DK153796B - PROCEDURE FOR MANUFACTURING A POLYURETHING GLOVE. - Google Patents

PROCEDURE FOR MANUFACTURING A POLYURETHING GLOVE. Download PDF

Info

Publication number
DK153796B
DK153796B DK064481AA DK64481A DK153796B DK 153796 B DK153796 B DK 153796B DK 064481A A DK064481A A DK 064481AA DK 64481 A DK64481 A DK 64481A DK 153796 B DK153796 B DK 153796B
Authority
DK
Denmark
Prior art keywords
polyol
isocyanate
polyether
olamine
polyurethane
Prior art date
Application number
DK064481AA
Other languages
Danish (da)
Other versions
DK153796C (en
DK64481A (en
Inventor
Jeffrey Philip Rowlands
Original Assignee
Interchem Int Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Interchem Int Sa filed Critical Interchem Int Sa
Publication of DK64481A publication Critical patent/DK64481A/en
Publication of DK153796B publication Critical patent/DK153796B/en
Application granted granted Critical
Publication of DK153796C publication Critical patent/DK153796C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/409Dispersions of polymers of C08G in organic compounds having active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0838Manufacture of polymers in the presence of non-reactive compounds
    • C08G18/0842Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents
    • C08G18/0847Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of solvents for the polymers
    • C08G18/0852Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of solvents for the polymers the solvents being organic
    • C08G18/0857Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of solvents for the polymers the solvents being organic the solvent being a polyol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0838Manufacture of polymers in the presence of non-reactive compounds
    • C08G18/0842Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents
    • C08G18/0861Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of a dispersing phase for the polymers or a phase dispersed in the polymers
    • C08G18/0871Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of a dispersing phase for the polymers or a phase dispersed in the polymers the dispersing or dispersed phase being organic
    • C08G18/0876Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of a dispersing phase for the polymers or a phase dispersed in the polymers the dispersing or dispersed phase being organic the dispersing or dispersed phase being a polyol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3271Hydroxyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Polyurethanes Or Polyureas (AREA)

Description

oisland

£DK 153796 B£ DK 153796 B

1 ^1 ^

Den foreliggende opfindelse angår en fremgangsmåde til fremstilling af et polyurethanskum.The present invention relates to a process for producing a polyurethane foam.

Polyurethanskum fremstilles ved at omsætte en polyol med et polyisocyanat i nærværelse af et drivmiddel og 5 sædvanligvis også ét eller flere tilsætningsstoffer.Polyurethane foam is prepared by reacting a polyol with a polyisocyanate in the presence of a propellant and usually also one or more additives.

Por at modificere de fysiske egenskaber af det fremkomne skum på ønsket måde er det kendt at anvende forud dannede, polymer-modificerede polyoler (dvs. polyoler, der indeholder yderligere polymert materiale) ved omsæt-10 ningen til dannelse af polyurethan, jf. f.eks. GB patentskrift nr. 1 453 258 og 1 571 183. Det er således kendt at anvende polyol-dispersioner af polyadditionsprodukter af polyisocyanat og primære aminer, sekundære aminer, hydraziner og hydrazider, og at anvende polyoler, hvori 15 der er disgergeret og hvormed der også er copolymeriseret polymert materiale fra in situ-polymerisation af ethyle-nisk umættede monomere.To modify the physical properties of the resulting foam in the desired manner, it is known to use pre-formed polymer-modified polyols (i.e., polyols containing additional polymeric material) in the reaction to form polyurethane, cf. eg. Thus, it is known to use polyol dispersions of polyaddition products of polyisocyanate and primary amines, secondary amines, hydrazines and hydrazides, and to use polyols wherein 15 are disjointed and with which is copolymerized polymeric material from in situ polymerization of ethylenically unsaturated monomers.

I US patentskrift nr 3 360 495 beskrives dannelsen af en dispersion ved omsætning af en olamin med isocyanat.U.S. Patent No. 3,360,495 describes the formation of a dispersion by reacting an olamine with isocyanate.

20 Det fremgår imidlertid, at dispersionen anvendes som et slutprodukt-overtræksmateriale. Der antydes intet om muligheden for at anvende dispersionen som udgangsmateriale ved fremstilling af et polyurethan.However, it appears that the dispersion is used as a final product coating material. There is no indication of the possibility of using the dispersion as a starting material in the manufacture of a polyurethane.

Den foreliggende opfindelse angår en fremgangsmåde 25 til fremstilling af et polyurethanskum, hvorved et polyisocyanat i nærværelse af tilsætningsstoffer valgt blandt drivmidler, katalysatorer, stabilisatorer, tværbindings-midler, brandbeskyttende midler, pigmenter og fyldstoffer omsættes med en polymermodificeret polyol, som er en sta-30 bil dispersion fremstillet ved polymerisation af en alka-nolamin med et organisk polyisocyanat i nærværelse af en polyetherpolyol, hvilken fremgangsmåde er ejendommelig ved, at alkanolaminen er en di- eller trialkanolamin, og at denne ved polymerisationen er anvendt i et molært forhold 35 til polyisocyanatet på 1,0:0,5 til 1,0:1,6, og at alkanolaminen i det mindste overvejende har reageret polyfunktioneltThe present invention relates to a process 25 for producing a polyurethane foam wherein a polyisocyanate is reacted in the presence of additives selected from propellants, catalysts, stabilizers, crosslinking agents, fire protection agents, pigments and fillers with a polymer modified polyol which is a solid. car dispersion prepared by polymerization of an alkanolamine with an organic polyisocyanate in the presence of a polyether polyol, the process being characterized in that the alkanolamine is a di- or trialkanolamine and is used in the polymerization in a molar ratio 35 to the polyisocyanate of 1.0: 0.5 to 1.0: 1.6, and that the alkanolamine has at least predominantly reacted polyfunctionally

OISLAND

22

DK 153796BDK 153796B

med isocyanatet til dannelse af et polyadditionsprodukt dispergeret i polyetherpolyolen, der i det mindste overvejende har fungeret som uomsat bærer ved dannelsen af den polymermodificerede polyol.with the isocyanate to form a polyaddition product dispersed in the polyether polyol which has at least predominantly acted as unreacted carrier in the formation of the polymer modified polyol.

5 Den foreliggende opfindelse er baseret på erkendel sen af, at polyurethaner med gode fysiske egenskaber kan fremstilles ved anvendelse af et udgangsmateriale, som består af et olamin/isocyanat-polyadditionsprodukt i en po-lyol-bærer. Polyadditionsproduktet giver en kompleks "fyld-10 stof"-effekt på det resulterende polyurethanmateriale.The present invention is based on the recognition that polyurethanes with good physical properties can be prepared using a starting material consisting of an olamine / isocyanate polyaddition product in a polyol support. The polyaddition product provides a complex "filler" effect on the resulting polyurethane material.

Polyadditionsprodukt/polyol-udgangsmaterialet betegnes en polymer-modificeret polyol, og andre polymer-modificerede polyoler er som nævnt allerede kendte. Imidlertid har kendte polymer-modificerede polyoler en anden struk-15 tur og har ikke den samme effekt på de fysiske egenskaber af den resulterende polyurethan som den polymer-modificerede polyol, der anvendes ved den foreliggende opfindelse. I denne henseende skal det forstås, at fremstillingen af polyurethan, især polyurethanskum, involverer udvælgelse af na-20 turen og andelene af forskellige "rutinemæssige" bestanddele til opnåelse af en ønsket afbalancering af egenskaber, f.eks. skum-eftergivelighed, styrke, brandegenskaber osv.The polyaddition product / polyol starting material is referred to as a polymer-modified polyol, and other polymer-modified polyols are already known as mentioned. However, known polymer-modified polyols have a different structure and do not have the same effect on the physical properties of the resulting polyurethane as the polymer-modified polyol used in the present invention. In this regard, it is to be understood that the production of polyurethane, especially polyurethane foam, involves selection of the nature and proportions of various "routine" ingredients to achieve a desired balancing of properties, e.g. foam-resilience, strength, fire properties, etc.

Denne udvælgelse kræver praktisk erfaring og kan nødvendiggøre kompromiser, idet det f.eks. kan være nødvendigt at 25 acceptere en let forringelse af én fysisk egenskab for at opnå et passende niveau af en anden egenskab.This selection requires hands-on experience and may necessitate compromises, as it may be necessary to accept a slight deterioration of one physical property to obtain an appropriate level of another property.

Graden af tilladelig variation af "rutinemæssige" bestanddele afhænger blandt andet af naturen af den polymer--modificerede polyol, der anvendes som udgangsmateriale.The degree of permissible variation of "routine" constituents depends, among other things, on the nature of the polymer-modified polyol used as the starting material.

30 Med den foreliggende opfindelse fremkommer der nye muligheder for polyurethanformulering og dermed andre muligheder for fysiske egenskaber som følge af anvendelsen af de nye polymer-modificerede polyoler. For eksempel har det vist sig at være muligt at opnå polyurethanskumstoffer med 35 høj eftergivelighed med formuleringer (som anført i eksemplerne i den foreliggende beskrivelse), som ikke let brænder.The present invention provides new possibilities for polyurethane formulation and thus other possibilities for physical properties as a result of the use of the new polymer-modified polyols. For example, it has been found possible to obtain high resilience polyurethane foams with formulations (as set forth in the Examples of the present specification) which do not burn easily.

. DK 153796 B. DK 153796 B

OISLAND

33

Den polymer-modificerede polyol, der anvendes ved opfindelsen, fremkommer ved omsætning af en olamin med et isocyanat. Den polymer-modificerede polyol består derfor i det væsentlige kun af 5 1. uomsat polyol-bærer, og 2. polyadditionsproduktet af isocyanat og olamin.The polymer-modified polyol used in the invention is obtained by reacting an olamine with an isocyanate. Therefore, the polymer-modified polyol consists essentially of only 5 1. unreacted polyol support, and the 2. polyaddition product of isocyanate and olamine.

Der er ingen væsentlig reaktion mellem isocyanatet og polyol-bæreren, og polyadditionsproduktet fremstilles ved reaktion mellem isocyanatet og oalminen uden væsentlig 10 medvirken af andre forbindelser.There is no significant reaction between the isocyanate and the polyol support, and the polyaddition product is prepared by reaction between the isocyanate and the oilmine without substantial involvement of other compounds.

At der i det væsentlige udelukkende sker reaktion mellem olaminen og isocyanatet skyldes, at der anvendes en reaktionsblanding, der i det væsentlige kun indeholder polyol, isocyanat og olamin, idet isocyanat/olamin-forholdet 15 vælges således, at det sikres, at den eneste reaktion der faktisk kan finde sted, er reaktionen mellem isocyanat og olamin. Forenklet udtrykt er der kun tilstrækkeligt med isocyanat til at reagere med den mere reaktive oalmin, og ikke med den mindre reaktive polyol.That reaction is essentially exclusively between the olamine and the isocyanate is due to the use of a reaction mixture containing essentially only polyol, isocyanate and olamine, with the isocyanate / olamine ratio being selected to ensure that the only reaction what can actually take place is the reaction between isocyanate and olamine. In simplified terms, only isocyanate is sufficient to react with the more reactive oilmine, and not with the less reactive polyol.

20 Som nævnt er polymer-modificerede polyoler kendte som polyurethan-udgangsmaterialer, men det særlige udgangsmateriale, der anvendes ved den foreliggende opfindelse, er hidtil ikke beskrevet.As mentioned, polymer-modified polyols are known as polyurethane starting materials, but the particular starting material used in the present invention has not been described so far.

Af GB-patentskrift nr. 1 571 183, der svarer til 25 DE offentliggørelsesskrift nr. 2 550 796, fremgår det, at teknikkens stade er, at ved fremstilling af en polymer-modificeret polyol til anvendelse ved polyurethanfremstilling er aminer og hydraziner og hydrazider de væsentlige forbindelser, som anvendes til omsætning med isocyanat, og olaminer 30 har hidtil kun været kendte til anvendelse som modificerende bestanddele eller til tilvejebringelse af funktionelle grupper til reaktion med andre væsentlige bestanddele (se side 2, linie 38-45, i GB patentskrift nr. 1 571 183). Der beskrives ikke anvendelse af en olamin i sig selv som eneste 35From GB Patent No. 1,571,183, which corresponds to 25 DE Publication No. 2,550,796, it is apparent that the state of the art is that in the preparation of a polymer-modified polyol for use in polyurethane production, amines and hydrazines and hydrazides are the essential compounds used for reaction with isocyanate and olamines 30 have heretofore been known only for use as modifying constituents or for providing functional groups for reaction with other essential constituents (see page 2, lines 38-45, in GB patent no. 1 571 183). The use of an olamine in itself is not described as the sole 35

DK 153796 BDK 153796 B

OISLAND

4 reaktant eller som hoved-reaktant. Ved den foreliggende opfindelse er den polymermodificerede polyol, der anvendes ved polyurethan-processen, i det væsentlige udelukkende et olamin/isocyanat-polyadditionsprodukt i en polyol-bærer, 5 medens olaminen i de kendte polymer-modificerede polyoler fremstillet med olamin kun bidraget delvis (i praksis kun med en lille del) til molekylstrukturen.4 reactant or as the main reactant. In the present invention, the polymer-modified polyol used in the polyurethane process is essentially exclusively an olamine / isocyanate polyaddition product in a polyol support, while the olamine in the known polymer-modified polyols made with olamine is only partially contributed (in practice with only a small part) to the molecular structure.

GB patentskrift nr. 1 453 258 er et yderligere eksempel på kendt teknik af den nævnte art. Heri beskrives 10 omsætning af en aminoforbindelse med et isocyanat, og der anføres en lang række af aminoforbindelser (på side 3).GB Patent No. 1,453,258 is a further example of prior art of the aforementioned kind. Herein is described 10 reaction of an amino compound with an isocyanate, and a large number of amino compounds are listed (on page 3).

Der beskrives imidlertid ikke anvendelse af alkanolamin som hoved-reaktant. Olaminer omtales kun som omsætningsmodificerede midler (side 4, linie 78-98). Dette er den 15 gængse anvendelse af olaminer, der er inkluderet som et subsidiært træk i beskrivelsen i den foreliggende ansøgning. I denne sammenhæng skal det forstås, at det er velkendt at anvende små mængder af olamin til at modificere forløbet af en hoved-reaktion (f.eks. en polyol/iso-20 cyanat-hovedreaktion). Ved denne kendte anvendelse af olaminer overskrider ækvivalentmængden af isocyanat langt mængden af olamin, hvorved isocyanatet både reagerer med olaminen og hovedbestanddelen til dannelse af et produkt, som er modificeret ved inkludering af olaminen. Ved den 25 foreliggende opfindelse blandes de tre bestanddele (polyol, isocyanat, olamin) således, at der i det væsentlige kun er nok isocyanat til at reagere med olaminen, og polyolen forbliver som uomsat bærer. Ved den efterfølgende poly-urethandannelsesreaktion ifølge opfindelsen tilsættes der 30 mere isocyanat til omsætning med polyolen, og små mængder af olaminer kan tilsættes som modificerende midler. Det er endog muligt at foretage en vis modifikation af den hovedsagelige isocyanat/olamin-polyadditionsreaktion ved tilstedeværelse af en lille mængde af den samme eller en an-35 den olamin, der f.eks. virker som kædeafsluttende middel.However, the use of alkanolamine as the main reactant is not described. Olamines are referred to only as turnover modified agents (page 4, lines 78-98). This is the 15 common use of olamines which is included as a subsidiary feature in the description of the present application. In this context, it is to be understood that it is well known to use small amounts of olamine to modify the course of a main reaction (e.g., a polyol / isocyanate main reaction). In this known use of olamines, the equivalent amount of isocyanate far exceeds the amount of olamine, whereby the isocyanate reacts with both the olamine and the main constituent to form a product modified by inclusion of the olamine. In the present invention, the three components (polyol, isocyanate, olamine) are mixed so that there is essentially only enough isocyanate to react with the olamine and the polyol remains as unreacted carrier. In the subsequent polyurethane formation reaction of the invention, 30 more isocyanate is added to react with the polyol and small amounts of olamines can be added as modifiers. It is even possible to make some modification of the major isocyanate / olamine polyaddition reaction in the presence of a small amount of the same or another olamine, e.g. acts as a chain terminating agent.

Omsætningerne ifølge opfindelsen kan illustreres skematisk på følgende måde:The reactions of the invention can be illustrated schematically as follows:

OISLAND

DK 153796 BDK 153796 B

55

Trin 1 - Fremstilling af indifferent fyldstof dispergeret i polyol: R1(NCO)x + R2(OH)(NH2) + R3 (OH) _^ 5 polyisocyanat olamin polyol -R1-NHC0-0-R2-NHC0-NH- + R3(OH) y urethan- urihstof- uomsat binding binding polyol polyurethan/polyurinstof-10 -polyadditionsproduktStep 1 - Preparation of inert filler dispersed in polyol: R1 (NCO) x + R2 (OH) (NH2) + R3 (OH) - polyisocyanate olamine polyol -R1-NHCO-O-R2-NHCO-NH- + R3 (OH) γ urethane-urea-unreacted bond binding polyol polyurethane / polyurea-10 polyaddition product

Trin 2 - Fremstilling af slutprodukt-polyurethan: 1 Ί R (Ν00)χ + polyadditi- + R (OH) + evt. opskum-_^ 15 onsprodukt ^ ningsmiddel -R^-NHC0-0-R3-NHC0-0- + indifferent fyldstof af poly- urethan/polyurinstof-polyad- ditionsprodukt 20Step 2 - Preparation of final product polyurethane: 1 Ί R (Ν00) χ + polyadditi- + R (OH) + possibly Foam -15 Liquid Producer -R 2 -NHCOO-R3-NHCOO- + inert filler of polyurethane / polyurea polyaddition product 20

Ved fremgangsmåden ifølge opfindelsen virker olami-nen som en polyfunktionel reaktant, og der dannes et polyadditionsprodukt med polyisocyanatet. Når olaminen er en sekundær amin, har den alkohol- og aminogrupper med aktive hydrogenatomer, der alle kan være reaktionsdyg- 25 tige over for isocyanatet. Når olaminen er en tertiær amin, har den flere alkoholgrupper med aktive hydrogenatomer, der alle kan være reaktionsdygtige over for isocyanatet. I hvert enkelt tilfælde er det muligt, at alle eller blot nogle af de aktive hydrogenatomer rent faktisk reagerer. Det antages, at polyadditionsreaktionen giver ligekædede og/eller forgrenede kæder ved kombination af isocyanat- og hydroxylgrup-per til dannelse af urethanbindinger (-NH-C0-0-) og ved kombination af isocyanat- og amingrupper til dannelse af urinstofbindinger (-NH-C0-NH- eller =N-C0~NH-) alt ef-35 ter omstændighederne. Det nævnte polyadditionsprodukt kan 6In the process of the invention, the olamine acts as a polyfunctional reactant and a polyaddition product is formed with the polyisocyanate. When the olamine is a secondary amine, it has alcohol and amino groups with active hydrogen atoms, all of which can be reactive to the isocyanate. When the olamine is a tertiary amine, it has several alcohol groups with active hydrogen atoms, all of which can be responsive to the isocyanate. In each case, it is possible that all or just some of the active hydrogen atoms are actually reacting. It is believed that the polyaddition reaction gives straight and / or branched chains by combining isocyanate and hydroxyl groups to form urethane bonds (-NH-COO-) and by combining isocyanate and amine groups to form urea bonds (-NH- C0-NH- or = N-C0-NH-) according to the circumstances. Said polyaddition product can 6

DK 153796BDK 153796B

o være blandet og/eller være kombineret kemisk (som ved copolymerisation) med polyolen, og det vil forstås, at betegnelsen "polymermodificeret polyol" således omfatter både fysiske og kemiske kombinationer og også blan-5 dinger deraf, selv om det antages, at fremgangsmåden i-følge opfindelsen for det meste giver en overvejende fysisk kombination. Sådanne fysiske kombinationer kan have form af en opløsning eller en stabil dispersion af poly-additionsproduktet i polyolen afhængigt af de anvendte 10 udgangsmaterialer. Især kan valget af olamin og muligvis også polyol afgøre den fysiske tilstand af den polymermodificerede polyol.o be mixed and / or be chemically combined (as by copolymerization) with the polyol, and it will be understood that the term "polymer modified polyol" thus includes both physical and chemical combinations and also mixtures thereof, although it is believed that the process In accordance with the invention, for the most part, it provides a predominantly physical combination. Such physical combinations may take the form of a solution or stable dispersion of the poly-addition product in the polyol depending on the starting materials used. In particular, the choice of olamine and possibly also polyol may determine the physical state of the polymer modified polyol.

Olaminen og isocyanatet blandes især i et molært forhold på ca. 1,0/0,5 til 1,0/1,5 i nærværelse af en poly-15 etherpolyol med en molekylvægt i området 200-10.000 (især 2800-7000), og det omsatte olamin og polyisocyanat udgør sammen 1-35 vægt-%, beregnet på vægten af polyolen.In particular, the olamine and isocyanate are mixed in a molar ratio of approx. 1.0 / 0.5 to 1.0 / 1.5 in the presence of a polyether ether polyol having a molecular weight in the range of 200-10,000 (especially 2800-7000), and the reacted olamine and polyisocyanate together constitute 1-35 weight -%, based on the weight of the polyol.

Enhver egnet di- eller trialkanolamin eller kombination deraf kan anvendes som olamin ifølge opfindelsen.Any suitable di- or trialkanolamine or combination thereof can be used as the olamine of the invention.

2o Det foretrækkes især at anvende triethanolamin som alkanol-amin.It is particularly preferred to use triethanolamine as alkanolamine.

Der kan anvendes ethvert egnet organisk polyisocyanat, herunder aliphatiske, cycloaliphatiske, araliphati-ske, aromatiske og heterocycliske polyisocyanater, som 25 de er kendte til anvendelse ved polyisocyanat/polyol-po-lyurethandannelsesreaktionen (se f.eks. britisk patentskrift nr. 1.453.258).Any suitable organic polyisocyanate, including aliphatic, cycloaliphatic, araliphatic, aromatic and heterocyclic polyisocyanates, as known for use in the polyisocyanate / polyol polyurethane formation reaction can be used (see, for example, British Patent No. 1,453,258 ).

Egnede polyisocyanater, der er let tilgængelige i handelen, er bl.a. 2,3- og 2,6-tolylendiisocyanater, blan-30 dinger af disse isomere (der generelt kaldes TDI), poly-phenylpolymethylenpolyisocyanater af den type, der fås ved kondensering af anilin med formaldehyd efterfulgt af en phosgenering (der generelt kaldes råt MDI), og polyisocyanater indeholdende carbodiimidgrupper, urethangrup-35 per, allophanatgrupper, isocyanatgrupper, urinstofgrupper eller biuretgrupper (der generelt kaldes polyisocyanater) .Suitable commercially available polyisocyanates include 2,3- and 2,6-tolylene diisocyanates, mixtures of these isomers (commonly called TDI), polyphenyl polymethylene polyisocyanates of the type obtained by condensing aniline with formaldehyde followed by a phosgenation (generally called crude MDI). ), and polyisocyanates containing carbodiimide groups, urethane groups, allophanate groups, isocyanate groups, urea groups or biuret groups (commonly called polyisocyanates).

- DK 153796 B- DK 153796 B

77

QQ

Der kan anvendes enhver egnet polyetherpolyol med en molekylvægt i området 200-10.000, som de er kendt til anvendelse ved polyisocyanat/polyol-polyurethandannelsesreak-tionen og som beskrevet i f.eks. britisk patentskrift nr.Any suitable polyether polyol having a molecular weight in the range of 200-10,000 as known for use in the polyisocyanate / polyol polyurethane formation reaction can be used and as described in e.g. British patent no.

5 1 482 213. Sådanne kendte polyetherpolyoler kan fås ved om sætning af alkylenoxider med forbindelser indeholdende aktivt hydrogen, idet molekylvægten af reaktionsproduktet afhænger af den omsatte mængde alkylenoxid.Such known polyether polyols can be obtained by reacting alkylene oxides with active hydrogen containing compounds, the molecular weight of the reaction product being dependent on the amount of alkylene oxide reacted.

Polyadditionsprodukterne, der anvendes ved frem-10 gangsmåden ifølge den foreliggende opfindelse, kan modificeres ved afpasset anvendelse af monofunktionelle isocyana-ter, aminer eller N-dialkylalkanolaminer. For eksempel kan gennemsnitsmolekylvægten af polyadditionsprodukterne reguleres ved inkorporering af monofunktionelle forbindelser af 15 denne type i andele på op til 25 mol-%, beregnet på olamin-komponenten.The polyaddition products used in the process of the present invention can be modified by suitable use of monofunctional isocyanates, amines or N-dialkylalkanolamines. For example, the average molecular weight of the polyaddition products can be regulated by incorporating monofunctional compounds of this type in proportions of up to 25 mole%, based on the olamine component.

Egnede monofunktionelle isocyanater omfatter methyl-, ethyl-, isopropyl-, isobutyl-, hexyl-, lauryl- og stearylisocyanat, cyclohexylisocyanat, phenylisocyanat, 20 tolylisocyanat, 4-chlorphenylisocyanat og diisopropylphe-nylisocyanat.Suitable monofunctional isocyanates include methyl, ethyl, isopropyl, isobutyl, hexyl, lauryl and stearyl isocyanate, cyclohexyl isocyanate, phenyl isocyanate, tolyl isocyanate, 4-chlorophenyl isocyanate and diisopropyl phenyl isocyanate.

Egnede monofunktionelle aminer omfatter dialkyl-aminer, såsom dimethylamin, diethylamin, dibutylamin, cyclo-hexylamin, og egnede N-dialkylalkanolaminer omfatter di-25 methylethanolamin og diethylethanolamin.Suitable monofunctional amines include dialkyl amines such as dimethylamine, diethylamine, dibutylamine, cyclohexylamine, and suitable N-dialkylalkanolamines include dimethylethanolamine and diethylethanolamine.

Det vil forstås, at ikke alle alkohol/amingrupper i olaminen, der anvendes ved polyadditionsreaktionen, under alle omstændigheder behøver at reagere med isocyanatet, og olaminen kan således i et vist omfang reagere monofunktio-30 nelt og derved i sig selv virke som kædebryder.It will be appreciated that not all the alcohol / amine groups in the olamine used in the polyaddition reaction have to react with the isocyanate in any case, and thus the olamine can react to a certain extent monofunctionally, thereby acting as a chain breaker itself.

Om Ønsket kan polyadditionsreaktionen katalyseres ved tilsætning af stoffer, såsom de, der konventionelt anvendes som katalysatorer ved polyisocyanat/polyol-polyure-thandannelsesreaktionen. Der kan således anvendes organo-35 metalliske forbindelser, såsom stannooctoat og dibutyltindi-laurat og/eller aminer, såsom triethylendiamin. Den anvendte mængde katalysator kan være lille i forhold til den, derIf desired, the polyaddition reaction can be catalyzed by the addition of substances such as those conventionally used as catalysts in the polyisocyanate / polyol-polyurea formation reaction. Thus, organometallic compounds such as stannous octoate and dibutyltin dilaurate and / or amines such as triethylenediamine may be used. The amount of catalyst used may be small compared to that of

OISLAND

88

DK 153796BDK 153796B

normalt anvendes ved polyurethandannelsesreaktionen, f.eks. af størrelsesordenen 0,02% snarere end 0,2%, beregnet på den samlede vægt af polyol, selv om der også om ønsket kan anvendes større mængder.usually used in the polyurethane reaction, e.g. of the order of 0.02% rather than 0.2%, based on the total weight of polyol, although larger quantities can also be used if desired.

5 Omsætningen, hvor der anvendes en dialkanolamin, behøver ikke at kræve katalyse, men denne kan være fordelagtig ved en trialkanolamin, såsom triethanolamin.The reaction using a dialkanolamine need not require catalysis, but this may be advantageous for a trialkanolamine such as triethanolamine.

Molekylvægten af polyadditionsproduktet kan reguleres ved at variere det kvantitative forhold mellem ol-10 II aminen på den ene side og polyisocyanatet på den anden side (og ved hjælp af monofunktionelle komponenter, hvis de anvendes). Selv om der foretrækkes et molært forhold mellem olamin og polyisocyanat på 1,0/0,5 til 1,0/1,5, og i det væsentlige ækvivalente molære mængder er særlig fore-15 trukne, er det således f.eks. muligt at anvende en højere andel af isocyanatet, hvis der kan tages passende hensyn til den højere viskositet eller endog hurtige gelatinering, der har tilbøjelighed til at forekomme ved højere isocya-natindhold. Et øvre forhold på f.eks. 1,0/1,55 eller 1,0/-20 1,6 kan således være muligt. Når mængden af isocyanat re duceres, ’falder også polyadditionsproduktets molekylvægt sammen med viskositeten. I almindelighed foretrækkes et molært forhold mellem olamin og organisk polyisocyanat på 1,0/0,8 til 1,0/1,1.The molecular weight of the polyaddition product can be regulated by varying the quantitative ratio of the ol-10 II amine on the one hand to the polyisocyanate on the other (and using monofunctional components if used). Thus, although a molar ratio of olamine to polyisocyanate of 1.0 / 0.5 to 1.0 / 1.5 is preferred, and substantially equivalent molar amounts are particularly preferred, it is e.g. it is possible to use a higher proportion of the isocyanate if the higher viscosity or even rapid gelatinization that tends to occur at higher isocyanate content can be appropriately taken into account. An upper ratio of e.g. Thus, 1.0 / 1.55 or 1.0 / -20 1.6 may be possible. When the amount of isocyanate is reduced, the molecular weight of the polyaddition product also coincides with the viscosity. Generally, a molar ratio of olamine to organic polyisocyanate of 1.0 / 0.8 to 1.0 / 1.1 is preferred.

2525

Selv om koncentrationen af det omsatte olamin og isocyanat (og dermed af polyadditionsprodukterne) i poly- etherpolyolen kan variere inden for vide grænser, bør den generelt være mellem 1 og 35 vægt-%, fortrinsvis fra 3 til 30 vægt-%. Når der kræves en bestemt koncentration 30 af polyadditionsprodukt (f.eks. kan der til anvendelse ved fremstilling af polyurethanskumstoffer med visse optimale egenskaber kan en koncentration på ca. 10 vægt-% være nødvendig) , kan denne opnås direkte ved passende valg af reaktanterne til opnåelse af den krævede koncentration eller 35 alternativt ved påfølgende fortynding af et dannet poly-Although the concentration of the reacted olamine and isocyanate (and thus of the polyaddition products) in the polyether polyol can vary widely, it should generally be between 1 and 35% by weight, preferably from 3 to 30% by weight. When a certain concentration of polyaddition product is required (e.g., for use in the production of polyurethane foams with certain optimum properties, a concentration of about 10% by weight may be required), this can be obtained directly by appropriate selection of the reactants for obtaining the required concentration or, alternatively, by subsequent dilution of a formed polystyrene.

OISLAND

DK 153796 BDK 153796 B

9 additionsprodukt med yderligere polyetherpolyol alt efter omstændighederne.9 addition product with additional polyether polyol as the case may be.

I almindelighed kan reaktanterne blandes ved temperaturer fra 0°C eller over reaktanternes smeltepunkter, 5 hvilket af disse der så er det laveste, og op til 150°C. Reaktanterne blandes fortrinsvis ved stuetemperatur eller lige over deres smeltepunkter, hvilket af disse der så er det laveste, og op til 70°C. Det kan også være muligt at blande reaktanterne under deres smeltepunkter.In general, the reactants can be mixed at temperatures of 0 ° C or above the melting points of the reactants, whichever is the lowest, and up to 150 ° C. The reactants are preferably mixed at room temperature or just above their melting points, whichever is the lowest, and up to 70 ° C. It may also be possible to mix the reactants below their melting points.

10 Reaktionen er exotherm, og der iagttages en tempe raturstigning alt efter andelen af fremstillet polyaddi-tionsprodukt, beregnet på vægten af polyetherpolyolen.The reaction is exothermic and a temperature increase is observed according to the proportion of polyaddition product produced, based on the weight of the polyether polyol.

Jo mere grundigt reaktanterne blandes, desto finere er dispersionens partikelstørrelse (når der frem-15 stilles en dispersion), og desto lavere er viskositeten.The more thoroughly the reactants are mixed, the finer the particle size of the dispersion (when a dispersion is prepared) and the lower the viscosity.

Selv om der kan anvendes en simpel batchproces, hvorved en af olamin- og polyisocyanat-reaktanterne først opløses eller dispergeres i polyetherpolyolen, hvorefter den anden tilsættes i området med maksimal omrøring, kan der også 20 anvendes linie-blanding af materialerne. I sidstnævnte tilfælde pumpes alle reaktanterne med kontrollerede hastigheder og kan blandes samtidig, eller én reaktant kan først blandes med polyetherpolyolen, hvorefter den anden reaktant tilsættes og iblandes.Although a simple batch process can be used whereby one of the olamine and polyisocyanate reactants is first dissolved or dispersed in the polyether polyol, then the other is added in the range of maximum stirring, line mixing of the materials can also be used. In the latter case, all the reactants are pumped at controlled rates and can be mixed at the same time, or one reactant can first be mixed with the polyether polyol, after which the other reactant is added and mixed.

25 Dispersionen i polyetherpolyol kan anvendes enten umiddelbart efter endt omsætning eller efter et længere tidsrum. For eksempel kan polyadditionsproduktet i en polyetherpolyol doseres direkte fra en linie-blandingsenhed, hvor reaktionen finder sted, til blandehovedet i en 30 polyurethanfremstillingsmaskine af velkendt type. Når reaktionen mellem olaminen og polyisocyanatet er relativt langsom, kan der anvendes en mellemliggende opholdsbeholder mellem en sådan linie-blandingsenhed og polyurethanblan-dehovedet, således at der fås et yderligere tidsrum til fuld-35 stændig omsætning.The dispersion in polyether polyol can be used either immediately after completion of the reaction or after a longer period of time. For example, the polyaddition product in a polyether polyol can be dosed directly from a line mixing unit where the reaction takes place to the mixing head of a well-known polyurethane manufacturing machine. When the reaction between the olamine and the polyisocyanate is relatively slow, an intermediate residence vessel may be used between such a line mixing unit and the polyurethane blending head, so as to provide an additional period of time for complete reaction.

OISLAND

1010

DK 153796BDK 153796B

Tilsætningsstoffer, såsom aktivatorer, stabilisatorer, tværbindere, vand, drivmidler, brandbeskyttende midler og pigmentpastaer, kan sættes til den her omhandlede polymermodificerede polyol enten under eller efter omsæt-5 ningen.Additives such as activators, stabilizers, cross-linkers, water, propellants, fire protection agents and pigment pastes can be added to the polymer-modified polyol of this invention either during or after the reaction.

Polyadditonsproduktet anvendes ved fremstilling af polyurethanskumstof. Når produktet har form af en stabil polyoldispersion, dvs. en dispersion, der ikke udskiller bundfald eller i det mindste forbliver dispergeret under 10 blandingen med de andre skumdannende bestanddele, er det dispergerede polyadditionsprodukt særlig effektivt som polymert fyldstof ved fremstilling af højspændstigt, let forarbejdeligt skumstof, idet et sådant dispergeret produkt virker styrkeforøgende samtidig med, at det bryder celle-15 vægge.The polyadditon product is used in the production of polyurethane foam. When the product is in the form of a stable polyol dispersion, ie. a dispersion which does not precipitate or at least remain dispersed during mixing with the other foaming constituents, the dispersed polyaddition product is particularly effective as a polymeric filler in the production of highly resilient, easily processable foam, with such a dispersed product increasing in strength, that it breaks cell-15 walls.

Polyadditionsproduktet har form af en stabil dispersion, og denne er i almindelighed egnet til fremstilling af bløde, halvhårde og hårde polyurethanskumstoffer, der har forbedrede egenskaber, såsom en forøget hårdhed, 20 og der kan fremstilles ikke-krympende skumstoffer af typen med høj spændstighed, som er velkendt i industrien, da det polyoldispergerede polyadditionsprodukt har en celleåbnende virkning. Desuden er dispersionerne også egnede til fremstilling af f.eks. elastomere, belægninger og overtræk 25 baseret på polyurethaner.The polyaddition product is in the form of a stable dispersion and is generally suitable for the production of soft, semi-hard and hard polyurethane foams having improved properties, such as increased hardness, and high-resilience non-shrinkable foams, such as is well known in the industry as the polyol dispersed polyaddition product has a cell opening effect. In addition, the dispersions are also suitable for preparing e.g. elastomers, coatings and coatings 25 based on polyurethanes.

Når dispersionen anvendes til fremstilling af et polyurethan, vil polyurethandannelsesprocessen sædvanligvis udnytte polyolen i dispersionen, og denne polyols egenskaber, især dens hydroxyltal og funktionalitet, vil således 30 blive valgt på kendt måde afhængigt af den polyurethanty-pe, der fremstilles. Ved fremstilling af elastomere vil polyetherpolyolen f.eks. fortrinsvis være overvejende lineær, dvs. bifunktionel, og vil have hydroxyltal i området 30-170. Ved fremstilling af skumstoffer vælges polyether-35 polyolerne på kendt måde, således at der fås skumstoffer, der er fleksible, semifleksiblé eller stive. Til fremstil- o 11When the dispersion is used to prepare a polyurethane, the polyurethane formation process will usually utilize the polyol in the dispersion and thus the properties of this polyol, especially its hydroxyl number and functionality, will be selected in known manner depending on the polyurethane type produced. In the manufacture of elastomers, the polyether polyol will e.g. preferably be predominantly linear, i.e. bifunctional, and will have hydroxyl numbers in the range of 30-170. In the manufacture of foams, the polyether-polyols are selected in a known manner so as to obtain foams which are flexible, semi-flexible or rigid. For manufacture o 11

DK 153796BDK 153796B

ling af fleksible skumstoffer har polyetherpolyolerne således fortrinsvis hydroxyltal i området 20-80 og 2-4 hydroxyl-grupper pr. molekyle, og der kan som eksempel nævnes "ICI Polyol PBA 1233". Om Ønsket kan der anvendes blandinger 5 af polyetherpolyoler.Thus, preferably, the polyether polyols have hydroxyl numbers in the range of 20-80 and 2-4 hydroxyl groups per unit length. molecule and, for example, may be mentioned "ICI Polyol PBA 1233". If desired, mixtures 5 of polyether polyols can be used.

Organiske polyisocyanater, der kan anvendes ved fremstilling af polyurethanerne, er beskrevet i den kendte teknik og kan være de samme som de organiske polyisocyanater, der er beskrevet ovenfor til omsætning med olaminen.Organic polyisocyanates which can be used in the preparation of the polyurethanes are described in the prior art and may be the same as the organic polyisocyanates described above for reaction with the olamine.

10 Reaktionsblandingen til fremstilling af polyurethan- skumstof kan også indeholde andre konventionelle bestanddele i en sådan reaktionsblanding alt efter den polyure-thantype, der fremstilles. Reaktionsblandingen kan således indeholde katalysator, f.eks. tertiære aminer og organiske 15 tinforbindelser, tværbindende eller kædeforlængende midler f.eks. diethanolamin, triethanolamin, ethylenglycol, glycerol, dipropylenglycol og phenylendiamin, brandbeskyttende midler, f.eks. halogenerede alkylphosphater, og fyldstoffer, f.eks. bariumsulfat.The reaction mixture for the production of polyurethane foam may also contain other conventional ingredients in such reaction mixture according to the type of polyurethane produced. Thus, the reaction mixture may contain catalyst, e.g. tertiary amines and organic tin compounds, cross-linking or chain-extending agents e.g. diethanolamine, triethanolamine, ethylene glycol, glycerol, dipropylene glycol and phenylenediamine, fire protection agents, e.g. halogenated alkyl phosphates, and fillers, e.g. barium sulphate.

20 Ved fremstilling af skumstoffer sættes der drivmid ler til reaktionsblandingen. Eksempler på egnede drivmidler omfatter vand, der reagerer med polyisocyanatet under dannelse af carbondioxid, og indifferente flygtige væsker, der fordamper under indflydelse af den exotherme reaktion 25 eller på grund af trykaflastningen, hvis der anvendes en mekanisk opskumningsproces. Eksempler på sådanne væsker er halogenerede carbonhydrider med kogepunkter på ikke over 100°C ved atmosfæretryk og fortrinsvis ikke over 50°C, i-sær chlorfluorerede carbonhydrider, såsom trichlorfluormethan 30 og dichlordifluormethan, og også chlorerede carbonhydrider, såsom dichlormethan. Mængden af drivmidlet vælges på kendt måde således, at der fås skumstoffer med den ønskede vægtfylde. I almindelighed er fra 0,005 til 0,3 mol gas pr.20 In the manufacture of foams, propellants are added to the reaction mixture. Examples of suitable propellants include water which reacts with the polyisocyanate to form carbon dioxide, and inert volatile liquids which evaporate under the influence of the exothermic reaction or due to the pressure relief if a mechanical foaming process is used. Examples of such liquids are halogenated hydrocarbons having boiling points not above 100 ° C at atmospheric pressure and preferably not above 50 ° C, especially chlorofluorinated hydrocarbons such as trichlorofluoromethane and dichlorodifluoromethane, and also chlorinated hydrocarbons such as dichloromethane. The amount of the propellant is selected in known manner so as to obtain foams having the desired density. Generally, from 0.005 to 0.3 moles of gas per

100 g reaktionsblanding passende. Om ønsket kan vægtfylden 35 af det fremstillede skumstof modificeres ved "overfyldning", dvs. ved at opskumme reaktionsblandingen i en luk- 12100 g of reaction mixture appropriate. If desired, the density 35 of the foam made can be modified by "overfilling", i.e. by foaming the reaction mixture in a sealed 12

DK 153796BDK 153796B

OISLAND

ket form, der har et mindre volumen end det, som det fremkomne skum ville optage, hvis reaktionsblandingen fik lov at hæve sig frit.in a form which has a smaller volume than the resulting foam would absorb if the reaction mixture was allowed to rise freely.

I almindelighed bør den polyurethandannende reak-5 tionsblanding have en sådan sammensætning, at forholdet mellem isocyanatgrupper og aktive hydrogenatomer i det væsentlige ligger inden for området 0,9/1 til 1,2/1, men der kan om ønsket anvendes højere forhold.In general, the polyurethane-forming reaction mixture should have a composition such that the ratio of isocyanate groups to active hydrogen atoms is substantially within the range of 0.9 / 1 to 1.2 / 1, but higher ratios may be used if desired.

Når der fremstilles et polyurethanskum, er det sæd-10 vanligvis nødvendigt at stabilisere eller regulere cellerne, der dannes, ved tilsætning af en skumstabilisator eller celleregulator, såsom polysiloxan-polyalkylenoxid--blokcopolymere, der kan indeholde direkte carbon-silici-um- eller carbon-oxygen-silicium-bindinger mellem de orga-15 ganiske enheder og polysiloxanenhederne. Når der fremstilles polyurethanskumstoffer med høj spændstighed, er dime-thylsiloconeolier eller modifikationer deraf med lav molekylvægt tilfredsstillende, f.eks. "Theodore Goldschmidt AG silicone B8616".When preparing a polyurethane foam, it is usually necessary to stabilize or regulate the cells formed by the addition of a foam stabilizer or cell regulator such as polysiloxane-polyalkylene oxide block copolymers which may contain direct carbon-silicon or carbon. -oxygen-silicon bonds between the organic units and the polysiloxane units. When high resilience polyurethane foams are prepared, dimethylsilocone oils or modifications thereof of low molecular weight are satisfactory, e.g. "Theodore Goldschmidt AG silicone B8616".

2020

Der kan anvendes direkte metoder eller præpolymer-eller kvasi-præpolymermetoder alt efter, hvad der er hensigtsmæssigt ved den særlige type polyurethan, der fremstilles.Direct methods or prepolymer or quasi-prepolymer methods may be used as appropriate for the particular type of polyurethane produced.

Komponenterne i den polyurethandannende reaktionsblanding kan blandes sammen på enhver hensigtsmæssig måde, 25 f.eks. ved anvendelse af et hvilket som helst af de blande-apparater, der er beskrevet i den kendte teknik til formå let. Om ønsket kan nogle af de enkelte komponenter blandes i forvejen for at reducere antallet af komponentstrømme, der skal bringes sammen i det sluttelige blandingstrin.The components of the polyurethane-forming reaction mixture can be mixed together in any convenient manner, e.g. using any of the mixing devices described in the prior art for ease. If desired, some of the individual components may be pre-mixed to reduce the number of component streams to be brought together in the final mixing step.

3030

Det er ofte hensigtsmæssigt at have et tostrømssystem, hvor den ene strøm indeholder et polyisocyanat eller en præpolymer, og den anden strøm indeholder alle de andre komponenter i reaktionsblandingen.It is often convenient to have a two-stream system in which one stream contains a polyisocyanate or prepolymer and the other stream contains all the other components of the reaction mixture.

Opfindelsen illustreres ved de følgende eksempler, 1-8, hvori alle dele er vægtdele, og alle procent er vægtprocent. Hvis der ikke er angivet andet, anvendes der omgivelsestemperaturer for reaktanterne. Eksemplerne 9 og 10 35The invention is illustrated by the following Examples 1-8 in which all parts are parts by weight and all percentages are weight percent. Unless otherwise indicated, ambient temperatures are used for the reactants. Examples 9 and 10 35

DK 153796BDK 153796B

13 belyser fremstilling af dispersioner, der anvendes ved fremgangsmåden ifølge opfindelsen.Figure 13 illustrates the preparation of dispersions used in the process of the invention.

Forkortelserne, der i eksemplerne anvendes for polyetherne, har følgende betydninger: 5The abbreviations used in the examples for the polyethers have the following meanings:

Polyether A:Polyether A:

En glycerol-startet polyether af propylenoxid ftiBd&' 15% ethylenoxid, der har et hydroxyltal på 35 og et ind-hold af primære hydroxylgrupper på ca. 75%.A glycerol-started polyether of propylene oxide ftiBd & 15% ethylene oxide having a hydroxyl number of 35 and a content of primary hydroxyl groups of approx. 75%.

1010

Polyether B:Polyether B:

En trimethylolpropan-startet polyether af propylenoxid og ethylenoxid med et hydroxyltal på 34 og et indhold af primære hydroxylgrupper på ca. 80%.A trimethylolpropane-started polyether of propylene oxide and ethylene oxide having a hydroxyl number of 34 and a content of primary hydroxyl groups of approx. 80%.

Polyether C:Polyether C:

En glycerol-startet polyether af propylenoxid og ethylenoxid med et hydroxyltal på 47 og et indhold af primære hydroxylgrupper på mindre end 5%.A glycerol-started polyether of propylene oxide and ethylene oxide having a hydroxyl number of 47 and a content of primary hydroxyl groups of less than 5%.

9090

Polyether D:Polyether D:

En lineær polypropylenglycol med et hydroxyltal på 56 indeholdende sekundære hydroxylgrupper.A linear polypropylene glycol having a hydroxyl number of 56 containing secondary hydroxyl groups.

Eksempel 1 25 o 900 g polyether A ved en temperatur på 20 C blandes med 48,7 g triethanolamin ved en temperatur på 20°C.Example 1 25 o 900 g of polyether A at a temperature of 20 C are mixed with 48.7 g of triethanolamine at a temperature of 20 ° C.

Under blanding med høj hastighed tilsættes der i løbet af 5 sekunder 51,2 g af en blanding af 80% 2,4- og 20% 2,6- -tolylendiisocyanat. Der tilsættes derefter 0,3 g dibutyl-30 tindilaurat, og der sker en hurtig reaktion, idet blandingens temperatur stiger fra 20 til 37°C i løbet af tre minutter efter endt tilsætning af katalysatoren.During high speed mixing, 51.2 g of a mixture of 80% 2,4- and 20% 2,6- tolylene diisocyanate are added in 5 seconds. Then 0.3 g of dibutyltin dilaurate is added and a rapid reaction occurs, with the temperature of the mixture rising from 20 to 37 ° C over three minutes after the addition of the catalyst.

Efter afkøling har den fremkomne stabile dispersion med 10% fast stof en viskositet på 1600 cP ved 25°C.After cooling, the resulting stable dispersion with 10% solids has a viscosity of 1600 cP at 25 ° C.

300 g af dette produkt anbringes i et bægerglas, hvorefter der tilsættes 7,8 g vand, 3 g diethanolamin, 0,21 g bis-(2-dimethyl-aminoethyl)-ether og 1,5 g "Gold- 35Place 300 g of this product in a beaker and then add 7.8 g of water, 3 g of diethanolamine, 0.21 g of bis (2-dimethylaminoethyl) ether and 1.5 g of Gold

OISLAND

1414

DK 153796BDK 153796B

schmidt Silicone B 8616" (overfladeaktivt middel, formentlig en polysiloxan-polyalkylenoxid-copolymer) og omrøres, og temperaturen indstilles til 22°C. Dernæst tilsættes der 0,75 g dibutyltindilaurat og omrøres i 10 sekunder, hvorefter der 5 tilsættes 117 g af en blanding af 80% 2,4- og 20% 2,6-tolylen- jr diisocyanat. Efter yderligere 5 sekunder udhældes blandingen i en kasse, og ekspansionen begynder. Efter yderligere 105 sekunder efter endt blanding er der fremkommet et ikke--krympende, højspændstigt skumstof med følgende egenska-1 o ber: vægtfylde, kg/m2 34 CLD, g/cm2 (1) 28 spændstighed, % (2) 63 (1) Modstand mod sammentrykning ved 40% afbøjning.schmidt Silicone B 8616 "(surfactant, presumably a polysiloxane-polyalkylene oxide copolymer) and stirred and the temperature adjusted to 22 ° C. Then 0.75 g of dibutyltin dilaurate is added and stirred for 10 seconds, then 117 g of a mixture of 80% 2,4- and 20% 2,6-tolylene diisocyanate. After a further 5 seconds the mixture is poured into a box and the expansion begins. high-resilient foam with the following characteristics: density, kg / m2 34 CLD, g / cm2 (1) 28 resilience,% (2) 63 (1) Resistance to compression at 40% deflection.

15 (2) Kugle-tilbagespring i %.(2) Ball rebound in%.

Eksempel 2 920 g polyether A ved 20°C anbringes i et bægerglas, og der tilsættes 32,1 g diethanolamin ved 30°C under 20 mekanisk omrøring ved stuetemperatur. 47,9 g af en blanding af 80% 2,4- og 20% 2,6-tolylendiisocyanat sættes i løbet af 30 sekunder til den omrørte blandings hvirvel.Example 2 920 g of polyether A at 20 ° C is placed in a beaker and 32.1 g of diethanolamine at 30 ° C is added under mechanical stirring at room temperature. 47.9 g of a mixture of 80% 2,4- and 20% 2,6-tolylene diisocyanate are added over 30 seconds to the vortex of the stirred mixture.

Der dannes en hvid stabil dispersion, og temperaturen er steget fra 20 til 37°C i løbet af 30 sekunder efter endt 25 tilsætning af isocyanatet. Polyadditionsproduktet indehol- . der isocyanatet og alkanolaminen i et molært forhold på 0,9/1,0, og slutproduktet indeholder 8,0% af polyadditions-produktet i polyetherpolyol og har en acceptabel viskositet ved omgivelsestemperatur.A white stable dispersion is formed and the temperature rises from 20 to 37 ° C over 30 seconds after the addition of the isocyanate. The polyaddition product contains. the isocyanate and alkanolamine in a molar ratio of 0.9 / 1.0 and the final product contains 8.0% of the polyaddition product in polyether polyol and has an acceptable viscosity at ambient temperature.

30 300 g af det ovennævnte produkt anbringes i et bægerglas, hvorefter der tilsættes 7,8 g vand, 3 g diethanolamin, 0,21 g bis-(2-dimethyl-aminoethyl)-ether og 1,5 g "Goldschmidt Silicone B8616" og omrøres, og temperaturen indstilles til 22°C. Dernæst tilsætttes der 0,75 g dibu-35 tyltindilaurat og omrøres i 10 sekunder, hvorefter der tilsættes 117 g af en blanding af 80% 2,4- og 20% 2,6-toly-30 g of the above product are placed in a beaker and then 7.8 g of water, 3 g of diethanolamine, 0.21 g of bis (2-dimethylaminoethyl) ether and 1.5 g of Goldschmidt Silicone B8616 are added. and stir and set the temperature to 22 ° C. Next, 0.75 g of dibutyltin dilaurate was added and stirred for 10 seconds, then 117 g of a mixture of 80% 2.4- and 20% 2.6-toluene was added.

OISLAND

1515

DK 153796BDK 153796B

lendiisocyanat. Efter yderligere 5 sekunder udhældes blandingen i en kasse, og ekspansionen begynder. Efter yderligere 105 sekunder efter endt blanding er der fremkommet et ikke-krympende, højspændstigt skumstof, hvis egenska-5 ber ligner egenskaberne af produktet fremstillet ifølge eksempel 1.diisocyanate. After another 5 seconds, the mixture is poured into a box and the expansion begins. After a further 105 seconds after the mixing is complete, a non-shrinking, high-resilient foam has been obtained, the properties of which are similar to the properties of the product prepared according to Example 1.

Eksempel 3 (Sammenligningseksempel)Example 3 (Comparative Example)

Der fremstilles et skum ifølge metoden, der er be-10 skrevet i eksempel 2, men de 300 g af polyadditionsproduk-tet i polyetherpolyol erstattes med 300 g polyetherpolyol (polyether A), og der anvendes kun 100 g af isocyanatet. Ekspansionen til dannelse af et skumstof sker som i eksempel 2, men det fremkomne skumstof krymper, og dets egenska-15 ber kan ikke måles.A foam is prepared according to the method described in Example 2, but the 300 g of the polyether polyethylene polyol addition product is replaced with 300 g polyether polyol (polyether A) and only 100 g of the isocyanate is used. The expansion to form a foam occurs as in Example 2, but the resulting foam shrinks and its properties cannot be measured.

Eksempel 4Example 4

Polyadditionsproduktet i polyetherpolyol fremstilles under anvendelse af polyether A ifølge eksempel 2 og opskum-2Q mes også ifølge eksempel 2, men dibutyltindilauratet erstattes med 0,6 g stannooctoat. Der fås et ikke-krympende skumstof af høj spændstig type, hvis egenskaber ligner egenskaberne af produktet fremstillet ifølge eksempel 1.The polyaddition product in polyether polyol is prepared using polyether A of Example 2 and foam-2Q also of Example 2, but the dibutyltin dilaurate is replaced with 0.6 g of stannous octoate. A high resilient non-shrinkable foam is obtained, the properties of which are similar to the properties of the product prepared according to Example 1.

25 Eksempel 5Example 5

Et polyadditionsprodukt fremstilles og opskummes ifølge eksempel 2, men polyetheren A erstattes med poly-ether B. Den stabile dispersion i polyetherpolyol har et indhold af fast stof på 8% og en acceptabel viskositet 30 ved omgivelsestemperatur. Det fremkomne skumstof er ikke--krympende og har egenskaber, der ligner egenskaberne af produktet fremstillet ifølge eksempel 1.A polyaddition product is prepared and foamed according to Example 2, but the polyether A is replaced by polyether B. The stable dispersion in polyether polyol has a solids content of 8% and an acceptable viscosity 30 at ambient temperature. The resulting foam is non-shrinkable and has properties similar to those of the product prepared according to Example 1.

Eksempel 6 35 Et polyadditionsprodukt i polyether A fremstil les ifølge eksempel 2, men det molære forhold mellemExample 6 A polyaddition product in polyether A is prepared according to Example 2, but the molar ratio of

OISLAND

1616

DK 153796BDK 153796B

isocyanat og alkanolamin er 1,1/1,0, og det samlede indhold af fast stof forbliver på 8%. Det fremkomne produkt har en høj, men anvendelig viskositet på over 2.500 cP ved 25°C. Opskumning ifølge eksempel 2 giver et højspændstigt 5 ikke-krympende skumstof.isocyanate and alkanolamine are 1.1 / 1.0 and the total solids content remains at 8%. The resulting product has a high but useful viscosity of over 2,500 cP at 25 ° C. Foam according to Example 2 gives a high resilient 5 non-shrinking foam.

Eksempel 7 (Sammenligningseksempel)Example 7 (Comparative Example)

Et polyadditionsprodukt i polyether A fremstilles ifølge eksempel 2, men det molære forhold mellem isocya-10 natet og alkanolamin er 0,45/1,0, og det totale indhold af fast stof er 8%. Opskumning ifølge eksempel 2 giver et krympende skum. Egenskaberne af dette skum kan ikke måles.A polyaddition product in polyether A is prepared according to Example 2, but the molar ratio of isocyanate to alkanolamine is 0.45 / 1.0 and the total solids content is 8%. Foam according to Example 2 gives a shrinking foam. The properties of this foam cannot be measured.

15 Eksempel 8Example 8

Et polyadditionsprodukt fremstilles ved at tage 920 g polyether A ved en temperatur på 20°C og blande det med 24,5 g diethanolamin ved en temperatur på 30°C og derefter med 55,5 g råt MDI under kraftig omrøring. Der fås 20 et polyadditionsprodukt i polyetherpolyol med et indhold af fast stof på 8% og en anvendelig, men høj viskositet på over 3.000 cP ved 25°C.A polyaddition product is prepared by taking 920 g of polyether A at a temperature of 20 ° C and mixing it with 24.5 g of diethanolamine at a temperature of 30 ° C and then with 55.5 g of crude MDI with vigorous stirring. A polyaddition product is obtained in polyether polyol with a solids content of 8% and a usable but high viscosity of over 3,000 cP at 25 ° C.

Produktet opskummes ifølge eksempel 2 og giver et ikke-krympende skumstof af høj spændstig type.The product is foamed according to Example 2 to give a non-shrinkable high resilient foam.

2525

Eksempel 9Example 9

En stabil dispersion i polyether C ved en temperatur på 20°C fremstilles ved at tage 800 g polyether C og tilsætte 80,24 g diethanolamin ved en temperatur på 30°C og om-30 røre med høj hastighed før og under tilsætningen af 119,75 g af en blanding af 80% 2,4- og 20% 2,6-tolylendiisocyanat, der finder sted i løbet af 1 minut. Der observeres en temperaturstigning på 29°C, og produktet har efter afkøling en acceptabel viskositet ved omgivelsestemperatur og et indhold 35 af fast stof på 20%.A stable dispersion in polyether C at a temperature of 20 ° C is prepared by taking 800 g of polyether C and adding 80.24 g of diethanolamine at a temperature of 30 ° C and stirring at high speed before and during the addition of 119, 75 g of a mixture of 80% 2,4- and 20% 2,6-tolylene diisocyanate take place over 1 minute. A temperature rise of 29 ° C is observed and the product has, after cooling, an acceptable viscosity at ambient temperature and a solids content of 20%.

OISLAND

17 DK 153796 B17 DK 153796 B

Eksempel 10Example 10

En stabil dispersion fremstilles ifølge eksempel 9, men polyetheren C er stattes med polyether D. Den fremkomne polyadditionsforbindelse i polyether D har et indhold af 5 fast stof på 20% og en acceptabel viskositet ved omgivelsestemperatur .A stable dispersion is prepared according to Example 9, but the polyether C is replaced with polyether D. The resulting polyaddition compound in polyether D has a solids content of 20% and an acceptable viscosity at ambient temperature.

De stabile dispersioner, der fremstilles ifølge de foregående eksempler 1, 2 og 5-10, er af ikke-ionisk natur, dvs. dispersionerne indeholder covalente polymere stof-10 fer uden ioniske grupper. Endvidere anvendes der i alt væsentligt ikke vand eller andre ioniske medier ved fremstillingen af dispersionerne, og sådanne er heller ikke til stede i disse. Hvad sidstnævnte angår, kan tilstedeværelsen af spor af vand, der vil have tilbøjelighed til at forekomme 15 i kommercielt tilgængelige polyoler og andre udgangsmaterialer, være acceptabel, selv om tilstedeværelsen af vand i almindelighed er uønskelig og bør holdes på et så lavt niveau som muligt. Fortrinsvis bør vandindholdet ikke være større end 1 vægt-%, og vandindholdet er især meget 20 mindre end denne værdi, f.eks. under 0,1%, selv om det vil forstås, at det i nogle tilfælde kan være muligt at gennemføre den omhandlede fremgangsmåde ved vandindhold på over 1%.The stable dispersions prepared according to the preceding Examples 1, 2 and 5-10 are of a nonionic nature, i.e. the dispersions contain covalent polymeric substances without ionic groups. Furthermore, substantially no water or other ionic media is used in the preparation of the dispersions, nor are they present in them. As to the latter, the presence of traces of water which will tend to occur in commercially available polyols and other starting materials may be acceptable, although the presence of water is generally undesirable and should be kept as low as possible. Preferably, the water content should not be greater than 1% by weight, and the water content is notably much less than this value, e.g. below 0.1%, although it will be understood that in some cases it may be possible to carry out the process of the present invention with a water content greater than 1%.

Polyolerne, der anvendes ved gennemførelsen af den 25 omhandlede fremgangsmåde, kan være af trioltypen, der overvejende indeholder primære hydroxylgrupper, for såvidt som sådanne polyoler er særlig nyttige som udgangsmaterialer til dannelse af polyurethanskumstoffer. Men da fremstillingen af dispersioner som er beskrevet i eksemplerne ovenfor in-30 volverer fuldstændig eller hovedsagelig omsætning af isocy-anatet med olaminen, og polyetherpolyolen, alene eller hovedsagelig virker som uomsat bæremateriale, vil det forstås, at det er muligt at anvende enhver egnet polyetherpolyol, der især vælges i overensstemmelse med behovene ved den 35 påfølgende polyurethandannelsesreaktion, ved hvilken den polymermodificerede polyol skal anvendes. Der kan såledesThe polyols used in carrying out the process of the present invention may be of the triol type containing predominantly primary hydroxyl groups, insofar as such polyols are particularly useful as starting materials for forming polyurethane foams. However, since the preparation of dispersions described in the examples above involves complete or mainly reaction of the isocyanate with the olamine and the polyether polyol, alone or mainly acting as unreacted carrier, it will be understood that it is possible to use any suitable polyether polyol. especially selected in accordance with the needs of the subsequent polyurethane formation reaction in which the polymer modified polyol is to be used. Thus, there can

DK 153796BDK 153796B

1818

OISLAND

f.eks. anvendes polyoler, der er trioler og/eller dioler, og som har primære og/eller sekundære hydroxylgrupper eller enhver anden egnet struktur.eg. polyols which are triols and / or diols and which have primary and / or secondary hydroxyl groups or any other suitable structure are used.

5 10 15 20 25 30 355 10 15 20 25 30 35

Claims (2)

1. Fremgangsmåde til fremstilling af et polyurethan-skum, hvorved et polyisocyanat i nærværelse af tilsætningsstoffer valgt blandt drivmidler, katalysatorer, stabilisa- 5 torer, tværbindingsmidler, brandbeskyttende midler, pigmenter og fyldstoffer omsættes med en polymer-modificeret polyol, som er en stabil dispersion fremstillet ved polymerisation af en alkanolamin med et organisk polyisocyanat i nærværelse af en polyetherpolyol, kendetegnet ved, at alka-10 nolaminen er en di- eller trialkanolamin, og at denne ved polymerisationen er anvendt i et molært forhold til polyiso-cyanatet på 1,0:0,5 til 1,0:1,6, og at alkanolaminen i det mindste overvejende har reageret polyfunktionelt med isocy-anatet til dannelse af et polyadditionsprodukt dispergeret 15 i polyetherpolyolen, der i det mindste overvejende har fungeret som uomsat bærer ved dannelsen af den polymer-modificerede polyol.A process for preparing a polyurethane foam wherein a polyisocyanate in the presence of additives selected from propellants, catalysts, stabilizers, cross-linking agents, fire protection agents, pigments and fillers is reacted with a polymer-modified polyol which is a stable dispersion. prepared by polymerization of an alkanolamine with an organic polyisocyanate in the presence of a polyether polyol, characterized in that the alkanolamine is a di- or trialkanolamine and is used in the polymerization in a molar ratio to the polyisocyanate of 1.0 : 0.5 to 1.0: 1.6, and that the alkanolamine has at least predominantly reacted polyfunctionally with the isocyanate to form a polyaddition product dispersed in the polyether polyol which has at least predominantly acted as unreacted carrier in the formation of the polymer-modified polyol. 2. Fremgangsmåde ifølge krav 1, kendetegnet ved, at det organiske polyisocyanat, der reagerer 20 med den polymer-modificerede polyol, er det samme som det, der anvendes til dannelse af den polymer-modificerede polyol.Process according to claim 1, characterized in that the organic polyisocyanate reacting with the polymer-modified polyol is the same as that used to form the polymer-modified polyol.
DK064481A 1980-02-14 1981-02-13 PROCEDURE FOR MANUFACTURING A POLYURETHING GLOVE. DK153796C (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
GB8005111 1980-02-14
GB8005111 1980-02-14
GB8031649 1980-10-01
GB8031649 1980-10-01
US20863380A 1980-11-20 1980-11-20
US20863380 1980-11-20

Publications (3)

Publication Number Publication Date
DK64481A DK64481A (en) 1981-08-15
DK153796B true DK153796B (en) 1988-09-05
DK153796C DK153796C (en) 1989-01-16

Family

ID=27260863

Family Applications (1)

Application Number Title Priority Date Filing Date
DK064481A DK153796C (en) 1980-02-14 1981-02-13 PROCEDURE FOR MANUFACTURING A POLYURETHING GLOVE.

Country Status (17)

Country Link
AT (1) AT382157B (en)
AU (1) AU542579B2 (en)
CA (1) CA1182600A (en)
CH (1) CH653350A5 (en)
DE (1) DE3103757A1 (en)
DK (1) DK153796C (en)
ES (1) ES8306166A1 (en)
FI (1) FI68407C (en)
FR (1) FR2476101B1 (en)
GR (1) GR73676B (en)
IE (1) IE50890B1 (en)
IT (1) IT1141965B (en)
NL (1) NL183520C (en)
NO (1) NO156569C (en)
NZ (1) NZ196188A (en)
PT (1) PT72467B (en)
SE (1) SE450489B (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3270603D1 (en) * 1981-10-28 1986-05-22 Ici Plc Polymer-modified polyols
GB8317354D0 (en) * 1983-06-27 1983-07-27 Ici Plc Polymer-modified polyols
FR2549481B1 (en) * 1983-07-22 1986-10-17 Ugine Kuhlmann POLYISOCYANATE STABLE PREPOLYMERS WITH HYDROXYL FUNCTIONS, PROCESS FOR PRODUCING THE SAME AND APPLICATION TO THE PRODUCTION OF FLEXIBLE POLYURETHANE FOAMS WITH IMPROVED SUPPORT
DE3526413A1 (en) * 1985-07-24 1987-02-05 Basf Ag METHOD FOR THE PRODUCTION OF HIGH-TEMPERATURE-RESISTANT, COMPACT OR CELLULAR POLYURETHANE ELASTOMERS
US20150141542A1 (en) 2012-05-22 2015-05-21 Bayer Materialscience Ag Method for producing flame-protected polyurethane foams having low bulk densities
WO2017085201A1 (en) 2015-11-19 2017-05-26 Covestro Deutschland Ag Polyurethane foams based on polyether carbonate polyols
EP3178858A1 (en) 2015-12-09 2017-06-14 Covestro Deutschland AG Polyurethane foams based on polyether carbonate polyols
CN108602933B (en) 2015-12-09 2021-10-22 科思创德国股份有限公司 Polyurethane foams based on polyether carbonate polyols
EP3293218A1 (en) 2016-09-13 2018-03-14 Covestro Deutschland AG Method for lowering the aldehyde emissions of polyurethane foams
EP3330307A1 (en) 2016-12-05 2018-06-06 Covestro Deutschland AG Use of acrylic acid esters and amides for reducing emissions of a polyurethane foam
EP3336115A1 (en) 2016-12-19 2018-06-20 Covestro Deutschland AG Process for the reduction of emissions in polyurethane foams
EP3336137A1 (en) 2016-12-19 2018-06-20 Covestro Deutschland AG Use of physical blowing agents for producing polyurethane foams based on polyether-carbonate polyols with reduced emission of cyclic propylene carbonate
EP3409704A1 (en) 2017-06-01 2018-12-05 Covestro Deutschland AG Polyurethane foams based on polyether carbonate polyols
EP3425187A1 (en) 2017-07-07 2019-01-09 Covestro Deutschland AG Flame retardant insulation for internal combustion engines
WO2019011956A1 (en) 2017-07-11 2019-01-17 Covestro Deutschland Ag Flexible foam with halogen-free flame retardant
EP3428212A1 (en) 2017-07-11 2019-01-16 Covestro Deutschland AG Flexible foam having halogen-free flame protection
EP3444287A1 (en) 2017-08-15 2019-02-20 Covestro Deutschland AG Insulating body, in particular insulating body for insulating between rafters
EP3668911B1 (en) 2017-08-15 2023-10-25 Covestro Intellectual Property GmbH & Co. KG Insulating body, in particular insulating body for insulating between rafters
EP3536727A1 (en) 2018-03-07 2019-09-11 Covestro Deutschland AG Polyurethane foams based on polyether carbonate polyols
EP3762441B1 (en) 2018-03-07 2022-04-13 Covestro Intellectual Property GmbH & Co. KG Polyurethane foams based on polyether carbonate polyols
WO2019180156A1 (en) 2018-03-22 2019-09-26 Covestro Deutschland Ag Method for producing polyurethane soft foams with high bulk density
EP3543268A1 (en) 2018-03-22 2019-09-25 Covestro Deutschland AG Method for manufacturing soft polyurethane foams
EP3549969A1 (en) 2018-04-06 2019-10-09 Covestro Deutschland AG Polyurethane foams based on polyether carbonate polyols
EP3608347A1 (en) 2018-08-08 2020-02-12 Covestro Deutschland AG Soft foam having halogen-free flame protection
EP3838964A1 (en) 2019-12-18 2021-06-23 Covestro Deutschland AG Polyurethane foams based on polyether carbonate polyols
EP3892660A1 (en) 2020-04-08 2021-10-13 Covestro Deutschland AG Polyurethane foams based on polyether carbonate polyols
WO2022175210A1 (en) 2021-02-16 2022-08-25 Covestro Deutschland Ag Method for producing polyurethane foam
EP4043510A1 (en) 2021-02-16 2022-08-17 Covestro Deutschland AG Method for producing a polyurethane foam
EP4101873A1 (en) 2021-06-11 2022-12-14 Covestro Deutschland AG Use of bismuth catalysts for reducing cyclic propylene carbonate in the production of flexible foams based on polyether carbonate polyols
EP4194476A1 (en) 2021-12-07 2023-06-14 Covestro Deutschland AG Polyurethane foams based on polyether carbonate polyols

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3360495A (en) * 1963-02-11 1967-12-26 Bayer Ag Polyurethanes
GB1453258A (en) * 1975-03-27 1976-10-20 Bayer Ag Process for the production of stable dispersions
DE2550796A1 (en) * 1975-11-12 1977-05-26 Bayer Ag PROCESS FOR THE PRODUCTION OF STABLE DISPERSIONS

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL294756A (en) * 1962-07-02
GB1501172A (en) * 1974-05-17 1978-02-15 Bayer Ag Process for the production of polyurethane foams
JPS5316097A (en) * 1976-07-30 1978-02-14 Bridgestone Corp Manufacture of highly elastic polyurethane foams having improved flame retardancy and low smoking property

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3360495A (en) * 1963-02-11 1967-12-26 Bayer Ag Polyurethanes
GB1453258A (en) * 1975-03-27 1976-10-20 Bayer Ag Process for the production of stable dispersions
DE2550796A1 (en) * 1975-11-12 1977-05-26 Bayer Ag PROCESS FOR THE PRODUCTION OF STABLE DISPERSIONS

Also Published As

Publication number Publication date
SE450489B (en) 1987-06-29
AU542579B2 (en) 1985-02-28
FR2476101B1 (en) 1985-09-27
ES499427A0 (en) 1983-05-01
FI810381L (en) 1981-08-15
IE810241L (en) 1981-08-14
IT1141965B (en) 1986-10-08
NO156569C (en) 1987-10-14
CA1182600A (en) 1985-02-12
DE3103757A1 (en) 1981-12-17
ATA57781A (en) 1986-06-15
FI68407B (en) 1985-05-31
ES8306166A1 (en) 1983-05-01
FR2476101A1 (en) 1981-08-21
IE50890B1 (en) 1986-08-06
AU6711981A (en) 1981-08-20
FI68407C (en) 1985-09-10
NZ196188A (en) 1983-06-17
PT72467B (en) 1982-02-04
IT8119702A0 (en) 1981-02-12
DK153796C (en) 1989-01-16
CH653350A5 (en) 1985-12-31
DK64481A (en) 1981-08-15
NL8100708A (en) 1981-09-16
NO810504L (en) 1981-08-17
NL183520C (en) 1988-11-16
GR73676B (en) 1984-03-29
NO156569B (en) 1987-07-06
PT72467A (en) 1981-03-01
DE3103757C2 (en) 1991-05-29
SE8100925L (en) 1981-08-15
AT382157B (en) 1987-01-26

Similar Documents

Publication Publication Date Title
DK153796B (en) PROCEDURE FOR MANUFACTURING A POLYURETHING GLOVE.
US4374209A (en) Polymer-modified polyols useful in polyurethane manufacture
GB2072204A (en) Polymer-modified polyols useful in polyurethane manufacture
EP0202732B1 (en) Method for the preparation of semi-rigid polyurethane modified polyurea foam compositions
AU2005240771B2 (en) Flexible polyurethane foam
US5292778A (en) Polymer-modified polyol dispersions and processes for production and use thereof
RU2441034C2 (en) Composition prepared from diisocyanate and monoamine, and preparation method thereof
NO178579B (en) Liquid isocyanate-containing prepolymer material, as well as polyisocyanate material and use of these materials
AU7622601A (en) Foamed isocyanate-based polymer having improved hardness properties and process for production thereof
US3284415A (en) Polyurethane from ethylene-hydroxyalkyl acrylate copolymers
KR100232685B1 (en) Process for preparing flexible polyurethane foams
EP0072096B2 (en) Polymer-modified polyols, a method of forming them, their use in the manufacture of polyurethane products and the products so obtained
JP2016535152A (en) Process for producing polyisocyanate polyaddition polyol and product
AU2004236428A2 (en) Process for making a PIPA-polyol
GB2102825A (en) Polymer-modified polyols
CA1092297A (en) Flexible polyurethane foams
RU2461581C2 (en) Foamed materials containing matrix with high content of rigid blocks and method of producing said materials
GB2102822A (en) Polymer-modified polyols
JPH0224290B2 (en)
JPS5912917A (en) Preparation of polyisocyanate compound and preparation of foam from said polyisocyanate compound
US3121699A (en) Preparation of foamed polyurethane materials
JPH0148288B2 (en)
EP1254187A1 (en) Low monomer foam
EP0299462A2 (en) Polyisocyanate prepolymers prepared from rigid polyaromatic precursor materials, and polyurethanes prepared therefrom
JPS6236419A (en) Production of urethane foam

Legal Events

Date Code Title Description
PUP Patent expired