DK171604B1 - Ballast for a discharge lamp - Google Patents
Ballast for a discharge lamp Download PDFInfo
- Publication number
- DK171604B1 DK171604B1 DK188089A DK188089A DK171604B1 DK 171604 B1 DK171604 B1 DK 171604B1 DK 188089 A DK188089 A DK 188089A DK 188089 A DK188089 A DK 188089A DK 171604 B1 DK171604 B1 DK 171604B1
- Authority
- DK
- Denmark
- Prior art keywords
- frequency
- voltage
- control unit
- lamp
- ignition
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B41/00—Circuit arrangements or apparatus for igniting or operating discharge lamps
- H05B41/14—Circuit arrangements
- H05B41/26—Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
- H05B41/28—Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
- H05B41/295—Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps with preheating electrodes, e.g. for fluorescent lamps
- H05B41/298—Arrangements for protecting lamps or circuits against abnormal operating conditions
- H05B41/2981—Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the circuit against abnormal operating conditions
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B41/00—Circuit arrangements or apparatus for igniting or operating discharge lamps
- H05B41/14—Circuit arrangements
- H05B41/26—Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
- H05B41/28—Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
- H05B41/282—Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
- H05B41/2825—Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a bridge converter in the final stage
- H05B41/2828—Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a bridge converter in the final stage using control circuits for the switching elements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B20/00—Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
Landscapes
- Circuit Arrangements For Discharge Lamps (AREA)
- Lighting Device Outwards From Vehicle And Optical Signal (AREA)
- Vessels And Coating Films For Discharge Lamps (AREA)
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
- Connecting Device With Holders (AREA)
- Cookers (AREA)
- Led Devices (AREA)
Abstract
Description
i DK 171604 B1in DK 171604 B1
Opfindelsen angår et forkoblingsapparat til en udladningslampe koblet parallelt med en serieresonanskredses kondensator i en vekselretters belastningskreds/ der er forbundet med en jævnspændingskilde og er styret af en 5 frekvensgenerator, hvis frekvens ved hjælp af en styredel kan ændres mellem en arbejdsfrekvens lagt nær resonanskredsens resonansfrekvens og en over denne beliggende tomgangsfrekvens, og en med styreenheden forbundet spændingsmåleenhed, der måler lampespændingen og frembringer 10 et dertil svarende signal.BACKGROUND OF THE INVENTION 1. Field of the Invention The invention relates to a discharge lamp for a discharge lamp coupled in parallel with a series resonant circuit capacitor in an inverter load circuit / which is connected to a DC voltage source and controlled by a 5 frequency generator. above this idle frequency, and a voltage measuring unit connected to the control unit, which measures the lamp voltage and produces a corresponding signal.
Fra DE patentskrift nr. 30 14 419 er det kendt at måle lampestrømmen. Når den er for høj, aktiveres en bistabil kontaktindretning, som kortslutter vekselretterens trans-15 formator.From DE patent specification 30 14 419 it is known to measure the lamp current. When too high, a bistable switching device is activated which short-circuits the inverter transformer.
Fra DE patentskrift nr. 31 52 951 er det kendt, at ved indkoblingen af forkoblingsapparatet bringes en monostabil multivibrator i den ustabile tilstand, i hvilken den 20 kortslutter en ekstra vikling i vekselretterens transformator, så at denne arbejder med en høj frekvens. Ved denne høje frekvens ligger der over lampen en reduceret spænding, hvor tænding ikke kan finde sted. Indtil den monostabile multivibrator vender tilbage til den stabile 25 tilstand, kan lampens glødetråde dog opvarmes og emitte-re. Efter at multivibratoren er vendt tilbage til den stabile tilstand, ophæves kortslutningen af den ekstra vikling, hvorved vekselretteren arbejder med en lavere frekvens, der ligger i nærheden af resonansfrekvensen for 30 en serieresonanskreds. Lampen er koblet parallelt med serieresonanskredsens kondensator. Ved den lavere frekvens opstår der over kondensatoren og lampen som følge af resonansen en forhøjet spænding, der er tilstrækkelig til tænding.From DE patent specification 31 52 951 it is known that when the ballast is switched on, a monostable multivibrator is brought into the unstable state in which it short-circuits an extra winding in the inverter transformer so that it operates at a high frequency. At this high frequency there is a reduced voltage above the lamp where ignition cannot take place. However, until the monostable multivibrator returns to the stable state, the filament filament can be heated and emitted. After the multivibrator has returned to the steady state, the short circuit is canceled by the extra winding, whereby the inverter operates at a lower frequency that is close to the resonant frequency of a series resonant circuit. The lamp is connected in parallel with the series resonant capacitor. At the lower frequency, the capacitor and the lamp, due to the resonance, produce an increased voltage sufficient for ignition.
35 DK 171604 B1 235 DK 171604 B1 2
Til styring af vekselretteren er det fra DE offentliggørelsesskrift nr. 32 08 607 kendt at anvende to fre kvensgeneratorer, af hvilke den ene frembringer arbejds-frekvensen og den anden en derover liggende tomgangsfre-5 kvens. I stedet for to generatorer kan der også anvendes en indstillelig generator. Først indkobles den høje tomgangsfrekvens, hvor der ikke kan ske nogen tænding. Derved forvarmes lampeelektroderne. På grund af elektrodemodstandens store, positive temperaturkoefficient kan det 10 ved passende valg af reaktionstærskelen for en tærskelværdiomskifter erkendes, om elektroderne allerede er tilstrækkeligt forvarmede. Er dette tilfældet, så reagerer tærskelværdiomskifteren, og generatoren med den lave frekvens kobles ind, eller -hvis der anvendes en indstille-15 lig generator - frekvensen sænkes i retning af arbejds-frekvensen, så at tænding kan indtræde.For control of the inverter, it is known from DE publication no. 32 08 607 to use two frequency generators, one of which generates the working frequency and the other an idling frequency. Instead of two generators, an adjustable generator can also be used. First, the high idle frequency is switched on, where no ignition can occur. Thereby the lamp electrodes are preheated. Due to the large positive temperature coefficient of the electrode resistance, it can be recognized by appropriate selection of the reaction threshold for a threshold value switch whether the electrodes are already sufficiently preheated. If this is the case, then the threshold switch reacts and the low frequency generator is switched on, or - if an adjustable generator is used - the frequency is lowered in the direction of the working frequency so that ignition can occur.
Fra WO-A 82/01276 kendes en drivkreds, som har en overstrømsdetektor til vekselretterens tyristorer. Detektoren 20 skal varsle, når begge tyristorer samtidig er i ledende tilstand, og i tilfælde af dette udkobles tyristorerne.From WO-A 82/01276 a drive circuit is known which has an overcurrent detector for the inverter thyristors. The detector 20 must be alerted when both thyristors are simultaneously in the conductive state and in this case the thyristors are switched off.
Endvidere er det fra DE-A 3 432 266 kendt at koble en målevikling sammen med lampens drosselspole, hvorfra et 25 signal kan afledes, som viser tændingstilstanden og føres til et overvågningskredsløb. Overvågningskredsløbet afgør ud fra dette signal, hvorvidt serieresonanskredsen, der indeholder drosselspolen, svinger ved tændfrekvensen gennem lampen uden mærkbar dæmpning, hvilket er tilfældet 30 med en ikke tændt lampe, eller om serieresonanskredsen er dæmpet af en tændt lampe. Den tilsvarende melding fra overvågningskredsløbet afspørges af et styrekredsløb for en oscillator, der driver vekselretteren. Dette styrekredsløb styrer oscillatoren på en sådan måde, at denne 35 skiftevis svinger i et bestemt tidsrum først med en høj DK 171604 B1 3 startfrekvens, så med en lavere opvarmningsfrekvens, derefter med den yderligere sænkede resonansfrekvens for serieresonanskredsen, og endelig med den endnu lavere driftsfrekvens. Når afspørgningen af overvågningskredslø-5 bet om tændings frekvensen viser, at lampen ikke har tændt, stiller styrekredsløbet igen oscillatoren tilbage til startfrekvensen, og metoden gentages.Furthermore, it is known from DE-A-3 432 266 to connect a measuring winding to the lamp coil of the lamp, from which a signal can be derived, which shows the ignition state and is fed to a monitoring circuit. The monitoring circuit determines from this signal whether the series resonant circuit containing the throttle coil oscillates at the ignition frequency through the lamp without appreciable attenuation, as is the case with an unlit lamp, or whether the series resonant circuit is attenuated by a lit lamp. The corresponding message from the monitoring circuit is queried by a control circuit for an oscillator operating the inverter. This control circuit controls the oscillator in such a way that it alternates for a specified period first with a high starting frequency, then with a lower heating frequency, then with the further lowered resonant frequency of the series resonant circuit, and finally with the even lower operating frequency. . When the query of the ignition circuit on the ignition frequency shows that the lamp has not switched on, the control circuit resets the oscillator back to the start frequency and the method is repeated.
Formålet med opfindelsen er at tilvejebringe et forkob-10 lingsapparat, hvis driftsikkerhed er forhøjet ved overvågning og evaluering af forskellige parametre, hvorved kravet om forøget driftsikkerhed især følger af en realisering af de fleste komponenter inden for rammerne af en integreret halvleder-chip.The object of the invention is to provide a ballast apparatus whose reliability is increased by monitoring and evaluating various parameters, whereby the requirement for increased reliability is particularly due to the realization of most components within the framework of an integrated semiconductor chip.
1515
Dette formål er opnået med de i patentkrav 1 angivne kendetegn .This object is achieved with the features of claim 1.
I den ledsagende tegning er 20 fig. 1 et blokdiagram over forkoblingsapparatet og fig. 2 det tidslige forløb af driverspændingen for vek-selretteren i sammenligning med lampens totale strøm.In the accompanying drawing, FIG. 1 is a block diagram of the ballast apparatus and FIG. 2 shows the timing of the drive voltage of the inverter compared to the total current of the lamp.
2525
Blokdiagrammet i fig. 1 består af flere moduler, som forklares efter hinanden.The block diagram of FIG. 1 consists of several modules which are explained in succession.
Modul A er sluttet til vekselstrømsnettet og tjener som 30 HF-overtonefilter til reducering af netfrekvensens harmoniske overtoner og til radiostøjdæmpning. Det er opbygget på traditionel måde og indeholder drosselspolerne LI og L2 samt kondensatorerne Cl, C2, C3 og C4.Module A is connected to the AC network and serves as a 30 HF harmonic filter to reduce the harmonic harmonics of the grid frequency and for radio noise cancellation. It is constructed in a traditional manner and contains the chokes coils L1 and L2 as well as the capacitors C1, C2, C3 and C4.
DK 171604 B1 4DK 171604 B1 4
Til modul A er sluttet modul B. Dette består af en kun skematisk antydet ensretterbro med udglatningskredsløb.Module A is connected to Module B. This consists of a schematically indicated rectifier bridge with smoothing circuit.
På modul B's terminal 16 er en + jævnspænding på ca. 250 V til rådighed.At module B's terminal 16, a + DC voltage of approx. 250 V available.
55
Med modul B er der forbundet et modul K, der tjener til frembringelse af en spænding UEG svarende til jævnstrømmen, som tages fra modul B. Modulet K består af en modstand RI, hvortil der parallelt er koblet en seriekobling 10 af en drosselspole L2 og en kondensator C5. Fra forbindelsespunktet mellem L2 og C5 kan spændingen UiG aftages.With module B there is connected a module K which serves to generate a voltage UEG corresponding to the direct current taken from module B. The module K consists of a resistor R1, to which a series connection 10 of a throttle coil L2 is connected in parallel. capacitor C5. From the connection point between L2 and C5 the voltage UiG can be decreased.
Et yderligere modul M tjener til frembringelse af en faktisk spænding UG svarende til den af modul B frembragte 15 jævnspænding. Modulet M er forbundet med modul B's terminal 16 og består af en modstands-spændingsdeler R2/R3, hvorved modstanden R3 er koblet parallelt med en kondensator C6. Spændingen UG, der kan udtages fra spændingsdelerpunktet, er proportional med spændingen fra modul B's 20 terminal 16 men lavere end denne.An additional module M serves to produce an actual voltage UG corresponding to the DC voltage produced by module B. The module M is connected to the terminal 16 of module B and consists of a resistance voltage divider R2 / R3, whereby the resistor R3 is connected in parallel with a capacitor C6. The voltage UG, which can be taken from the voltage divider point, is proportional to the voltage from module B's terminal 16 but lower than this one.
Modul C er en vekselretter, som ud fra jævnspændingen fra modul B frembringer en variabel vekselspænding. Til modulet C føres der hertil fra et senere forklaret modul E 25 til en modtakttransformator TI's vikling L3 en vekselspænding. Modtakttransformatoren TI har på sekundærsiden to viklinger L4 og L5. Spændingen, der opstår på viklingen L4, føres til gate-terminalen af en felteffekttransi-stor FETI via en modstand R4, der er koblet parallelt med 30 en diode Dl. Mellem gate-terminalen og source-terminalen af FETI er der koblet to serieforbundne, modsat orienterede zenerdioder Z1 og Z2. Spændingen, der opstår på modtakttransformatoren TI's vikling L5, føres til gateterminalen af en felteffekttransistor FET2 via en mod-35 stand R5, der er koblet parallelt med en diode D2. Mellem DK 171604 B1 5 gate-terminalen af FET2 og source-terminalen er der koblet to serieforbundne, modsat orienterede zenerdioder Z3 og Z4. Modstandende R4 og R5 har høje modstandsværdier og tjener til forsinkelse af indkoblingen af FET'erne. Dio-5 derne Dl og D2 skal sikre en hurtig afbrydelse af FET'erne. På denne måde skal det opnås, at de to FET'er aldrig samtidig er fuldstændigt ledende, da dette ville medføre en kortslutning. Zenerdioderne Zl, Z2, Z3 og Z4 skal beskytte FET'ernes gate-terminaler mod spændinger. I øvrigt 10 er vekselretteren ifølge modul C opbygget konventionelt, og dens funktion er kendt, så at der her kan afstås fra yderligere forklaring.Module C is an inverter which produces a variable alternating voltage based on the DC voltage from module B. For module C, an alternating voltage is applied from a later explained module E 25 to a winding L3 of a receiver transformer TI. The secondary transformer TI has two windings L4 and L5 on the secondary side. The voltage generated on the winding L4 is fed to the gate terminal of a field power transient FETI via a resistor R4 coupled in parallel with a diode D1. Between the gate terminal and the source terminal of FETI, two series connected, opposite oriented zener diodes Z1 and Z2 are connected. The voltage generated on the winding L5 of the receive transformer T1 is fed to the gate terminal of a field power transistor FET2 via a resistor R5 coupled in parallel with a diode D2. Between DK 171604 B1 5 the gate terminal of FET2 and the source terminal are connected two series connected, opposite oriented zener diodes Z3 and Z4. Resisting R4 and R5 have high resistance values and serve to delay the engagement of the FETs. Diodes 5 D1 and D2 are intended to ensure a rapid interruption of the FETs. In this way, it must be achieved that the two FETs are never fully conductive at the same time, as this would result in a short circuit. The zener diodes Z1, Z2, Z3 and Z4 are intended to protect the gate terminals of the FETs against voltage. Incidentally, the inverter of module C is constructed conventionally and its function is known, so that further explanation can be given here.
Til udgangen af vekselretteren i modul C er der sluttet 15 en belastningskreds omfattende en gasudladningslampe L og vist som modul E. Dette indeholder foruden gasudladningslampen L en serieresonanskreds, der dannes af en drosselspole L6 og en kondensator CIO. Kondensatoren C9 tjerner til afkobling. Svingningskredskondensatoren CIO ligger 20 parallelt med gasudladningslampen L. Anvendelsen af serieresonanskredsen har flere kendte fordele. Før tænding af gasudladningslampen L løber vekselstrømmen gennem lampens glødetråde over parallelkondensatoren CIO. Derved opvarmes glødetrådene til emission. Når frekvensen af den 25 spænding, der fra modul C føres til modul E, er i nærheden af resonansfrekvensen for serieresonanskredsen L6/C10, optræder der på parallelkondensatoren CIO en spændingsstigning, der udnyttes til tænding af lampen L. Efter tænding dæmper lampen L serieresonanskredsens god-30 hed, og spændingen over lampen falder, da lampen L så er ledende. Nu virker drosselspolen L6 som lampestrømbegræn-ser. For at forlænge lampen L's levetid tilstræbes det at forvarme lampens glødetråde tilstrækkeligt længe før tænding. For at opnå dette føres til modul E først en spæn-35 ding med en frekvens, der ligger så langt over resonans- DK 171604 B1 6 frekvensen for serieresonanskredsen L6/C10, at lampen L's glødetråde ganske vist opvarmes, men der sker ingen tænding af lampen L, da spændingen over parallelkondensatoren CIO på grund af sin høje frekvens er for lav. Så sæn-5 ker man frekvensen i retning af resonansfrekvensen for serieresonanskredsen L6/C10, til den nævnte spændingsstigning optræder på parallelkondensatoren CIO, og en tænding kan finde sted. Hvordan den nævnte frekvensændring af spændingen, som føres til modulet E, udvirkes, 10 forklares senere.To the output of the inverter in module C, a load circuit comprising a gas discharge lamp L and shown as module E. is connected. This contains, in addition to the gas discharge lamp L, a series resonant circuit formed by a choke coil L6 and a capacitor C10. Capacitor C9 pivots for decoupling. The oscillator circuit capacitor C10 is located parallel to the gas discharge lamp L. The use of the series resonant circuit has several known advantages. Before switching on the gas discharge lamp L, the alternating current flows through the filament filaments above the parallel capacitor C10. Thereby the filaments are heated for emission. When the frequency of the voltage transmitted from module C to module E is in the vicinity of the resonant frequency of the series resonant circuit L6 / C10, a voltage increase occurs on the parallel capacitor C10 which is used to switch on the lamp L. After ignition, the lamp L attenuates the good of the series resonant circuit. -30 and the voltage across the lamp decreases as the lamp L is conductive. Now the choke coil L6 acts as a lamp flow limiter. In order to extend the life of lamp L, it is sought to preheat the filament filaments sufficiently long before ignition. To achieve this, module E first introduces a voltage with a frequency so far above the resonant frequency of the series resonant circuit L6 / C10 that the filament L's filament wires are heated, but no ignition of lamp L since the voltage across the parallel capacitor C10 due to its high frequency is too low. Then the frequency is lowered in the direction of the resonant frequency of the series resonant circuit L6 / C10, until the said voltage rise occurs on the parallel capacitor C10 and an ignition can take place. How the said frequency change of voltage applied to module E is effected is explained later.
Et modul G tjener til frembringelse af en spænding Uil, der er et mål for lampen L's totale strøm. Modulet G består af en modstand R8 forbundet med den ene lampeelek-15 trode, og hvorigennem den totale lampestrøm løber.A module G serves to produce a voltage U1, which is a measure of the total current of lamp L. The module G consists of a resistor R8 connected to one lamp electrode and through which the total lamp current flows.
Et modul H tjener til frembringelse af en lav forsyningsjævnspænding UNV på ca. 10-12 V til komponenterne i modul D, der fortrinsvis består af halvleder-chip moduler, som 20 forklares senere. Hertil er modulet H forbundet med modul G's udgang, der som nævnt frembringer en spænding UiL, der svarer til lampens totale strøm. Denne spænding er også afledet af lampens totale strøm. Den føres til en diode D3 i modul H, som ensretter spændingenen UiL, der 25 er en vekselspænding. Modstanden R9 og de to dermed serieforbundne zenerdioder Z5 og Z6 sørger for en spændingsstabilisering. Modstanden R10 og den dermed serieforbundne kondensator Cll samt kondensatoren C12 sørger for en udglatning af den ensrettede spænding Uf4V. Spæn-30 dingen Umv kunne dog også ved spændingsdeling uddrages af jævnspændingen (250 V) på modul B's terminal 16; i så fald måtte spændingsforskellen mellem 250 V og 10-12 V tilintetgøres, hvilket ville være forbundet med et tilsvarende, uønsket varmetab og et unødigt energiforbrug.A module H serves to produce a low supply DC voltage UNV of approx. 10-12 V to the components of module D, which preferably consists of semiconductor chip modules, which will be explained later. For this, module H is connected to the output of module G which, as mentioned, produces a voltage UiL corresponding to the total current of the lamp. This voltage is also derived from the total current of the lamp. It is fed to a diode D3 in module H which rectifies the voltage UiL, which is an alternating voltage. The resistor R9 and the two series-connected zener diodes Z5 and Z6 provide a voltage stabilization. The resistor R10 and the associated capacitor C11 as well as the capacitor C12 provide a smoothing of the unidirectional voltage Uf4V. However, the voltage Umv could also be extracted by the DC voltage (250 V) at module B's terminal 16, even by voltage sharing; in this case, the voltage difference between 250 V and 10-12 V had to be destroyed, which would be associated with a corresponding, undesirable heat loss and unnecessary energy consumption.
35 DK 171604 B1 735 DK 171604 B1 7
Forkoblingsapparatets kerne er modul D. Dette tjener i det væsentlige til frembringelse af en variabel frekvens til vekselretteren modul C, og dette i afhængighed af flere parametre af forkoblingsapparatet. Med den variable 5 frekvens er det muligt at ændre spændingen på lampens L's tilslutninger (modul E) . Med en tomgangsfrekvens, der er væsentligt højere end resonansfrekvensen for serieresonanskredsen L6/C10, er belastningskredsen, modul E induktiv, og spændingen på lampen L's tilslutninger andrager 10 effektivt ikke mere end 250 V. Denne relativt ringe spænding er foreskrevet af relevante normer (eksempelvis den tyske VDE 0712) for at muliggøre en relativt ufarlig udskiftning af lampen L. Ved tænd- henholdsvis driftsfrekvensen nær resonansfrekvenen for serieresonanskredsen 15 L6/C10 andrager vekselspændingen på lampen L's tilslut ninger derimod ca. 500 V.The core of the ballast is module D. This essentially serves to produce a variable frequency for the inverter module C, and this in dependence on several parameters of the ballast. With the variable 5 frequency it is possible to change the voltage of the connections of the lamp L (module E). With an idle frequency substantially higher than the resonant frequency of the series resonant circuit L6 / C10, the load circuit, module E is inductive, and the voltage of the lamp L's connections 10 is effectively no more than 250 V. This relatively low voltage is prescribed by relevant norms (e.g. German VDE 0712) in order to allow a relatively harmless replacement of lamp L. At the ignition frequency, respectively, near the resonant frequency of the series resonant circuit 15 L6 / C10, the alternating voltage of the connections of lamp L amounts to approx. 500 V.
Modulet D indeholder en kvartsbestykket fastfrekvensgene-rator 6, der f.eks. frembringer en frekvens på 8 MHz.Module D contains a quartz fixed frequency generator 6 which e.g. generates a frequency of 8 MHz.
20 Denne frekvens føres til en frekvensstyreenhed 10, som eksempelvis kan indeholde en passende programeret mikroprocessor (CPU). Frekvensstyreenheden fører frekvensen på 8 MHz fra fastfrekvensgeneratoren 6 til en blok 7, hvilken tilfører en 8-bit-tæller 9 tilsvarende tællerimpulser 25 (clock) og får samtidig 8-bit-tælleren 9 til at tælle op eller ned. Sidstnævnte sker i afhængighed af tilstanden af forkoblingsapparatets parametre, som føres til frekvensstyreenheden 10. Tællertilstanden af 8-bit-tælleren 9 føres til en 7-bit komparator 16. Sidstnævnte er des-30 uden via en 7-bit busledning forbundet med en af de seriekoblede Flip-Flop's FF i en tællerlogik 8. Til Flip-Flop kæden føres fastfrekvensgeneratoren 6's 8 MHz frekvens til tælling, hvorved hver Flip-Flop FF i neddeler frekvensen med faktoren 2. Når Flip-Flop kædens tilstand 35 er lig med 8-bit-tælleren 9's, tilbagestiller logikdelen DK 171604 B1 8 i tællerlogikken 8, der er forbundet med 7-bit-komperato-ren 16, Flip-Flop kæden via ledningen R. Samtidig afgiver logikdelen i tællerlogikken 8 den tilsvarende neddelte frekvens til et driverkredsløb 15, hvis udgang er forbun-5 det med modtakttransformatoren TI's vikling L3 i veksel-retteren, modul C.This frequency is fed to a frequency controller 10 which may contain, for example, a suitably programmed microprocessor (CPU). The frequency controller converts the frequency of 8 MHz from the fixed frequency generator 6 to a block 7 which supplies an 8-bit counter 9 corresponding to counting pulses 25 (clock) and at the same time causes the 8-bit counter 9 to count up or down. The latter occurs in dependence on the state of the parameters of the ballast which is passed to the frequency controller 10. The counter state of the 8-bit counter 9 is transmitted to a 7-bit comparator 16. The latter is also connected to one of the two via a 7-bit bus line. In the counter logic 8, the flip-flop chain is fed to the flip-flop chain 6's 8 MHz frequency for counting, whereby each flip-flop FF in divides the frequency by the factor 2. When the flip-flop chain state 35 equals 8-bit counter 9's, the logic portion DK 171604 B1 8 resets in the counter logic 8 connected to the 7-bit comparator 16, the flip-flop chain via line R. At the same time, the logic portion of the counter logic 8 outputs the correspondingly divided frequency to a driver circuit 15, the output of which is connected to the winding L3 of the receiving transformer T1 in the inverter module C.
Styreenheden 10, som indeholder den programmerede mikroprocessor, bearbejder de signaler, som føres til denne i 10 parallel og/eller i serie, svarende til de enkelte, målte parametre. Mikroprocessoren er således programmeret, at den udfører et bestemt program til bearbejdning af disse signaler. Virkemåden beskrives i det følgende.The controller 10, which contains the programmed microprocessor, processes the signals fed to it in parallel and / or in series, corresponding to the individual measured parameters. The microprocessor is programmed to execute a specific program for processing these signals. The operation is described below.
15 En første parameter er den af blok F frembragte lampespænding UL, der er en vekselspænding. Denne føres til den ene indgang af en komparator og regulator 12. Kompa-ratoren henholdsvis regulatoren 12 er desuden forbundet med en enhed 11 til afgivelse af nominelle værdier for de 20 tre spændinger UK, UH og Uz. Ved disse tre nominelle spændinger drejer det sig om jævnspændinger. Komparatoren henholdsvis regulatoren 12 sammenligner den respektive tærskelværdi for lampevekselspændingen UL med den pågældende nominelle spænding.A first parameter is the lamp voltage UL produced by block F, which is an alternating voltage. This is fed to one input of a comparator and regulator 12. The comparator and controller 12 are additionally connected to a unit 11 for the output of nominal values for the three three voltages UK, UH and Uz. At these three nominal voltages, these are DC voltages. The comparator and controller 12, respectively, compare the respective threshold value of the lamp alternating voltage UL with the respective nominal voltage.
2525
Efter indkobling af forkoblingsapparatet stiger lampespændingen UL som regel. Kun når kredsløbet er en kortslutning, bliver den under den nominelle kortslutningsspænding UK. Styreenheden 10 undersøger nu i et bestemt 30 tidsrum, eksempelvis en periode af netspændingen, om lampespændingen UL forbliver under den nominelle kortslutningsspænding UK. Hvis dette er tilfældet, afbryder styreenheden 10 driveren 15. Videre kobler styreenheden 10 hele modulet D i den højimpedansede tilstand. Det bety-35 der, at blokkene og komponenterne i modulet D vel er i DK 171604 B1 9 beredsskabstilstand men kun optager en meget ringe effekt. Da der ved afbrydelse af driveren 15 ikke længere føres vekselspænding til modulet E og dermed heller ikke til modulerne G og H, forsynes blokkene og komponenterne 5 i modulet D med spænding fra modul B. Som nævnt er der på modul B's terminal 16 kun en høj jævnspænding til rådighed; tabseffekten, der opstår ved spændingsforskellen til forsyningsspændingen for komponenter henholdsvis blokke i modul D, der er udformet som halvleder-chip, er dog rin-10 ge, da også modul D's energiforbrug på grund af dets højimpedansede tilstand er ringe. Når modul D igen omkobles fra den højimpedanse tilstand til arbejdstilstanden, så sker spændingforsyningen gennem den lave jævnspænding Uijv, som findes på udgangen af modul H. Omskiftningen 15 mellem de to muligheder for spændingsforsyning sker ved hjælp af styreenheden 10 ved blok 17 for spændingsforsyning af modul D.After switching on the ballast, the lamp voltage UL usually increases. Only when the circuit is a short-circuit does it become below the rated short-circuit voltage UK. The control unit 10 now investigates, for a certain period of time, for example a period of the mains voltage, whether the lamp voltage UL remains below the nominal short-circuit voltage UK. If this is the case, the control unit 10 switches off the driver 15. Furthermore, the control unit 10 switches the entire module D in the high impedance state. This means that the blocks and components of module D may well be in standby mode in DK 171604 B1 9 but only take up very little power. Since, when the driver 15 is switched off, AC voltage is no longer applied to module E and thus also to modules G and H, the blocks and components 5 of module D are supplied with voltage from module B. As mentioned, at module B's terminal 16 there is only one high DC voltage available; however, the loss effect arising from the voltage difference to the supply voltage of components or blocks of module D designed as a semiconductor chip is low, however, since also the energy consumption of module D due to its high impedance state is low. When module D is again switched from the high impedance state to the working state, the power supply is effected through the low DC voltage Uijv, which is located at the output of module H. The switching 15 between the two power supply options is effected by the control unit 10 at block 17 for module supply voltage D.
Da lampespændingen UL umiddelbart efter tænding af lampen 20 L falder stærkt, og endog under den nominelle kortslutningsspænding UK, er det nødvendigt at afbryde undersøgelsen af lampespændingen Ui ved komparatoren henholdsvis regulatoren 12 umiddelbart efter starten (tænding) af lampen L. Afbrydelsen er indprogrammeret i programmet for 25 mikroprocessoren i styreenheden 10.As the lamp voltage UL falls sharply immediately after switching on the lamp 20 L and even below the nominal short-circuit voltage UK, it is necessary to interrupt the examination of lamp voltage Ui at the comparator or regulator 12 immediately after the start (ignition) of lamp L. The switch is programmed in the program. for the microprocessor in the controller 10.
Udkoblingen af driveren 15 samt modul D's overførsel til den højimpedanse tilstand ved en detekteret kortslutning kan kun ophæves ved afbrydelse og genindkobling af 30 netspændingen. Når der i koblingen ikke findes en kortslutning, så overskrider lampespændingen UL den nominelle kortslutningsspænding UK og stiger, indtil den når den nominelle forvarmningsspænding UH. Denne andrager ca. 1,4 V. Det svarer nogenlunde til en spænding på 200 V på lam-35 pens L's tilslutninger. Når komparatoren henholdsvis re- DK 171604 B1 10 gulatoren melder styreenheden, at lampespændingen UL er lig med den nominelle forvarmningsspænding UH, så regulerer styreenheden 10 frekvensen, der føres til modul C, så at lampespændingen UL i et bestemt forvarmningstidsrum 5 forbliver lig med den nominelle forvarmningsspænding Uh-I dette tidsrum opvarmes i modul E lampen L's glødetråde og begynder at emittere. Tomgangsfrekvensen, som føres til modul C (vekselretter), andrager i dette tilfælde ca.The switching off of the driver 15 and the transmission of module D to the high impedance state by a detected short circuit can only be canceled by switching off and reconnecting the mains voltage. When there is no short-circuit in the coupling, the lamp voltage UL exceeds the nominal short-circuit voltage UK and increases until it reaches the nominal pre-heating voltage UH. This amounts to approx. 1.4 V. This corresponds roughly to a voltage of 200 V on the connections of the lamb-35 pin L. When the comparator and re 1717604 B1, respectively, the controller informs the control unit that the lamp voltage UL is equal to the nominal preheating voltage UH, then the control unit 10 regulates the frequency supplied to module C so that the lamp voltage UL for a certain preheating period 5 remains equal to the nominal preheating voltage Uh-During this time, in the module E the lamp filament L is heated and begins to emit. The idle frequency applied to module C (inverter) in this case is approx.
123 kHz. Forvarmningstiden indeholdes i styreenhedens 10 (CPU) mikroprocessor.123 kHz. The preheating time is contained in the microprocessor of the controller 10 (CPU).
Efter forvarmningstiden bevirker styreenheden ifølge programmet, at frekvensen, som føres til modul C, sænkes i retning af arbejdsfrekvensen, der er omtrent 62 kHz.After the preheating time, the controller according to the program causes the frequency that is fed to module C to be lowered in the direction of the operating frequency, which is approximately 62 kHz.
15 Sænkning af vekselretterens (modul C) frekvens medfører en stigning af vekselspændingen på lampel L's ( modul E) tilslutninger til omkring 500 V. Ved sammenligning i regulatoren 12 af lampespændingen UL med den tredje nominelle spænding, tændspændingen Uz, fra enheden 11 sørger 20 styreenheden 10 ved evaluering af udgangssignalet fra regulatoren 12 for, at lampespændingen UL holdes lig med den nominelle tændspænding Uz. Den nominelle tændspænding Uz er ca. 3,5 V. Lampen L skulle nu tænde. Når tænding indtræder, falder lampespændingen UL stærkt. Dette detek-25 teres af styreenheden 10 via komparatoren henholdsvis regulatoren 12. Forkoblingsapparatet med lampe L er da i drift.15 Lowering the frequency of the inverter (module C) causes an increase in the AC voltage of lamp L's (module E) connections to about 500 V. By comparison in the regulator 12 of the lamp voltage UL with the third nominal voltage, the ignition voltage Uz, from the unit 11, the control unit 20 provides 10 when evaluating the output of the controller 12 so that the lamp voltage UL is kept equal to the nominal ignition voltage Uz. The nominal ignition voltage Uz is approx. 3.5 V. The lamp L should now turn on. When ignition occurs, the lamp voltage UL falls sharply. This is detected by the control unit 10 via the comparator and regulator 12. The ballast apparatus with lamp L is then in operation.
Når lampespændingen UL over et bestemt tidsrum ikke fal-30 der under den nominelle tændspænding Uz, betyder dette, at der ikke er sket nogen tænding. Årsag til den manglende tænding kan eksempelvis være en gasdefekt i lampen L, eller lampen L's glødetrådes emissionsevne kan være ophørt. Starter lampen L ikke, af disse eller andre grunde 35 trods opnåelse af startsspændingen, så er der fare for, DK 171604 B1 11 at kredsløbet beskadiges, når den relativt høje startsspænding opretholdes i længere tid. Af denne grund er styreenheden (CPU) 10 således programmeret, at et mislykket startforsøg afbrydes efter en bestemt tid. Dette 5 sker ved, at styreenheden 10 øger frekvensen, der føres til vekselretteren (modul C), i retning af tomgangsfrekvensen med det resultat, at spændingen på lampens tilslutninger igen falder. Styreenheden 10 er endvidere således programmeret, at efter et første mislykket start-10 forsøg kan der foretages et bestemt antal ligedannede startforsøg. Sker der heller ikke efter dette bestemte antal yderligere startforsøg en tænding af lampen L, så sættes frekvensen for vekselretteren til den højest mulige værdi, dvs. tomgangsfrekvensen, og forbliver der, 15 enten til lampen L udskiftes, eller til vekselstrømsnettet udkobles og igen indkobles.When the lamp voltage UL does not fall below the nominal ignition voltage Uz for a certain period of time, this means that no ignition occurred. The reason for the lack of ignition may be, for example, a gas defect in the lamp L, or the emission capability of the lamp L of the filament lamp may have ceased. If the lamp L does not start, for these or other reasons 35 in spite of obtaining the starting voltage, there is a danger that the circuit will be damaged when the relatively high starting voltage is maintained for a longer period. For this reason, the controller (CPU) 10 is programmed to interrupt a failed start attempt after a specified time. This is done by the control unit 10 increasing the frequency supplied to the inverter (module C) in the direction of the idle frequency, with the result that the voltage on the lamp connections decreases again. The control unit 10 is further programmed such that after a first failed start-10 attempt, a certain number of similar start-up attempts can be made. Also, after this particular number of additional start attempts, if the lamp L is switched on, the frequency of the inverter is set to the highest possible value, ie. idle frequency, and remains there, either until the lamp L is replaced or the AC power is switched off and on again.
Endnu en parameter, der overvåges, er lampestrømmen. Lampestrømmen svarer til den faktiske spænding UiL, som af-20 gives af modul G. Denne føres til en komparator 13 i modul D, som desuden fra en referencspændingskilde 1 modtager en referencespænding Uiui/ som svarer til en minimum-lampestrøm. Komparatoren 13 sammenligner spændingen UiL med spændingen UILM og melder resultatet til styreenheden 25 10. Når den til lampestrømmen svarende spænding UiL un derskrider referencespændingen, kan årsagen dertil eksempelvis være en brudt glødetråd i lampen L eller det faktum, at lampen L ikke sidder rigtigt i sin fatning eller er udtaget. For dette tilfælde styrer styreenheden 10 30 igen frekvensen, der føres til vekselretteren (modul C), til den højest mulige værdi, altså tomgangsfrekvensen. Derved ligger der på lampens tilslutninger (fatningen) en relativt lav og dermed ufarlig spænding, hvilket især er vigtigt, når lampen L er udtaget.Another parameter that is monitored is the lamp current. The lamp current corresponds to the actual voltage UiL, which is emitted by module G. This is fed to a comparator 13 in module D, which also receives from a reference voltage source 1 a reference voltage Uiui / which corresponds to a minimum lamp current. The comparator 13 compares the voltage UiL with the voltage UILM and reports the result to the control unit 25 10. When the voltage corresponding to the lamp current UiL is below the reference voltage, the reason for this may be, for example, a broken filament in the lamp L or the fact that the lamp L does not fit properly in its socket or is removed. In this case, the control unit 10 again controls the frequency fed to the inverter (module C) to the highest possible value, i.e. the idle frequency. Thereby, there is a relatively low and thus harmless voltage on the lamp connections (socket), which is especially important when the lamp L is removed.
35 DK 171604 B1 1235 DK 171604 B1 12
Endnu en overvåget parameter er den af modul H frembragte lave jævnspænding til forsyning af modul D's blokke og elementer. Denne spænding UfJV føres til en komparator 2, til hvilken der endvidere fra referencespændingskilden 1 5 føres en referencespænding, der er lig med minimumjævnspændingen, som skal frembringes af modul H. Komparatoren 2's resultat af sammenligningen føres igen til styreenheden 10. Når den af modul H frembragte lave jævnspænding Unv underskrider referencespændingen Unvm» styrer 10 styreenheden 10 igen frekvensen for vekselretteren til tomgangsfrekvensen og bringer modul D i den højimpedanse tilstand.Another parameter monitored is the low DC voltage generated by module H to supply the blocks and elements of module D. This voltage UfJV is fed to a comparator 2, to which a reference voltage equal to the minimum DC voltage to be produced by module H. is also fed from the reference voltage source 15. The comparator 2's result of the comparison is again fed to the control unit 10. generated low DC voltage Unv falls below the reference voltage Unvm »10 the control unit 10 again controls the frequency of the inverter to the idle frequency and brings module D into the high impedance state.
Den af modul B frembragte jævnspænding er også en overvå-15 get parameter. En til denne jævnspænding svarende og ned-delt spænding er spændingen UG, som kan udtages fra modulet M. Den føres til en komparator 3. Til komparatoren 3 føres desuden også fra referencespændingskilden 1 en referencespænding UGM svarende til minimumjævnspændingen.The DC voltage generated by module B is also a monitored parameter. A voltage corresponding to this DC voltage is the voltage UG which can be taken out of module M. It is fed to a comparator 3. In addition, to the comparator 3, a reference voltage UGM corresponding to the minimum DC voltage is also supplied from the reference voltage source 1.
20 Komparatoren 3's resultat af sammenligningen føres atter til styreenheden 10. Når spændingen UG underskrider referencespændingen UGM, betyder dette eksempelvis, at den af modul B frembragte jævnspænding er faldet under 150 V.20 The result of the comparator 3 is compared to the control unit 10. When the voltage UG falls below the reference voltage UGM, this means, for example, that the DC voltage generated by module B has fallen below 150 V.
Ved denne jævnspænding kan vekselretteren ikke længere 25 frembringe energien til tænding af lampen. Startforsøg ville da muligvis føre til utidig beskadigelse af lampen. Styreenheden efterprøver nu i det mindste i en halv netperiode, om den af modul M afgivne jævnspænding UG mindst én gang underskrider minimumjævnspændingen Unvm· Hvis det-30 te er tilfældet, afbrydes driveren 15. Det betyder, at der ikke foretages yderligere startforsøg.At this DC voltage, the inverter can no longer generate the energy to light the lamp. Initial attempts may then result in premature damage to the lamp. The control unit now checks, for at least half a grid period, whether the DC voltage supplied by module M at least once falls below the minimum DC voltage Unvm · If this is the case, then the driver will be stopped 15. This means that no further start attempts are made.
Også jævnstrømseffekten er en parameter, der skal overvå ges. Den faktiske jævnstrømseffekt udregnes ved multipli-35 kation af den fra modul M afgivne jævnspænding UG med den DK 171604 B1 13 fra modul K afgivne jævnspænding UiG. Denne jævnspænding Uig svarer til den af kredsløbet optagne jævnstrøm. En af multiplikatoren 5 frembragt spænding UPG svarende til jævnstrømseffekten føres til regulatoren 4. Til regulato-5 ren 4 føres endvidere en nominel værdi for effekten svarende til referencespændingen UPS. Udgangssignalet fra den som komparator arbejdende regulator 4 føres til styreenheden 10. Denne regulerer nu frekvensen for veksel-retteren (modul C), så at den optagne jævnstrømseffekt 10 forbliver konstant. På denne måde er lampen L's lyseffekt ligeledes konstant. Det skal i denne sammenhæng nævnes, at der kan forefindes muligheden for, at referencespændingen UpS på referencespændingskilden 1 kan gøres indstillelig udefra for at kunne udligne komponenttolerancer 15 og tilpasse den af lampen L optagne effekt til disse tolerancer ved indstilling af en (ikke vist) modstandsde ler.Also, the DC power is a parameter that must be monitored. The actual DC power is calculated by multiplying the DC voltage UG supplied by Module M with the DC voltage UiG delivered by Module 17 DK1 16060 B1 13. This DC voltage Uig corresponds to the direct current received by the circuit. One of the multiplier 5 produced voltage UPG corresponding to the DC power is fed to the controller 4. In addition, to the controller 5 a nominal value for the power corresponding to the reference voltage UPS is supplied. The output of the comparator 4 operating as a comparator is fed to the control unit 10. This now regulates the frequency of the inverter (module C) so that the DC power 10 recorded remains constant. In this way, the light output of lamp L is also constant. In this context, it should be mentioned that there is the possibility that the reference voltage UpS on the reference voltage source 1 can be made adjustable from the outside in order to equalize component tolerances 15 and adapt the power received by the lamp L to these tolerances by setting a (not shown) resistance clay.
Når frekvensgeneratorkredsløbet skal ændres fra driftfre-20 kvensen til tomgangsfrekvensen, behøver hele frekvensområdet ikke at gennemløbes kontinuert, men dette kan ske ved, at styreenheden 10 via ledningen R sender en tilbagestillingsimpuls til 8-bit-tælleren 9.When the frequency generator circuit is to be changed from the operating frequency to the idle frequency, the entire frequency range does not have to be traversed continuously, but this can be done by the control unit 10 transmitting a reset pulse to the 8-bit counter 9 via the line R.
25 En sidste parameter, der skal overvåges, er belastningsimpedansen for felteffekttransistorerne FETI og FET2 i vekselretteren (modul C). Når jævnspændingen fra modul B til vekselretteren falder, f.eks. ved kraftige fald i netspændingen eller - hvis jævnspændingsforsyningen til 30 vekselretteren tages fra et centralt batterianlæg - ved et fald i dets spænding, så bliver felteffekttransisto-rernes belastning kapacitiv som følge af parallelkapaciteten CIO, der ligger parallelt med lampen L. En kapacitiv belastning for felteffekttransistorerne kan især op-35 træde med det forannævnte fald i jævspændingsforsyningen DK 171604 B1 14 til vekselretteren/ når den til vekselretteren førte styrefrekvens nærmer sig sin nedre grænseværdi. Ved kapacitiv belastning er der risiko for ødelæggelse af feltef-fekttransistorerne. For at undgå en kapacitiv belastning 5 undersøges derfor arten af felteffekttransistorernes belastningsimpedans. Dette sker derved, at man fra udgangen af driveren 15 udtager spændingen UT og i en fasekompara-tor 14 sammenligner den med spændingen UiL svarende til lampestrømmen. Den bageste flanke af spændingen UT, der 10 er en firkantspænding, definerer derved sammenligningstidspunktet tv. Når felteffekttransistorernes belastning bliver induktiv, så forskydes spændingen UiL, der omtrent er sinushlavbølger, til højre i fig. 2, da strømmen i det induktive tilfælde ligger efter spændingen. I det kapaci-15 tive tilfælde er det omvendt. Udgangssignalet fra fase-komparatoren 14 føres til styreenheden 10. Når feltef-fekttransistorernes belastning nærmer sig det kapacitive tilfælde, så bevirker styreenheden 10 en forøgelse af den til vekselretteren førte frekvens med det resultat, at 20 belastningen igen bliver induktiv.A final parameter to be monitored is the load impedance of the field effect transistors FETI and FET2 in the inverter (module C). When the DC voltage from module B to the inverter drops, e.g. in case of a sharp drop in mains voltage or - if the DC supply to the inverter is taken from a central battery system - by a decrease in its voltage, then the field effect transistors load becomes capacitive due to the parallel capacity CIO which lies parallel to the lamp L. A capacitive load for the field power transistors. in particular, the up-35 may occur with the aforementioned decrease in the DC voltage supply DK 171604 B1 14 to the inverter / when the control frequency applied to the inverter approaches its lower limit value. With capacitive load, there is a risk of destruction of the field-effect transistors. Therefore, to avoid a capacitive load 5, the nature of the load impedance of the field effect transistors is investigated. This is done by taking out the voltage UT from the output of the driver 15 and comparing it in a phase comparator 14 with the voltage UiL corresponding to the lamp current. The rear flank of the voltage UT, which is a square voltage, thus defines the time of comparison TV. As the field effect transistors load becomes inductive, the voltage UiL, which is approximately sinusoidal waves, is shifted to the right in FIG. 2, since the current in the inductive case is after the voltage. In the capacitive case, it is the other way around. The output of the phase comparator 14 is applied to the control unit 10. As the field effect transistors load approaches the capacitive case, the control unit 10 causes an increase in the frequency applied to the inverter with the result that the load becomes inductive again.
Der kan tænkes talrige variationer i det ovenfor beskrevne forkoblingsapparat. Det er således ikke nødvendigt, at alle parametre måles og tilgodeses. Parametrene kan måles 25 konstant eller periodisk.Numerous variations can be envisaged in the ballast described above. Thus, it is not necessary that all parameters are measured and taken into account. The parameters can be measured constantly or periodically.
Styreenheden behøver ikke udgøres af en mikroprocessor (CPU), men den kan udgøres af et antal enkelte styre-bloklagre eller lignende. Måletiderne, tiderne mellem må-30 lingerne og andre tider som f.eks, forvarmningstiden kan bestemmes af tællerlogikken (Flip-Flop-kæde) eller ved hjælp af en separat tidstællekobling. Naturligvis finder ovenstående udførelsesformer også anvendelse ved et forkoblingsapparat med mere end en lampe. Eksempelvis kan DK 171604 B1 15 der således kobles to lamper i en sædvanlig tandemkobling.The controller does not have to be a microprocessor (CPU), but it can be made up of a number of single control block stores or the like. The measurement times, the times between the measurements and other times such as the preheating time can be determined by the counter logic (Flip-Flop chain) or by a separate time counter coupling. Of course, the above embodiments also apply to a ballast apparatus having more than one lamp. For example, DK 171604 B1 15 can thus be coupled two lamps in a conventional tandem coupling.
Claims (4)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP88106325 | 1988-04-20 | ||
EP88106325A EP0338109B1 (en) | 1988-04-20 | 1988-04-20 | Converter for a discharge lamp |
Publications (3)
Publication Number | Publication Date |
---|---|
DK188089D0 DK188089D0 (en) | 1989-04-19 |
DK188089A DK188089A (en) | 1989-10-21 |
DK171604B1 true DK171604B1 (en) | 1997-02-17 |
Family
ID=8198904
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DK188089A DK171604B1 (en) | 1988-04-20 | 1989-04-19 | Ballast for a discharge lamp |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP0338109B1 (en) |
AT (1) | ATE103458T1 (en) |
DE (2) | DE3888675D1 (en) |
DK (1) | DK171604B1 (en) |
ES (1) | ES2054726T3 (en) |
FI (1) | FI94918C (en) |
NO (1) | NO177520C (en) |
Families Citing this family (63)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2644314A1 (en) * | 1989-03-10 | 1990-09-14 | Harel Jean Claude | ELECTRONIC STARTING AND SUPPLY DEVICE FOR FLUORESCENT TUBES WITH PREHEATABLE ELECTRODES |
CA2015281C (en) * | 1989-04-25 | 1995-08-29 | Minoru Maehara | Polarized electromagnetic relay |
US5075602A (en) * | 1989-11-29 | 1991-12-24 | U.S. Philips Corporation | Discharge lamp control circuit arrangement |
US5075599A (en) * | 1989-11-29 | 1991-12-24 | U.S. Philips Corporation | Circuit arrangement |
DE4018865A1 (en) * | 1990-01-20 | 1991-12-19 | Semperlux Gmbh | ELECTRONIC CONTROL UNIT FOR THE OPERATION OF DISCHARGE LAMPS |
US5099176A (en) * | 1990-04-06 | 1992-03-24 | North American Philips Corporation | Fluorescent lamp ballast operable from two different power supplies |
DE4018127A1 (en) * | 1990-06-06 | 1991-12-12 | Zumtobel Ag | METHOD AND CIRCUIT FOR CONTROLLING THE BRIGHTNESS (DIMMING) OF GAS DISCHARGE LAMPS |
US5198726A (en) * | 1990-10-25 | 1993-03-30 | U.S. Philips Corporation | Electronic ballast circuit with lamp dimming control |
DE4039161C2 (en) * | 1990-12-07 | 2001-05-31 | Zumtobel Ag Dornbirn | System for controlling the brightness and operating behavior of fluorescent lamps |
US5204587A (en) * | 1991-02-19 | 1993-04-20 | Magnetek, Inc. | Fluorescent lamp power control |
US5148087A (en) * | 1991-05-28 | 1992-09-15 | Motorola, Inc. | Circuit for driving a gas discharge lamp load |
DE4210624A1 (en) * | 1992-03-31 | 1993-10-07 | Tridonic Bauelemente | Electronic ballast for a gas discharge lamp |
US5315214A (en) * | 1992-06-10 | 1994-05-24 | Metcal, Inc. | Dimmable high power factor high-efficiency electronic ballast controller integrated circuit with automatic ambient over-temperature shutdown |
JPH06176881A (en) * | 1992-08-20 | 1994-06-24 | Philips Electron Nv | Stabilizer circuit |
US5477112A (en) * | 1993-04-27 | 1995-12-19 | Electronic Lighting, Inc. | Ballasting network with integral trap |
KR960010713B1 (en) * | 1993-08-17 | 1996-08-07 | 삼성전자 주식회사 | Electronic ballast |
EP0677982B1 (en) * | 1994-04-15 | 2000-02-09 | Knobel Ag Lichttechnische Komponenten | Process for operating a discharge lamp ballast |
TW266383B (en) * | 1994-07-19 | 1995-12-21 | Siemens Ag | Method of starting at least one fluorescent lamp by an electronic ballast and the electronic ballast used therefor |
KR0149303B1 (en) * | 1995-03-30 | 1998-12-15 | 김광호 | Electronic ballast for succesive feedback control system |
DE19524185B4 (en) * | 1995-04-18 | 2009-01-29 | Tridonicatco Gmbh & Co. Kg | Rectifier circuit |
WO1996033418A1 (en) * | 1995-04-18 | 1996-10-24 | Tridonic Bauelemente Gmbh | Rectifier circuit |
KR0163903B1 (en) * | 1995-06-05 | 1999-04-15 | 김광호 | Electronic ballast of feedback control system |
DE69528979D1 (en) * | 1995-09-27 | 2003-01-09 | St Microelectronics Srl | Sequence control for a start circuit |
DE19546588A1 (en) * | 1995-12-13 | 1997-06-19 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Method and circuit arrangement for operating a discharge lamp |
WO1997024016A1 (en) * | 1995-12-26 | 1997-07-03 | General Electric Company | Control and protection of dimmable electronic fluorescent lamp ballast with wide input voltage range and wide dimming range |
KR0182031B1 (en) * | 1995-12-28 | 1999-05-15 | 김광호 | Feedback control system of an electronic ballast which detects arcing of a lamp |
US5696431A (en) * | 1996-05-03 | 1997-12-09 | Philips Electronics North America Corporation | Inverter driving scheme for capacitive mode protection |
US5742134A (en) * | 1996-05-03 | 1998-04-21 | Philips Electronics North America Corp. | Inverter driving scheme |
JP3858317B2 (en) * | 1996-11-29 | 2006-12-13 | 東芝ライテック株式会社 | Discharge lamp lighting device and lighting device |
US5767631A (en) * | 1996-12-20 | 1998-06-16 | Motorola Inc. | Power supply and electronic ballast with low-cost inverter bootstrap power source |
DE19708792A1 (en) * | 1997-03-04 | 1998-09-10 | Tridonic Bauelemente | Method and device for detecting the rectification effect occurring in a gas discharge lamp |
DE19708791C5 (en) * | 1997-03-04 | 2004-12-30 | Tridonicatco Gmbh & Co. Kg | Control circuit and electronic ballast with such a control circuit |
JP4252117B2 (en) | 1997-05-16 | 2009-04-08 | 株式会社デンソー | Discharge lamp device |
JPH10327586A (en) | 1997-05-26 | 1998-12-08 | Chichibu Onoda Cement Corp | Circuit and method for controlling piezoelectric transformer |
US6111368A (en) * | 1997-09-26 | 2000-08-29 | Lutron Electronics Co., Inc. | System for preventing oscillations in a fluorescent lamp ballast |
US6118221A (en) * | 1997-10-16 | 2000-09-12 | Tokin Corporation | Cold-cathode tube lighting circuit with protection circuit for piezoelectric transformer |
FR2773651A1 (en) * | 1998-01-13 | 1999-07-16 | Motorola Semiconducteurs | Fluorescent light ballast circuit |
JP2982804B2 (en) * | 1998-01-16 | 1999-11-29 | サンケン電気株式会社 | Discharge lamp lighting device |
WO2000002423A2 (en) * | 1998-07-01 | 2000-01-13 | Everbrite, Inc. | Power supply for gas discharge lamp |
US6160361A (en) * | 1998-07-29 | 2000-12-12 | Philips Electronics North America Corporation | For improvements in a lamp type recognition scheme |
US6140777A (en) * | 1998-07-29 | 2000-10-31 | Philips Electronics North America Corporation | Preconditioner having a digital power factor controller |
IT1303345B1 (en) * | 1998-08-07 | 2000-11-06 | Sunflower Di Dalla Zanna Gianl | SWITCHING POWER SUPPLY, PARTICULARLY FOR HIGH PRESSURE LAMPS AND NEON TUBES. |
EP1575155A1 (en) * | 1998-10-21 | 2005-09-14 | Matsushita Electric Industrial Co., Ltd. | Piezoelectric transformer-driving circuit |
GB2353150A (en) * | 1999-08-03 | 2001-02-14 | Excil Electronics Ltd | Fluorescent lamp driver unit |
US6452343B2 (en) | 1999-11-17 | 2002-09-17 | Koninklijke Philips Electronics N.V. | Ballast circuit |
DE10013342A1 (en) * | 2000-03-17 | 2001-09-27 | Trilux Lenze Gmbh & Co Kg | Producing ignition voltage for fluorescent lamps involves applying start voltages of reducing frequency until lamp voltage reaches desired value |
US6496012B1 (en) * | 2000-09-22 | 2002-12-17 | Koninklijke Philips Electronics, N.V. | Apparatus and method for detecting a short circuit in a lighting system |
TW319487U (en) * | 2000-09-27 | 1997-11-01 | Patent Treuhand Ges Fuer Elek Sche Gluhlampen Mbh Co Ltd | Operating device for electrical lamps |
DE10106438A1 (en) * | 2001-02-09 | 2002-08-14 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Ballast for operating electric lamps |
DE10225880A1 (en) * | 2002-06-11 | 2003-12-24 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Discharge lamp operating circuit with a current control circuit and a circuit for detecting proximity to a capacitive operation |
DE10225881A1 (en) * | 2002-06-11 | 2004-01-08 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Discharge lamp operating circuit with circuit for detecting proximity to a capacitive operation |
WO2004098245A1 (en) * | 2003-05-02 | 2004-11-11 | Koninklijke Philips Electronics N.V. | Circuit arrangement |
CN101347048A (en) * | 2005-12-22 | 2009-01-14 | 皇家飞利浦电子股份有限公司 | Auxiliary power supply in a lamp driver circuit |
DE102006011970A1 (en) * | 2006-03-15 | 2007-09-20 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Regulated ballast for a lamp |
DE102006061357B4 (en) * | 2006-12-22 | 2017-09-14 | Infineon Technologies Austria Ag | Method for controlling a fluorescent lamp |
US7528558B2 (en) * | 2007-05-11 | 2009-05-05 | Osram Sylvania, Inc. | Ballast with ignition voltage control |
DE102008016754A1 (en) * | 2008-03-31 | 2009-10-01 | Tridonicatco Gmbh & Co. Kg | Low-voltage supply in control gear for bulbs |
DE102008047440A1 (en) * | 2008-09-16 | 2010-03-25 | Tridonicatco Gmbh & Co. Kg | Determination of the type of bulb or the topology of several bulbs |
DE102011103638A1 (en) * | 2011-06-08 | 2012-12-13 | Tridonic Gmbh & Co. Kg | Method for operating an electronic ballast for a lamp and electronic ballast |
EP2595458A1 (en) * | 2011-11-16 | 2013-05-22 | Dahwa International Limited | Fluorescent lamp |
DE102014005669B4 (en) | 2014-04-19 | 2017-10-26 | Iie Gmbh & Co. Kg | Apparatus and method for operating a light generator |
US9462666B2 (en) * | 2014-08-19 | 2016-10-04 | Environmental Potentials | Electrodeless fluorescent ballast driving circuit and resonance circuit with added filtration and protection |
CN108667298A (en) * | 2018-06-13 | 2018-10-16 | 任志广 | Digital voltage regulation module applied to high voltage power supply |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4477748A (en) * | 1980-10-07 | 1984-10-16 | Thomas Industries, Inc. | Solid state ballast |
CH663508A5 (en) * | 1983-09-06 | 1987-12-15 | Knobel Elektro App | ELECTRONIC CONTROLLER FOR FLUORESCENT LAMPS AND METHOD FOR THE OPERATION THEREOF. |
CA1333408C (en) * | 1984-10-16 | 1994-12-06 | Calvin E. Grubbs | Electronic ballast circuit for fluorescent lamps |
-
1988
- 1988-04-20 ES ES88106325T patent/ES2054726T3/en not_active Expired - Lifetime
- 1988-04-20 DE DE88106325T patent/DE3888675D1/en not_active Expired - Lifetime
- 1988-04-20 AT AT88106325T patent/ATE103458T1/en not_active IP Right Cessation
- 1988-04-20 EP EP88106325A patent/EP0338109B1/en not_active Expired - Lifetime
-
1989
- 1989-04-17 FI FI891828A patent/FI94918C/en not_active IP Right Cessation
- 1989-04-19 NO NO891602A patent/NO177520C/en not_active IP Right Cessation
- 1989-04-19 DK DK188089A patent/DK171604B1/en not_active IP Right Cessation
- 1989-04-20 DE DE3913033A patent/DE3913033A1/en not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
ATE103458T1 (en) | 1994-04-15 |
ES2054726T3 (en) | 1994-08-16 |
FI94918C (en) | 1995-11-10 |
EP0338109A1 (en) | 1989-10-25 |
NO891602D0 (en) | 1989-04-19 |
FI94918B (en) | 1995-07-31 |
FI891828A0 (en) | 1989-04-17 |
FI891828A (en) | 1989-10-21 |
EP0338109B1 (en) | 1994-03-23 |
DE3888675D1 (en) | 1994-04-28 |
NO177520B (en) | 1995-06-19 |
DE3913033A1 (en) | 1989-11-16 |
NO177520C (en) | 1995-09-27 |
DK188089D0 (en) | 1989-04-19 |
DK188089A (en) | 1989-10-21 |
NO891602L (en) | 1989-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DK171604B1 (en) | Ballast for a discharge lamp | |
US5808422A (en) | Lamp ballast with lamp rectification detection circuitry | |
TWI288866B (en) | Integrated circuit and method for electronic ballast control and power factor correction circuit integrated into electronic ballast | |
EP0838129B1 (en) | Electronic ballast | |
US4503363A (en) | Electronic ballast circuit for fluorescent lamps | |
US4554487A (en) | Electronic fluorescent lamp ballast with overload protection | |
SU1574187A3 (en) | Device for operation of one or several gas-discharge low-pressure lamps under high-frequency conditions | |
CA2116347C (en) | A resonance mode converter with series-parallel resonance | |
NO300750B1 (en) | Brightness control system and operating conditions for gas discharge lamps | |
KR20000016493A (en) | Ballast | |
US6031342A (en) | Universal input warm-start linear ballast | |
US6366032B1 (en) | Fluorescent lamp ballast with integrated circuit | |
US4117373A (en) | Emergency/normal lighting circuit for a gaseous discharge lamp | |
JP2520856B2 (en) | Frequency converter | |
US5013974A (en) | Electronic ballast with improved lamp current crest factor | |
USRE32953E (en) | Electronic fluorescent lamp ballast with overload protection | |
NO178810B (en) | Discharge lamp drive circuit | |
JP3156736B2 (en) | Discharge lamp lighting device | |
JPH0428199A (en) | Inverter lighting device | |
JP3728880B2 (en) | Discharge lamp lighting device | |
WO2009058457A1 (en) | Starting fluorescent lamps with a voltage fed inverter | |
JPH0265096A (en) | Lighting device for discharge lamp | |
DK168142B1 (en) | Converter | |
SU944014A1 (en) | One-cycle resonance dc voltage-to-dc voltage converter | |
RU12320U1 (en) | ELECTRONIC CONTROL UNIT |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
B1 | Patent granted (law 1993) | ||
PBP | Patent lapsed |