dark for 4 hours at ambient temperature. All cyanogen bromide manipulations are performed with appropriate precautions and in a ventilated fume cupboard. The cleavage reaction with cyanogen-bromide is stopped by the addition of 10 volumes of distilled water and the solution is lyophilized.
De spaltede peptider genopløses i 10 ml destilleret vand og genlyofiliseres to gange. Til slut opløses peptiderne i et lille volumen destilleret vand, og en alikvot anvendes til måling 20 af antithrombin-aktiviteten. Resten af prøven lyofiliseres og underkastes renatureringstrin som beskrevet nedenfor.The cleaved peptides are redissolved in 10 ml of distilled water and re-lyophilized twice. Finally, the peptides are dissolved in a small volume of distilled water and an aliquot is used to measure the antithrombin activity. The remainder of the sample is lyophilized and subjected to the renaturation step as described below.
Eftersom hirudin-aktiviteten afhænger af tilstedeværelsen af disulfid-broer i molekylet (1), syntes det at være sandsynligt, at det med cyanogenbromid spaltede peptid skulle rena-25 tureres korrekt for at have en biologisk aktivitet. De spaltede peptider blev derfor underkastet denaturering med 5M GuHCI efterfulgt af renaturering ved en fremgangsmåde, som er kendt for fagfolk.Since the hirudin activity depends on the presence of disulfide bridges in the molecule (1), it seemed likely that the peptide digested with cyanogen bromide should be properly purified to have a biological activity. The cleaved peptides were therefore subjected to denaturation with 5M GuHCl followed by renaturation by a method known to those skilled in the art.
Kort fortalt opløses de lyofiliserede peptider i 400 μΙ 5M guanidinium-hydrochlorid (GuHCI) 30 i 250 mM Tris-HCI, pH 9,0; derefter gøres opløsningen 2 mM med hensyn til reduceret glutathion og 0,2 mM med hensyn til oxideret glutathion i et slutvolumen på 2,0 ml (stofkoncentrationen er 1,0 M GuHCI og 50 mM Tris).Briefly, the lyophilized peptides are dissolved in 400 μΙ 5M guanidinium hydrochloride (GuHCI) 30 in 250 mM Tris-HCl, pH 9.0; then the solution is made 2 mM for reduced glutathione and 0.2 mM for oxidized glutathione in a final volume of 2.0 ml (the substance concentration is 1.0 M GuHCl and 50 mM Tris).
Efter 16 timers inkubation ved 23°C i mørke dialyseres prøverne i 24 timer mod 3 x 2 I 50 35 mM Tris-HCI, pH 7,5, 50 mM NaCI ved 23°C, og slutdialysatet klares ved centrifugering.After 16 hours of incubation at 23 ° C in the dark, the samples are dialyzed for 24 hours against 3 x 2 I 50 35 mM Tris-HCl, pH 7.5, 50 mM NaCl at 23 ° C and the final dialysate cleared by centrifugation.
Derpå måles supernatanternes antithrombin-aktivitet. Resultatet af dette forsøg (vist i tabel I) viser klart en isolering af antithrombin-aktiviteten i supernatanterne fra celler inficeret med plasmidet pTG886, medens der ikke findes aktivitet i kontrolplasmideme.Then, the antithrombin activity of the supernatants is measured. The result of this experiment (shown in Table I) clearly shows an isolation of the antithrombin activity of the supernatants from cells infected with the plasmid pTG886, while no activity is found in the control plasmids.
40 TABEL 1TABLE 1
Antithrombin-aktivitet i supernatanter fra gærkulturer DK 174837 B1 16Antithrombin activity in yeast cultures supernatants DK 174837 B1 16
Plasmid Behandling af super Aktivitet Specifik aktivitet natanten U/ml U/mg af initiale proteiner pTG886 a) efter spaltning < 0,3 før renaturering b) efter spaltning og 2,46 102,5 renaturering kontrol a) efter spaltning <0,3 før renaturering b) efter spaltning og <0,15 <5,6 renatureringPlasmid Treatment of super Activity Specific activity of the natant U / ml U / mg of initial proteins pTG886 a) after cleavage <0.3 before renaturation b) after cleavage and 2.46 102.5 renaturation control a) after cleavage <0.3 before b) after cleavage and <0.15 <5.6 renaturation
Det kan konkluderes, at gærceller, der bærer et rekombinant plasmid, kan secernere et peptid med hirudins biologiske aktivitet efter en spaltningsreaktion og renaturering. Dette antyder, at tilstedeværelsen af yderligere aminosyrer ved NH2"terminalen er tilstrækkeligt 5 til at forklare fraværelsen af aktivitet hos de polypeptider, der er til stede i kulturerne af TGYlsp4/pTG886, og måske også i tilfælde af kulturer af TGYlsp4/pTG897 (Glu-Ala-ha-ler).It can be concluded that yeast cells carrying a recombinant plasmid can secrete a peptide with the biological activity of hirudin after a cleavage reaction and renaturation. This suggests that the presence of additional amino acids at the NH2 terminal is sufficient to explain the absence of activity of the polypeptides present in the cultures of TGY1sp4 / pTG886, and perhaps also in the case of cultures of TGY1sp4 / pTG897 ( Ala-ha-s).
10 EKSEMPELS10 EXAMPLES
Indsætning af et nyt spaltningssted lige før den første aminosyre i den sekvens, der koder for hirurin HV-2 - plasmidet pTG1805 15 I konstruktionen pTG897 er der en risiko for, at det secernerede peptid beholder Glu-Ala-haler ved NH2, hvilket ville forklare fraværelsen af antithrombin-aktivitet i dette materiale.Insertion of a new cleavage site just before the first amino acid in the sequence encoding hirurin HV-2 - plasmid pTG1805 15 In the construct pTG897, there is a risk that the secreted peptide retains Glu-Ala tails by NH2, which would explain the absence of antithrombin activity in this material.
Hvis denne hypotese stemmer overens med realiteterne, skulle det være muligt at genvinde aktiviteten direkte i supernatanten ved at danne et spaltningssted mellem resterne Glu-Ala og den første aminosyre i hirudin HV-2 (isoleucin). Dette blev udført ved at tilføje 20 en sekvens, som koder for dubletten LysArg, som er genkendelsesstedet for den endopep-tidase, der er impliceret i modningen af precursoren for pheromonet (fig. 2). Konstruktionen blev foretaget nøjagtigt som beskrevet for plasmidet pTG897 undtagen med hensyn til sekvensen af to syntetiske oligonukleotider (fig. 14). Det resulterende plasmid betegnes pTG1805. Plasmidet blev anvendt til transformation af stammen TGYlsp4 til ura+. Det 25 materiale, der blev secerneret i supernatanten, blev analyseret ved gelelektroforese som beskrevet ovenfor og blev sammenlignet med det materiale, der blev vundet med TGYlsp4/pTG897 (fig. 15).If this hypothesis is consistent with the reality, it should be possible to recover the activity directly in the supernatant by forming a cleavage site between the residues Glu-Ala and the first amino acid of hirudin HV-2 (isoleucine). This was done by adding a sequence encoding the duplicate LysArg, which is the recognition site for the endopeptidase implicated in the maturation of the precursor of the pheromone (Fig. 2). The construct was performed exactly as described for plasmid pTG897 except for the sequence of two synthetic oligonucleotides (Fig. 14). The resulting plasmid is designated pTG1805. The plasmid was used to transform the strain TGY1sp4 into ura +. The material secreted into the supernatant was analyzed by gel electrophoresis as described above and compared to the material recovered with TGY1sp4 / pTG897 (Fig. 15).
De anvendte stammer er: brønd 1: Markører identiske med de i forbindelse med fig. 12 beskrevne, brønd 2: TGYlsp4 transformeret med pTG897, brønd 3: TGYlsp4 transformeret med pTG1805, 30 17 DK 174837 B1 brønd 4: kontrol, der ikke producerer hirudin.The strains used are: well 1: markers identical to those associated with FIG. 12 described, well 2: TGYlsp4 transformed with pTG897, well 3: TGYlsp4 transformed with pTG1805, well 17: control that does not produce hirudin.
De specifikke polypeptider for stammen TGYlsp4/pTG1805 vandrer langsommere end dem, der er specifikke for stammen TGYlsp4/pTG897. Dette resultat antyder, at det nye 5 spaltningssted ikke udnyttes effektivt af den tilsvarende endopeptidase. Dosen af hirudin i supernatanten med hensyn til biologisk aktivitet viser ikke desto mindre, at en lille del af dette materiale er aktiv i modsætning til det, der opnås med kulturer af TGYlsp4/pTG897, som klart er inaktive (tabel II).The specific polypeptides for the strain TGY1sp4 / pTG1805 migrate more slowly than those specific for the strain TGY1sp4 / pTG897. This result suggests that the new cleavage site is not efficiently utilized by the corresponding endopeptidase. Nevertheless, the dose of hirudin in the supernatant for biological activity shows that a small proportion of this material is active in contrast to that obtained with cultures of TGY1sp4 / pTG897 which are clearly inactive (Table II).
10 TABEL IITABLE II
Antithrombin-aktivitet i supernatanter af gærkulturer (10 ml)Antithrombin activity in yeast cultures supernatants (10 ml)
Plasmid Specifik aktivitet Samlet aktivitet U/mg U (10 ml) pTG856 ikke detekterbar pGT897 ikke detekterbar PTG1805 21 2^0 ’ 15 EKSEMPEL 6Plasmid Specific Activity Total Activity U / mg U (10 ml) pTG856 not detectable pGT897 not detectable PTG1805 21 2 0 '15 EXAMPLE 6
Ny konstruktion med et nyt, mere effektivt spaltningssted, der muliggør frigivelse af mo-20 dent hirudin I førnævnte konstruktion (pTG897) kunne der kun opnås en smule hirudin-aktivitet i supernatanten, sandsynligvis fordi det andet spaltningssted, der var beregnet på at frigive modent hirudin, kun genkendes med lille effektivitet. Der blev derfor foretaget en ny kon-25 struktion, der skulle gøre dette yderligere spaltningssted mere modtageligt for endopeptidase ved ovenfor at tilføje en sekvens på 3 aminosyrer, Ser Leu Asp, som naturligt er til stede oven for den første LysArg-dublet (fig. 2 og 16).New construction with a new, more efficient cleavage site allowing release of modern hirudin In the aforementioned construct (pTG897), only a little hirudin activity in the supernatant could be achieved, probably because the second cleavage site intended to release mature hirudin, only recognized with little efficiency. Therefore, a new construct was made to make this additional cleavage site more susceptible to endopeptidase by adding above a 3 amino acid sequence, Ser Leu Asp, naturally present above the first LysArg duplicate (Figs. 2 and 16).
Den anvendte teknik er den samme som beskrevet ovenfor bortset fra oligonukleotiderne, 30 hvis sekvenser er vist nedenfor: 26-mer l5-mer 5 * - AGC T T C T T TGG AT AAAAG AAT T AC G τ\ΐ AC AG AC TGC ACAG* ,AGAAACCT ATTTTCTT AATGCAT AT GT CT GACGT GTCTT A, 40-mer 18 DK 174837 B1The technique used is the same as described above except for the oligonucleotides whose sequences are shown below: 26-mer 15-mer 5 * - AGC TTCTT TGG AT AAAAG AAT T AC G τ \ ΐ AC AG AC TGC ACAG *, AGAAACCT ATTTTCTT AATGCAT AT GT CT GACGT GTCTT A, 40-Mar 18 DK 174837 B1
Aminosyresekvensen i spaltningsomridet er vist i fig. 13. Det tilsvarende plasmid betegnes pTG1818 og er kun forskelligt fra pTG1805 ved indsætning af nukleotiderne 5‘-TTG GAT AAA svarende til kodonerne Ser-Leu-Asp.The amino acid sequence in the cleavage region is shown in FIG. 13. The corresponding plasmid is designated pTG1818 and is only different from pTG1805 upon insertion of the nucleotides 5'-TTG GAT AAA corresponding to the codons Ser-Leu-Asp.
5 Den aktivitet, der er doseret i supernatanterne fra kulturerne TGYlsp4/pTGl818 ifølge de allerede beskrevne standardbetingelser, er ca. 200 enheder pr. 10 ml kultur, dvs. ca. 100 gange stærkere end den aktivitet, der findes i det foregående eksempel. Det skal bemærkes, at dosen kan opnås med 10 pi ikke-koncentreret dyrkningsmedium.The activity dosed in the supernatants of the cultures TGY1sp4 / pTG1818 according to the standard conditions already described is approx. 200 units per 10 ml of culture, ie ca. 100 times stronger than the activity found in the previous example. It should be noted that the dose can be obtained with 10 µl of non-concentrated culture medium.
10 EKSEMPEL 7EXAMPLE 7
Konstruktion, der fører til syntese af en precursor, som mangler sekvenserne Glu-Ala-Glu-Ala 15 I de to ovenstående eksempler blev det påvist, at tilsætning af et nyt Lys Arg-sted lige oven for begyndelsen af den modne hirudin-sekvens gjorde det muligt at frigøre aktivt materiale i supernatanten. Hvis spaltningen af precursoren finder sted ved det første Lys Arg-sted (distalt i forhold til begyndelsen af den modne sekvens), kan der imidlertid i disse 20 eksempler i dyrkningsmediet opnås en tungere, inaktiv kontaminant, der svarer til hirudin-kæder, som er forlænget ved NH2-enden. Dette er særlig klart i tilfælde af TGYlsp4/pTG1805~kulturer, hvor den inaktive kontaminant er i overtal. Dette er ligeledes plausibelt i tilfælde af TGYlsp4/pTG18l8-kulturer, hvor den inaktive kontaminant ikke er i overtal, men kunne være til stede som beskrevet af andre forskere i tilfælde af EGF (15).Construction leading to synthesis of a precursor lacking the sequences Glu-Ala-Glu-Ala 15 In the two above examples, it was shown that addition of a new Lys Arg site just above the beginning of the mature hirudin sequence did it is possible to release active material into the supernatant. However, if cleavage of the precursor takes place at the first Lys Arg site (distal to the beginning of the mature sequence), then in these 20 examples in the culture medium a heavier, inactive contaminant corresponding to hirudin chains which is extended at the NH2 end. This is particularly evident in the case of TGY1sp4 / pTG1805 cultures where the inactive contaminant is in excess. This is also plausible in the case of TGY1sp4 / pTG1818 cultures, where the inactive contaminant is not in excess but could be present as described by other researchers in the case of EGF (15).
25 For at undgå dette udbyttetab, som syntesen af inaktivt materiale udgør, blev det besluttet at foretage en ny konstruktion, som fører til syntese af en precursor, som kun er forskellig fra den precursor, der er syntetiseret af TGYlsp4/pTG897-cel!erne, ved fraværelse af sekvensen Glu Ala Glu Ala mellem spaltningsstedet Lys Arg og den første aminosyre i den modne hirudin-sekvens.In order to avoid this loss of yield, which is the synthesis of inactive material, it was decided to make a new construction leading to the synthesis of a precursor different from the precursor synthesized by the TGY1sp4 / pTG897 cells only. , in the absence of the sequence Glu Ala Glu Ala between the cleavage site Lys Arg and the first amino acid of the mature hirudin sequence.
30 Følgende stammer er den 30. april 1985 deponeret i Collection Nationale de Cultures de Microorganismes (CNCM) de l’Institut Pasteur, 28 rue du Docteur-Roux, Paris 15:30 On 30 April 1985, the following strains were deposited in the Collection Nationale de Cultures de Microorganisms (CNCM) de l'Institut Pasteur, 28 rue du Docteur-Roux, Paris 15:
- TGYlsp4 pTG1818: Saccharomyces cerevisiae, stamme TGYlsp4 (Mata ura3-251-373-35 328-his 3-11-15) transformeret til ura+ med et plasmid, pTG1818; deponeringsnummer I- TGYlsp4 pTG1818: Saccharomyces cerevisiae, strain TGYlsp4 (Mata ura3-251-373-35 328-his 3-11-15) transformed into ura + with a plasmid, pTG1818; deposit number I
441,441,
- TGYlsp4 pTG886: Saccharomyces cerevisiae, stamme TGYlsp4 (Mata ura3-25l-373-328-his 3-11-15) transformeret til ura+ med et plasmid, pTG886; deponeringsnummer I- TGYlsp4 pTG886: Saccharomyces cerevisiae, strain TGYlsp4 (Mata ura3-25l-373-328-his 3-11-15) transformed into ura + with a plasmid, pTG886; deposit number I
442.442 respectively.
4040
REFERENCERREFERENCES
1. Bagdy D., Barabas E., Graf L., Petersen T.E. og Magnusson S. (1976) Methods in Enzy-mology del B, vol. 45, s. 669-678.1. Bagdy D., Barabas E., Graf L., Petersen T.E. and Magnusson S. (1976) Methods in Enzymology Part B, Vol. 45, pp. 669-678.
19 DK 174837 B1 2. Markwardt F. (1970) Methods in Enzymology, red. Perlman G.E. og Lorand L, Academic Press, vol. 19, s. 924-932.19 DK 174837 B1 2. Markwardt F. (1970) Methods in Enzymology, ed. Perlman G.E. and Lorand L, Academic Press, vol.19, pp. 924-932.
3. Markwardt F., Hauptmann J., Nowak G., Klessen Ch. og Walsmann P. (1982) Thromb. Hemostasis (Stuttgart) 47, s. 226-229.3. Markwardt F., Hauptmann J., Nowak G., Klessen Ch. and Walsmann P. (1982) Thromb. Hemostasis (Stuttgart) 47, pp. 226-229.
5 4. Walsmann P. og Markwardt F. (1981) Die Pharmazie 10, s. 653-660.5 4. Walsmann P. and Markwardt F. (1981) Die Pharmazie 10, pp. 653-660.
5. Kloss Th. og Mittmann U. (1982) Longenbecks Arch. Chirurg. 358, s. 548.5. Kloss Th. and Mittmann U. (1982) Longenbeck's Arch. Chirurg. 358, p.
6. Ishikawa A., Hafter R., Seemuller U., Gokel J.M. og Graeff M. (1980) Thrombosis Research 19, s. 351-358.6. Ishikawa A., Hafter R., Seemuller U., Gokel J.M. and Graeff M. (1980) Thrombosis Research 19, pp. 351-358.
7. Markwardt F.( Nowak G., Sturzebecker J., Greisbadi U., Walsmann P. og Vogel G.7. Markwardt F. (Nowak G., Sturzebecker J., Greisbadi U., Walsmann P. and Vogel G.
10 (1984) Thromb. Hemostasis (Stuttgart) 52, s. 160- 163.10 (1984) Thromb. Hemostasis (Stuttgart) 52, pp. 160 - 163.
8. Nowak C. og Markwardt F. (1980) Expt. Path. 18, s. 438-443.8. Nowak C. and Markwardt F. (1980) Expt. Path. 18, pp. 438-443.
9. Markwardt F., Nowak G., Sturzenbecker J., Greissback U., Walsmann P. og Vogel G.9. Markwardt F., Nowak G., Sturzenbecker J., Greissback U., Walsmann P. and Vogel G.
(1984) Thromb. Hemostasis 52, s. 160-163.(1984) Thromb. Hemostasis 52, pp. 160-163.
10. Sutor, A.H., Knop S. og Adler D. (1981) Kontrolle Antithrombotica, 23. Symp. Blutge-15 rinnung, Hamburg, s. 117-123.10. Sutor, A. H., Knop S. and Adler D. (1981) Controlling Antithrombotics, 23rd Symp. Blutge-15 rinnung, Hamburg, pp. 117-123.
11. Petersen T.E., Roberts H.R., Sottrup-Jensen L, Magnusson S. og Badgy D. (1976) Pro-tides Biol. Fluids, Proc. Colloq. vol. 23, s. 145-149.11. Petersen T.E., Roberts H.R., Sottrup-Jensen L, Magnusson S. and Badgy D. (1976) Pro-tides Biol. Fluids, Proc. Colloq. Vol. 23, pp. 145-149.
12. Chang J-Y. (1983) Febs Lett. 164, s. 307-313.12. Chang J-Y. (1983) Febs Lett. 164, pp. 307-313.
13. Baskova I.P., Cherkesova D.U. og Mosolov V.V. (1983) Thromb. Res. 30, s. 459-467.13. Baskova I.P., Cherkesova D.U. and Mosolov V.V. (1983) Thromb. Res. 30, pp. 459-467.
20 14. Bussey H., Saville D., Greene D. et al. (1983) Mol. Cell. Biol. 3, s. 1362-1370.14. Bussey H., Saville D., Greene D. et al. (1983) Mol. Cell. Biol. 3, pp. 1362-1370.
15. Brake A.J. Merryweather J.P., Coit D.G., Heberlein U.A., Mariarz F.R., Mullenbach G.T.,15. Brake A.J. Merryweather J.P., Coit D.G., Heberlein U.A., Mariarz F.R., Mullenbach G.T.,
Urdea M.S., Valenzuela P. og Barr P.J. (1984) Proc. Natl. Acad. Sci. USA 81, s. 4642-4646.Urdea M.S., Valenzuela P. and Barr P.J. (1984) Proc. Natl. Acad. Sci. USA 81, pp. 4642-4646.
16. Bitter G.A., Chen K.K., Banks A.R. og Lai P.H. (1984) Proc. Natl. Acad. Sci. USA 81, s. 5330-5334.16. Bitter G.A., Chen K.K., Banks A.R. and Lai P.H. (1984) Proc. Natl. Acad. Sci. USA 81, pp. 5330-5334.
25 17. Kurjan J. og Herskowitz I. (1982) Cell 30, s. 933-943.17. Kurjan J. and Herskowitz I. (1982) Cell 30, pp. 933-943.
18. Beggs J. (1981) Genetic Engineering 2, s. 175-203.18. Beggs J. (1981) Genetic Engineering 2, pp. 175-203.
19. Bach M.L., Lacroute F. og Botstein D. (1979) Proc. Natl. Acad. Sci. USA 76, s. 386-390.19. Bach M.L., Lacroute F. and Botstein D. (1979) Proc. Natl. Acad. Sci. USA 76, pp. 386-390.
20. Hitzeman R.A., Hagie E.F., Hayfflick J.S. et al. (1982) Nucleic Acids Res. 10, s. 7791-30 7808.20. Hitzeman R.A., Hagie E.F., Hayfflick J.S. et al. (1982) Nucleic Acids Res. 10, pp. 7791-30 7808.
21. Ito, H., Fukuda Y., Murata K. og Kimura A. (1983) J. Bacteriol. 153, s. 163-168.21. Ito, H., Fukuda Y., Murata K. and Kimura A. (1983) J. Bacteriol. 153, pp. 163-168.
22. Laemmli V.K.C. (1970) Nature 227, s. 680-685.22. Laemmli V.K.C. (1970) Nature 227, pp. 680-685.
Claims (16)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8506672A FR2593518B1 (en) | 1985-05-02 | 1985-05-02 | VECTORS FOR THE EXPRESSION AND SECRETION OF HIRUDIN BY TRANSFORMED YEASTS |
FR8506672 | 1985-05-02 | ||
PCT/FR1986/000153 WO1986006406A1 (en) | 1985-05-02 | 1986-05-02 | Vectors for the expression and secretion of hirudin by transformed yeasts |
FR8600153 | 1986-05-02 |
Publications (3)
Publication Number | Publication Date |
---|---|
DK634386D0 DK634386D0 (en) | 1986-12-30 |
DK634386A DK634386A (en) | 1986-12-30 |
DK174837B1 true DK174837B1 (en) | 2003-12-15 |
Family
ID=9318888
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DK198606343A DK174837B1 (en) | 1985-05-02 | 1986-12-30 | Process for producing hirudin as well as transformed yeast which can be used in the process |
Country Status (23)
Country | Link |
---|---|
EP (1) | EP0200655B1 (en) |
JP (2) | JP2580141B2 (en) |
KR (1) | KR870700234A (en) |
AT (1) | ATE121778T1 (en) |
AU (1) | AU600667B2 (en) |
BG (1) | BG49717A3 (en) |
CA (1) | CA1341501C (en) |
CZ (1) | CZ282928B6 (en) |
DE (1) | DE3650306T2 (en) |
DK (1) | DK174837B1 (en) |
ES (1) | ES8703930A1 (en) |
FI (1) | FI104635B (en) |
FR (2) | FR2593518B1 (en) |
HK (1) | HK1006183A1 (en) |
HU (1) | HU202919B (en) |
IE (1) | IE67136B1 (en) |
MC (1) | MC1785A1 (en) |
NO (1) | NO302375B1 (en) |
PL (1) | PL155074B1 (en) |
PT (1) | PT82490B (en) |
RU (1) | RU1774950C (en) |
WO (1) | WO1986006406A1 (en) |
ZA (1) | ZA863261B (en) |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3738541A1 (en) * | 1987-11-13 | 1989-05-24 | Hoechst Ag | METHOD FOR INSULATING AND CLEANING HIRUDINE |
FR2593518B1 (en) * | 1985-05-02 | 1989-09-08 | Transgene Sa | VECTORS FOR THE EXPRESSION AND SECRETION OF HIRUDIN BY TRANSFORMED YEASTS |
GB8530631D0 (en) | 1985-12-12 | 1986-01-22 | Ciba Geigy Ag | Thrombin inhibitors |
MY101203A (en) * | 1985-12-12 | 1991-08-17 | Ucp Gen Pharma Ag | Production of thrombin iinhibitors. |
FR2607516B2 (en) * | 1986-12-01 | 1989-12-22 | Transgene Sa | IMPROVED VECTORS FOR EXPRESSING A HIRUDIN VARIANT IN YEAST, PROCESS AND PRODUCT OBTAINED |
MC1834A1 (en) * | 1986-07-10 | 1988-06-03 | Transgene Sa | DNA FUNCTIONAL BLOCK AND PLASMID ENCODING HIRUDINE, TRANSFORMED YEAST, PROCESS FOR PREPARING HIRUDINE, HIRUDINE OBTAINED AND ITS USE |
FR2607517B2 (en) * | 1986-12-01 | 1989-12-22 | Transgene Sa | VECTORS FOR EXPRESSING HIRUDIN VARIANTS IN YEAST, PROCESS AND PRODUCT OBTAINED |
FR2611723B1 (en) * | 1987-02-27 | 1989-09-08 | Transgene Sa | RECOMBINANT DNA EXPRESSION VECTOR ENCODING HIRUDINE, INFECTED OR TRANSFORMED MAMMALIAN CELL CULTURES, PROCESS FOR PREPARING HIRUDINE AND PROTEIN OBTAINED |
EP0371041A1 (en) * | 1987-06-24 | 1990-06-06 | Novo Nordisk A/S | A process for preparing a protein or polypeptide, a dna sequence coding for the polypeptide, a microorganism containing the dna sequence as well as the polypeptide and its use as a pharmaceutical preparation |
US5256559A (en) * | 1988-03-04 | 1993-10-26 | Biogen, Inc. | Methods and compositions for inhibiting platelet aggregation |
DE3819079A1 (en) * | 1988-06-04 | 1989-12-07 | Hoechst Ag | HIRUDINE DERIVATIVES WITH DELAYED EFFECT |
WO1990001063A1 (en) * | 1988-07-23 | 1990-02-08 | Delta Biotechnology Limited | New secretory leader sequences |
DE3835815A1 (en) * | 1988-10-21 | 1990-04-26 | Hoechst Ag | NEW ISOHIRUDINE |
US5053453A (en) * | 1988-11-01 | 1991-10-01 | Baxter International Inc. | Thromboresistant materials and methods for making same |
CA2000887A1 (en) * | 1988-11-01 | 1990-05-01 | Cecilia S.L. Ku | Thromboresistant materials and methods for making same |
FR2646437B1 (en) * | 1989-04-28 | 1991-08-30 | Transgene Sa | NOVEL DNA SEQUENCES, THEIR APPLICATION AS A SEQUENCE ENCODING A SIGNAL PEPTIDE FOR THE SECRETION OF MATURE PROTEINS BY RECOMBINANT YEASTS, EXPRESSION CASSETTES, PROCESSED YEASTS AND PROCESS FOR PREPARING THE SAME |
DE4009268A1 (en) * | 1990-03-22 | 1991-09-26 | Consortium Elektrochem Ind | SECRETION OF HIRUDIN DERIVATIVES |
US6514730B1 (en) | 1991-03-21 | 2003-02-04 | Consortium für elektrochemische Industrie GmbH | Secretion of hirudin derivatives |
US5837808A (en) * | 1991-08-20 | 1998-11-17 | Baxter International Inc. | Analogs of hirudin |
DE4140381A1 (en) * | 1991-12-07 | 1993-06-09 | Hoechst Ag, 6230 Frankfurt, De | NEW SYNTHETIC ISOHIRUDINE WITH IMPROVED STABILITY |
EP1031628A1 (en) * | 1992-09-04 | 2000-08-30 | Novartis AG | Process for the production of protease inhibitors |
ZA954983B (en) * | 1994-06-17 | 1996-02-14 | Novo Nordisk As | N-terminally extended proteins expressed in yeast |
US6500645B1 (en) | 1994-06-17 | 2002-12-31 | Novo Nordisk A/S | N-terminally extended proteins expressed in yeast |
DE19529997C1 (en) | 1995-08-16 | 1997-04-10 | Hoechst Ag | A method for inactivating carboxypeptidase Y in hirudin-containing culture broths |
DE19543737A1 (en) * | 1995-11-24 | 1997-05-28 | Hoechst Ag | Process for the ultrafiltration of biological matrices containing peptides or proteins |
DE19544233A1 (en) | 1995-11-28 | 1997-06-05 | Hoechst Ag | Process for using the yeast ADH II promoter system for the biotechnological production of heterologous proteins in high yields |
ZA9610456B (en) * | 1995-12-20 | 1997-06-20 | Novo Nordisk As | N-terminally extended proteins expressed in yeast |
DE69625623T2 (en) | 1996-01-31 | 2003-11-06 | Sumitomo Bakelite Co. Ltd., Tokio/Tokyo | Method of manufacturing semiconductor device encapsulated in epoxy resin |
US6265204B1 (en) * | 1997-01-17 | 2001-07-24 | Genencor International, Inc. | DNA sequences, vectors, and fusion polypeptides for secretion of polypeptides in filamentous fungi |
US7202059B2 (en) | 2001-02-20 | 2007-04-10 | Sanofi-Aventis Deutschland Gmbh | Fusion proteins capable of being secreted into a fermentation medium |
US7638618B2 (en) | 2001-02-20 | 2009-12-29 | Sanofi-Aventis Deutschland Gmbh | Nucleic acids encoding a hirudin and pro-insulin as superscretable peptides and for parallel improvement of the exported forms of one or more polypeptides of interest |
DE10149678A1 (en) | 2001-10-09 | 2009-03-12 | Novel Science International Gmbh | New peptide compounds containing upto 6 aminoacid residues, are potent and specific thrombin inhibitors used for treating and diagnosing diseases associated with thrombin |
DE10301255A1 (en) | 2003-01-15 | 2004-07-29 | Cpi Creative Pharma International Gmbh | Organic compounds with biological action as thrombin inhibitors and their use |
US7795205B2 (en) | 2004-04-12 | 2010-09-14 | Canyon Pharmaceuticals, Inc. | Methods for effecting regression of tumor mass and size in a metastasized pancreatic tumor |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3382547D1 (en) * | 1983-01-12 | 1992-05-27 | Chiron Corp | SECRETORIC EXPRESSION IN EUKARYOTS. |
AU572125B2 (en) * | 1983-03-17 | 1988-05-05 | Mabco Limited | Monoclonal antibodies with specificity for crosslinked fibrin and their diagnotic uses |
JPS60501140A (en) * | 1983-04-22 | 1985-07-25 | アムジエン | Secretion of exogenous polypeptides by yeast |
JPS6041487A (en) * | 1983-04-25 | 1985-03-05 | ジエネンテツク・インコ−ポレイテツド | Use of alpha factor arrangement in yeast development system |
NZ207926A (en) * | 1983-04-25 | 1988-04-29 | Genentech Inc | Use of yeast #a#-factor to assist in expression of proteins heterologus to yeast |
JPS59227899A (en) * | 1983-05-25 | 1984-12-21 | チロン・コ−ポレイシヨン | Manufacture of growth hormone release factor |
CA1341417C (en) * | 1984-03-27 | 2003-01-21 | Paul Tolstoshev | Hirudine-expressing vectors, altered cells, and a process for hirudine preparation |
ATE64956T1 (en) * | 1984-06-14 | 1991-07-15 | Ciba Geigy Ag | PROCESS FOR THE PRODUCTION OF THROMBINE INHIBITORS. |
DE3429430A1 (en) * | 1984-08-10 | 1986-02-20 | Hoechst Ag, 6230 Frankfurt | GENE TECHNOLOGICAL METHOD FOR PRODUCING HIRUDINE AND MEANS FOR IMPLEMENTING THIS METHOD |
DE3445517C2 (en) * | 1984-12-13 | 1993-11-18 | Ciba Geigy | DNA sequence coding for a hirudin-like protein and method for producing a hirudin-like protein |
FR2593518B1 (en) * | 1985-05-02 | 1989-09-08 | Transgene Sa | VECTORS FOR THE EXPRESSION AND SECRETION OF HIRUDIN BY TRANSFORMED YEASTS |
-
1985
- 1985-05-02 FR FR8506672A patent/FR2593518B1/en not_active Expired
-
1986
- 1986-04-30 CA CA000508053A patent/CA1341501C/en not_active Expired - Fee Related
- 1986-04-30 ZA ZA863261A patent/ZA863261B/en unknown
- 1986-04-30 PT PT82490A patent/PT82490B/en unknown
- 1986-05-02 IE IE118386A patent/IE67136B1/en not_active IP Right Cessation
- 1986-05-02 KR KR860700971A patent/KR870700234A/en not_active Application Discontinuation
- 1986-05-02 EP EP86400961A patent/EP0200655B1/en not_active Expired - Lifetime
- 1986-05-02 AU AU57787/86A patent/AU600667B2/en not_active Expired
- 1986-05-02 HU HU863185A patent/HU202919B/en unknown
- 1986-05-02 PL PL1986259298A patent/PL155074B1/en unknown
- 1986-05-02 AT AT86400961T patent/ATE121778T1/en not_active IP Right Cessation
- 1986-05-02 MC MC86FR8600153D patent/MC1785A1/en unknown
- 1986-05-02 JP JP61502537A patent/JP2580141B2/en not_active Expired - Lifetime
- 1986-05-02 ES ES555121A patent/ES8703930A1/en not_active Expired
- 1986-05-02 DE DE3650306T patent/DE3650306T2/en not_active Expired - Lifetime
- 1986-05-02 WO PCT/FR1986/000153 patent/WO1986006406A1/en active IP Right Grant
- 1986-05-04 CZ CS863217A patent/CZ282928B6/en not_active IP Right Cessation
- 1986-07-10 FR FR868610090A patent/FR2601383B2/en not_active Expired
- 1986-12-19 BG BG077615A patent/BG49717A3/en unknown
- 1986-12-23 FI FI865303A patent/FI104635B/en not_active IP Right Cessation
- 1986-12-30 NO NO865336A patent/NO302375B1/en not_active IP Right Cessation
- 1986-12-30 RU SU864028760A patent/RU1774950C/en active
- 1986-12-30 DK DK198606343A patent/DK174837B1/en not_active IP Right Cessation
-
1996
- 1996-03-26 JP JP8070208A patent/JP2779930B2/en not_active Expired - Lifetime
-
1998
- 1998-06-12 HK HK98105246A patent/HK1006183A1/en not_active IP Right Cessation
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DK174837B1 (en) | Process for producing hirudin as well as transformed yeast which can be used in the process | |
EP0158564B1 (en) | Expression vectors for hirudin, transformed cells and process for the preparation of hirudin | |
JP2515468B2 (en) | Human antithrombin III | |
US20070010439A1 (en) | Production of human parathyroid hormone from microorganisms | |
DK175195B1 (en) | Hirudine expression | |
US5516656A (en) | Production of a new hirudin analog and anticoagulant pharmaceutical composition containing the same | |
JPH0787791B2 (en) | Yeast hybrid vector encoding desulfatohirudin | |
DK173247B1 (en) | Variants of hirudin HV2, these variants for use as a drug, especially as thrombin inhibitors, a preparation for | |
US5821079A (en) | Vectors for the expression and secretion of hirudin by transformed yeasts | |
JP2696316B2 (en) | Vector for expressing hirudin, transformed cell, and method for producing hirudin | |
US5972698A (en) | Tryptase inhibitor | |
RU2130071C1 (en) | Secretion vector for preparing hirudine hv1 (variants), recombinant strain esherichia coli - a producer of hirudine hv1 and a method of its preparing | |
JPH03219875A (en) | Production of cpb-i and recombinant plasmid and transformed yeast using therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUP | Patent expired |