US2123686A - Tubular cathode for electron discharge devices - Google Patents

Tubular cathode for electron discharge devices Download PDF

Info

Publication number
US2123686A
US2123686A US67006A US6700636A US2123686A US 2123686 A US2123686 A US 2123686A US 67006 A US67006 A US 67006A US 6700636 A US6700636 A US 6700636A US 2123686 A US2123686 A US 2123686A
Authority
US
United States
Prior art keywords
tube
cathode
nickel
tubing
electron discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US67006A
Inventor
John A Spencer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metals and Controls Corp
Original Assignee
Metals and Controls Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metals and Controls Corp filed Critical Metals and Controls Corp
Priority to US67006A priority Critical patent/US2123686A/en
Application granted granted Critical
Publication of US2123686A publication Critical patent/US2123686A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/13Solid thermionic cathodes
    • H01J1/20Cathodes heated indirectly by an electric current; Cathodes heated by electron or ion bombardment
    • H01J1/26Supports for the emissive material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/9265Special properties
    • Y10S428/929Electrical contact feature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/9335Product by special process
    • Y10S428/934Electrical process
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/9335Product by special process
    • Y10S428/937Sprayed metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/1266O, S, or organic compound in metal component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/1275Next to Group VIII or IB metal-base component

Definitions

  • the invention accordingly comprises the elements and combinations of elements, features of construction, and arrangements of parts which will be exemplied in the structures hereinafter described, and the scope of the application of which will be indicated in the following claim.
  • Fig. l is a side elevation, partly broken away, of a typical electron emission device
  • Fig. 2 is an enlarged side elevation of a tubular cathode
  • Fig. 3 is a vertical section of the cathode of Fig. 2, taken substantially along line 3--3 of Fig. 2;
  • Fig. 4 is a cross-section taken substantially on line 4-4 of Figures 2 and 3; and,
  • Fig. 5 is a greatly enlarged fragmentary crosssection of a tube.
  • an electron emission device of substantially standard construction comprises an envelope I, which, according to present practice, may be either glass or a metal, an insulating base 2, and connecting prongs 3 eX- tending from the base 2.
  • a stem of insulating material 4 usually glass, is rigidly mounted inside the envelope I, and serves to support the elements of the device.
  • Fig. l shows a socalled three element device, the three elements comprising a cathode 5, a grid Ii, and a plate or anode 1.
  • a heater I is also provided, but since emitting electrons. .described in greater detail hereinafter, which (Cl. Z50-27.5)
  • the cathode is the portion of the device which is provided for the purpose of It comprises a tube 8, to be has a coating 9 provided on the outside thereof.
  • the coating 9, as is known in the art, comprises substances having the characteristics of emitting large quantities of electrons when suitably heated. A mixture of barium and strontium oxides is frequently employed for this purpose.
  • the coating 9 In order to emit electrons, the coating 9 must be heated.
  • a heater IB (see Fig. 3).
  • the particular heater IE) shown in Fig. 3 is of the twisted hairpin type, which is well-known in the art.
  • the heater I0 is twisted about a refractory rod II, which is enlarged at one end into a circular plug I2 fitting closely into the tube 8.
  • the plug portion I2 is provided with diametrically opposite slots I3 in the bottom of which fit the ends I4 of the heater I0.
  • the closed or hairpin end of the heater I0, indicated by numeral I5 is received in a flat slot I6 formed in a refractory material plug I'I that fits tightly into the upper end of the tube 8.
  • the plugs IZ and I1 are held in position in the tube 8 by indentations I8 (see Figures 2 and 4) in the tube 8 whichl fit into corresponding depressions !9 in said plugs I2 and I'I.
  • the heater III is electrically insulated from the tube 3.
  • a metal strip or tab 26 is connected to the bottom end of said tube 8.
  • the tube 8 has usually been made of nickel. I have discovered that if the tube 3, instead of being made of nickel, is made of nickel with an exterior surface impregnation of aluminum, then the electron emissivity of the coating 9 is considerablyV enhanced.
  • This cathode tubing so treated with aluminum which will hereinafter be termed aluminized tubing, may be prepared in the following manner:
  • a length of stock nickel tubing is first procured. This is usually of a considerably heavier nature than the ultimate cathode tubing, both as to diameter and as to wall thickness.
  • the outer surface of this nickel tubing is thoroughly cleaned, and metallic aluminum is then sprayed, by methods known in the metal coating art, onto this cleaned surface. Thereafter, the large piece of coating nickel tubing is swaged or drawn down in size until the cathode tubing dimensions are achieved.
  • metallic aluminum is sprayed to a thickness of about 0.005 inch, after which the tube is swaged.
  • the swaging tends to drive the aluminum well into the roughened texture of the nickel surface.
  • the swaged piece is then preferably heated in a hydrogen atmosphere furnace to about 760 to 870 C., at which temperature it is believed that some of the aluminum coating infuses into the nickel, the former probably filling the pores of the latter.
  • the heated swaged tube is then subjected to a series of drawing operations, according to ordinary tubing manufacturing practice, which reduces the diameter and wall thickness of the large tube to dimensions suitable ⁇ for cathodes of the class concerned. From this stock the individual cathodes may be cut and coated and manufactured into electron discharge devices by methods well-known in the electron discharge device art.
  • Fig. 5 is a greatly enlarged cross-section of an aluminized surface tube, and is believed to correspond to the structure of the tubing, the manufacture of which has just been described.
  • indicates the pure nickel backing of the tube.
  • Numeral 22 indicates the sprayed aluminum coating on the surface.
  • Numeral 23 indicates a region of infusion or impregnation of the two metals 2
  • the spraying procedure has been determined to be the preferred one for providing the aluminum coating on the nickel tubing
  • other procedure well-known in the art may likewise be used.
  • the aluminum may be electroplated onto the nickel tubing base.
  • aluminum may be mechanically plated, by means of welding or soldering, on the nickel base, or put on by the calorizing process. All of these methods are considered to be comprehended Within the scope of the invention.
  • the present invention is most particularly concerned with the structure and composition of the cathode tube, and is not concerned with the particular structure of the electron discharge device in which the cathode tube is used. Nor is it important, for purposes of the present invention, how the cathode heater is constructed and mounted in the cathode tube.
  • a tubular cathode In an electron discharge device, a tubular cathode, a coating of a substance having a high electron emissivity on the outer surface of said cathode, and a heater within said cathode, said cathode comprising a nickel tube having a coating of aluminum less than .005 inch thick on its working surface, said emissive coating surmounting said coating of aluminum.

Landscapes

  • Electrodes For Cathode-Ray Tubes (AREA)

Description

July 12, 1938. J. A. SPENCER TUBULAR CTHODE FOR ELECTRON DISCHARGE DEVICES Filed March 4, 1936 FIGZ.
FIGB. l
Patented July 12, 1938 UNITED STATES PATENT OFFICE TUBULAR CATHODE FOR ELECTRON DIS- CHARGE DEVICES John A. Spencer, Newtonville, Mass., assigner, by
mesne assignments, to Metals & Controls Corporation, Attleboro, Mass., a corporation of Massachusetts Application March 4, 1936, Serial No. 67,006
1 Claim.
lar type forV electron discharge devices which is so constructed that its electron emissivity is improved over a considerable length of time; and the provision of a tubular cathode of the class described which may be economically manufactured from readily obtainable materials. Other objects will be in part obvious and in part pointed 'out hereinafter.
The invention accordingly comprises the elements and combinations of elements, features of construction, and arrangements of parts which will be exemplied in the structures hereinafter described, and the scope of the application of which will be indicated in the following claim.
In the accompanying drawing, in which is illustrated one of various possible embodiments of the invention,
Fig. l is a side elevation, partly broken away, of a typical electron emission device;
Fig. 2 is an enlarged side elevation of a tubular cathode;
Fig. 3 is a vertical section of the cathode of Fig. 2, taken substantially along line 3--3 of Fig. 2;
Fig. 4 is a cross-section taken substantially on line 4-4 of Figures 2 and 3; and,
Fig. 5 is a greatly enlarged fragmentary crosssection of a tube.
Similar reference characters indicate corresponding parts throughout the several views of the drawing. 1
Referring now more particularly to Fig. l, there is shown an electron emission device of substantially standard construction. This` comprises an envelope I, which, according to present practice, may be either glass or a metal, an insulating base 2, and connecting prongs 3 eX- tending from the base 2. A stem of insulating material 4, usually glass, is rigidly mounted inside the envelope I, and serves to support the elements of the device.
The number of these so-called elements depend upon the use to which the device is to be put, and varies widely in accordance with present engineering practice. Fig. l shows a socalled three element device, the three elements comprising a cathode 5, a grid Ii, and a plate or anode 1. A heater I is also provided, but since emitting electrons. .described in greater detail hereinafter, which (Cl. Z50-27.5)
it has an indirect function it is not ordinarily considered as an element, These elements are supported in a manner well-known in the art upon the stem 4, and the specic details of their mounting need not be described herein.y
The present invention is concerned more particularly with the construction of the cathode 5. Functionally, the cathode is the portion of the device which is provided for the purpose of It comprises a tube 8, to be has a coating 9 provided on the outside thereof. The coating 9, as is known in the art, comprises substances having the characteristics of emitting large quantities of electrons when suitably heated. A mixture of barium and strontium oxides is frequently employed for this purpose.
In order to emit electrons, the coating 9 must be heated. For this purpose there is mounted centrally in the tube 8 a heater IB (see Fig. 3). The particular heater IE) shown in Fig. 3 is of the twisted hairpin type, which is well-known in the art. The heater I0 is twisted about a refractory rod II, which is enlarged at one end into a circular plug I2 fitting closely into the tube 8. The plug portion I2 is provided with diametrically opposite slots I3 in the bottom of which fit the ends I4 of the heater I0. The closed or hairpin end of the heater I0, indicated by numeral I5, is received in a flat slot I6 formed in a refractory material plug I'I that fits tightly into the upper end of the tube 8.
The plugs IZ and I1 are held in position in the tube 8 by indentations I8 (see Figures 2 and 4) in the tube 8 whichl fit into corresponding depressions !9 in said plugs I2 and I'I.
The heater III, it will be seen, is electrically insulated from the tube 3. In order to connect the tube 8 into the circuit, a metal strip or tab 26 (see Figures l and 2) is connected to the bottom end of said tube 8.
The structure as thus far described is known in the art, and no claim is made to it, except in the following connection:
In prior practice, the tube 8 has usually been made of nickel. I have discovered that if the tube 3, instead of being made of nickel, is made of nickel with an exterior surface impregnation of aluminum, then the electron emissivity of the coating 9 is considerablyV enhanced. This cathode tubing so treated with aluminum, which will hereinafter be termed aluminized tubing, may be prepared in the following manner:
A length of stock nickel tubing is first procured. This is usually of a considerably heavier nature than the ultimate cathode tubing, both as to diameter and as to wall thickness. The outer surface of this nickel tubing is thoroughly cleaned, and metallic aluminum is then sprayed, by methods known in the metal coating art, onto this cleaned surface. Thereafter, the large piece of coating nickel tubing is swaged or drawn down in size until the cathode tubing dimensions are achieved. Following these general principles, the details of the invention have been carried out successfully in the following manner:
A piece of commercially pure nickel tubing about 30 inches long and one inch in outside diameter, which has a wall thickness of about 0.065 inch, is sand blasted in order to clean it and to provide a roughened outersurface. Onto this roughened surface metallic aluminum is sprayed to a thickness of about 0.005 inch, after which the tube is swaged. The swaging tends to drive the aluminum well into the roughened texture of the nickel surface. The swaged piece is then preferably heated in a hydrogen atmosphere furnace to about 760 to 870 C., at which temperature it is believed that some of the aluminum coating infuses into the nickel, the former probably filling the pores of the latter. The heated swaged tube is then subjected to a series of drawing operations, according to ordinary tubing manufacturing practice, which reduces the diameter and wall thickness of the large tube to dimensions suitable` for cathodes of the class concerned. From this stock the individual cathodes may be cut and coated and manufactured into electron discharge devices by methods well-known in the electron discharge device art.
Otherwise identical lelectron discharge devices, one of which has the aluminized nickel cathode tube of the present invention, while the other has ordinary nickel tubing, show electron emissivity, for example, of 110 milliamperes` for the aluminized tubing, and to 85 milliamperes on the ordinary nickel tubing.
Fig. 5 is a greatly enlarged cross-section of an aluminized surface tube, and is believed to correspond to the structure of the tubing, the manufacture of which has just been described. Numeral 2| indicates the pure nickel backing of the tube. Numeral 22 indicates the sprayed aluminum coating on the surface. Numeral 23 indicates a region of infusion or impregnation of the two metals 2| and 22.
If the heating step in the hydrogen furnace is omitted, tubing is obtained which still has improved electron emissivity characteristics. In this event, the infusion of the nickel and aluminum is not believed to take place, at least to as great an extent.
While the spraying procedure has been determined to be the preferred one for providing the aluminum coating on the nickel tubing, other procedure well-known in the art may likewise be used. For example, the aluminum may be electroplated onto the nickel tubing base. Or, aluminum may be mechanically plated, by means of welding or soldering, on the nickel base, or put on by the calorizing process. All of these methods are considered to be comprehended Within the scope of the invention.
From the foregoing it will be seen that the present invention is most particularly concerned with the structure and composition of the cathode tube, and is not concerned with the particular structure of the electron discharge device in which the cathode tube is used. Nor is it important, for purposes of the present invention, how the cathode heater is constructed and mounted in the cathode tube.
In view of the above, it will be seen that the several objects of the invention are achieved and other advantageous results attained.
As many changes could be made in carrying out the above constructions without departing from the scope of the invention, it is intended that all matter contained in the above description or shown in the accompanying drawing shall be interpreted as illustrative and not in a limiting sense.
I claim:
In an electron discharge device, a tubular cathode, a coating of a substance having a high electron emissivity on the outer surface of said cathode, and a heater within said cathode, said cathode comprising a nickel tube having a coating of aluminum less than .005 inch thick on its working surface, said emissive coating surmounting said coating of aluminum.
JOHN A. SPENCER.`
US67006A 1936-03-04 1936-03-04 Tubular cathode for electron discharge devices Expired - Lifetime US2123686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US67006A US2123686A (en) 1936-03-04 1936-03-04 Tubular cathode for electron discharge devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US67006A US2123686A (en) 1936-03-04 1936-03-04 Tubular cathode for electron discharge devices

Publications (1)

Publication Number Publication Date
US2123686A true US2123686A (en) 1938-07-12

Family

ID=22073124

Family Applications (1)

Application Number Title Priority Date Filing Date
US67006A Expired - Lifetime US2123686A (en) 1936-03-04 1936-03-04 Tubular cathode for electron discharge devices

Country Status (1)

Country Link
US (1) US2123686A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2843781A (en) * 1954-11-01 1958-07-15 Sylvania Electric Prod Sublimation reducing cathode connector
US2857543A (en) * 1956-06-06 1958-10-21 Walter H Kohl Cathode structure for indirectly heated narrow elongated emitting surfaces
US2872611A (en) * 1953-11-16 1959-02-03 Sylvania Electric Prod Cathode
US2878410A (en) * 1954-11-09 1959-03-17 Gen Electric Electronic tube structure
US3141744A (en) * 1961-06-19 1964-07-21 Dwight E Couch Wear-resistant nickel-aluminum coatings

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2872611A (en) * 1953-11-16 1959-02-03 Sylvania Electric Prod Cathode
US2843781A (en) * 1954-11-01 1958-07-15 Sylvania Electric Prod Sublimation reducing cathode connector
US2878410A (en) * 1954-11-09 1959-03-17 Gen Electric Electronic tube structure
US2857543A (en) * 1956-06-06 1958-10-21 Walter H Kohl Cathode structure for indirectly heated narrow elongated emitting surfaces
US3141744A (en) * 1961-06-19 1964-07-21 Dwight E Couch Wear-resistant nickel-aluminum coatings

Similar Documents

Publication Publication Date Title
US2075910A (en) Thermionic cathode
US2459841A (en) Cathode
US2263164A (en) Anode
US2501089A (en) Thermionic electron emitter
US2888592A (en) Cathode structure
US2123686A (en) Tubular cathode for electron discharge devices
US2847605A (en) Electrode for fluorescent lamps
US2246176A (en) Thermionic discharge device
US2864028A (en) Thermionic dispenser cathode
US2227017A (en) Hot cathode for cathode ray tubes
US2210761A (en) Cathode
US1969496A (en) Electric discharge device
US2680208A (en) Electron discharge device
US2014539A (en) Electron tube
US2121638A (en) Electric discharge device
US2589521A (en) Heater
US2456649A (en) Cathode
US2682619A (en) Cold cathode gas discharge tube
US1955537A (en) Electron emitting cathode
US1975870A (en) Indirectly heated cathode
US2061254A (en) Electric discharge device
US2054221A (en) Electric discharge tube or the like
US3477110A (en) Method of making electron discharge device cathodes
US1980675A (en) Method and means for preventing heater-cathode leakage in a radio tube
US2273762A (en) Incandescible cathode