DK158177B - CATHETIC UNIT FOR LIGHT SEEDS - Google Patents

CATHETIC UNIT FOR LIGHT SEEDS Download PDF

Info

Publication number
DK158177B
DK158177B DK296081A DK296081A DK158177B DK 158177 B DK158177 B DK 158177B DK 296081 A DK296081 A DK 296081A DK 296081 A DK296081 A DK 296081A DK 158177 B DK158177 B DK 158177B
Authority
DK
Denmark
Prior art keywords
cathode
tube
hole
shield
diameter
Prior art date
Application number
DK296081A
Other languages
Danish (da)
Other versions
DK296081A (en
DK158177C (en
Inventor
Aake Bjoerkman
Original Assignee
Lumalampan Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lumalampan Ab filed Critical Lumalampan Ab
Publication of DK296081A publication Critical patent/DK296081A/en
Publication of DK158177B publication Critical patent/DK158177B/en
Application granted granted Critical
Publication of DK158177C publication Critical patent/DK158177C/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields

Landscapes

  • Discharge Lamp (AREA)
  • Electrodes For Cathode-Ray Tubes (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Physical Vapour Deposition (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Description

Opfindelsen angår en katodeenhed for lysstofrør, således som nærmere angivet i krav l’s indledning.The invention relates to a cathode unit for fluorescent lamps, as further specified in the preamble of claim 1.

iin

DK 158177 BDK 158177 B

Levetiden for et lysstofrør regnet i brændetimer er i 5 hovedsagen bestemt af levetiden for rørets katoder. Når katoderne har tabt en vis del af sit af jordalkalioxider betående emissionsmateriale, er deres elektroemitterende evne mindsket i en sådan grad, at røret enten ikke kan starte eller også indtræder i en "blink-periode", som 10 hurtigt pulveriserer det resterende emissionsmateriale.The lifetime of a fluorescent tube calculated in burn hours is essentially determined by the lifetime of the cathodes of the tube. When the cathodes have lost a certain proportion of their emitting material of alkaline earth oxides, their electro-emitting ability is reduced to such an extent that the tube cannot either start or also enter a "flash period" which rapidly pulverizes the remaining emission material.

Det er velkendt, at overskudsbarium opløst i emissionsmaterialets blandingskrystaller gør jordalkalioxiderne halvledende og mindsker elektronernes frigørelsesarbejde. Dette overskudsbarium dannes ved en kemisk reaktion mellem 15 bariumoxid og wolfram ifølge følgende ligning: 6 BaO + W -» Ba3W0g + 3 BaIt is well known that excess barium dissolved in the mixing crystals of the emission material makes the alkaline earth oxides semi-conductive and reduces the electrons' release work. This excess barium is formed by a chemical reaction between 15 barium oxide and tungsten according to the following equation: 6 BaO + W - »Ba3W0g + 3 Ba

Det dannede bariumwolframat forbliver i katodens levetid et mellemlag mellem wolfram og selve emissionsmassen, medens barium som damp diffunderer kontinuerligt gennem 20 massen. Bariumwolframlåget medfører en dæmpning af reaktionen ifølge ovenstående formel, dvs. mindsket dannelse af barium. Som følge heraf vil ved kontinuerlig brænding af et normalt lysstofrør al barium være fordampet først efter ca. 30.000 timer. Belastningen på rørets 25 katoder under startprocessen er dog så stor, at levetiden reduceres med faktor 2-3 ved normal anvendelse af lysstof rør, dvs. med en gennemsnitlig drift på 2-3 timer pr. gang.The barium tungstate formed remains in the cathode's life an intermediate layer between tungsten and the emission mass itself, while barium as vapor continuously diffuses through the mass. The barium tungsten cap results in attenuation of the reaction of the above formula, i.e. diminished barium formation. As a result, with continuous burning of a normal fluorescent lamp, all barium will evaporate only after approx. 30,000 hours. However, the load on the 25 cathodes of the tube during the start-up process is so great that the service life is reduced by a factor of 2-3 with normal use of fluorescent tubes, ie. with an average operation of 2-3 hours per day. walk.

Tabet af det som emissionsmasse tjenende katodemateriale 30 og dermed påfølgende forkortelse af lysstofrørets levetid forårsages i princippet af tre forskellige processer, nemligThe loss of the cathode material serving as emission mass 30 and consequently shortening the life of the fluorescent lamp is in principle caused by three different processes, namely

DK 158177 BDK 158177 B

2 1) borttransport af emissionsmateriale på grund af ionbombardement, specielt i forbindelse med for lav katodetemperatur, 5 2) fordampning af emissionsmaterialet, og 3) kemiske reaktioner mellem emissionsmaterialet og gas-formige forureninger i røret.2 1) removal of emission material due to ion bombardment, especially in connection with too low cathode temperature, 5 2) evaporation of the emission material, and 3) chemical reactions between the emission material and gaseous contaminants in the pipe.

Ved konstruktion af lysrør, der er bestemt til ekstra lang levetid i kombination med et betydeligt antal tændinger og 10 slukninger, skal rørets katoder konstrueres med størst hensyntagen til disse tre årsager til forkortet katodelevetid.When designing fluorescent lamps designed for extra long service life in combination with a significant number of ignitions and 10 extinguishers, the cathodes of the tube must be constructed with the greatest consideration for these three causes of shortened cathode life.

Borttransportering af emissionsmateriale på grund af ionbombardement forudsætter i princippet, at hvert atom, 15 som forlader katodeoverfladen, aldrig vender tilbage til katoden. Dette gælder dog kun i vakuum. I virkeligheden omgives katoden i en normal lysstofrørkonstruktion af én ædelgasatmosfære med tryk på omkring 2,5-102 Pa, hvorfor den frie middelvejlængde for fra overfladen frigjorte 20 atomer og molekyler er betydeligt kortere end afstanden mellem katoden og rørvæggen. Heraf følger, at mange af de frigjorte atomer og molekyler stødes tilbage og atter falder ind mod katodeoverfladen, hvilket medfører en betydelig formindskelse af materialetabet. Denne 25 formindskelse er dog utilstrækkelig, hvor det gælder katoder for lysstofrør med lang levetid.In principle, the transport of emission material due to ion bombardment requires that every atom leaving the cathode surface never return to the cathode. However, this only applies in vacuum. In fact, in a normal fluorescent tube construction, the cathode is surrounded by one noble gas atmosphere at pressures of about 2.5-102 Pa, so the free average path length of 20 atoms and molecules released from the surface is significantly shorter than the distance between the cathode and the tube wall. As a result, many of the released atoms and molecules are pushed back and fall again toward the cathode surface, causing a significant reduction in material loss. However, this reduction is insufficient in the case of cathodes for long-life fluorescent lamps.

Fordampning af emissionsmasse er forholdsvis konstant ved kontinuerlig drift, men sker med forhøjet hastighed efter hver start og inden for de derpå følgende minutter som 30 følge af den forøgede katodetemperatur. En katode for et lysstofrør med lang levetid skal derfor konstrueres således, at fordampede atomer og molekyler i stor udstrækning reflekteres tilbage til katodeoverfladen, ogEvaporation of emission mass is relatively constant during continuous operation, but occurs at an elevated rate after each start and within the ensuing minutes as a result of the increased cathode temperature. Therefore, a cathode for a long-life fluorescent lamp must be constructed so that vaporized atoms and molecules are largely reflected back to the cathode surface, and

DK 158177 BDK 158177 B

3 således at katodetemperaturen forbliver moderat selv under selve startperioden.3 so that the cathode temperature remains moderate even during the start period itself.

Opfindelsens formål er at løse de ovenfor skitserede 5 problemer og derved tilvejebringe en katodeenhed for et lysstofrør, som forlænger rørets levetid betydeligt.The object of the invention is to solve the problems outlined above and thereby provide a cathode unit for a fluorescent lamp which significantly extends the life of the tube.

Ifølge opfindelsen opnås dette ved den i krav l's kendetegnende del angivne udformning. Med en katodeenhed af denne udformning opnås en kraftigt forøget tilbage-10 stødning til katodeoverfladen af fra denne overflade frigjorte atomer og molekyler, såvel sådanne som frigøres gennem ionbombardement som sådanne, som fordamper fra katodeoverf1aden.According to the invention, this is achieved by the design according to the characterizing part of claim 1. With a cathode unit of this design, a greatly increased rebound to the cathode surface of atoms and molecules released from this surface, as well as those released through ion bombardment as well as evaporating from the cathode surface, is achieved.

For at reducere sværtningen af rørvæggens indvendige side 15 i størst mulig grad skal skivens hul have en så lille diameter som muligt. En alt for lille huldiameter medfører dog, at lysstofrørets startspænding stiger på ikke ønsket måde, hvorfor det er at foretrække, at skivens hul har en diameter, som er valgt så lille som muligt under samtidig 20 hensyntagen til, at rørets startspænding ikke må overskride en forudbestemt værdi. For et normalt lysstofrør med en rørdiameter på 38 mm har den mest hensigtsmæssige huldiameter vist sig at være 10-12 mm, dvs. ca. 25-32% af rørdiameteren.In order to minimize the hardening of the inner side of the pipe wall 15, the hole in the disc must be as small as possible. However, an excessively small hole diameter causes the fluorescent tube start voltage to increase in an undesired way, which is why it is preferable for the disc hole to have a diameter selected as small as possible while taking into account that the starting voltage of the tube must not exceed one. predetermined value. For a normal fluorescent lamp with a pipe diameter of 38 mm, the most appropriate hole diameter has been found to be 10-12 mm, ie. ca. 25-32% of the pipe diameter.

25 Eftersom uønskede, kemiske reaktioner mellem emissionsmaterialet og gasformige forbindelser i røret helt kan ødelægge rørets levetid, er det af største vigtighed, at der ved rørets fremstilling anvendes en effektiv pumpeproces til fjernelse af alle spor af differente 30 gasser. Det vides erfaringsmæssigt, at den mest effektive pumpeproces opnås i en pumpeautomat, hvor vakuumpumpning under høj varme kombineres med "intern pumpning" tilveje-25 Since undesirable chemical reactions between the emission material and gaseous compounds in the tube can completely ruin the life of the tube, it is of the utmost importance that an efficient pumping process be used to remove all traces of different gases. It is known from experience that the most efficient pumping process is achieved in a pumping machine where vacuum pumping under high heat is combined with "internal pumping".

DK 15 817 7 BDK 15 817 7 B

4 bragt ved, at kviksølvdråber doseres ned i det varme lysstofrør. Når kvivksølvdråberne rammer lysstofrøret, fordampes de eksplosionsagtigt og giver anledning til en 5 diffusionspumpevirkning i lysstofrøret, hvorved der sker en yderst effektiv borttransportering af forureninger. Forudsætningen for at dette skal finde sted i tilstrækkelig udstrækning er dog, at katodeskærmen ikke virker hæmmende på effektiviteten af den nævnte 10 pumpeproces. Af denne årsag foretrækkes det, at åbningen i katodeskærmens bund har et areal, som mindst er lige så stor som skivens hulareal.4 brought by dosing mercury droplets into the hot fluorescent lamp. When the mercury drops hit the fluorescent tube, they evaporate explosively and give rise to a 5 diffusion pumping effect in the fluorescent tube, thus providing a highly efficient removal of contaminants. However, the prerequisite for this to take place to a sufficient extent is that the cathode screen does not inhibit the efficiency of the said pumping process. For this reason, it is preferred that the opening in the bottom of the cathode screen has an area which is at least as large as the hole area of the disc.

Opfindelsen forklares nærmere i det følgende ved et udførelseseksempel under henvisning til tegningen, hvor 15 fig. 1 viser et snit gennem den ene ende af et lysstofrør forsynet med en ifølge opfindelsen udført katodeenhed, fig. 2a og b henholdsvis i lodret snit og set nedefra en ved katodeenheden anvendt katodeskærm, 20 fig. 3 set fra oven en glimmerskive, der er beregnet til at dække den åbne ende af den i fig. 2a og 2b viste katodeskærm og fig. 4 et kurvediagram, som illustrerer startspændingens og sværtningsgradens afhængighed af glimmerskivens 25 huldiameter.The invention will be further explained in the following by way of example with reference to the drawing, in which: FIG. 1 is a section through one end of a fluorescent tube fitted with a cathode unit made according to the invention; FIG. 2a and b, respectively, in vertical section and from below, a cathode screen used by the cathode unit; FIG. 3 is a top view of a mica disk intended to cover the open end of the one shown in FIG. 2a and 2b, cathode shields and 4 is a curve diagram illustrating the dependence of the starting voltage and degree of vibration on the hole diameter of the mica 25.

I fig. 1 er vist i snit den ene ende af et lysstof rør udført i overensstemmelse med opfindelsen. Rørets glasvæg 1 er ved sin ende på konventionel måde lukket af en fod 2, som samtidig tjener som bæreorgan for katodestøtter 4, som 30 bærer rørets katode 3. Disse støtter, som er elektrisk ledende, er forbundet med tilledningstråde 5, der er indsmeltet i foden 2, gennem hvilke strøm kan bringes til at passere katoden 3 og opvarme denne. Katoden eller spi-In FIG. 1 is a sectional view of one end of a fluorescent tube made in accordance with the invention. The glass wall 1 of the tube is conventionally closed at its end by a foot 2, which simultaneously serves as a support for cathode supports 4, which carries the cathode of the tube 3. These supports, which are electrically conductive, are connected to lead wires 5 which are fused in the foot 2 through which current can be passed to the cathode 3 and heat it. The cathode or spigot

DK 158177 BDK 158177 B

5 ralen 3 omgives af en katodeskærm 6, som fortrinsvis er af jern eller nikkel. Skærmen 6 bæres af en i foden 2 indsmeltet stift 7 og er elektrisk isoleret fra katoden 3.The groove 3 is surrounded by a cathode screen 6 which is preferably of iron or nickel. The shield 6 is supported by a pin 7 fused to the foot 2 and is electrically insulated from the cathode 3.

5 Som det tydeligst fremgår af fig. 2a og 2b har katodeskærmen 6 form af et bæger, i hvis bund der er udformet en aflang åbning 8 til indføring af katoden 3 og dele af katodestøtterne 4. Katodeskærmens åbne ende er lukket af en glimmerskive 9, hvis tykkelse, som er stærkt 10 overdrevet i fig. 1, fortrinsvis andrager 0,10-0,15 mm.5 As can be seen most clearly in FIG. 2a and 2b, the cathode shield 6 is in the form of a beaker, the bottom of which has an elongated aperture 8 for insertion of the cathode 3 and portions of the cathode supports 4. The open end of the cathode shield is closed by a mica dial 9, the thickness of which is greatly exaggerated. in FIG. 1, preferably 0.10-0.15 mm.

Som det fremgår af fig. 3, er glimmerskiven 9 forsynet med et centralt hul 10 af fortrinsvis cirkulær form. For et normalt lysstofrør med rørdiameter 38 mm har hullet 10 er diameter på 10-12 mm. En mindre diameter formindsker 15 ganske vist sværtningen af rørvæggens indvendige side, men forøger samtidig startspændingen til uacceptable værdier, hvilket illustreres i fig. 4, som viser dels startspændingen U i volt, dels den relative sværtningsgrad S, som funktion af hullets diameter D^q i mm. Større 20 huldiametre sænker kun startspændingen ubetydeligt, men forøger rørvæggens sværtning betydeligt.As shown in FIG. 3, the mica dial 9 is provided with a central hole 10 of preferably circular shape. For a normal fluorescent lamp with tube diameter 38 mm, the hole 10 has a diameter of 10-12 mm. Although a smaller diameter 15 reduces the inside of the inner wall of the pipe wall, it also increases the starting voltage to unacceptable values, as illustrated in FIG. 4, which shows partly the starting voltage U in volts and partly the relative degree of vibration S, as a function of the diameter of the hole D ^ q in mm. Larger 20 hole diameters only lower the starting voltage slightly, but significantly increase the tubing wall hardening.

Det er vigtigt, at hulskiven 9 er af glimmer eller andet elektrisk isolerende, ikke gasafgivende materiale, eftersom ionbombardementet, hvis skiven var af f.eks.It is important that the hollow disk 9 is of mica or other electrically insulating, non-gas-emitting material, since the ion bombardment, if the disk was of e.g.

25 jern, skulle frembringe yderligere forstøvet materiale og dermed forøge sværtning af rørvæggen.25 iron, should produce additional atomized material, thereby increasing the wall of the tubing.

Med den ovenfor beskrevne udformning opnås endnu en fordel, nemlig i de halvperioder, hvori spiralen 3 fungerer som anode. Ved at udladningen skal passere 30 gennem den med hul forsynede glimmerskive 9 opnås en kraftig forøgelse af elektrontætheden i nærheden af den som anode fungerende spiral 3, hvorved anodefaldet reduceres, hvilket medfører sænket katodetemperatur og dermed mindsket fordampningshastighed.With the design described above, another advantage is obtained, namely during the half-periods in which the coil 3 acts as an anode. By passing the discharge 30 through the hollow mica 9, a sharp increase in the electron density in the vicinity of the anode coil 3 is obtained, thereby reducing the anode decay, which results in lower cathode temperature and thus reduced evaporation rate.

DK 158177 BDK 158177 B

66

Som nævnt i indledningen er det ønskeligt, at røret evakueres ved hjælp af en pumpeproces, ved hvilken vakuumpumpning kombineres med "intern pumpning" 5 tilvejebragt ved, at kviksølvdråber rammer det varme rør.As mentioned in the introduction, it is desirable that the tube be evacuated by a pumping process in which vacuum pumping is combined with "internal pumping" provided by mercury droplets hitting the hot tube.

En sådan dråbe er vist skematisk ved 11 i fig. 1. Når dråben rammer det opvarmede lysstofrør, væggen 1 og/eller foden 2, fordampes den eksplosionsagtigt, og der derved dannede kviksølvdamp strømmer hurtigt opad. Pilene 12 og 10 13 angiver skematisk de i denne sammenhæng væsentligste strømningsbaner for dampen. For at den kuldioxid, der befinder sig ved emissionslaget, og som opstår ved omdannelse af carbonater til oxider, effektivt skal kunne bortledes, ligesom for at den interne pumpning skal blive 15 effektiv, skal den kviksølvdamp, som følger den med pilen 13 markerede vej, ikke hindres af det af katodeskærmen 6 og glimmerskiven 9 dannede aggregat. Af denne årsag bør huldiameteren af glimmerskiven 9 overstige 10 mm for lysstofrør med rørdiameter 38 mm, hvorimod bundåbningen 8 20 i katodeskærmen 6 skal have et areal, som mindst er lige så stort som glimmerskivens hulareal, men fortrinsvis større.Such a drop is shown schematically at 11 in FIG. 1. When the drop hits the heated fluorescent tube, wall 1 and / or foot 2, it evaporates explosively, thereby producing mercury vapor rapidly upward. Arrows 12 and 10 13 schematically indicate the most important flow paths for the steam in this context. In order for the carbon dioxide present at the emission layer, which arises from the conversion of carbonates to oxides, to be effectively dissipated, just as for the internal pumping to become effective, the mercury vapor that follows the path marked with arrow 13, is not obstructed by the aggregate formed by the cathode shield 6 and the mica dial 9. For this reason, the hole diameter of the mica dial 9 should exceed 10 mm for fluorescent lamps with tube diameter 38 mm, whereas the bottom aperture 8 20 of the cathode screen 6 should have an area that is at least as large as the muzzle plate cavity, but preferably larger.

Den ovenfor beskrevne udformning af katodeenheden gør det muligt med bibeholdelse af normal brændetid på 3 timer pr.The above-described design of the cathode unit makes it possible to maintain a normal burning time of 3 hours per hour.

25 indkobling at opnå en levetid, som er 3-4 gange længere end ved konventionelle lysstofrør.25 to achieve a lifetime of 3-4 times longer than conventional fluorescent lamps.

Claims (3)

1. Katodeenhed for lysstof rør med en i forhold til rørets væg (1) fast anbragt katode (3), som omgives af en 5 med katoden elektrisk ikke forbundet katodeskærm (6) af elektrisk ledende materiale, hvilken katodeskærm (6) mod rørets udladningsrum er delvis lukket af en med et centralt hul (10) forsynet skive (9) af elektrisk isolerende materiale, kendetegnet ved, 10 a) at katodeskærmen (6) udgøres af et bægerformet hylster, i hvis bund der er udformet en åbning (8) til katodens (3) indføring i bægerets indre, b) at hullet (10) i skiven (9) har en diameter, som er valgt så lille som muligt, fortrinsvis 25-32% af 15 rørets diameter, under samtidig hensyntagen til, at rørets startspænding ikke må overskride en forudbestemt værdi, samt c) at åbningen i katodeskærmens (6) bund har et areal, som er mindst lige så stort som hullets (10) areal.A fluorescent tube cathode unit having a cathode (3) fixed relative to the wall (1) of the tube, which is surrounded by a cathode shield (6) of electrically conductive material surrounded by the cathode (6) of said cathode shield (6) against the discharge chamber of the tube is partially closed by a disc (9) provided with a central hole (10) of electrically insulating material, characterized in, 10 a) that the cathode shield (6) is formed by a cup-shaped casing, the bottom of which is formed an opening (8) for the insertion of the cathode (3) into the interior of the beaker, b) the hole (10) in the disc (9) has a diameter selected as small as possible, preferably 25-32% of the diameter of the tube, while also taking into account that the starting voltage of the pipe must not exceed a predetermined value; and (c) the opening in the bottom of the cathode screen (6) has an area which is at least as large as the area of the hole (10). 2. Katodeenhed ifølge krav 1, kendetegnet ved, at katodeskærmen (6) består af jern eller nikkel.Cathode unit according to claim 1, characterized in that the cathode shield (6) consists of iron or nickel. 3. Katodeenhed ifølge krav 1 eller 2, kendetegnet ved, at skiven (9) består af glimmer.Cathode unit according to claim 1 or 2, characterized in that the disk (9) consists of mica.
DK296081A 1979-11-07 1981-07-03 CATHETIC UNIT FOR LIGHT SEEDS DK158177C (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
SE7909213A SE435332B (en) 1979-11-07 1979-11-07 CATHOD UNIT OF LIGHT
SE7909213 1979-11-07
PCT/SE1980/000279 WO1981001344A1 (en) 1979-11-07 1980-11-06 Cathode unit for fluorescent tube
SE8000279 1980-11-06

Publications (3)

Publication Number Publication Date
DK296081A DK296081A (en) 1981-07-03
DK158177B true DK158177B (en) 1990-04-02
DK158177C DK158177C (en) 1990-09-03

Family

ID=20339270

Family Applications (1)

Application Number Title Priority Date Filing Date
DK296081A DK158177C (en) 1979-11-07 1981-07-03 CATHETIC UNIT FOR LIGHT SEEDS

Country Status (25)

Country Link
JP (1) JPH0250582B2 (en)
AT (1) AT377385B (en)
AU (1) AU543221B2 (en)
BE (1) BE886030A (en)
BR (1) BR8008906A (en)
CA (1) CA1150340A (en)
CH (1) CH649653A5 (en)
CS (1) CS250206B2 (en)
DE (2) DE8029380U1 (en)
DK (1) DK158177C (en)
ES (1) ES263202Y (en)
FI (1) FI68928C (en)
FR (1) FR2473785A1 (en)
GB (1) GB2077033B (en)
HU (1) HU181318B (en)
IT (1) IT1134172B (en)
MX (1) MX147322A (en)
NO (1) NO153946C (en)
PL (1) PL132221B1 (en)
PT (1) PT72017B (en)
RO (1) RO81624B (en)
SE (1) SE435332B (en)
SU (1) SU1218936A3 (en)
WO (1) WO1981001344A1 (en)
YU (1) YU39696B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE138497T1 (en) * 1992-02-13 1996-06-15 Luminova Ab CATHODE SHIELD FOR GAS DISCHARGE LAMPS
US6384534B1 (en) 1999-12-17 2002-05-07 General Electric Company Electrode material for fluorescent lamps
SE515637C2 (en) 2000-01-24 2001-09-17 Auralight Ab Security structure for fluorescent lamps
US6741023B2 (en) 2001-07-10 2004-05-25 Light Sources, Inc. Fluorescent tanning lamp with improved service life
SE524397C2 (en) * 2002-04-11 2004-08-03 Auralight Int Ab Cathode unit for fluorescent lamps and method for manufacturing fluorescent lamps
US6812639B2 (en) * 2002-09-13 2004-11-02 Light Sources, Inc. Germicidal lamp with end of life arc quenching device
US6809468B1 (en) 2002-12-11 2004-10-26 Light Sources, Inc. Cathode with disintegration shield in a gas discharge lamp
DE10334175B4 (en) * 2003-07-26 2006-09-21 Dei-Anang, Kwesi, Priv.-Doz. Dr.med. Respirator
JP2008204856A (en) * 2007-02-21 2008-09-04 Nec Lighting Ltd Thermoionic cathode fluorescent lamp
RU2505744C2 (en) * 2012-03-06 2014-01-27 Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства Российской академии сельскохозяйственных наук (ГНУ ВИЭСХ Россельхозакадемии) Electric lighting system (versions)
JP6691317B2 (en) * 2015-10-06 2020-04-28 ウシオ電機株式会社 Short arc type discharge lamp

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR769133A (en) * 1933-02-17 1934-08-20 Quarzlampen Gmbh Gas or vapor discharge tubes with one or more electrodes brought to high temperature during operation
US2238277A (en) * 1940-02-09 1941-04-15 Miller Maurice Combination tube closure and electrode for neon tubes
US2725497A (en) * 1951-04-25 1955-11-29 Westinghouse Electric Corp Floating grids for fluorescent lamps
DE955341C (en) * 1952-01-13 1957-01-03 Physikalisch Tech Werkstaetten Gas discharge tubes with a screen enclosing the cathode in a pot-shaped manner
FR1110434A (en) * 1954-08-31 1956-02-13 Hyperion Sa Improvements to the electrodes of the discharge tubes
US2917650A (en) * 1955-06-29 1959-12-15 Hyperion Sa Electrode for discharge tubes
GB841343A (en) * 1957-10-09 1960-07-13 Philips Electrical Ind Ltd Improvements in or relating to low-pressure mercury vapour discharge tubes
FR1271505A (en) * 1959-05-11 1961-09-15 Lampes Sa Low pressure discharge device
US3121184A (en) * 1960-12-30 1964-02-11 Gen Electric Discharge lamp with cathode shields
NL6514352A (en) * 1965-11-05 1967-05-08
US3390297A (en) * 1966-07-01 1968-06-25 Perkin Elmer Corp Shield for hollow cathode lamps
US3430359A (en) * 1967-02-09 1969-03-04 Roll O Sheets Apparatus with heat conductive belt
GB1219705A (en) * 1968-05-10 1971-01-20 Hitachi Ltd Light source lamp for atomic light absorption analysis

Also Published As

Publication number Publication date
JPH0250582B2 (en) 1990-11-02
FI68928B (en) 1985-07-31
CS250206B2 (en) 1987-04-16
RO81624A (en) 1984-05-12
YU283980A (en) 1983-06-30
NO153946B (en) 1986-03-10
FI812128L (en) 1981-07-06
FR2473785B1 (en) 1985-03-08
GB2077033A (en) 1981-12-09
BR8008906A (en) 1981-08-25
PL132221B1 (en) 1985-02-28
NO812294L (en) 1981-07-06
PL227738A1 (en) 1981-08-21
IT8025764A0 (en) 1980-11-04
ES263202Y (en) 1985-12-16
NO153946C (en) 1986-06-18
YU39696B (en) 1985-03-20
FR2473785A1 (en) 1981-07-17
GB2077033B (en) 1984-07-04
HU181318B (en) 1983-07-28
JPS56501507A (en) 1981-10-15
ATA547480A (en) 1984-07-15
IT1134172B (en) 1986-07-31
CA1150340A (en) 1983-07-19
DK296081A (en) 1981-07-03
MX147322A (en) 1982-11-10
AU6570480A (en) 1981-05-22
DE8029380U1 (en) 1982-07-15
DK158177C (en) 1990-09-03
AU543221B2 (en) 1985-04-04
DE3041548A1 (en) 1981-05-21
PT72017B (en) 1981-12-17
CH649653A5 (en) 1985-05-31
DE3041548C2 (en) 1986-07-24
ES263202U (en) 1982-12-01
PT72017A (en) 1980-12-01
RO81624B (en) 1984-08-25
AT377385B (en) 1985-03-11
SE7909213L (en) 1981-05-08
WO1981001344A1 (en) 1981-05-14
SE435332B (en) 1984-09-17
SU1218936A3 (en) 1986-03-15
FI68928C (en) 1985-11-11
BE886030A (en) 1981-03-02

Similar Documents

Publication Publication Date Title
DK158177B (en) CATHETIC UNIT FOR LIGHT SEEDS
US2008066A (en) Gas or vapor discharge tube
US2082268A (en) Getter cartridge
US2167852A (en) Electron discharge device
US2731581A (en) Electrode for gaseous discharge lamps
US3010046A (en) Cathode structure
US2122932A (en) Gaseous discharge tube
US2123686A (en) Tubular cathode for electron discharge devices
KR860000407B1 (en) Cathode unit for fluorescent lamps
US2189636A (en) Long life cathode for electron tubes
US2277876A (en) Electric lamp
US2319912A (en) Electrical discharge device
US1994306A (en) Gaseous electric discharge device
US2039772A (en) Electric radiation device
US2027241A (en) Thermionic discharge device
US2148017A (en) Electrical discharge device
US1967513A (en) Electronic discharge tube
US1246118A (en) Incandescent lamp.
US2699514A (en) Fluorescent lamp
US1949545A (en) Mercury arc
US2211597A (en) Electric incandescent lamp
US3219867A (en) Cathodic glow discharge lamp
US2108589A (en) Oxide cathode more particularly for a gas-filled discharge tube
NL8020421A (en) CATHODE UNIT FOR A FLUORESCENT TUBE.
SU231425A1 (en) GAS-FILLED DEVICE WITH BODY OF HEAT