DK169737B1 - Process for treating wastewater with an activated sludge system - Google Patents

Process for treating wastewater with an activated sludge system Download PDF

Info

Publication number
DK169737B1
DK169737B1 DK309682A DK309682A DK169737B1 DK 169737 B1 DK169737 B1 DK 169737B1 DK 309682 A DK309682 A DK 309682A DK 309682 A DK309682 A DK 309682A DK 169737 B1 DK169737 B1 DK 169737B1
Authority
DK
Denmark
Prior art keywords
zone
bod
biomass
oxidation
total
Prior art date
Application number
DK309682A
Other languages
Danish (da)
Other versions
DK309682A (en
Inventor
Michael S K Chen
Marshall L Spector
Original Assignee
Kruger Inc I
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kruger Inc I filed Critical Kruger Inc I
Publication of DK309682A publication Critical patent/DK309682A/en
Application granted granted Critical
Publication of DK169737B1 publication Critical patent/DK169737B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

i DK 169737 B1in DK 169737 B1

Opfindelsen angår en fremgangsmåde til behandling af spildevand med et aktiveret slamsystem. Den angår i almindelighed forbedringer ved behandling af by- og/eller industrispildevand ved den aktiverede slamproces, og især 5 kontrol af driftsbetingelserne til i systemet at forøge selektiv produktion og opretholdelse af aktiv biomasse, der i det væsentlige er fri for filamentøs vækst, således at det opnåede slam har gunstige bundfældningsegenskaber, med evnen til væsentlig fjernelse af phosphatværdier fra det 10 indgående spildevand. Under de valgte driftsbetingelser i det omhandlede system opnås de anførte ønskede mål ved lavere oxygenforbrug pr. BOD-enhedsfjernelse end hidtil fornødent. (BOD betegner "biologisk oxygenbehov").The invention relates to a method for treating wastewater with an activated sludge system. It generally relates to improvements in the treatment of urban and / or industrial wastewater by the activated sludge process, and in particular to the control of operating conditions to increase selective production and maintenance of active biomass substantially free of filamentous growth, such that the sludge obtained has favorable settling properties, with the ability to substantially remove phosphate values from the incoming wastewater. Under the selected operating conditions of the present system, the stated targets are achieved at lower oxygen consumption per hour. BOD unit removal than so far required. (BOD denotes "biological oxygen demand").

Den nærmeste kendte teknik er grundigt beskrevet i 15 US-patentskrift nr. 4.056.465, idet fremgangsmåden ifølge opfindelsen er rettet mod forbedringer i forhold til fremgangsmåden ifølge nævnte patentskrift.The closest known technique is thoroughly described in U.S. Patent No. 4,056,465, the method of the invention being directed to improvements over the method of said patent.

Den selektive produktion af biomassearter, der er i stand til at fjerne phosphatværdier og producere et ikke-20 voluminøst slam med hurtige fældningsegenskaber, opnås ifølge det tidligere nævnte patent ved strengt at opretholde anaerobe betingelser under et første driftstrin, hvor indkommende spildevand og recirkuleret slam fra sekundær klaring blandes. Under disse betingelser undgås 25 formering af uønskede mikroorganismer med stort over fladeareal, medens væsentlige mængder BOD sorberes fra det indstrømmende spildevand af organismer med evnen dertil under anaerobe betingelser. Den første anaerobe zone kan som beskrevet i patentskriftet derefter efterfølges af en 30 oxygeneret aerob zone, hvor den føde, der først sorberedes i den anaerobe zone, odixeres, og alt tilbageværende BOD sorberes og oxideres. Under dette aerobe trin genvindes den energi, der tidligere tabtes ved hydrolyse af polyphospha-ter, og polyphosphater gendannes og oplagres i den gennem-35 luftede biomasse, hvorved phosphat fjernes fra den blandede væske.The selective production of biomass species capable of removing phosphate values and producing a non-voluminous sludge with rapid precipitation properties is achieved according to the aforementioned patent by strictly maintaining anaerobic conditions during a first stage of operation in which incoming wastewater and recycled sludge from secondary clearance is mixed. Under these conditions, propagation of undesirable large surface area microorganisms is avoided, while significant amounts of BOD are sorbed from the inflowing effluent of organisms with their ability under anaerobic conditions. The first anaerobic zone, as described in the patent, can then be followed by an oxygenated aerobic zone where the food first sorbed in the anaerobic zone is odixed and all remaining BOD is sorbed and oxidized. During this aerobic step, the energy previously lost by the hydrolysis of polyphosphates is recovered and polyphosphates are recovered and stored in the aerated biomass, thereby removing phosphate from the mixed liquid.

Såfremt denitrificering af spildevandet også ønskes, antydes det i patentet, at en anoxisk zone kan være anbragt 2 DK 169737 B1 mellem den anaerobe og den oxygenerede aerobe zone.If denitrification of the wastewater is also desired, the patent suggests that an anoxic zone may be located between the anaerobic and the oxygenated aerobic zone.

Udtrykket "anaerob" er i det tidligere nævnte patentskrift defineret som "den tilstand, der eksisterer i en spildevandsbehandlingszone, der i det væsentlige er fri 5 for Ν0χ" (d.v.s. mindre end 0,3 ppm og fortrinsvis mindre end 0,2 ppm, udtrykt som elementært nitrogen), hvori betingelserne opretholdes således, at koncentrationen af opløst oxygen (DO) er mindre end 0,7 ppm og fortrinsvis mindre end 0,4 ppm".The term "anaerobic" in the aforementioned patent is defined as "the state that exists in a wastewater treatment zone substantially free of Ν0χ" (i.e., less than 0.3 ppm and preferably less than 0.2 ppm, expressed as elemental nitrogen) wherein conditions are maintained such that the dissolved oxygen (DO) concentration is less than 0.7 ppm and preferably less than 0.4 ppm ".

10 Udtrykket "anoxisk" er i det nævnte patentskrift defineret som "den betingelse, der eksisterer i en spildevandsbehandlingszone, hvori BOD metaboliseres af nitrater og/eller nitritter i oprindelige totale koncentrationer større end ca. 0,5 ppm, udtrykt som nitrogen, og opløst 15 oxygen er mindre end 0,7 ppm, fortrinsvis mindre end 0,4 ppm".The term "anoxic" in the aforementioned patent is defined as "the condition existing in a wastewater treatment zone in which BOD is metabolized by nitrates and / or nitrites at initial total concentrations greater than about 0.5 ppm, expressed as nitrogen, and dissolved. Oxygen is less than 0.7 ppm, preferably less than 0.4 ppm ".

Som yderligere beskrevet i patentskriftet skal indholdet af opløst oxygen (DO) i den aerobe zone opretholdes over 1 ppm og fortrinsvis over 2 ppm for at sikre 20 tilstrækkelig oxygennærværelse i den aerobe oxygenerede zone til at gennemføre den ønskede metabolisme af BOD og den ønskede phosphatoptagelse. I de adskillige udførelseseksempler i patentskriftet ligger den gennemsnitlige anvendte DO i den totale aerobe zone tæt ved eller over 6 25 ppm.As further described in the patent, the dissolved oxygen (DO) content of the aerobic zone must be maintained above 1 ppm and preferably above 2 ppm to ensure sufficient oxygen presence in the aerobic oxygenated zone to carry out the desired metabolism of BOD and the desired phosphate uptake. In the several embodiments of the patent, the average DO used in the total aerobic zone is close to or above 6 25 ppm.

Systemer af den type, der er vist i fig. 1 i US-patentskrift nr. 4.056.465, med en initiel anaerob zone efterfulgt af en oxidationszone benævnes til tider "A/O-systemer". Systemer af den type, der er vist i fig. 2 i det 30 nævnte patentskrift, med en anoxisk zone mellem de anaerobe og oxidationszonerne benævnes som "A/A/O"- eller "A2/0"-systemer.Systems of the type shown in FIG. 1 of U.S. Patent No. 4,056,465, with an initial anaerobic zone followed by an oxidation zone is sometimes referred to as "A / O systems". Systems of the type shown in FIG. 2 of said patent, with an anoxic zone between the anaerobic and oxidation zones are referred to as "A / A / O" or "A2 / 0" systems.

Det har nu vist sig, at der med det omhandlede system og fremgangsmåde kan opnås væsentlige besparelser 35 ved driftsomkostningerne med effektiv BOD-f jemelse, medens er opnås tæt slam med gode bundfældningsegenskaber og en ønsket høj og op til tilstrækkelig fjernelse af phosphat fra det indstrømmende spildevand. Disse omkostningsbe- 3 DK 169737 B1 spareiser resulterer i det væsentlige i lavere oxygenforbrug og nedsatte kraftkrav til oxygenmasseoverføring end ved både (1) de konventionelle fuldstændig aerobe aktiverede slamsystemer af kendt art, hvor der anvendes luft eller 5 mere koncentreret oxygengas, og (2) andre beskrevne systemer, hvor der anvendes ét eller flere anaerobe trin i forbindelse med ét eller flere aerobe trin som i US-patentskrift nr. 4.056.465.It has now been found that with the present system and method, significant savings can be achieved in operating costs with efficient BOD removal, while dense sludge is obtained with good settling properties and a desired high and up to sufficient removal of phosphate from the influx. sewage. These cost savings result substantially in lower oxygen consumption and reduced power requirements for oxygen mass transfer than in both (1) the conventional fully aerobically activated sludge systems of known type using air or 5 more concentrated oxygen gas, and (2) other disclosed systems employing one or more anaerobic steps in conjunction with one or more aerobic steps as in U.S. Patent No. 4,056,465.

Driften af det omhandlede system adskiller sig fra 10 de hidtil kendte ved, at systemet ifølge opfindelsen ikke er begrænset af en minimal koncentration af opløst oxygen i oxidationszonen, hvorimod der ved den kendte teknik krævedes en koncentration af opløst oxygen eller NOx‘ ækvivalent på mindst 1 ppm og fortrinsvis væsentligt større 15 end 2 ppm.The operation of the present system differs from the prior art in that the system according to the invention is not limited by a minimal concentration of dissolved oxygen in the oxidation zone, whereas in the prior art a concentration of dissolved oxygen or NOx equivalent of at least 1 is required. ppm and preferably substantially greater than 2 ppm.

Opfindelsen angår således en fremgangsmåde som ovenfor nævnt, hvorved man: a) fremstiller en blandet væske ved først at blande aktiveret biomasse med BOD-holdigt spildevandstilløb i en 20 BOD-sorptionszone; b) i en efterfølgende oxidationszone oxiderer BOD, der findes i den blandede væske, deriblandt mindst en del af det i biomassen sorberede BOD; c) lader den således oxiderede blandede væske sætte 25 sig til adskillelse af den ovenstående væske fra det mere tætte slam, der inkluderer biomasse; d) recirkulerer i det mindste en del af dette mere tætte slam til opnåelse af aktiveret biomasse i den første BOD-sorptionszone; og 30 e) eventuelt indskyder et anoxisk trin mellem trin a) og trin b); fremgangsmåden er ejendommelig ved, at man udfører sammenblandingen i trin a) under sådanne valgte betingelser, at mindre end 5% af det totale B0D5 oxideres af oxygen 35 eller af andre oxygenerende midler, og at mindst 25% af det opløselige BOD5 sorteres af biomassen i denne sorptionszone, idet betingelserne i denne BOD-sorptionszone kontrolleres således, at der i zonen opnås et F/Mg-forhold på 4 DK 169737 B1 mindre end 10, hvor F er vægten af den totale BOD5 tilført med spildevandstilløbet pr. dag, og M2 er vægten af biomasseflygtige suspenderede faste stoffer, der findes i denne BOD-sorptionszone, og at man udfører oxidationen i 5 trin b) under kontrollerede beluftningsbetingelser således, at mindst 30% af det totalt tilstrømmende BOD5 oxideres, hvilke betingelser inkluderer et indhold af opløst oxygen i oxidationszonen på mindre end 1 ppm, og at man styrer oxygenforbruget ved regulering af det totale F/M1-forhold 10 (over hele anlægget), hvor M, er biomasseflygtige suspen derede faste stoffer i alle systemets zoner, inkluderende en eventuelt tilstedeværende anoxisk zone.Thus, the invention relates to a method as mentioned above, wherein: a) preparing a mixed liquid by first mixing activated biomass with BOD-containing wastewater in a BOD sorption zone; b) in a subsequent oxidation zone, the BOD present in the mixed liquid oxidizes, including at least part of the BOD sorbed in the biomass; c) allowing the thus oxidized mixed liquid to separate the above liquid from the more dense sludge which includes biomass; d) recycle at least a portion of this more dense sludge to obtain activated biomass in the first BOD sorption zone; and e) optionally interposing an anoxic step between step a) and step b); the process is characterized by performing the mixing in step a) under such selected conditions that less than 5% of the total BOD5 is oxidized by oxygen or other oxygenating agents and that at least 25% of the soluble BOD5 is sorted by the biomass in this sorption zone, since the conditions in this BOD sorption zone are controlled so as to achieve in the zone an F / Mg ratio of 4 DK 169737 B1 less than 10, where F is the weight of the total BOD5 supplied with the effluent flow per day. per day, and M2 is the weight of biomass volatile suspended solids found in this BOD sorption zone and conducting the oxidation in 5 step b) under controlled aeration conditions so that at least 30% of the total influx of BOD5 is oxidized, which conditions include a dissolved oxygen content in the oxidation zone of less than 1 ppm, and controlling oxygen consumption by controlling the total F / M1 ratio 10 (over the entire plant), where M is biomass volatile suspended solids in all the zones of the system, including a possibly anoxic zone present.

Foretrukne udførelsesformer for fremgangsmåden ifølge opfindelsen beskrives i underkravene.Preferred embodiments of the method according to the invention are described in the subclaims.

15 I den første sorptionszone reguleres betingelserne, så der undgås overdreven oxidation af BOD i denne zone, især i tidsrummet fra start, og til i det væsentlige "steady state"-drift opnås. Når systemet har nået "steady state", kan det tillades, at der foregår en højere grad af 20 oxidation i sorptionszonen, uden at der sker en hurtig ud vaskning af de ønskede arter i den dannede biomasse.15 In the first sorption zone, conditions are regulated to avoid excessive oxidation of BOD in this zone, especially during the time from onset, and to achieve essentially "steady state" operation. Once the system has reached "steady state", a higher degree of oxidation can be allowed in the sorption zone without rapid washing of the desired species in the biomass formed.

Det biologiske tryk, der resulterer i valget af foretrukken biomasse, sker i BOD-sorptionszonen. I den efterfølgende BOD-oxidationszone frembringes energi ved 25 metaboliseringen af BOD som et resultat af oxidationen, hvilken energi anvendes ved væksten af biomassen og fjernelse af phosphatværdier fra den ydre væske til biomassens indre. De foretrukne arter biomasse, der selektivt dannes og formeres under de begyndelsesbetingel-30 ser, der opretholdes i BOD-sorptionszonen ifølge opfindel sen, har en karakteristik, der ikke sædvanligvis findes i de fleste konventionelle aktiverede slamsystemer. Det er blevet observeret, at oxygenoptagelseshastighederne er relativt langsomme i BOD-oxidat ions zonen ved den omhandlede 35 fremgangsmåde i sammenligning med konventionelle aktiverede slamsystemer. På grund af den langsomme oxygenoptagelse kan fremgangsmåden ifølge opfindelsen udøves som en højhastighedsmetode med minimalt forbrug pr. fjernet BOD-enhed.The biological pressure resulting in the choice of preferred biomass occurs in the BOD sorption zone. In the subsequent BOD oxidation zone, energy is generated by the metabolization of BOD as a result of the oxidation, which energy is used in the growth of the biomass and the removal of phosphate values from the outer liquid to the interior of the biomass. The preferred species of biomass selectively formed and propagated under the initial conditions maintained in the BOD sorption zone of the invention has a characteristic not usually found in most conventional activated sludge systems. It has been observed that the oxygen uptake rates are relatively slow in the BOD oxidation zone by the present process, as compared to conventional activated sludge systems. Due to the slow oxygen uptake, the process of the invention can be practiced as a high speed method with minimal consumption per minute. removed BOD device.

DK 169737 Bl 5DK 169737 Pg 5

Besparelserne i kraftforbrug og oxygenanvendelse opnås ved at inkorporere oxidationsmiddel i oxidationszonen med en hastighed, der ikke i det væsentlige overskrider oxidationshastigheden for BOD5.The savings in power consumption and oxygen use are achieved by incorporating oxidant into the oxidation zone at a rate that does not substantially exceed the oxidation rate of BOD5.

5 Den vedhæftede tegning viser et skematisk og diagrammatisk sidebillede af et forenklet system til udøvelse af opindelsen.5 The attached drawing shows a schematic and diagrammatic side view of a simplified system for practicing the invention.

På tegningen vises et modificeret aktiveret slambehandlingsanlæg, der i mange henseender svarer til det, der 10 er afbildet i fig. 1 i US-patentskrift nr. 4.056.465. Det spildevand, der skal behandles, i almindelighed, men ikke nødvendigvis, i form af klaret spildevand fra en primær sedimenteringstank eller klaringsanlæg (ikke vist), går først ind i BOD-sorptionszone A gennem en tilføringsledning 15 11. I sorptionszonen A blandes det indstrømmende spildevand med recirkuleret slam, der er udfældet i en sedimenteringstank eller sekundært klaringsanlæg 12, og recirkuleres til zonen A gennem en ledning 13. En mindre del af det udfældede slam fjernes af en ledning 14. Den rensede oven-20 stående væske sendes via en ledning 15 til modtagestrømme eller reservoirer med eller uden yderligere behandling efter behov.In the drawing, a modified activated sludge treatment plant is shown which in many respects corresponds to that depicted in FIG. 1 of U.S. Patent No. 4,056,465. The wastewater to be treated, generally, but not necessarily, in the form of clarified wastewater from a primary sedimentation tank or clarifier (not shown), first enters BOD sorption zone A through an inlet line 15 11. In the sorption zone A, the inflow is mixed. wastewater with recycled sludge precipitated in a sedimentation tank or secondary clarifier 12 and recycled to zone A through conduit 13. A minor portion of the precipitated sludge is removed by conduit 14. The purified supernatant is sent through a conduit. 15 for receiving streams or reservoirs with or without further processing as required.

Som vist er zone A fortrinsvis opdelt, så der opnås to eller flere væskebehandlingsafsnit til opnåelse af 25 såkaldt "plug flow" af væsken gennem BOD-sorptionszonen A.As shown, zone A is preferably subdivided so that two or more fluid treatment sections are obtained to obtain so-called "plug flow" of the liquid through the BOD sorption zone A.

Det har vist sig, at tilvejebringelse af fysisk opdelte afsnit eller den hydrauliske ækvivalent dertil bedst sikrer, at den ønskede frihed for filamentøs vækst og derved opnåelse af gode slamegenskaber opnås, selv under 30 ugunstige betingelser. Sådanne ugunstige betingelser inkluderer f.eks. drift med lave BOD-koncentrationer, hvori biomasse med stort overfladeareal ville have en fordel i konkurrencen om BOD-sorption ved lav koncentration. Passage af ikke-behandlet BOD gennem BOD-sorptionszonen minimeres.It has been found that providing physically divided sections or the hydraulic equivalent thereof best ensures that the desired freedom of filamentous growth and thereby obtaining good sludge properties is achieved, even under adverse conditions. Such adverse conditions include, e.g. operation with low BOD concentrations in which large surface area biomass would have an advantage in competition for low concentration BOD sorption. Passage of untreated BOD through the BOD sorption zone is minimized.

35 I den særlige viste udførelsesform er zone A angivet som opdelt i to afsnit eller kamre 16 og 17, hver udstyret med røreorganer 19. Væsken passerer i omtrent "plug flow" gennem zone A's adskillige afsnit og udledes til en BOD- 6 DK 169737 B1 oxidationszone B.In the particular embodiment shown, zone A is designated as divided into two sections or chambers 16 and 17, each equipped with stirring means 19. The liquid passes in approximately "plug flow" through the several sections of zone A and is discharged to a BOD-6 DK 169737 B1. oxidation zone B.

Skønt zone A er vist med to opdelte afsnit 16 og 17, bemærkes det, at der kan anvendes tre eller flere sådanne afsnit. Zone A og B kan være separate forbundne kar, der er 5 forsynet med passende midler til at gennemføre en i det væsentlige ensrettet strømning af væske fra zone A til zone B med minimal tilbageblanding.Although zone A is represented by two divided sections 16 and 17, it is noted that three or more such sections may be used. Zone A and B may be separate connected vessels provided with appropriate means for conducting a substantially unidirectional flow of fluid from Zone A to Zone B with minimal back mixing.

Gennemluftning af væsken gennemføres på kendt vis i zone B. Således kan der, som vist, tilføres trykluft i 10 bunden af oxidationszonen med drejekors 20. Om ønsket kan der i stedet for eller ud over drejekors anbringes mekaniske gennemluftere i den oxygenerede zone. Endvidere kan der i stedet for luft føres oxygen af en vilkårlig ønsket renhed til zone B, i hvilket tilfælde det kan være nødven-15 digt med passende midler til at dække hele eller en del af zonen. I praksis kan der forekomme nogen oxidation, fortrinsvis op til ikke mere end ca. 1% af det totale BOD5 i det indstrømmende spildevand i zone A, men normalt sker i det væsentlige hele oxidationen i zone B.Ventilation of the liquid is carried out in a known manner in zone B. Thus, as shown, compressed air can be supplied in the bottom of the oxidation zone with rotary cross 20. If desired, mechanical ventilators can be placed in the oxygenated zone instead of or in addition to rotary cross. Further, instead of air, oxygen of any desired purity may be conveyed to zone B, in which case it may be necessary with appropriate means to cover all or part of the zone. In practice, some oxidation may occur, preferably up to no more than ca. 1% of the total BOD5 in the inflowing effluent in zone A, but usually substantially all of the oxidation occurs in zone B.

20 Som vist i figuren er zone B opdelt i to væskebe handlingsafsnit 26 og 27, skønt det bemærkes, at der om ønsket kan anvendes et større antal sådanne afsnit. En af årsagerne til opdeling i zone B er, at phosphatoptagelse erfaringsmæssigt synes at være en første ordens reaktion i 25 forhold til koncentrationen af opløseligt phosphat. Således opnås den lave phosphatværdi i effluenten bedst med "plug flow" konfiguration.20 As shown in the figure, zone B is divided into two liquid treatment sections 26 and 27, although it is noted that a greater number of such sections may be used if desired. One of the reasons for division in zone B is that, in experience, phosphate uptake appears to be a first order reaction in relation to the concentration of soluble phosphate. Thus, the low phosphate value in the effluent is best achieved with "plug flow" configuration.

Zone A er her angivet som en BOD-sorptionszone i et spildevandsbehandlingsanlæg. Udtrykket "BOD-sorptionszone" 30 refererer med hensyn til det beskrevne omhandlede system til og er defineret som den zone i spildevandsbehandlings-anlægget, hvori det indstrømmende spildevand og recirkuleret slam først blandes, og hvori mindst 25% og fortrinsvis mindst 50% af det opløselige BOD5-indhold i det 35 indstrømmende spildevand overføres fra den vandige fase af den blandede væske til det faste slam. Udtrykket "opløseligt B0D5" henviser til biologisk oxygenbehov, der passerer gennem et 1,25 μιη glasfiberfilter, ud over oxygen, 7 DK 169737 B1 der kræves til oxidation af nitrogenværdier.Zone A is here designated as a BOD sorption zone in a wastewater treatment plant. The term "BOD sorption zone" with respect to the disclosed system described refers to and is defined as the zone of the wastewater treatment plant in which the effluent effluent and recycled sludge are first mixed and wherein at least 25% and preferably at least 50% of the soluble BOD5 content in the effluent effluent is transferred from the aqueous phase of the mixed liquid to the solid sludge. The term "soluble B0D5" refers to biological oxygen demand passing through a 1.25 μιη glass fiber filter, in addition to oxygen, required for the oxidation of nitrogen values.

Til opnåelse af den anførte overføringsgrad af det opløselige BOD5 fra den vandige fase til det faste slam er det vigtigt, at følgende betingelser overholdes.In order to obtain the indicated rate of transfer of the soluble BOD5 from the aqueous phase to the solid sludge, it is important that the following conditions are observed.

5 1. F/M2-Forholdet i sorptionszonen, som beskrevet nedenfor, opretholdes på mindre end 10 og fortrinsvis mindre end 5. F er vægten af det totale BOD5, der introduceres af det indstrømmende spildevand pr. dag, og M2 er vægten af biomasse, målt som flygtige 10 suspenderede faste stoffer i den blandede væske, d.v.s. MLVSS i BOD-sorptionszonen.1. The F / M2 ratio in the sorption zone, as described below, is maintained at less than 10 and preferably less than 5. F is the weight of the total BOD5 introduced by the effluent effluent per unit area. per day, and M2 is the weight of biomass, measured as volatile suspended solids in the mixed liquid, i.e. MLVSS in the BOD sorption zone.

2. Under den begyndende drift fra start, og indtil der er opnået en i det væsentlige "steady state"-drift, er det væsentligt, at mindre end 2% og 15 fortrinsvis mindre end l% af det indstrømmende totale B0Ds oxideres, hvad enten af oxygen eller andre oxidationsmidler, der er til stede i BOD-sorptionszonen.2. During the initial operation from the start and until a substantially "steady state" operation is achieved, it is essential that less than 2% and 15 preferably less than 1% of the inflowing total BoDs be oxidized, whether of oxygen or other oxidizing agents present in the BOD sorption zone.

3. Efter at "steady state"-drift er opnået, kan der 20 fås god virkning med en noget højere oxidationsgrad i BOD-sorptionszonen. Selv i et sådant tilfælde er det bedst, at mindre end 5% og fortrinsvis mindre end 3% af det indstrømmende totale BOD5 oxideres med oxygen og/eller andre oxidationsmidler i sorptions-25 zonen.3. After steady state operation is achieved, a good effect can be obtained with a somewhat higher degree of oxidation in the BOD sorption zone. Even in such a case, it is best that less than 5% and preferably less than 3% of the influxing total BOD5 be oxidized with oxygen and / or other oxidizing agents in the sorption zone.

Som anført ovenfor finder den væsentlige oxidation af BOD, der er til stede i det indstrømmende spildevand, sted i oxidationszonen B. Udtrykket "oxidationszone", som det anvendes under henvisning til det omhandlede system, er 30 defineret som den zone i spildevandsbehandlingsanlæg, hvori der anvendes midler til oxygenmasseoverføring, og den blandede væske fra BOD-sorptionszonen bringes i kontakt med oxygen og/eller oxidationsmidler under betingelser og i et tidsrum, der er tilstrækkeligt til at oxidere mindst 30% af 35 det totale B0D5, der var til stede i det oprindelige indstrømmende spildevand.As noted above, the significant oxidation of BOD present in the effluent effluent takes place in the oxidation zone B. The term "oxidation zone" as used with reference to the present system is defined as the zone of wastewater treatment plant wherein agents for oxygen mass transfer are used and the mixed liquid from the BOD sorption zone is contacted with oxygen and / or oxidizing agents under conditions and for a period sufficient to oxidize at least 30% of the total BOD 5 present in the original inflowing effluent.

Som allerede angivet ovenfor er det vigtigt, at oxidationen begrænses i BOD-sorptionszonen, selv under 8 DK 169737 B1 "steady state "-drift, og at der i startfasen af den omhandlede fremgangsmåde sørges for, at betingelserne holdes, således at ikke mere end 2% og fortrinsvis mindre end 1% af det totale BOD5 oxideres ved reaktion med enten 5 oxygen eller andre oxidationsmidler (såsom nitrit og/eller nitrat—N0X—) i BOD-sorptionszonen. For at sikre, at oxidationsgraden i BOD-sorptionszonen ligger under eller ikke er større end de angivne maxima, kan én eller flere af følgende forholdsregler anvendes: 10 A: Karret (eller karrene), der udgør zone A, kan være forsynet med et tæppe af nitrogen eller en anden inert gas ved væskeoverfladen for at forhindre adgang for atmosfærisk luft; eller et løst passende dæksel kan være anbragt ved eller over væskeoverfla-15 den, eller et stift dæksel kan være anbragt over væskeoverfladen med eller uden et inert gastæppe. I stedet for eller ud over disse angivne måder til at begrænse graden af en eventuel oxidation, der kunne finde sted i BOD-sorptionszonen, kan nitrogengennem-20 strømningsgas tilsættes i zone A.As already stated above, it is important that the oxidation is restricted in the BOD sorption zone, even during steady state operation and that during the initial phase of the process according to the invention, conditions are maintained so that no more than 2% and preferably less than 1% of the total BOD5 is oxidized by reaction with either 5 oxygen or other oxidizing agents (such as nitrite and / or nitrate-NOX) in the BOD sorption zone. To ensure that the degree of oxidation in the BOD sorption zone is below or not greater than the specified maxima, one or more of the following precautions may be used: 10 A: The vessel (or vessels) constituting zone A may be provided with a blanket of nitrogen or other inert gas at the liquid surface to prevent access to atmospheric air; or a loosely fitting cover may be disposed at or above the liquid surface, or a rigid cover may be disposed above the liquid surface with or without an inert gas blanket. Instead of or in addition to these stated ways of limiting the degree of possible oxidation that could occur in the BOD sorption zone, nitrogen flow gas can be added in zone A.

B. Organer til gasmasseoverføring udelukkes fra BOD-sorptionszonen. Zonen er udstyret med omrørere som f.eks. vist ved 19 på tegningen, i modsætning til drejekors, overfladegennemluftere eller andre gas- 25 væskemasseoverføringsapparater.B. Gas mass transfer means are excluded from the BOD sorption zone. The zone is equipped with agitators such as. shown at 19 in the drawing, as opposed to rotary crosses, surface vents, or other gas-liquid mass transfer apparatus.

C. Det må omhyggeligt undgås, at overskydende mængder af et vilkårligt oxidationsmiddel, såsom nitrat og/eller nitrit (N0X'), sættes til BOD-sorptionszonen. Det sidstnævnte medfører kontrol af 30 ikke blot N0X‘, der kan være til stede i det ind strømmende spildevand, men også N0X*, der kunne blive recirkuleret til denne zone fra en kilde beliggende neden for zonen i strømmens retning. Tilført spildevand indeholder normalt kun lidt eller 35 intet NOx' på grund af reduktion af nitrater og/eller nitritter af BOD under tilstedeværelse af mikroorganismer i de kloakledninger, der fører til behandlingsanlægget. En potentiel kilde for N0X' er recirkuleret blandet væske fra 9 DK 169737 B1 BOD-oxidationszonen i nitrificerende biologiske systemer, d.v.s. de der er konstrueret til at gennemføre oxidation af ammoniakalsk BOD til ΝΟχ'. I sådanne systemer recirkuleres en del af den blandede væske fra den aerobe zone som vist 5 i fig. 2 i US-patentskrift nr. 4.056.465, hvor en anoxisk zone er anbragt mellem den første anaerobe behandlingszone og den oxygenerede aerobe zone, til den mellemliggende anoxiske zone for at gennemføre en reduktion af N0X' deri.C. Excess amounts of any oxidizing agent such as nitrate and / or nitrite (NOX ') must be carefully avoided to be added to the BOD sorption zone. The latter results in the control of not only NOx, which may be present in the effluent, but also NOx, which could be recirculated to this zone from a source located below the zone in the direction of flow. Wastewater usually contains little or no NOx due to the reduction of nitrates and / or nitrites by BOD in the presence of microorganisms in the sewage pipes leading to the treatment plant. A potential source of NOX 'is recycled mixed liquid from the BOD BOD oxidation zone in nitrifying biological systems, i.e. those designed to effect oxidation of ammonia BOD to ΝΟχ '. In such systems, a portion of the mixed liquid from the aerobic zone is recycled as shown in FIG. 2 of U.S. Patent No. 4,056,465, wherein an anoxic zone is disposed between the first anaerobic treatment zone and the oxygenated aerobic zone, to the intermediate anoxic zone to effect a reduction of NOX therein.

Den omhandlede opfindelse kan anvendes på systemer, 10 der inkluderer en anoxisk zone, anbragt mellem BOD-sorp- tionszonen (A) og oxidationszonen (B). Til beregning af BOD-oxidationsgraden ved opfindelsen skal BOD-oxidation i den anoxiske zone tælles med, som var den foregået i oxidationszonen. I sådanne nitrificerende systemer skal den 15 mængde N0X", der føres til BOD-sorptionszonen, imidlertid kontrolleres, så man undgår recirkulation af blandet væske fra den aerobe zone i et sådant system til BOD-sorptions-zonen, og også ved at kontrollere NOx‘-indholdet i det recirkulerede slam fra klaringstankunderstrømmen. N0X*-20 Koncentrationen i det recirkulerede slam kan kontrolleres ved at sørge for en tilstrækkelig opholdstid i klaringstanken og slamrecirkulationsledningen til at muliggøre en tilstrækkelig fjernelse af NOx" ved reduktion til elementært nitrogen ved reaktiv kontakt med den biomasse, der er til 25 stede i den recirkulerede slamblanding.The present invention can be applied to systems that include an anoxic zone located between the BOD sorption zone (A) and the oxidation zone (B). To calculate the degree of BOD oxidation of the invention, BOD oxidation in the anoxic zone must be counted as it was in the oxidation zone. However, in such nitrifying systems, the amount of NOX "introduced into the BOD sorption zone must be controlled to avoid recirculation of mixed fluid from the aerobic zone in such a system to the BOD sorption zone, and also by controlling NOx. -NOX * -20 The concentration of the recycled sludge can be controlled by providing a sufficient residence time in the clarification tank and sludge recirculation line to allow for sufficient removal of NOx by reduction to elemental nitrogen upon reactive contact with it. biomass present for 25 in the recycled sludge mixture.

Konventionelle biologiske spildevandssystemer har ikke været i stand til at frembringe tæt, aktivt filamentfrit slam og også fjerne væsentlige phosphorværdier uden tilsætning af kemikalier. Dette antyder, at biologien ved 30 den omhandlede fremgangsmåde ikke forekommer naturligt, men er et resultat af det påførte tryk for at fremstille en "steady state" biologi med de angivne ønskede egenskaber.Conventional biological wastewater systems have been unable to generate dense, active filament-free sludge and also remove significant phosphorus values without the addition of chemicals. This suggests that the biology of the present process does not occur naturally, but is a result of the pressure applied to produce a "steady-state" biology having the desired properties.

Start af systemet ifølge opfindelsen kræver, at der pålægges et strengt biologisk tryk, så de foretrukne 35 organismer kan udkonkurrere de konventionelle. Dette opnås ved drift af BOD-sorptionszonen med minimal tilstedeværelse af oxidationsmidler for at maksimere det pålagte tryk. I dette tilfælde udføres maksimumstryk ved maksimal ude- 10 DK 169737 B1 lukkelse af oxygen og andre oxidationsmidler fra den første BOD-sorptionszone. Således har de organismer, der kan anvende en ikke-oxidativ energikilde, d.v.s. hydrolyse af polyphosphater, en fordel ved, at kun de har den fornødne 5 energi til at gennemføre aktiv transport af BOD fra selve væsken hen over mikroorganismens cellevæg til organismens indre. I den udstrækning energien til BOD-transporten fås på denne måde, har polyphosphatholdige mikroorganismer en fordel ved sorbering af BOD (eller næringsmiddel forsyning), 10 der gør det muligt for disse organismer at dominere popula tionen efter på hinanden følgende cirkulationer gennem systemet. Dette er ikke tilfældet i konventionelle aktiverede slamsystemer.Starting the system according to the invention requires that a strict biological pressure be applied so that the preferred organisms can outperform the conventional ones. This is achieved by operating the BOD sorption zone with minimal presence of oxidizing agents to maximize the applied pressure. In this case, maximum pressure is carried out at maximum outside oxygen and other oxidizing agents from the first BOD sorption zone. Thus, they have organisms that can use a non-oxidative energy source, i.e. hydrolysis of polyphosphates, an advantage that only they have the necessary energy to carry out active transport of BOD from the liquid itself across the cell wall of the microorganism to the interior of the organism. To the extent that the energy for the BOD transport is obtained in this way, polyphosphate-containing microorganisms have an advantage in sorbing BOD (or food supply), which allows these organisms to dominate the population after successive circulations through the system. This is not the case in conventional activated sludge systems.

Ved den initielle drift ved udøvelse af den omhand-15 lede fremgangsmåde fra start og indtil opnåelse af "steady state"-drift, må der, som angivet ovenfor, sørges for at minimere BOD-oxidationsgraden i BOD-sorptionszonen. I praksis bør det maksimalt tilladte indhold af oxygen og/eller andre oxidationsmidler, såsom nitrat og/eller 20 nitrit, udtrykt som oxygenækvivalent være således, at mindre end 2% og fortrinsvis mindre end 1% af det totale B0D5 i det indstrømmende spildevand oxideres i denne zone. Såfremt disse forholdsregler overholdes under start og begyndende drift af systemet, fremkommer der både gode 25 slamegenskaber og forøget phosphatfjernelse inden for fra to til seks uger. Opnåelse af "steady state"-drift med disse ønskede egenskaber kan accelereres ved tilsætning af "podningsslam", der indeholder polyphosphatværdier.In the initial operation of carrying out the process in question from the start and until steady state operation is achieved, as indicated above, care must be taken to minimize the degree of BOD oxidation in the BOD sorption zone. In practice, the maximum permissible content of oxygen and / or other oxidizing agents such as nitrate and / or nitrite, expressed as oxygen equivalent, should be such that less than 2% and preferably less than 1% of the total B0D5 in the effluent effluent is oxidized in this zone. If these precautions are adhered to during the initial and initial operation of the system, both good sludge properties and increased phosphate removal will occur within two to six weeks. Achieving "steady state" operation with these desired properties can be accelerated by the addition of "graft sludge" containing polyphosphate values.

Udførelsen af den omhandlede fremgangsmåde afhænger 30 af den initielle tilstedeværelse af en effektiv BOD- sorptionszone. Imidlertid fungerer biologien ved det omhandlede system endog i tilfælde med for stor oxidation i sorptionszonen, indtil de ønskede aktive slamarter erstattes af konventionelt slam. Det er blevet observeret, 35 at en sådan erstatning finder sted relativt langsomt, f.eks. inden for et tidsrum på ca. en til to måneder. Når systemet har opnået "steady state", kan det tillades, at der sker en noget højere oxidationsprocentdel i BOD- 11 DK 169737 B1 sorptions zonen, uden at der sker en hurtig udvaskning af polyphosphatholdigt slam. Udvaskning opdages ved nedbrydningen af slammets udfældningsegenskaber og en reduceret evne til at fjerne phosphat. Hvis en forstyrrelse 5 forekommer, kan normaldrift genoprettes i tide ved strengt at begrænse den tilladte oxidationsgrad i BOD-sorptionszonen på samme vis som under starten.The performance of the present process depends on the initial presence of an effective BOD sorption zone. However, even in the case of excessive oxidation in the sorption zone, the biology of the present system works until the desired active sludge species is replaced by conventional sludge. It has been observed that such replacement occurs relatively slowly, e.g. within a period of approx. one to two months. Once the system has reached "steady state", a slightly higher percentage of oxidation can be allowed in the BOD sorption zone without a rapid leaching of polyphosphate-containing sludge. Leaching is detected by the degradation of the sludge precipitation properties and a reduced ability to remove phosphate. If a disturbance 5 occurs, normal operation can be restored in time by strictly limiting the permissible degree of oxidation in the BOD sorption zone in the same way as during the start.

Skønt, som forklaret ovenfor, det biologiske tryk, der resulterer i udvælgelsen af en foretrukken biomasse, 10 sker i BOD-sorpt ions zonen, er funktionen af BOD-oxidations- zonen (B) at frembringe energi ved oxidation af BOD. Denne energi anvendes til vækst af biomasse og overføring af phosphatværdier fra den egentlige væske til biomassens indre. Fjernelse af phosphat og oplagring i biomassen som 15 polyphosphater anslås at kræve fra ca. 1 til 5% af den energi, der frembringes ved oxidation af BOD. Det menes derfor, at den foretrukne biomasse ifølge opfindelsen ikke forekommer i de fleste konventionelle aktiverede slamsystemer, eftersom de arter, der ikke har energibehov for 20 phosphatsorption og oplagring, er i stand til at anvende mere energi til vækst og derfor vil dominere, medmindre BOD tilføres i en sorptionszone, som angivet ved den omhandlede opfindelse.Although, as explained above, the biological pressure resulting in the selection of a preferred biomass occurs in the BOD sorption zone, the function of the BOD oxidation zone (B) is to generate energy by oxidation of BOD. This energy is used for the growth of biomass and the transfer of phosphate values from the actual liquid to the biomass interior. Phosphate removal and biomass storage as 15 polyphosphates are estimated to require from ca. 1 to 5% of the energy generated by BOD oxidation. Therefore, it is believed that the preferred biomass of the invention does not occur in most conventional activated sludge systems, since those species which have no energy requirement for phosphate sorption and storage are able to use more energy for growth and therefore will dominate unless BOD is applied in a sorption zone as defined by the present invention.

Det er også blevet observeret, at oxygenoptagelses-25 hastighederne er relativt langsomme i BOD-oxidationszonen ved den omhandlede fremgangsmåde i sammenligning med konventionelle aktiverede slamsystemer. For eksempel overskrides en oxygenoptagelseshastighed på 30 milligram oxygen pr. gram WS pr. time ved 20°C sjældent ved udøvelse 30 af den omhandlede opfindelse, hvorimod oxygenoptagelses hastigheden ved konventionel gennemluftning kan være mere end dobbelt så stor, som beskrevet i f.eks. US-patentskrift nr. 3.864.246. Dette antyder, at det i sorptionszonen sorberede BOD oplagres i en form, der kun langsomt er 35 tilgængelig for oxidation. Resultatet er, at den initielle oxygenoptagelseshastighed er langsom og yderligere falder langsomt med tiden.It has also been observed that the oxygen uptake rates are relatively slow in the BOD oxidation zone by the process of the present invention compared to conventional activated sludge systems. For example, an oxygen uptake rate of 30 milligrams of oxygen per day is exceeded. grams of WS pr. per hour at 20 ° C, rarely in the practice of the present invention, whereas the rate of oxygen uptake by conventional aeration may be more than twice as described in e.g. U.S. Patent No. 3,864,246. This suggests that the BOD sorbed in the sorption zone is stored in a form that is only slowly available for oxidation. The result is that the initial oxygen uptake rate is slow and further decreases with time.

På grund af de foran nævnte betragtninger kræver den 12 DK 169737 B1 omhandlede fremgangsmåde ved anvendelse i et højhastighedssystem minimalt oxygen pr. fjernet BOD-enhed. Ikke oxideret BOD fjernes naturligvis med slammet. Der må imidlertid foregå en tilstrækkelig oxidation til at oxidere mindst 30% 5 af det totale til systemet førte B0D5. Såfremt BOD ikke oxideres i en tilstrækkelig grad, hæmmes sorptionen af frisk BOD ved recirkulation af klaringstankunderstrømmen til den første sorptionszone. Dette har en skadelig virkning ved, at progressivt mindre mængder indstrømmende 10 BOD sorberes i den første zone efter gentagne cirkulatio ner, og progressivt større mængder ikke-sorberet BOD overføres til oxidationszonen, hvor det sorberes og metaboliseres af konventionelle mikroorganismer. Under sådanne betingelser udvaskes de polyphosphatakkumulerende 15 mikroorganismer med tiden.Because of the foregoing considerations, the method of the process of use in a high-speed system requires minimal oxygen per day. removed BOD device. Unoxidized BOD is naturally removed with the sludge. However, sufficient oxidation must take place to oxidize at least 30% 5 of the total lead B0D5. If BOD is not sufficiently oxidized, the sorption of fresh BOD is inhibited by recirculation of the clearance tank sub-stream to the first sorption zone. This has a detrimental effect in that progressively smaller amounts of influxing BOD are sorbed in the first zone after repeated circulations, and progressively larger amounts of non-sorbed BOD are transferred to the oxidation zone where it is sorbed and metabolized by conventional microorganisms. Under such conditions, the polyphosphate accumulating microorganisms are washed out over time.

Det har vist sig, at den minimale oxidation, der kræves i systemet, er 30% af det totale BODs i det indstrømmende spildevand. I et højhastighedssystem varierer oxygenforbruget fra 30 til 100% af B0D5 i det indstrømmende 20 spildevand. Et højhastighedssystem er defineret ved hjælp af det totale F/M1 som et sådant med et totalt F/M.,-forhold større end eller lig med ca. 0,3. F er vægten af det totale af spildevandet tilførte BOD5 pr. dag, og M1 er vægten af MLVSS, der findes i alle zonerne i det omhandlede system, 25 inkl. BOD-sorptionszonen, BOD-oxidationszonen og den anoxiske zone, såfremt den er til stede. Med et totalt F/M1 på mindre end ca. 0,3 og ned til ca. 0,08 ligger oxygenforbruget fra ca. 80 til 150% af det totale BOD5-indhold i det indgående spildevand. Oxygenbehov på over 100% tilskrives 30 det faktum, at B0D5 kun udtrykker ca. 2/3 af BOD (uende lig) .It has been found that the minimum oxidation required in the system is 30% of the total BODs in the inflowing effluent. In a high-speed system, oxygen consumption ranges from 30 to 100% of B0D5 in the influent 20 wastewater. A high speed system is defined by the total F / M1 as such with a total F / M. Ratio greater than or equal to approx. 0.3. F is the weight of the total of the waste water added to BOD5 per liter. per day, and M1 is the weight of MLVSS found in all zones of the system concerned, 25 incl. The BOD sorption zone, the BOD oxidation zone and the anoxic zone, if present. With a total F / M1 of less than approx. 0.3 and down to approx. 0.08, the oxygen consumption ranges from approx. 80 to 150% of the total BOD5 content in the incoming wastewater. Oxygen demand of over 100% is attributed to the fact that B0D5 only expresses approx. 2/3 of BOD (infinite corpse).

Det er blevet observeret, at ved drift af højhastighedssystemer, d.v.s. med et totalt F/M1 på over 0,3, anvender den omhandlede fremgangsmåde væsentligt mindre 35 oxygen end konventionelle aktiverede slamsystemer. Endvi dere fortsætter et sådant system selv ved sådanne store gennemgangshastigheder med at fjerne BOD og væsentlige phosphatmængder, medens der opretholdes et ønskværdigt 13 DK 169737 B1 ikke-filamentøst biomasseartproducerende slam med fremragende udfældningsegenskaber.It has been observed that in the operation of high-speed systems, i.e. with a total F / M1 greater than 0.3, the process in question uses substantially less oxygen than conventional activated sludge systems. Furthermore, even at such high throughput rates, such a system continues to remove BOD and significant amounts of phosphate, while maintaining a desirable non-filamentous biomass species producing sludge with excellent precipitation properties.

Det opnåede slam har en SVI på i almindelighed mindre end ca. 100 og en klaringstankunderstrøm med en 5 faststofkoncentration større end ca. 1%. For at opretholde disse ønskede egenskaber ved systemet skal betingelserne reguleres således, at mindst ca. 30 til 40% af det totale B0D5 oxideres i systemet. En svigten heraf resulterer i progressiv forværring af slamegenskaberne og mindre 10 phosphatfjernelse.The sludge obtained has an SVI of generally less than approx. 100 and a clearance tank undercurrent with a solids concentration greater than ca. 1%. In order to maintain these desired properties of the system, the conditions must be adjusted so that at least approx. 30 to 40% of the total BoD5 is oxidized in the system. A failure thereof results in progressive deterioration of the sludge properties and less phosphate removal.

En vigtig konsekvens af, at den biologiske selektion foregår i BOD-sorptionszonen er, at der herved ikke længere eksisterer et krav på en minimal koncentration af opløst oxygen (DO), der skal opretholdes i oxidationszonen for at 15 opnå den fornødne minimale 30% oxidation. Dette er i modsætning til den kendte teknik (som angivet f.eks. i US-patentskrifterne 3.864.246 og 4.162.153), hvor der kræves minimale DO-niveauer på mindst 1 ppm og i almindelighed mere end 2 ppm opløst oxygen. Opretholdelsen af de høje 20 niveauer af opløst oxygen udtrykker sig ved store kraft krav. F.eks. ved reduktion af DO-niveauet fra 2 ppm til et niveau på mindre end 1 ppm i et system, hvor der anvendes atmosfærisk luftoxidation, reduceres energikravet for at overføre en given oxygenmængde fra gassen til systemets 25 væskefase med fra ca. 14 til 25%. Ved udøvelse af den omhandlede fremgangsmåde er niveauet af opløst oxygen ikke den kontrollerende faktor, men nærmere den procentdel totalt BOD, der oxideres i de respektive zoner.An important consequence of the biological selection taking place in the BOD sorption zone is that there is no longer a requirement for a minimum dissolved oxygen (DO) concentration to be maintained in the oxidation zone to obtain the required minimum 30% oxidation. . This is in contrast to the prior art (as disclosed, for example, in U.S. Patent Nos. 3,864,246 and 4,162,153), where minimum DO levels of at least 1 ppm and generally more than 2 ppm of dissolved oxygen are required. Maintaining the high 20 levels of dissolved oxygen is expressed by high power requirements. For example. by reducing the DO level from 2 ppm to a level of less than 1 ppm in a system using atmospheric air oxidation, the energy requirement to transfer a given amount of oxygen from the gas to the liquid phase of the system is reduced by from approx. 14 to 25%. In carrying out the process of the present invention, the level of dissolved oxygen is not the controlling factor, but rather the percentage of total BOD oxidized in the respective zones.

Det eneste, der kræves for at opnå den nødvendige 30 oxidation, er, at oxidationsmidlet indføres i oxidations zonen med en hastighed, der i det væsentlige svarer til oxidationshastigheden.The only thing required to obtain the necessary oxidation is for the oxidant to be introduced into the oxidation zone at a rate substantially equal to the oxidation rate.

Såfremt oxidationsmidlet tilsættes med en hastighed, der ikke i det væsentlige overskrider oxidationshastig-35 heden, kan der opnås store besparelser i kraft og oxygen forbrug. Det viste sig, at man ved at tilsætte oxidationsmiddel med en hastighed, der ikke oversteg den målte oxidationshastighed med ca. 0,5% og fortrinsvis ikke 14 DK 169737 B1 overskred oxidationshastigheden med 0,4%, kunne opnå et meget mere effektivt system end de hidtil kendte systemer, der kræver tilstedeværelsen af et DO-niveau på mindst 1 ppm. Tilsætning af oxidationsmidler med denne hastighed 5 resulterer i et lavt DO-niveau i oxidationszonen. Det er derfor muligt at drive dette system ved at overvåge DO-niveauet i oxidationszonen såvel som ved at måle oxygenoptagelseshastigheden. Såfremt systemet drives ved at overvåge DO-niveauet, bør et DO-niveau på ca. 0,6 ppm ikke 10 overskrides for at sikre, at oxidationsmidlet ikke til sættes med en hastighed, der overstiger oxidationsoptagelseshastigheden med mere end ca. 0,5%, og fortrinsvis bør et DO-niveau på ca. 0,4 ppm ikke overskrides for at sikre, at oxidationsmidlet ikke tilsættes med en hastighed, 15 der overstiger oxidationshastigheden med mere end ca. 0,4%.If the oxidant is added at a rate which does not substantially exceed the oxidation rate, great savings in power and oxygen consumption can be achieved. It was found that by adding oxidizing agent at a rate not exceeding the measured oxidation rate by approx. 0.5% and preferably not exceeded the oxidation rate by 0.4%, could achieve a much more efficient system than the previously known systems requiring the presence of a DO level of at least 1 ppm. Addition of oxidizing agents at this rate 5 results in a low DO level in the oxidation zone. Therefore, it is possible to operate this system by monitoring the DO level in the oxidation zone as well as by measuring the oxygen uptake rate. If the system is operated by monitoring the DO level, a DO level of approx. 0.6 ppm is not exceeded 10 to ensure that the oxidizing agent is not added at a rate exceeding the oxidation uptake rate by more than approx. And preferably a DO level of about 0.5%. 0.4 ppm is not exceeded to ensure that the oxidizing agent is not added at a rate exceeding the oxidation rate by more than approx. 0.4%.

Skønt et system til udøvelse af den omhandlede fremgangsmåde kan drives effektivt, såfremt oxidationsmidlet tilsættes i oxidationszonen med en hastighed, der er lig med oxygenforbrugshastigheden, resulterende i et DO-20 niveau på 0 ppm, vil systemet ikke længere arbejde effek tivt, og den valgte biomasse ville med tiden blive udvasket, såfremt tilsætningshastigheden for oxidationsmidlet falder til under denne værdi. For at forhindre denne type udvaskning foretrækkes det, at et sådant system drives ved 25 at tilsætte oxidationsmiddel i oxidationszonen med en hastighed, der overstiger den målte oxygenoptagelseshastighed med i det mindste ca. 0,1% eller, såfremt systemet drives ved at overvåge DO-niveauet i oxidationszonen, at der opretholdes et DO-niveau på mindst ca. 0,1 30 ppm.Although a system for carrying out the process can be operated effectively if the oxidant is added to the oxidation zone at a rate equal to the oxygen consumption rate, resulting in a DO-20 level of 0 ppm, the system will no longer work effectively and the selected biomass would be washed out over time if the rate of addition of the oxidant falls below this value. To prevent this type of leaching, it is preferred that such a system be operated by adding oxidant in the oxidation zone at a rate in excess of the measured oxygen uptake rate by at least approx. 0.1% or, if the system is operated by monitoring the DO level in the oxidation zone, maintaining a DO level of at least approx. 0.1 ppm.

Startperioden for et system til udøvelse af den omhandlede fremgangsmåde er defineret som den tid, der kræves af systemet til at udvikle biomasse af den ønskede type, hvilket ses ved konstantholdt BOD ved phosphat-35 fjernelse og slamudfældningsegenskaber. Den kan også defineres som den tid, der kræves af systemet for at komme sig efter driftsforstyrrelser.The initial period of a system for carrying out the process of the present invention is defined as the time required for the system to develop biomass of the desired type, as seen by constant BOD at phosphate removal and sludge precipitation properties. It can also be defined as the time required by the system to recover from interruptions.

Startperioden kan reduceres væsentligt ved at pode 15 DK 169737 B1 et system med slam, der tidligere er blevet oparbejdet i et driftssystem af en sådan type.The start-up period can be significantly reduced by grafting a sludge system previously worked into a type of operating system of this type.

Eksempel 1 5 Et prøveanlæg med en BOD-sorptionszone A, bestående af tre 220 liter afsnit og en BOD-oxidationszone B, bestående af fire 557 liter afsnit, podedes til at begynde med med 28,4 liter væske indeholdende ca. 1% phosphat-fjernende slam og opnået fra "steady state"-drift af en 10 laboratorie Α/0-enhed.Example 1 A test plant with a BOD sorption zone A, consisting of three 220-liter sections and a BOD oxidation zone B, consisting of four 557-liter sections, was seeded initially with 28.4 liters of liquid containing approx. 1% phosphate-removing sludge and obtained from "steady-state" operation of a 10 laboratory 0/0 unit.

Tre uger efter tilsætningen af podningsslammet opnåedes en stabil drift for phosphatfjernelsen.Three weeks after the addition of the graft sludge, a stable operation for phosphate removal was achieved.

Anlægget blev drevet i en uge ved et lavt DO-niveau (0,27 ppm). Under driftsperioden med lavt DO holdtes alle 15 afsnittene i oxidationszonen (B) ved et niveau under 1 ppm.The plant was operated for a week at a low DO level (0.27 ppm). During the low DO operating period, all 15 sections of the oxidation zone (B) were maintained at a level below 1 ppm.

I begge perioder gjordes intet forsøg på at regulere tilgængeligt oxygen, og oxygen var i rigelig grad tilgængeligt i oxidationszonen, som antydet ved det relativt høje oxygenforbrug på over 1,5 kg brugt oxygen pr. kg 20 fjernet BOD (ikke filtreret tilløb minus filtreret udløb), d.v.s. kg 02/kg B0DR(U-F).In both periods, no attempt was made to regulate available oxygen and oxygen was abundantly available in the oxidation zone, as indicated by the relatively high oxygen consumption of over 1.5 kg of spent oxygen per day. kg of 20 removed BOD (not filtered inlet minus filtered outlet), i.e. kg 02 / kg B0DR (U-F).

Driften med højt DO viste bedre phosphatfjernelse end driften ved lavt DO på grund af det højere totale F/M-,-forhold og højere B0Ds/Ps-forhold.The high DO operation showed better phosphate removal than the low DO operation due to the higher total F / M ratio and higher B0Ds / Ps ratio.

25 De ved eksempel 1 opnåede data er anført i tabel 1.The data obtained in Example 1 are listed in Table 1.

Tabel 1 IDT (time) 1,59 T, eC 22,5 30 middel-MLVSS, ppm 2683 middel-DO, ppm A zone 0,2 B zone 0,27 F/M, totalt 0,63 F/M2 A zone 2,77 35 B0Ds/Ps 11,2 B0Ds, ppm tilløb 55 udløb 2 16 DK 169737 B1Table 1 IDT (hour) 1.59 T, eC 22.5 30 medium MLVSS, ppm 2683 medium DO, ppm A zone 0.2 B zone 0.27 F / M, total 0.63 F / M2 A zone 2.77 35 B0Ds / Ps 11.2 B0Ds, ppm inlet 55 expiration 2 16 DK 169737 B1

Tabel 1 (fortsat) % sorberet i A 57 TSS, ppm indløb 104 5 udløb 21 ΒΟϋγ/ ppm indløb 112 udløb 9,5Table 1 (continued)% sorbed in A 57 TSS, ppm inlet 104 5 outlet 21 ΒΟϋγ / ppm inlet 112 outlet 9.5

Ps, ppm 10 indløb 4,9Ps, ppm 10 inlet 4.9

Udløb 1,9 netto fj ernet 3,0 SVI 23 15 SVI = slam volumen index (Mohlmann) BODT = totalt BOD5 BODs = opløseligt B0D5Output 1.9 Net Spring 3.0 SVI 23 15 SVI = sludge volume index (Mohlmann) BODT = total BOD5 BODs = soluble B0D5

Ps = opløseligt phosphat, udtrykt som elementært phosphor, PPs = soluble phosphate, expressed as elemental phosphorus, P

20 TSS = totalt suspenderet faststof20 TSS = total suspended solids

Af driften i eksempel 1 er det klart, at der kan spares en væsentlig energimængde til oxygenoverføring i oxidationszonen. Det er således beregnet, at der kunne 25 opnås en besparelse på 23% i kraftbehovet ved at drive oxidationszonen (B) ved et DO-niveau på 0,5 ppm, i sammenligning med f.eks. drift ved 10 ppm. Denne beregning er baseret på anvendelse af relativt rent oxygen i systemet, som bestemt ved oxygenets opløselighed i vand ved atmos-30 færisk tryk.From the operation of Example 1, it is clear that a significant amount of energy can be saved for oxygen transfer in the oxidation zone. Thus, it is calculated that a power saving of 23% could be achieved by operating the oxidation zone (B) at a DO level of 0.5 ppm, in comparison with e.g. operation at 10 ppm. This calculation is based on the use of relatively pure oxygen in the system, as determined by the solubility of the oxygen in water at atmospheric pressure.

Phosphatfjernelse ved fremgangsmåden ifølge opfindelsen påvirkes ikke meget, hvad enten der er højt eller lavt DO i oxidationszonen. Det synes derfor, som om der kan fås tilfredsstillende resultater med et A/O-system under en 35 periode med stabil drift, såfremt DO i oxidationszonen ligger på et niveau under 1 ppm, forudsat at ikke mere end 2% af det totale indstrømmende B0D5 oxideres i BOD-sorp-tionszonen, og at ikke mindre end 30% af det indstrømmende 17 DK 169737 B1 totale BOD5 oxideres i det totale system.Phosphate removal by the process of the invention is not greatly affected, whether high or low DO in the oxidation zone. Therefore, it appears that satisfactory results can be obtained with an A / O system during a period of stable operation if the DO in the oxidation zone is at a level below 1 ppm, provided that no more than 2% of the total influx of B0D5 is oxidized in the BOD sorption zone and that not less than 30% of the influent BOD5 is oxidized in the total system.

Eksempel 2Example 2

Det følgende angiver en foretrukken udførelsesform 5 for fremgangsmåden ifølge opfindelsen og viser en frem ragende drift af et A/O-system, hvor det i oxidationszonen opretholdte DO-niveau er på 0,3 ppm, med heraf følgende store besparelser i den krævede gennemluftningskraft.The following shows a preferred embodiment 5 of the process according to the invention and shows an on-going operation of an A / O system where the DO level maintained in the oxidation zone is 0.3 ppm, with consequent large savings in the required aeration power.

Prøveanlægget bestod af en BOD-sorptionszone med tre 10 afsnit på hver 220 liter og en oxidations zone med fire afsnit på hver 557 liter. Driftsbetingelserne og resultaterne er anført i tabel 2.The test facility consisted of a BOD sorption zone with three 10 sections of 220 liters each and an oxidation zone with four sections of 557 liters each. The operating conditions and results are listed in Table 2.

Tabel 2 15 Tilløbstilbageholdelsestid (IDT) timer 1,6Table 2 15 Withdrawal Retention Time (IDT) hours 1.6

Slamrecirkulation i forhold til tilløbet (rumfang/rumfang) 0,20 MLVSS gennemsnitligt, ppm 2700Sludge recirculation in relation to the supply (volume / volume) 0.20 MLVSS average, ppm 2700

Temperatur, °C 23 20 F/M1 totalt 0,63 BOD totalt, ppm tilløb 112 udløb 9,5 BOD opløseligt, ppm 25 tilløb 55 udløb 2Temperature, ° C 23 20 F / M1 total 0.63 BOD total, ppm inlet 112 outlet 9.5 BOD soluble, ppm 25 inlet 55 outlet 2

Totalt suspenderet fast stof, ppm tilløb 104 udløb 21 30 Opløseligt phosphat, ppm (tilløb) 4,9 (udløb) 1,9 BODs/Ps i tilløb 11 % sorption af opløseligt B0D5 i 35 BOD-sorptionszonen 57 DO gennemsnitligt i BOD-sorptionszonen, ppm 0,2 DO gennemsnitligt i oxidationszonen, ppm 0,3 DK 169737 B1Total suspended solids, ppm inlet 104 outlet 21 30 Soluble phosphate, ppm (inlet) 4.9 (outlet) 1.9 BODs / Ps inlet 11% sorption of soluble B0D5 in the 35 BOD sorption zone 57 DO average in the BOD sorption zone , ppm 0.2 DO average in the oxidation zone, ppm 0.3 DK 169737 B1

ISICE

Af den ovenstående tabel 2 er det klart, at et A/0-system kan virke tilfredsstillende, når der arbejdes med relativt lavt DO i oxidationszonen. Ved en sådan drift med lavt DO kan der fås betydelige besparelser i energikravet 5 til oxygenoverføring fra luften til væsken (ved samme oxygenforbrug). Den beregnede besparelse, der kan opnås ved de lavere DO-niveauer i sammenligning med drift ved DO på 3, vil fremgå af den nedenstående tabulering, der er beregnet på basis af anvendelse af luft, og at oxygen-10 mætningsniveauet i væsken ligger ved en koncentration på 8 ppm.From the above Table 2, it is clear that an A / O system can work satisfactorily when working with relatively low DO in the oxidation zone. In such a low DO operation, significant savings can be obtained in the energy requirement 5 for oxygen transfer from the air to the liquid (at the same oxygen consumption). The calculated savings that can be achieved at the lower DO levels compared to operation at DO of 3 will be apparent from the following tabulation, calculated on the basis of use of air, and that the oxygen saturation level in the liquid is at a concentration of 8 ppm.

D.o. i BOD-oxidationszonen, ppm 0,3 1,0 2,0 3,0Die. in the BOD oxidation zone, ppm 0.3 1.0 2.0 3.0

Energibesparelse, % 65 29 17 0Energy saving,% 65 29 17 0

Skønt opfindelsen er blevet beskrevet i forbindelse 15 med systemer, hvori den første BOD-sorptionszone er efterfulgt af en oxidationszone (A/O-system), er den lige så anvendelig ved systemer, der er konstrueret til NOx-fjernelse, hvori der er anbragt en anoxisk zone mellem BOD-sorptionszonen og oxidationszonen.Although the invention has been described in connection with systems wherein the first BOD sorption zone is followed by an oxidation zone (A / O system), it is equally applicable to systems designed for NOx removal in which an anoxic zone between the BOD sorption zone and the oxidation zone.

2020

Claims (11)

1. Fremgangsmåde til behandling af spildevand med et aktiveret slamsystem, hvorved man: a) fremstiller en blandet væske ved først at 5 blande aktiveret biomasse med BOD-holdigt spilde- vandstilløb i en BOD-sorptionszone; b) i en efterfølgende oxidationszone oxiderer BOD, der findes i den blandede væske, deriblandt mindst en del af det i biomassen sorberede BOD; 10 c) lader den således oxiderede blandede væske sætte sig til adskillelse af den ovenstående væske fra det mere tætte slam, der inkluderer biomassen; d) recirkulerer i det mindste en del af dette mere tætte slam til opnåelse af aktiveret biomasse 15. den første BOD-sorptionszone; og e) eventuelt indskyder et anoxisk trin mellem trin a) og trin b); kendetegnet ved, at man udfører sammenblandingen i trin a) under sådanne valgte betingelser, at 20 mindre end 5% af det totale BOD5 oxideres af oxygen eller af andre oxygenerende midler, og at mindst 25% af det opløselige B0D5 sorberes af biomassen i denne sorptions-zone, idet betingelserne i denne BOD-sorptionszone kontrolleres således, at der i zonen opnås et F/M2-forhold på 25 mindre end 10, hvor F er væsken af det totale BOD5 tilført med spildevandstilløbet pr. dag, og M2 er vægten af biomasseflygtige suspenderede faste stoffer, der findes i denne BOD-sorptionszone, og at man udfører oxidationen i trin b) under kontrollerede beluftningsbetingelser således, 30 at mindst 30% af det totalt tilstrømmende B0D5 oxideres, hvilke betingelser inkluderer et indhold af opløst oxygen i oxidationszonen på mindre end 1 ppm, og at man styrer oxygenforbruget ved regulering af det totale F/M1-forhold (over hele anlægget), hvor M1 er vægten af biomasseflygtige 35 suspenderede faste stoffer i alle systemets zoner, inklu derende en eventuelt tilstedeværende anoxisk zone.A process for treating wastewater with an activated sludge system, wherein: a) preparing a mixed liquid by first mixing activated biomass with BOD-containing wastewater in a BOD sorption zone; b) in a subsequent oxidation zone, the BOD present in the mixed liquid oxidizes, including at least part of the BOD sorbed in the biomass; C) allowing the thus oxidized mixed liquid to separate the above liquid from the more dense sludge which includes the biomass; d) recycle at least part of this more dense sludge to obtain activated biomass 15. the first BOD sorption zone; and e) optionally interposing an anoxic step between step a) and step b); characterized in that the mixing is carried out in step a) under such selected conditions that 20 less than 5% of the total BOD5 is oxidized by oxygen or other oxygenating agents and that at least 25% of the soluble BOD5 is sorbed by the biomass of this sorption. zone, the conditions of this BOD sorption zone being controlled so as to achieve in the zone an F / M2 ratio of 25 less than 10, where F is the liquid of the total BOD5 supplied with the effluent flow per day. per day, and M2 is the weight of biomass volatile suspended solids found in this BOD sorption zone and conducting the oxidation in step b) under controlled aeration conditions such that at least 30% of the total influxing B0D5 is oxidized, which conditions include dissolved oxygen content in the oxidation zone of less than 1 ppm and controlling oxygen consumption by controlling the total F / M1 ratio (over the entire plant), where M1 is the weight of biomass volatile 35 suspended solids in all zones of the system, including an anoxic zone possibly present. 2. Fremgangsmåde ifølge krav 1, kendetegnet v e d, at mindst 50% af det opløselige BODs i det DK 169737 B1 tilløbende spildevand sorberes af biomassen i sorptions-zonen.Process according to claim 1, characterized in that at least 50% of the soluble BOD in the effluent in the DK 169737 B1 is sorbed by the biomass in the sorption zone. 3. Fremgangsmåde ifølge krav 1, kendetegnet v e d, at BOD-sorptionszonen består af en række på 5 mindst to hydraulisk adskilte efter hinanden følgende afsnit.A method according to claim 1, characterized in that the BOD sorption zone consists of a series of at least two hydraulically separated consecutive sections. 4. Fremgangsmåde ifølge krav 1, kendeteg net ved, at oxidations zonen består af en række på mindst to hydraulisk adskilte efter hinanden følgende 10 afsnit.Method according to claim 1, characterized in that the oxidation zone consists of a series of at least two hydraulically separated consecutive 10 sections. 5. Fremgangsmåde ifølge krav 1, kendeteg net v e d, at den første BOD-sorptionszone holdes under anaerobe betingelser, således at mindre end 2% af det tilstrømmende totale B0D5 oxideres i zonen.5. A method according to claim 1, characterized in that the first BOD sorption zone is maintained under anaerobic conditions so that less than 2% of the influxing total BOD5 is oxidized in the zone. 6. Fremgangsmåde ifølge krav 1, kendeteg net ved, at spildevandstilløbet indeholder phos-phatværdier, og at en væsentlig del af phosphatet fjernes fra opløsning i oxidationszonevæsken og oplagres i biomassen som polyphosphat.Process according to claim 1, characterized in that the effluent feed contains phosphate values and that a substantial part of the phosphate is removed from solution in the oxidation zone liquid and stored in the biomass as polyphosphate. 7. Fremgangsmåde ifølge krav 1, kendeteg net v e d, at tilføringshastigheden af spildevandstilløbet er forbundet med den totale biomasse i sorptionszonen og oxidationszonen på en sådan måde, at der fås et totalt F/M,-forhold på over 0,3, ved hvilket F er vægten af det 25 totale af spildevandstilløbet tilførte B0D5 pr. dag, og M1 er vægten af biomasseflygtige suspenderede faste stoffer i BOD-sorptionszonen og oxidationszonen.Process according to claim 1, characterized in that the feed rate of the effluent is connected to the total biomass in the sorption zone and the oxidation zone in such a way that a total F / M ratio of more than 0.3 is obtained, at which F is the weight of the 25 total of the effluent added B0D5 per per day, and M1 is the weight of biomass volatile suspended solids in the BOD sorption zone and the oxidation zone. 8. Fremgangsmåde ifølge krav 1, kendetegnet v e d, at der anvendes en anoxisk zone mellem BOD-30 sorptionszonen og oxidationszonen, og at tilføringshastig heden af spildevandstilløbet er forbundet med den totale biomasse i BOD-sorptionszonen, den anoxiske zone og oxidationszonen på en sådan måde, at der opnås et totalt F/M.,-forhold på over 0,3? hvorved F er vægten af det totale 35 af spildevandstilløbet tilførte BOD5 pr. dag, og M1 er vægten af biomasseflygtige suspenderede faste stoffer, der findes i BOD-sorptionszonen, den anoxiske zone og oxidationszonen. DK 169737 B1Process according to claim 1, characterized in that an anoxic zone is used between the BOD sorption zone and the oxidation zone and that the feed rate of the wastewater supply is associated with the total biomass in the BOD sorption zone, the anoxic zone and the oxidation zone in such a way. , that a total F / M. ratio of more than 0.3 is obtained? whereby F is the weight of the total 35 of the effluent added BOD5 per per day, and M1 is the weight of biomass volatile suspended solids found in the BOD sorption zone, the anoxic zone and the oxidation zone. DK 169737 B1 9. Fremgangsmåde ifølge krav 1, kendetegnet ved, at F/M2-forholdet i BOD-sorptionszonen opretholdes på mindre end 5.Process according to claim 1, characterized in that the F / M2 ratio in the BOD sorption zone is maintained at less than 5. 10. Fremgangsmåde ifølge krav 1, kendeteg- 5. e t v e d, at BOD-sorptionszonen drives under betingel ser, der er således, at mindre end 1% af det totale tilførte BOD5 oxideres af oxygen eller andre oxidationsmidler i denne zone.A process according to claim 1, characterized in that the BOD sorption zone is operated under conditions which are such that less than 1% of the total BOD5 supplied is oxidized by oxygen or other oxidizing agents in this zone. 11. Fremgangsmåde ifølge krav 1, kendeteg- 10. e t v e d, at mindst en del af biomassen i dette system opnås ved podning med biomasse fra et system, der har opnået "steady state"-drift under betingelser som defineret i krav 1.A method according to claim 1, characterized in that at least a portion of the biomass in this system is obtained by grafting with biomass from a system which has achieved "steady state" operation under conditions as defined in claim 1.
DK309682A 1981-07-13 1982-07-09 Process for treating wastewater with an activated sludge system DK169737B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US28267481A 1981-07-13 1981-07-13
US28267481 1981-07-13

Publications (2)

Publication Number Publication Date
DK309682A DK309682A (en) 1983-01-14
DK169737B1 true DK169737B1 (en) 1995-02-06

Family

ID=23082611

Family Applications (1)

Application Number Title Priority Date Filing Date
DK309682A DK169737B1 (en) 1981-07-13 1982-07-09 Process for treating wastewater with an activated sludge system

Country Status (12)

Country Link
JP (1) JPS5817894A (en)
KR (1) KR840000437A (en)
AU (1) AU543212B2 (en)
DK (1) DK169737B1 (en)
ES (1) ES513898A0 (en)
FI (1) FI77215C (en)
GR (1) GR78324B (en)
IN (1) IN157778B (en)
NO (1) NO822413L (en)
NZ (1) NZ201232A (en)
PT (1) PT75232B (en)
ZA (1) ZA824972B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8201293A (en) * 1982-03-29 1983-10-17 Gist Brocades Nv FLUID BED REACTOR FOR PURIFICATION OF WASTE WATER.
AUPM452094A0 (en) * 1994-03-17 1994-04-14 University Of Queensland, The Waste treatment plant and process

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48104351A (en) * 1972-04-14 1973-12-27
JPS52111267A (en) * 1976-03-16 1977-09-17 Chiyuuetsu Koubo Kougiyou Kk Method of treating waste water

Also Published As

Publication number Publication date
IN157778B (en) 1986-06-14
NO822413L (en) 1983-01-14
JPH0134118B2 (en) 1989-07-18
AU8568782A (en) 1983-01-20
GR78324B (en) 1984-09-26
JPS5817894A (en) 1983-02-02
FI822489L (en) 1983-01-14
FI822489A0 (en) 1982-07-13
ES8305283A1 (en) 1983-04-01
ZA824972B (en) 1983-04-27
PT75232B (en) 1984-07-23
PT75232A (en) 1982-08-01
FI77215B (en) 1988-10-31
FI77215C (en) 1989-02-10
AU543212B2 (en) 1985-04-04
NZ201232A (en) 1984-07-06
ES513898A0 (en) 1983-04-01
KR840000437A (en) 1984-02-22
DK309682A (en) 1983-01-14

Similar Documents

Publication Publication Date Title
CA1143486A (en) Control of activated sludge wastewater treating process for enhanced phosphorous removal
US5182021A (en) Biological process for enhanced removal of ammonia, nitrite, nitrate, and phosphate from wastewater
US4056465A (en) Production of non-bulking activated sludge
US5393427A (en) Process for the biological treatment of wastewater
US4731185A (en) Biological wastewater treating system
JPS6012118B2 (en) Nitrification of BOD-containing water
US3864246A (en) Non-bulking activated sludge process
CA2117084A1 (en) Method and system for biologically removing nitrogen from wastewater
JPS5921680B2 (en) Method for removing BOD nitrogen-containing contaminants from wastewater
DK166818B1 (en) PROCEDURE FOR MINIMIZING DAY VARIATIONS IN PHOSPHORUS CONTENT DRAINING FROM WASTEWATER TREATMENT PLANTS
CN108341553B (en) Method for treating high ammonia nitrogen wastewater by combining biomembrane method with BAF combined process
US5248422A (en) Process for treating wastewater to remove BOD and nutrients
NO170402B (en) PROCEDURE FOR OPERATING AN ACTIVATED SLAM SYSTEM
Zafarzadeh et al. Performance of moving bed biofilm reactors for biological nitrogen compounds removal from wastewater by partial nitrification-denitrification process
KR100327151B1 (en) A Process for Treatment of Wastewater Using Intermittently Aerated Membrane Bioreactor
DK169737B1 (en) Process for treating wastewater with an activated sludge system
Mavinic et al. Fate of nitrogen in aerobic sludge digestion
JPS61200893A (en) Method of purifying waste water
KR20030059178A (en) Apparatus and method for wastewater treatment with enhanced solids reduction(ESR)
JPH05154496A (en) Controlling method for operation in anaerobic and aerobic activated sludge treating equipment
JPS6048196A (en) Method for removing phosphorus from organic waste liquid
EP0099421B1 (en) Biological wastewater treating system
JP2507918B2 (en) Purification method of organic polluted wastewater
JPS6010798B2 (en) Sewage treatment method
JPH05192688A (en) Anaerobic-aerobic activated sludge treating device using buffer tank

Legal Events

Date Code Title Description
B1 Patent granted (law 1993)
PBP Patent lapsed