WO2022175210A1 - Method for producing polyurethane foam - Google Patents

Method for producing polyurethane foam Download PDF

Info

Publication number
WO2022175210A1
WO2022175210A1 PCT/EP2022/053554 EP2022053554W WO2022175210A1 WO 2022175210 A1 WO2022175210 A1 WO 2022175210A1 EP 2022053554 W EP2022053554 W EP 2022053554W WO 2022175210 A1 WO2022175210 A1 WO 2022175210A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkylene oxide
weight
polyol
parts
koh
Prior art date
Application number
PCT/EP2022/053554
Other languages
German (de)
French (fr)
Inventor
Joerg Hofmann
Veronica-Alina FAERBER
Stefanie Braun
Michael Traving
Original Assignee
Covestro Deutschland Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP21157473.6A external-priority patent/EP4043510A1/en
Application filed by Covestro Deutschland Ag filed Critical Covestro Deutschland Ag
Publication of WO2022175210A1 publication Critical patent/WO2022175210A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/161Catalysts containing two or more components to be covered by at least two of the groups C08G18/166, C08G18/18 or C08G18/22
    • C08G18/163Catalysts containing two or more components to be covered by at least two of the groups C08G18/166, C08G18/18 or C08G18/22 covered by C08G18/18 and C08G18/22
    • C08G18/165Catalysts containing two or more components to be covered by at least two of the groups C08G18/166, C08G18/18 or C08G18/22 covered by C08G18/18 and C08G18/22 covered by C08G18/18 and C08G18/24
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4866Polyethers having a low unsaturation value
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7621Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring being toluene diisocyanate including isomer mixtures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0008Foam properties flexible
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0083Foam properties prepared using water as the sole blowing agent

Definitions

  • the present invention relates to a process for producing polyurethane foams, preferably flexible polyurethane foams, by reacting an isocyanate component with an isocyanate-reactive component which comprises at least one polyether carbonate polyol.
  • the invention further relates to polyurethane foams produced by the process according to the invention and their use, as well as the polyether carbonate polyol used according to the invention.
  • CCE-based starting materials for example in the form of polyether carbonate polyols, in relatively large quantities.
  • the production of polyether carbonate polyols by catalytic conversion of alkylene oxides (epoxides) and carbon dioxide in the presence of H-functional starter compounds (“starters”) has been intensively studied for more than 50 years (e.g. Inoue et al, Copolymerization of Carbon Dioxide and Epoxide with Organometallic Compounds; Die Makromolecular Chemie 130, 210-220, 1969).
  • polyurethane foams based on polyether carbonate polyols and isocyanates is known (eg WO 2012/130760 A1, WO 2015/078801).
  • Important when using Such polyurethane foams include resistance to mechanical influences in order to achieve a long service life for the polyurethane foams.
  • the object of the present invention was therefore to provide a process for producing polyurethane foams comprising polyether carbonate polyols, which leads to polyurethane foams having a higher tensile strength and elongation at break.
  • Al compounds with isocyanate-reactive hydrogen atoms containing Al.l polyether carbonate polyol,
  • B di- and/or polyisocyanates are reacted with one another, characterized in that the structure of Al.l is made up of a starter compound S 1 having a molecular weight of 18 to 200 g/mol on which a first, inner alkylene oxide block containing 0.5 up to 30 wt.
  • the preferred subject matter of the invention is a process for producing polyurethane foams, preferably flexible polyurethane foams, characterized in that component A1 has the following composition:
  • polymer polyol A1.4 0 to 40 parts by weight polymer polyol, PHD polyol and/or PIPA polyol,
  • the components A1.1 to A1.5 each refer to “one or more” of those mentioned
  • component contains Al
  • polyether polyols with a hydroxyl number according to DIN 53240-1 (June 2013) of >20 mg KOH/g to ⁇ 250 mg KOH/g and an ethylene oxide content of >0 to ⁇ 60% by weight, the polyether polyols Al.2 free are of carbonate units, with component Al preferably being free from component Al.3 and/or Al.4.
  • component includes Al
  • component includes Al
  • Al.l >40 to ⁇ 100 parts by weight, preferably >60 to ⁇ 100 parts by weight, particularly preferably >80 to ⁇ 100 parts by weight, most preferably >65 to ⁇ 75 parts by weight of one or more Polyethercarbonate polyols, preferably with a hydroxyl number according to DIN 53240-1 (June 2013) from > 20 mg KOH/g to ⁇ 120 mg KOH/g and preferably a CO 2 content of 10 to 25% by weight, and
  • polyether polyols with a hydroxyl number according to DIN 53240-1 (June 2013) of >20 mg KOH/g to ⁇ 250 mg KOH/g and a content of ethylene oxide from >0 to ⁇ 60% by weight, the polyether polyols Al.2 being free from carbonate units,
  • Component A1 includes compounds with isocyanate-reactive hydrogen atoms and, according to the invention, contains at least one polyether carbonate polyol A1.1.
  • the polyether carbonate polyol A1.1 is based on a starter compound S1 with a molecular weight of 18 to 200 g/mol, a first, inner alkylene oxide block containing 0.5 to 30% by weight of ethylene oxide, based on the total mass of alkylene oxide in the first alkylene oxide block, and a second, outer block of carbon dioxide and alkylene oxide.
  • Starter compound S1 with a molecular weight of 18 to 200 g/mol is understood as meaning compounds which have H atoms which are active towards alkoxylation, for example monohydric or polyhydric alcohols such as ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1, 4-butanediol, 1,5-pentanediol, 2-methylpropane-1,3-diol, neopentyl glycol, 1,6-hexanediol, 1,8-octanediol, diethylene glycol, dipropylene glycol, glycerine, trimethylolpropane, pentaerythritol and sorbitol. Mixtures of different starter compounds S1 can also be used.
  • a first, inner alkylene oxide block is attached to the starter compound S 1 with a molecular weight of 18 to 200 g/mol.
  • the first, inner alkylene oxide block consists of at least two alkylene oxides and contains 0.5 to 30% by weight of ethylene oxide, preferably 1 to 25% by weight, in particular preferably 5 to 22% by weight, particularly preferably 12 to 22% by weight, based in each case on the total mass of the alkylene oxide used in the first alkylene oxide block.
  • the first, inner alkylene oxide block preferably consists only of ethylene oxide and propylene oxide.
  • a second, outer block of carbon dioxide and alkylene oxide is attached to the first inner alkylene oxide block.
  • the alkylene oxide used for the second block is preferably propylene oxide, ethylene oxide or a mixture of both, particularly preferably at least 90% by weight of propylene oxide, very particularly preferably just propylene oxide.
  • the polyether carbonate polyol A1.1 is obtained, for example, by a process comprising the steps
  • Steps (i) and (ii) are preferably carried out in the presence of a DMC catalyst, such as DMC catalysts based on zinc hexacyanocobaltate(III), zinc hexacyanoiridate(III), zinc hexacyanoferrate(III) and cobalt(II) hexacyanocobaltate(III) .
  • 2) is preferably used.
  • metal complex catalysts based on the metals zinc and/or cobalt can also be used for the copolymerization of alkylene oxide and carbon dioxide in step (ii). This includes in particular so-called zinc glutarate catalysts (described e.g.
  • Steps (i) and (ii) can be carried out directly one after the other or separately from one another.
  • the alkylene oxide polymer obtained from step (i) can be purified before carbon dioxide and alkylene oxide are added to the alkylene oxide polymer in step (ii).
  • a purification step is advantageous, for example, when different catalysts are used in steps (i) and (ii). However, it can also be a DMC Catalyst are used in step (i) and left in the resulting alkylene oxide polymer and function as a catalyst in step (ii).
  • the alkylene oxide polymer resulting from step (i) preferably has a molecular weight of 250 to 2000 g/mol, preferably 400 to 1200 g/mol, particularly preferably 500 to 1000 g/mol.
  • step (ii) is carried out as follows:
  • step (a) the alkylene oxide polymer from step (i) is initially taken and, if appropriate, water and/or other readily volatile compounds are removed by elevated temperature and/or reduced pressure ("drying"), with a catalyst being optionally used before or after drying to give the alkylene oxide polymer from step (i) is added,
  • step (ß) optionally, to activate a DMC catalyst, a portion (based on the total amount of alkylene oxides used in the activation and copolymerization in step (ii)) of alkylene oxide is added to the mixture resulting from step (a), this addition a subset of alkylene oxide can optionally take place in the presence of CO2, and the temperature peak ("hotspot") occurring as a result of the following exothermic chemical reaction and/or a drop in pressure in the reactor is then awaited in each case, and step (ß) for activation also can be done multiple times
  • step (g) Alkylene oxide and carbon dioxide are added to the mixture resulting from step (a) or optionally ( ⁇ ), it being possible for the alkylene oxides used in step ( ⁇ ) to be the same as or different from the alkylene oxides used in step (g).
  • the polyether carbonate polyol Al.1 used according to the invention preferably has a hydroxyl number (OH number) according to DIN 53240-1 (June 2013) from 20 mg KOH/g to 120 mg KOH/g, preferably from 20 mg KOH/g to 100 mg KOH/g g, particularly preferably from 25 mg KOH/g to 90 mg KOH/g.
  • the polyether carbonate polyol Al.l preferably has a CO 2 content of 10 to 25% by weight, preferably 12 to 20% by weight.
  • the functionality of the polyether carbonate polyol Al.l is preferably from 1 to 6, preferably from 1 to 4, particularly preferably from 2 to 3.
  • the proportion of built-in CO2 (“units originating from carbon dioxide”; “C0 2 content”) in a polyether carbonate polyol can be determined from the evaluation of characteristic signals in the 'HN R spectrum.
  • the example below illustrates the determination of the level of carbon dioxide derived units in a CCE/propylene oxide polyethercarbonate polyol initiated on 1,8-octanediol.
  • the proportion of built-in CO2 in a polyether carbonate polyol and the ratio of cyclic carbonate to polyether carbonate polyol can be determined using ⁇ -NMR (a suitable device is from Bruker, DPX 400, 400 MHz; pulse program zg30, waiting time dl: 10 s, 64 scans).
  • ⁇ -NMR a suitable device is from Bruker, DPX 400, 400 MHz; pulse program zg30, waiting time dl: 10 s, 64 scans.
  • the sample is dissolved in deuterated chloroform.
  • Cyclic carbonate (which was formed as a by-product) resonating at 4.5 ppm; carbonate resulting from carbon dioxide incorporated in the polyethercarbonate polyol with resonances at 5.1 to 4.8 ppm; unreacted propylene oxide (PO) resonating at 2.4 ppm; polyether polyol (i.e., without incorporated carbon dioxide) with resonances at 1.2 to 1.0 ppm; the 1.8 octanediol incorporated as a starter molecule (if present) with a resonance at 1.6 to 1.52 ppm.
  • N [F(5,l - 4,8) - F(4,5)]* 102 + F(4,5) * 102 + F(2,4) * 58 + 0.33 * F(l, 2 - 1.0) * 58 + 0.25 * F(l.6 - 1.52) * 146
  • F(4.5) area of resonance at 4.5 ppm for cyclic carbonate (corresponds to an H atom)
  • F(5,1-4.8) area of resonance at 5.1-4.8 ppm for polyethercarbonate polyol and one H for cyclic carbonate.
  • F(1,6-1.52) area of resonance at 1.6 to 1.52 ppm for 1,8 octanediol (initiator) if present.
  • the factor 102 results from the sum of the molar masses of CO2 (molar mass 44 g/mol) and that of propylene oxide (molar mass 58 g/mol), the factor 58 results from the molar mass of propylene oxide and the factor 146 results from the molar mass of the starter used 1,8-octanediol (if available).
  • component A1 can contain other compounds with hydrogen atoms that are reactive toward isocyanates.
  • Component A1.2 comprises polyether polyols with a hydroxyl number according to DIN 53240-1 (June 2013) from 20 mg KOH/g to 250 mg KOH/g, preferably from 20 to 112 mg KOH/g and particularly preferably 20 mg KOH/g 80 mg KOH/g and is free of carbonate units.
  • the compounds according to A1.2 can be prepared by catalytic addition of one or more alkylene oxides onto H-functional starter compounds.
  • Alkylene oxides having 2 to 24 carbon atoms can be used as alkylene oxides (epoxides).
  • the alkylene oxides having 2 to 24 carbon atoms are, for example, one or more compounds selected from the group consisting of ethylene oxide, propylene oxide, 1-butene oxide, 2,3-butene oxide, 2-methyl-1,2-propene oxide (isobutene oxide), 1-pentene oxide,
  • Ethylene oxide and/or propylene oxide and/or 1,2-butylene oxide are preferably used as alkylene oxides.
  • the alkylene oxides can be added to the reaction mixture individually, as a mixture or in succession. They can be random or block copolymers. If the alkylene oxides are metered in one after the other, the products produced (polyether polyols) contain polyether chains with block structures.
  • the H-functional starter compounds have functionalities from 2 to 6 and are preferably hydroxy-functional (OH-functional).
  • hydroxy-functional starter compounds are propylene glycol, ethylene glycol, diethylene glycol, dipropylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, hexanediol, pentanediol, 3-methyl-1,5-pentanediol, 1,12- Dodecanediol, glycerin, trimethylolpropane, triethanolamine, pentaerythritol, sorbitol, sucrose, hydroquinone, catechol, resorcinol, bisphenol F, bisphenol A, 1,3,5-trihydroxybenzene, methylol-containing condensates of formaldehyde and phenol or melamine or urea. These can also be used in a mixture. 1,2-Propylene glycol and/
  • the polyether polyols of component A1.2 contain from 0 to 60% by weight, preferably from 0 to 40% by weight, particularly preferably from 0 to 25% by weight, of ethylene oxide.
  • Component A1.3 comprises polyether polyols with a hydroxyl number according to DIN 53240-1 (June 2013) from 20 mg KOH/g to 250 mg KOH/g, preferably from 20 to 112 mg KOH/g and particularly preferably 20 mg KOH/g 80 mg KOH/g.
  • component A1.3 is prepared analogously to component A1.2, but with an ethylene oxide content of >60% by weight, preferably >65% by weight, being set in the polyether polyol.
  • Suitable alkylene oxides and H-functional starter compounds are the same as described for component A1.2.
  • suitable H-functional starter compounds are preferably those which have a functionality of 3 to 6, particularly preferably 3, so that polyether triols are formed.
  • Preferred starter compounds with a functionality of 3 are glycerol and/or trimethylolpropane, with glycerol being particularly preferred.
  • component A1.3 is a glycerol-started trifunctional polyether with an ethylene oxide content of 68 to 73% by weight and an OH number of 35 to 40 mg KOH/g.
  • Component A1.4 includes polymer polyols, PHD polyols and PIPA polyols.
  • Polymer polyols are polyols containing proportions of solid polymers produced by free radical polymerization of suitable monomers such as styrene or acrylonitrile in a base polyol such as a polyether polyol and/or polyether carbonate polyol.
  • PHD (polyurea dispersion) polyols are prepared, for example, by in situ polymerization of an isocyanate or an isocyanate mixture with a diamine and/or hydrazine in a polyol, preferably a polyether polyol.
  • the PHD dispersion is preferably prepared by reacting an isocyanate mixture used from a mixture of 75 to 85% by weight of 2,4-tolylene diisocyanate (2,4-TDI) and 15 to 25% by weight of 2,6-tolylene diisocyanate (2.6 TDI) with a Diamine and/or hydrazine in a polyether polyol, preferably a polyether polyol and/or polyether carbonate polyol prepared by alkoxylating a trifunctional starter (such as glycerol and/or trimethylolpropane) in the presence of carbon dioxide in the case of the polyether carbonate polyol.
  • a trifunctional starter such as glycerol and/or trimethylolpropane
  • the PIPA polyols are polyether polyols and/or polyether carbonate polyols modified by polyisocyanate polyaddition with alkanolamines, preferably triethanolamine-modified, the polyether carbonate polyol having a functionality of 2.5 to 4 and a hydroxyl number of 3 mg KOH/g to 112 mg KOH/g (molecular weight 500 to 18,000).
  • the polyether polyol is "EO-capped", i.e. the polyether polyol has terminal ethylene oxide groups.
  • PIPA polyols are described in detail in GB 2 072 204 A, DE 31 03 757 A1 and US Pat. No. 4,374,209.
  • diols e.g. 1,2-ethanediol, 1,3- or 1,2-propanediol, 1,4-butanediol
  • triols e.g. glycerol, trimethylolpropane
  • tetraols e.g. pentaerythritol
  • polyester polyols polythioether polyols or Polyacrylate polyols and polyether polyols, polyether carbonate polyols or polycarbonate polyols which do not fall under the definition of components Al.1 to A1.4.
  • ethylenediamine and triethanolamine started polyethers can also be used.
  • Blowing agents such as chemical and/or physical blowing agents are used as component A2.
  • Water or carboxylic acids and mixtures thereof, for example, are used as the chemical blowing agent A2.1. These react with isocyanate groups to form the propellant gas, for example in the case of water, carbon dioxide is formed and in the case of z.
  • B. formic acid produces carbon dioxide and carbon monoxide. At least one compound selected from the group consisting of formic acid, acetic acid, oxalic acid and ricinoleic acid is preferably used as the carboxylic acid. Water is particularly preferably used as the chemical blowing agent.
  • low-boiling organic compounds such as e.g. B. hydrocarbons, ethers, ketones, carboxylic acid esters, carbonic acid esters, halogenated hydrocarbons.
  • organic compounds which are inert towards the isocyanate component B and have boiling points below 100° C., preferably below 50° C., at atmospheric pressure. These boiling points have the advantage that the organic compounds evaporate under the influence of the exothermic polyaddition reaction.
  • Examples of such preferably used organic compounds are alkanes such as heptane, hexane, n- and isopentane, preferably technical mixtures of n- and isopentanes, n- and isobutane and propane, cycloalkanes such as cyclopentane and/or cyclohexane , Ethers such as furan, dimethyl ether and diethyl ether, ketones such as acetone and methyl ethyl ketone, carboxylic acid alkyl esters such as methyl formate, dimethyl oxalate and ethyl acetate and halogenated hydrocarbons such as methylene chloride, dichloromonofluoromethane, difluoromethane, trifluoromethane, difluoroethane, tetrafluoroethane, chlorodifluoroethane, 1,1-dichloro- 2,2,2-trifluoroethane, 2,
  • (hydro)fluorinated olefins such as HFO 1233zd(E) (trans-1-chloro-3,3,3-trifluoro-l-propene) or HFO 1336mzz(Z) (cis-l,l ,l,4,4,4-hexafluoro-2-butene) or additives such as FA 188 from 3M (l,l,l,2,3,4,5,5,5-nonafluoro-4-(trifluoromethyl)pent- 2-en).
  • HFO 1233zd(E) trans-1-chloro-3,3,3-trifluoro-l-propene
  • HFO 1336mzz(Z) cis-l,l ,l,4,4,4-hexafluoro-2-butene
  • additives such as FA 188 from 3M (l,l,l,2,3,4,5,5,5-nonafluoro-4-(trifluoromethyl)pent- 2-en).
  • the component contains A2
  • A2.2 0 to 15 parts by weight (based on A 100 parts by weight) of physical blowing agents Particular preference is given to using water as component A2.
  • component A3 a) catalysts (activators), b) surface-active additives (surfactants), such as emulsifiers and foam stabilizers, in particular those with low emissions such as products from the Tegostab ® LF series, c) additives such as reaction retardants (e.g.
  • acidic substances such as hydrochloric acid or organic acid halides
  • cell regulators such as paraffins or fatty alcohols or dimethylpolysiloxanes
  • pigments such as paraffins or fatty alcohols or dimethylpolysiloxanes
  • flame retardants such as tricresyl phosphate
  • stabilizers against aging and weathering plasticizers
  • fungistatic and bacteriostatic substances such as barium sulfate, kieselguhr, soot or whiting
  • fillers such as barium sulfate, kieselguhr, soot or whiting
  • Preferred catalysts are aliphatic tertiary amines (e.g. trimethylamine, tetramethylbutanediamine), cycloaliphatic tertiary amines (e.g.
  • 1,4-diaza(2,2,2)bicyclooctane 1,4-diaza(2,2,2)bicyclooctane
  • aliphatic amino ethers e.g. dimethylaminoethyl ether and N,N,N-trimethyl-N- hydroxyethyl bisaminoethyl ether
  • cycloaliphatic amino ethers e.g. dimethylaminoethyl ether and N,N,N-trimethyl-N- hydroxyethyl bisaminoethyl ether
  • N-ethylmorpholine aliphatic amidines, cycloaliphatic amidines, urea, derivatives of urea (such as aminoalkylureas), in particular (3-dimethylaminopropylamine)urea) and tin catalysts (such as dibutyltin oxide, dibutyltin dilaurate, tin octoate).
  • Particularly preferred catalysts are (i) urea, derivatives of urea and/or (ii) the abovementioned amines and amino ethers, characterized in that the amines and amino ethers contain a functional group which reacts chemically with the isocyanate.
  • the functional group is a hydroxyl group, a primary or secondary amino group.
  • Aliphatic, cycloaliphatic, araliphatic, aromatic and heterocyclic polyisocyanates are used as component B, for example those of the formula (V)
  • n is an integer between 2-4, preferably 2 or 3
  • Q is an aliphatic hydrocarbon radical having 2-18, preferably 6-10 carbon atoms, a cycloaliphatic hydrocarbon radical having 4-15, preferably 6-13 carbon atoms or an araliphatic hydrocarbon radical having 8-15, preferably 8-13 carbon atoms stands.
  • the technically easily accessible polyisocyanates are particularly preferred, e.g.
  • TDI 2,4- and 2,6-tolylene diisocyanate, and any mixtures of these isomers
  • Polyphenylpolymethylene polyisocyanates such as those produced by aniline-formaldehyde condensation and subsequent phosgenation ("crude MDI") and polyisocyanates containing carbodiimide groups, urethane groups, allophanate groups, isocyanurate groups, urea groups or biuret groups
  • modified polyisocyanates in particular those modified polyisocyanates which differ from 2,4- and/or 2,6-tolylene diisocyanate or from 4,4'- and/or 2,4'- diphenylmethane diisocyanate.
  • component B at least one Compound selected from the group consisting of 2,4- and 2,6-tolylene diisocyanate, 4,4'- and 2,4'- and 2,2'-diphenylmethane diisocyanate and polyphenylpolymethylene polyisocyanate ("multi-core MDI") used.
  • a diphenylmethane diisocyanate mixture is very particularly preferably used as component B, consisting of a) 45 to 90% by weight of 4,4'-diphenylmethane diisocyanate and b) 10 to 55% by weight of 2,2'-diphenylmethane diisocyanate and/or 2 ,4'-diphenylmethane diisocyanate and c) 0 to 45 wt. or pMDI-based carbodiimides, uretdiones or uretdionimines.
  • a diphenylmethane diisocyanate mixture is used as component B, consisting of a) 35 to 45% by weight of 4,4'-diphenylmethane diisocyanate and b) 1 to 5% by weight of 2,2'-diphenylmethane diisocyanate and/or 2,4'-diphenylmethane diisocyanate and c) 50 to 64% by weight of polyphenyl polymethylene polyisocyanate ("multi-core MDI”) and/or 2,2'-, 2,4'-, 4,4'-diphenylmethane diisocyanate -, and/or pMDI-based carbodiimides, uretdione or uretdione imines.
  • multi-core MDI polyphenyl polymethylene polyisocyanate
  • pMDI-based carbodiimides uretdione or uretdione imines.
  • a component K can also be used in order to reduce the proportion of cyclic carbonates in the polyurethane foam.
  • components K which can be used are: a) esters of monobasic or polybasic carboxylic acids, the pKa values of the (first) dissociation of the carboxylic acids being 0.5 to 4.0, such as methyl and ethyl esters of oxalic acid and/or malonic acid , b) mono-, di- and polysulfonates of mono- and polyfunctional alcohols, such as para-
  • the polyurethane foams obtained according to the invention are preferably flexible polyurethane foams or semirigid polyurethane foams.
  • the reaction components are reacted by the known one-step process, the prepolymer process or the semiprepolymer process, mechanical equipment often being used.
  • the polyurethane foams can be produced as molded foams or also as block foams, it being possible for the molded foams to be produced in a hot-curing or cold-curing manner.
  • the invention therefore relates to a process for producing the polyurethane foams, the polyurethane foams produced by this process and their use.
  • the polyurethane foams obtainable according to the invention are used, for example, in the following areas: furniture upholstery, textile inserts, mattresses, automobile seats, headrests, armrests, sponges and components, as well as seat and instrument paneling, and can have indexes of 60 to 250, preferably 70 to 120, particularly preferably 75 to 120 and bulk densities of 4 to 600 kg/m 3 , preferably 60 to 120 kg/m 3 (semi-rigid foam) or preferably 15 to 55 kg/m 3 (flexible foam).
  • the isocyanate number (also called number or isocyanate index) is the quotient of the amount of substance [mol] of isocyanate groups actually used and the amount of substance [mol] of isocyanate-reactive groups actually used, multiplied by 100:
  • the NCO value (also: NCO content, isocyanate content) is determined using EN ISO 11909:2007.
  • the preferred flexible polyurethane foams preferably have a bulk density according to DIN EN ISO 3386-1-98 in the range from 15 to 55 kg/m 3 , preferably from 20 to 50 kg/m 3 .
  • the compressive strength of the polyurethane foams was determined according to DIN EN ISO 3386-1 in the September 2010 version in the direction of foaming and the bulk density according to DIN EN ISO 845 in the October 2009 version.
  • the compression set was measured according to DIN EN ISO 1856 in the January 2008 version with 90% compression set at 70°C for 22 hours.
  • OH numbers (hydroxyl numbers) were determined in accordance with the provisions of DIN 53240-1 (June 2013).
  • the emissions in the flexible polyurethane foams were determined in accordance with the LGA Pollutant Tested certification. The emissions were measured after conditioning the sample in the test chamber for 7 days. Test chamber conditions: 23°C ⁇ 1°C, area-specific air flow rate: 0.5 m 3 /(m 2 -h) ⁇ 0.05 m 3 /(m 2 -h) and rel. Humidity 50% ⁇ 3%.
  • AO polymer 1 Alkylene oxide polymer based on a propylene glycol/glycerol mixture and addition of 90% by weight of propylene oxide and 10% by weight of ethylene oxide, based in each case on the total mass of the alkylene oxide used, functionality of 2.8 and molecular weight of 670 g/ mol produced by DMC catalysis
  • AO-Polymer 2 Alkylene oxide polymer based on a propylene glycol/glycerol mixture and addition of 80% by weight of propylene oxide and 20% by weight of ethylene oxide, based in each case on the total mass of the alkylene oxide used, functionality of 2.8 and molecular weight of 670 g/ mol produced by DMC catalysis
  • AO polymer 3 Alkylene oxide polymer based on a propylene glycol/glycerol mixture and addition of 100% by weight of propylene oxide, based on the total mass of the alkylene oxide used, functionality of 2.8 and molecular weight of 670 g/mol, produced by DMC catalysis
  • A3-1 silicone stabilizer (Tegostab BF2370)
  • the flexible polyurethane foams described in Table 1 were produced in a discontinuous process.
  • Components A1-1 to A3-2 are weighed in according to the recipe (see Table 1) and stirred at room temperature for 20 seconds at a speed of 680 rpm. Then the necessary amount of component A3 -3 is added and the mixture is stirred at a speed of 680 rpm for 10 seconds with an agitator.
  • component B1 is added and stirred with a stirrer at a speed of 750 rpm for 10 seconds. The mass is then added to a 1 m 3 mold. The walls of the 1 m 3 form were previously covered on the inside with polyethylene foil.
  • the height of the flexible polyurethane foam blocks was about 74-82 cm.
  • the finished flexible polyurethane foam was stored in the post-reaction store for approx. 20-24 hours before it was sawn into test specimens for testing. Two specimens were analyzed to determine the mechanical properties of the flexible polyurethane foams. Table 1 shows the mean of the measurements in each case. Table 1: Formulations and mechanical properties
  • Comparative Example Table 1 shows the mechanical properties of the polyurethane foams obtained from Examples 1 to 3.
  • a polyether carbonate polyol A1.1 was used in each of Examples 1 and 2.
  • the polyurethane foams from Examples 1 and 2 achieve tensile strength values of 110 kPa and 121 kPa, respectively, and values of 137% and 150%, respectively, for the elongation at break.
  • a polyether carbonate polyol A1.5-1 based on an alkylene oxide polymer with 100% by weight of propylene oxide was used in example 3 (comparison).
  • the resulting polyurethane foam from Example 3 has a tensile strength of only 88 kPa and an elongation at break of 81%.
  • the flexible polyurethane foams produced according to the invention also have low emission values in the measurements according to LGA certification.

Abstract

The present invention relates to a method for producing polyurethane foams, wherein the components (A) containing (A1) compounds with hydrogen atoms capable of reacting with isocyanates, including (A1.1) polyether carbonate polyol, (A2) propellant and, where appropriate, (A3) adjutants and additives, and (B) di-isocyanates and/or polyisocyanates are reacted with one another, characterized in that the structure of A1.1 is built from a starter compound S1 having a molecular weight from 18 to 200 g/mol on which a first, inner alkylene oxide block containing 0.5 to 30 wt% ethylene oxide structural units, relative to the total mass of alkylene oxide used in the first alkylene oxide block, and a second, outer block of carbon dioxide and alkylene oxide are deposited.

Description

Verfahren zur Herstellung von Polyurethan-Schaumstoff Process for the production of polyurethane foam
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Polyurethan-Schaumstoffen, vorzugsweise von Polyurethan-Weichschaumstoffen, durch Reaktion einer Isocyanat-Komponente mit einer gegenüber Isocyanaten reaktiven Komponente, die mindestens ein Polyethercarbonatpolyol umfasst. Die Erfindung betrifft weiterhin durch das erfmdungsgemäße Verfahren hergestellte Polyurethanschaumstoffe und deren Verwendung, sowie das erfindungsgemäß eingesetzte Polyethercarbonatpolyol . The present invention relates to a process for producing polyurethane foams, preferably flexible polyurethane foams, by reacting an isocyanate component with an isocyanate-reactive component which comprises at least one polyether carbonate polyol. The invention further relates to polyurethane foams produced by the process according to the invention and their use, as well as the polyether carbonate polyol used according to the invention.
Im Rahmen einer umweltfreundlichen Ausrichtung von Produktionsprozessen ist es generell wünschenswert, CCE-basierte Ausgangsstoffe, beispielsweise in Form von Polyethercarbonatpolyolen, in relativ großen Mengen einzusetzen. Die Herstellung von Polyethercarbonatpolyolen durch katalytische Umsetzung von Alkylenoxiden (Epoxiden) und Kohlendioxid in Anwesenheit von H-funktionellen Starterverbindungen („Starter“) wird seit mehr als 50 Jahren intensiv untersucht (z. B. Inoue et al, Copolymerization of Carbon Dioxide and Epoxide with Organometallic Compounds; Die Makromolekulare Chemie 130, 210-220, 1969). Diese Reaktion ist in Schema (I) schematisch dargestellt, wobei R für einen organischen Rest wie Alkyl, Alkylaryl oder Aryl steht, der jeweils auch Heteroatome wie beispielsweise O, S, Si usw. enthalten kann, und wobei e, f und g für eine ganzzahlige Zahl stehen, und wobei das hier im Schema (I) gezeigte Produkt für das Polyethercarbonatpolyol lediglich so verstanden werden soll, dass sich Blöcke mit der gezeigten Struktur im erhaltenen Polyethercarbonatpolyol prinzipiell wiederfmden können, die Reihenfolge, Anzahl und Länge der Blöcke sowie die OH-Funktionalität des Starters aber variieren kann und nicht auf das in Schema (I) gezeigte Polyethercarbonatpolyol beschränkt ist. Diese Reaktion (siehe Schema (I)) ist ökologisch sehr vorteilhaft, da diese Reaktion die Umsetzung eines Treibhausgases wie CO2 zu einem Polymer darstellt. Als weiteres Produkt, eigentlich Nebenprodukt, entsteht das in Schema (I) gezeigte cyclische Carbonat (beispielsweise für R = CH3 Propylencarbonat, im Folgenden auch als cPC bezeichnet, oder für R = H Ethylencarbonat, im Folgenden auch als cEC bezeichnet). In the context of an environmentally friendly orientation of production processes, it is generally desirable to use CCE-based starting materials, for example in the form of polyether carbonate polyols, in relatively large quantities. The production of polyether carbonate polyols by catalytic conversion of alkylene oxides (epoxides) and carbon dioxide in the presence of H-functional starter compounds ("starters") has been intensively studied for more than 50 years (e.g. Inoue et al, Copolymerization of Carbon Dioxide and Epoxide with Organometallic Compounds; Die Makromolecular Chemie 130, 210-220, 1969). This reaction is shown schematically in Scheme (I), where R is an organic radical such as alkyl, alkylaryl or aryl, each of which may also contain heteroatoms such as O, S, Si, etc., and where e, f and g are a are integers, and the product shown here in scheme (I) for the polyethercarbonate polyol should only be understood in such a way that blocks with the structure shown can in principle be found again in the polyethercarbonate polyol obtained, the order, number and length of the blocks and the OH However, functionality of the initiator can vary and is not limited to the polyethercarbonate polyol shown in Scheme (I). This reaction (see scheme (I)) is ecologically very advantageous since this reaction represents the conversion of a greenhouse gas such as CO2 into a polymer. The cyclic carbonate shown in scheme (I) is formed as a further product, actually a by-product (for example for R=CH3 propylene carbonate, also referred to below as cPC, or for R=H ethylene carbonate, also referred to below as cEC).
Starter- + (e+g) C02 -
Figure imgf000002_0001
Figure imgf000002_0002
Starter + (e+g) C0 2 -
Figure imgf000002_0001
Figure imgf000002_0002
Die Herstellung von Polyurethan-Schaumstoffen auf Basis von Polyethercarbonatpolyolen und Isocyanaten ist bekannt (z.B. WO 2012/130760 Al, WO 2015/078801). Wichtig beim Einsatz von solchen Polyurethan-Schaumstoffen ist unter anderem eine Widerstandsfähigkeit gegenüber mechanischen Einflüssen um eine hohe Langlebigkeit der Polyurethan-Schaumstoffe zu erreichen. The production of polyurethane foams based on polyether carbonate polyols and isocyanates is known (eg WO 2012/130760 A1, WO 2015/078801). Important when using Such polyurethane foams include resistance to mechanical influences in order to achieve a long service life for the polyurethane foams.
Die Aufgabe der vorliegenden Erfindung bestand deshalb darin, ein Verfahren zur Herstellung von Polyurethan-Schaumstoffen umfassend Polyethercarbonatpolyole bereitzustellen, welches zu Polyurethan-Schaumstoffen mit einer höheren Zugfestigkeit und Bruchdehnung führt. The object of the present invention was therefore to provide a process for producing polyurethane foams comprising polyether carbonate polyols, which leads to polyurethane foams having a higher tensile strength and elongation at break.
Überraschenderweise wurde diese Aufgabe gelöst durch ein Verfahren zur Herstellung von Polyurethan-Schaumstoffen, wobei die Komponenten A enthaltend Surprisingly, this object has been achieved by a process for the production of polyurethane foams, the components A containing
Al Verbindungen mit gegenüber Isocyanaten reaktionsfähigen Wasserstoffatomen, enthaltend Al.l Polyethercarbonatpolyol, Al compounds with isocyanate-reactive hydrogen atoms, containing Al.l polyether carbonate polyol,
A2 Treibmittel und gegebenenfalls A3 Hilfs- und Zusatzstoffe und A2 propellants and optionally A3 auxiliaries and additives and
B Di- und/oder Polyisocyanaten, miteinander umgesetzt werden, dadurch gekennzeichnet, dass die Struktur von Al.l aufgebaut ist aus einer Starterverbindung S 1 mit einem Molekulargewicht von 18 bis 200 g/mol an der ein erster, innerer Alkylenoxidblock enthaltend 0,5 bis 30 Gew.-% Ethylenoxid-Baueinheiten, bezogen auf die Gesamtmasse des eingesetzten Alkylenoxids in dem ersten Alkylenoxidblock, und ein zweiter, äußerer Block aus Kohlenstoffdioxid und Alkylenoxid angelagert ist. B di- and/or polyisocyanates, are reacted with one another, characterized in that the structure of Al.l is made up of a starter compound S 1 having a molecular weight of 18 to 200 g/mol on which a first, inner alkylene oxide block containing 0.5 up to 30 wt.
Bevorzugter Gegenstand der Erfindung ist ein Verfahren zur Herstellung von Polyurethan- Schaumstoffen, vorzugsweise von Polyurethan-Weichschaumstoffen, dadurch gekennzeichnet, dass Komponente Al die folgende Zusammensetzung aufweist: The preferred subject matter of the invention is a process for producing polyurethane foams, preferably flexible polyurethane foams, characterized in that component A1 has the following composition:
Al.l 40 bis 100 Gew. -Teile Polyethercarbonatpolyol, vorzugsweise mit einer Hydroxylzahl gemäß DIN 53240-1 (Juni 2013) von 20 mg KOH/g bis 120 mg KOH/g, Al.l 40 to 100 parts by weight polyether carbonate polyol, preferably with a hydroxyl number according to DIN 53240-1 (June 2013) of 20 mg KOH/g to 120 mg KOH/g,
A1.2 0 bis 60 Gew. -Teile Polyetherpolyol mit einer Hydroxylzahl gemäß DIN 53240-1 (Juni 2013) von 20 mg KOH/g bis 250 mg KOH/g und einem Gehalt an Ethylenoxid von 0 bis 60 Gew.- %, wobei Polyetherpolyol Al.2 frei von Carbonateinheiten ist, A1.2 0 to 60 parts by weight of polyether polyol with a hydroxyl number according to DIN 53240-1 (June 2013) of 20 mg KOH/g to 250 mg KOH/g and an ethylene oxide content of 0 to 60% by weight, where Polyetherpolyol Al.2 is free of carbonate units,
A1.3 0 bis 20 Gew. -Teile Polyetherpolyol mit einer Hydroxylzahl gemäß DIN 53240-1 (Juni 2013) von 20 mg KOH/g bis 250 mg KOH/g, und einem Gehalt an Ethylenoxid von > 60 Gew.-%, wobei Polyetherpolyol Al .3 frei von Carbonateinheiten ist, A1.3 0 to 20 parts by weight of polyether polyol with a hydroxyl number according to DIN 53240-1 (June 2013) of 20 mg KOH/g to 250 mg KOH/g and an ethylene oxide content of >60% by weight, where Polyetherpolyol Al .3 is free of carbonate units,
A1.4 0 bis 40 Gew. -Teile Polymerpolyol, PHD-Polyol und/oder PIPA-Polyol, A1.4 0 to 40 parts by weight polymer polyol, PHD polyol and/or PIPA polyol,
A1.5 0 bis 40 Gew. -Teile eines Polyols welches nicht unter die Definition der Komponenten Al.l bis Al.4 fällt, wobei die Angabe der Gewichtsteile jeweils bezogen sind auf die Summe der Gewichtsteile derA1.5 0 to 40 parts by weight of a polyol which does not fall under the definition of components Al.1 to Al.4, where the parts by weight are given in each case based on the sum of the parts by weight of the
Komponenten Al.l + A1.2 + A1.3 + A1.4 + A1.5 = 100 Gewichtsteile. Components A1.1 + A1.2 + A1.3 + A1.4 + A1.5 = 100 parts by weight.
Die Komponenten Al.l bis Al.5 beziehen sich jeweils auf „eine oder mehrere“ der genanntenThe components A1.1 to A1.5 each refer to “one or more” of those mentioned
Verbindungen. Bei Verwendung mehrerer Verbindungen einer Komponente entspricht dieLinks. When using several connections of a component corresponds to the
Mengenangabe der Summe der Gewichtsteile der Verbindungen. Quantities of the sum of the parts by weight of the compounds.
In einer besonders bevorzugten Ausführungsform enthält Komponente Al In a particularly preferred embodiment, component contains Al
Al.l > 65 bis < 75 Gew. -Teile, höchst bevorzugt > 68 bis < 72 Gew. -Teile eines oder mehrerer Polyethercarbonatpolyole, vorzugsweise mit einer Hydroxylzahl gemäß DIN 53240-1 (Juni 2013) von > 20 mg KOH/g bis < 120 mg KOH/g sowie vorzugsweise einem C02-Gehalt von 10 bis 25 Gew.-%, und Al.l> 65 to <75 parts by weight, most preferably> 68 to <72 parts by weight, of one or more polyether carbonate polyols, preferably with a hydroxyl number according to DIN 53240-1 (June 2013) of> 20 mg KOH/g to <120 mg KOH/g and preferably a CO 2 content of 10 to 25% by weight, and
A1.2 < 35 bis > 25 Gew. -Teile, höchst bevorzugt < 32 bis > 28 Gew. -Teile eines oder mehrererA1.2 <35 to >25 parts by weight, most preferably <32 to >28 parts by weight of one or more
Polyetherpolyole mit einer Hydroxylzahl gemäß DIN 53240-1 (Juni 2013) von > 20 mg KOH/g bis < 250 mg KOH/g und einem Gehalt an Ethylenoxid von > 0 bis < 60 Gew.-%, wobei die Polyetherpolyole Al.2 frei von Carbonateinheiten sind, wobei die Komponente Al vorzugsweise frei ist von Komponente Al.3 und/oder Al.4. Polyether polyols with a hydroxyl number according to DIN 53240-1 (June 2013) of >20 mg KOH/g to <250 mg KOH/g and an ethylene oxide content of >0 to <60% by weight, the polyether polyols Al.2 free are of carbonate units, with component Al preferably being free from component Al.3 and/or Al.4.
In einer anderen Ausführungsform umfasst Komponente Al In another embodiment, component includes Al
Al.l > 65 bis < 75 Gew. -Teile, bevorzugt > 68 bis < 72 Gew. -Teile eines oder mehrerer Polyethercarbonatpolyole, vorzugsweise mit einer Hydroxylzahl gemäß DIN 53240-1 (Juni 2013) von > 20 mg KOH/g bis < 120 mg KOH/g sowie vorzugsweise einem C02-Gehalt von 10 bis 25 Gew.-%, und Al.l> 65 to <75 parts by weight, preferably> 68 to <72 parts by weight, of one or more polyether carbonate polyols, preferably with a hydroxyl number according to DIN 53240-1 (June 2013) of> 20 mg KOH/g to < 120 mg KOH/g and preferably a C0 2 content of 10 to 25% by weight, and
A1.2 < 35 bis > 25 Gew. -Teile, bevorzugt < 32 bis > 28 Gew.-Teile eines oder mehrererA1.2 <35 to >25 parts by weight, preferably <32 to >28 parts by weight, of one or more
Polyetherpolyole mit einer Hydroxylzahl gemäß DIN 53240-1 (Juni 2013) von > 20 mg KOH/g bis < 250 mg KOH/g und einem Gehalt an Ethylenoxid von > 0 bis < 60 Gew.-%, wobei die Polyetherpolyole Al.2 frei von Carbonateinheiten sind, Polyether polyols with a hydroxyl number according to DIN 53240-1 (June 2013) of >20 mg KOH/g to <250 mg KOH/g and an ethylene oxide content of >0 to <60% by weight, the polyether polyols Al.2 free are of carbonate units,
A1.3 < 20 bis > 2 Gew.-Teile, bevorzugt < 10 bis > 2 Gew.-Teile, bezogen auf die Summe derA1.3 <20 to> 2 parts by weight, preferably <10 to> 2 parts by weight, based on the sum of
Gew.-Teile der Komponenten Al.l und A1.2, eines oder mehrerer Polyetherpolyole mit einer Hydroxylzahl gemäß DIN 53240-1 (Juni 2013) > 20 mg KOH/g bis < 250 mg KOH/g, und einem Gehalt an Ethylenoxid von > 60 Gew.-%, wobei die Polyetherpolyole A1.3 frei von Carbonateinheiten sind, wobei die Komponente Al vorzugsweise frei ist von Komponente Al.4. Parts by weight of components Al.l and A1.2, one or more polyether polyols with a hydroxyl number according to DIN 53240-1 (June 2013)> 20 mg KOH / g to <250 mg KOH / g, and an ethylene oxide content of >60% by weight, the polyether polyols A1.3 being free from carbonate units, with component A1 preferably being free from component A1.4.
In einer weiteren Ausführungsform umfasst Komponente Al In another embodiment, component includes Al
Al.l > 40 bis < 100 Gew.-Teile, bevorzugt > 60 bis < 100 Gew.-Teile, besonders bevorzugt > 80 bis < 100 Gew.-Teile, höchst bevorzugt > 65 bis < 75 Gew.-Teile eines oder mehrerer Polyethercarbonatpolyole, vorzugsweise mit einer Hydroxylzahl gemäß DIN 53240-1 (Juni 2013) von > 20 mg KOH/g bis < 120 mg KOH/g sowie vorzugsweise einem C02-Gehalt von 10 bis 25 Gew.-%, und Al.l >40 to <100 parts by weight, preferably >60 to <100 parts by weight, particularly preferably >80 to <100 parts by weight, most preferably >65 to <75 parts by weight of one or more Polyethercarbonate polyols, preferably with a hydroxyl number according to DIN 53240-1 (June 2013) from > 20 mg KOH/g to <120 mg KOH/g and preferably a CO 2 content of 10 to 25% by weight, and
A1.2 < 60 bis > 0 Gew.-Teile, bevorzugt < 40 bis > 0 Gew.-Teile, besonders bevorzugt < 20 bis >A1.2 <60 to >0 parts by weight, preferably <40 to >0 parts by weight, particularly preferably <20 to >
0 Gew.-Teile, höchst bevorzugt < 35 bis > 25 Gew.-Teile eines oder mehrerer Polyetherpolyole mit einer Hydroxylzahl gemäß DIN 53240-1 (Juni 2013) von > 20 mg KOH/g bis < 250 mg KOH/g und einem Gehalt an Ethylenoxid von > 0 bis < 60 Gew.-%, wobei die Polyetherpolyole Al.2 frei von Carbonateinheiten sind, 0 parts by weight, most preferably <35 to >25 parts by weight, of one or more polyether polyols with a hydroxyl number according to DIN 53240-1 (June 2013) of >20 mg KOH/g to <250 mg KOH/g and a content of ethylene oxide from >0 to <60% by weight, the polyether polyols Al.2 being free from carbonate units,
A1.4 < 40 bis > 0,01 Gew.-Teile, bevorzugt < 20 bis > 0,01 Gew.-Teile, besonders bevorzugt < 20 bis > 1 Gew.-Teile, höchst bevorzugt < 20 bis > 2 Gew.-Teile, bezogen auf die Summe der Gew.-Teile der Komponenten Al.l und A1.2, eines oder mehrerer Polymerpolyole, PHD- Polyole und/oder PIPA-Polyole, A1.4 <40 to >0.01 parts by weight, preferably <20 to >0.01 parts by weight, particularly preferably <20 to >1 part by weight, most preferably <20 to >2 parts by weight Parts, based on the sum of the parts by weight of components A1.1 and A1.2, of one or more polymer polyols, PHD polyols and/or PIPA polyols,
A1.5 < 40 bis > 0 Gew.-Teilen, bezogen auf die Summe der Gew.-Teile der Komponenten Al.l und A1.2, Polyole, die nicht unter die Definition der Komponenten Al.l bis A1.4 fallen, wobei die Komponente Al vorzugsweise frei ist von Komponente Al.3. A1.5 <40 to >0 parts by weight, based on the sum of the parts by weight of components Al.l and A1.2, polyols that do not fall under the definition of components Al.l to A1.4, where component Al is preferably free from component Al.3.
Dabei sind die angegebenen Bereiche und Vorzugsbereiche der Komponenten Al.l, A1.2, A1.4 und Al.5 miteinander frei kombinierbar. The specified ranges and preferred ranges of components A1.1, A1.2, A1.4 and A1.5 can be freely combined with one another.
Im Folgenden sind die im erfmdungsgemäßen Verfahren eingesetzten Komponenten näher beschrieben. The components used in the method according to the invention are described in more detail below.
Komponente Al component Al
Die Komponente Al umfasst Verbindungen mit gegenüber Isocyanaten reaktionsfähigen Wasserstoffatomen und enthält erfmdungsgemäß mindestens ein Polyethercarbonatpolyol Al.l. Das Polyethercarbonatpolyol Al.l ist aufgebaut auf einer Starterverbindung S1 mit einem Molekulargewicht von 18 bis 200 g/mol, einem ersten, inneren Alkylenoxidblock enthaltend 0,5 bis 30 Gew.-% Ethylenoxid, bezogen auf die Gesamtmasse an Alkylenoxid in dem ersten Alkylenoxidblock, und einem zweiten, äußeren Block aus Kohlenstoffdioxid und Alkylenoxid. Component A1 includes compounds with isocyanate-reactive hydrogen atoms and, according to the invention, contains at least one polyether carbonate polyol A1.1. The polyether carbonate polyol A1.1 is based on a starter compound S1 with a molecular weight of 18 to 200 g/mol, a first, inner alkylene oxide block containing 0.5 to 30% by weight of ethylene oxide, based on the total mass of alkylene oxide in the first alkylene oxide block, and a second, outer block of carbon dioxide and alkylene oxide.
Als Starterverbindung S1 mit einem Molekulargewicht von 18 bis 200 g/mol werden Verbindungen verstanden die gegenüber Alkoxylierung aktive H-Atome aufweisen, beispielsweise ein- oder mehrwertige Alkohole wie Ethylenglykol, Propylenglykol, 1,3-Propandiol, 1,3-Butandiol, 1,4- Butandiol, 1,5-Pentandiol, 2-Methylpropan-l,3-diol, Neopentylglykol, 1,6-Hexandiol, 1,8- Octandiol, Diethylenglykol, Dipropylenglykol, Glycerin, Trimethylolpropan, Pentaerythrit und Sorbitol. Es können auch Gemische aus verschiedenen Starterverbindungen S1 eingesetzt werden. Starter compound S1 with a molecular weight of 18 to 200 g/mol is understood as meaning compounds which have H atoms which are active towards alkoxylation, for example monohydric or polyhydric alcohols such as ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1, 4-butanediol, 1,5-pentanediol, 2-methylpropane-1,3-diol, neopentyl glycol, 1,6-hexanediol, 1,8-octanediol, diethylene glycol, dipropylene glycol, glycerine, trimethylolpropane, pentaerythritol and sorbitol. Mixtures of different starter compounds S1 can also be used.
An der Starterverbindung S 1 mit einem Molekulargewicht von 18 bis 200 g/mol ist ein erster, innerer Alkylenoxidblock angelagert. Der erste, innere Alkylenoxidblock besteht aus mindestens zwei Alkylenoxiden und enthält 0,5 bis 30 Gew.-% Ethylenoxid, bevorzugt 1 bis 25 Gew.-%, besonders bevorzugt 5 bis 22 Gew.-%, insbesondere bevorzugt 12 bis 22 Gew.-%, jeweils bezogen auf die Gesamtmasse des eingesetzten Alkylenoxids in dem ersten Alkylenoxidblock. Bevorzugt besteht der erste, innere Alkylenoxidblock nur aus Ethylenoxid und Propylenoxid. A first, inner alkylene oxide block is attached to the starter compound S 1 with a molecular weight of 18 to 200 g/mol. The first, inner alkylene oxide block consists of at least two alkylene oxides and contains 0.5 to 30% by weight of ethylene oxide, preferably 1 to 25% by weight, in particular preferably 5 to 22% by weight, particularly preferably 12 to 22% by weight, based in each case on the total mass of the alkylene oxide used in the first alkylene oxide block. The first, inner alkylene oxide block preferably consists only of ethylene oxide and propylene oxide.
An dem ersten inneren Alkylenoxidblock ist ein zweiter, äußerer Block aus Kohlenstoffdioxid und Alkyenoxid angelagert. Bevorzugt wird für den zweiten Block als Alkylenoxid Propylenoxid, Ethylenoxid oder eine Mischung aus beiden eingesetzt, besonders bevorzugt mindestens 90 Gew.-% Propylenoxid, ganz besonders bevorzugt nur Propylenoxid. A second, outer block of carbon dioxide and alkylene oxide is attached to the first inner alkylene oxide block. The alkylene oxide used for the second block is preferably propylene oxide, ethylene oxide or a mixture of both, particularly preferably at least 90% by weight of propylene oxide, very particularly preferably just propylene oxide.
Das Polyethercarbonatpolyol Al.l wird beispielsweise durch einen Prozess erhalten, umfassend die Schritte The polyether carbonate polyol A1.1 is obtained, for example, by a process comprising the steps
(i) Anlagerung von Alkylenoxid enthaltend 0,5 bis 30 Gew.-% Ethylenoxid zur Bildung eines ersten Alkylenoxidblocks an eine Starterverbindung S 1 mit einem Molekulargewicht von 18 bis 200 g/mol, vorzugsweise in Anwesenheit eines DMC-Katalysators, woraus ein Alkylenoxidpolymer resultiert, (i) Addition of alkylene oxide containing 0.5 to 30% by weight of ethylene oxide to form a first alkylene oxide block onto a starter compound S 1 having a molecular weight of 18 to 200 g/mol, preferably in the presence of a DMC catalyst, resulting in an alkylene oxide polymer ,
(ii) Anlagerung von Kohlenstoffdioxid und Alkylenoxid, vorzugsweise in Anwesenheit eines DMC-Katalysators, an das aus (i) resultierende Alkylenoxidpolymer zur Bildung eines Polyethercarbonatpolyols. (ii) adding carbon dioxide and alkylene oxide, preferably in the presence of a DMC catalyst, to the alkylene oxide polymer resulting from (i) to form a polyethercarbonate polyol.
Die Schritte (i) und (ii) werden vorzugsweise in Anwesenheit eines DMC-Katalysators durchgeführt, wie beispielsweise DMC-Katalysatoren auf Basis von Zinkhexacyanocobaltat(III), Zinkhexacyanoiridat(III), Zinkhexacyanoferrat(III) und Cobalt(II)hexacyanocobaltat(III). Bevorzugt wird ein DMC -Katalysator auf Basis von Zinkhexacyanocobaltat (Zm|Co(CN)r,|2) eingesetzt. Es können für die Copolymerisation von Alkylenoxid und Kohlendioxid in Schritt (ii) aber auch Metallkomplexkatalysatoren auf Basis der Metalle Zink und/oder Cobalt eingesetzt werden. Dies beinhaltet insbesondere sogenannte Zink-Glutarat-Katalysatoren (beschrieben z.B. in M. H. Chisholm et al., Macromolecules 2002, 35, 6494), sogenannte Zink-Diiminat-Katalysatoren (beschrieben z.B. in S. D. Allen, J. Am. Chem. Soc. 2002, 124, 14284), sogenannte Cobalt-Salen- Katalysatoren (beschrieben z.B. in US 7,304,172 B2, US 2012/0165549 Al) und bimetallische Zink- Komplexe mit makrozyklischen Liganden (beschrieben z.B. in M. R. Kember et al., Angew. Chem., Int. Ed., 2009, 48, 931). Für die Anlagerung von Alkylenoxid an die Starterverbindung S1 in Schritt (i) kann beispielsweise auch KOH eingesetzt werden. Steps (i) and (ii) are preferably carried out in the presence of a DMC catalyst, such as DMC catalysts based on zinc hexacyanocobaltate(III), zinc hexacyanoiridate(III), zinc hexacyanoferrate(III) and cobalt(II) hexacyanocobaltate(III) . A DMC catalyst based on zinc hexacyanocobaltate (Zm|Co(CN)r,|2) is preferably used. However, metal complex catalysts based on the metals zinc and/or cobalt can also be used for the copolymerization of alkylene oxide and carbon dioxide in step (ii). This includes in particular so-called zinc glutarate catalysts (described e.g. in M. H. Chisholm et al., Macromolecules 2002, 35, 6494), so-called zinc diiminate catalysts (described e.g. in S. D. Allen, J. Am. Chem. Soc. 2002, 124, 14284), so-called cobalt salen catalysts (described e.g. in US Pat. No. 7,304,172 B2, US 2012/0165549 A1) and bimetallic zinc complexes with macrocyclic ligands (described e.g. in M. R. Kember et al., Angew. Chem., Int. Ed., 2009, 48, 931). KOH, for example, can also be used for the addition reaction of alkylene oxide onto the starter compound S1 in step (i).
Die Schritte (i) und (ii) können direkt nacheinander durchgeführt werden oder separat voneinander. So kann beispielsweise das aus Schritt (i) erhaltene Alkylenoxidpolymer aufgereinigt werden, bevor Kohlenstoffdioxid und Alkylenoxid an das Alkylenoxidpolymer in Schritt (ii) angelagert werden. Ein Aufreinigungsschritt ist beispielsweise von Vorteil, wenn in den Schritten (i) und (ii) verschiedene Katalysatoren verwendet werden. Es kann aber beispielsweise auch ein DMC- Katalysator in Schritt (i) eingesetzt werden und dieser im resultierenden Alkylenoxidpolymer belassen werden und als Katalysator in Schritt (ii) füngieren. Steps (i) and (ii) can be carried out directly one after the other or separately from one another. For example, the alkylene oxide polymer obtained from step (i) can be purified before carbon dioxide and alkylene oxide are added to the alkylene oxide polymer in step (ii). A purification step is advantageous, for example, when different catalysts are used in steps (i) and (ii). However, it can also be a DMC Catalyst are used in step (i) and left in the resulting alkylene oxide polymer and function as a catalyst in step (ii).
Das aus Schritt (i) resultierende Alkylenoxidpolymer weist vorzugsweise ein Molekulargewicht von 250 bis 2000 g/mol, bevorzugt 400 bis 1200 g/mol, besonders bevorzugt 500 bis 1000 g/mol auf. The alkylene oxide polymer resulting from step (i) preferably has a molecular weight of 250 to 2000 g/mol, preferably 400 to 1200 g/mol, particularly preferably 500 to 1000 g/mol.
In einer bevorzugten Ausführungsform wird Schritt (ii) folgendermaßen durchgeführt: In a preferred embodiment, step (ii) is carried out as follows:
(a) das Alkylenoxidpolymer aus Schritt (i) wird vorgelegt und gegebenenfalls Wasser und/oder andere leicht flüchtige Verbindungen durch erhöhte Temperatur und/oder reduziertem Druck entfernt ("Trocknung"), wobei gegebenenfalls ein Katalysator vor oder nach der Trocknung zum Alkylenoxidpolymer aus Schritt (i) zugesetzt wird, (a) the alkylene oxide polymer from step (i) is initially taken and, if appropriate, water and/or other readily volatile compounds are removed by elevated temperature and/or reduced pressure ("drying"), with a catalyst being optionally used before or after drying to give the alkylene oxide polymer from step (i) is added,
(ß) gegebenenfalls zur Aktivierung eines DMC-Katalysators eine Teilmenge (bezogen auf die Gesamtmenge der bei der Aktivierung und Copolymerisation eingesetzten Menge an Alkylenoxiden in Schritt (ii)) an Alkylenoxid zu der aus Schritt (a) resultierenden Mischung zugesetzt wird, wobei diese Zugabe einer Teilmenge an Alkylenoxid gegebenenfalls in Gegenwart von CO2 erfolgen kann, und wobei dann die aufgrund der folgenden exothermen chemischen Reaktion auftretende Temperaturspitze ("Hotspot") und/oder ein Druckabfall im Reaktor jeweils abgewartet wird, und wobei der Schritt (ß) zur Aktivierung auch mehrfach erfolgen kann, (ß) optionally, to activate a DMC catalyst, a portion (based on the total amount of alkylene oxides used in the activation and copolymerization in step (ii)) of alkylene oxide is added to the mixture resulting from step (a), this addition a subset of alkylene oxide can optionally take place in the presence of CO2, and the temperature peak ("hotspot") occurring as a result of the following exothermic chemical reaction and/or a drop in pressure in the reactor is then awaited in each case, and step (ß) for activation also can be done multiple times
(g) Alkylenoxid und Kohlendioxid zu der aus Schritt (a) oder gegebenenfalls (ß) resultierenden Mischung zugesetzt werden, wobei die in Schritt (ß) eingesetzten Alkylenoxide gleich oder verschieden sein können von den bei Schritt (g) eingesetzten Alkylenoxiden. (g) Alkylene oxide and carbon dioxide are added to the mixture resulting from step (a) or optionally (β), it being possible for the alkylene oxides used in step (β) to be the same as or different from the alkylene oxides used in step (g).
Das erfindungsgemäß eingesetzte Polyethercarbonatpolyol Al.l weist vorzugsweise eine Hydroxylzahl (OH-Zahl) gemäß DIN 53240-1 (Juni 2013) von 20 mg KOH/g bis 120 mg KOH/g, bevorzugt von 20 mg KOH/g bis 100 mg KOH/g, besonders bevorzugt von 25 mg KOH/g bis 90 mg KOH/g, auf. Das Polyethercarbonatpolyol Al.l hat vorzugsweise einen C02-Gehalt von 10 bis 25 Gew.-%, bevorzugt 12 bis 20 Gew.-%. Die Funktionalität des Polyethercarbonatpolyols Al.l ist vorzugsweise von 1 bis 6, bevorzugt von 1 bis 4, besonders bevorzugt von 2 bis 3. The polyether carbonate polyol Al.1 used according to the invention preferably has a hydroxyl number (OH number) according to DIN 53240-1 (June 2013) from 20 mg KOH/g to 120 mg KOH/g, preferably from 20 mg KOH/g to 100 mg KOH/g g, particularly preferably from 25 mg KOH/g to 90 mg KOH/g. The polyether carbonate polyol Al.l preferably has a CO 2 content of 10 to 25% by weight, preferably 12 to 20% by weight. The functionality of the polyether carbonate polyol Al.l is preferably from 1 to 6, preferably from 1 to 4, particularly preferably from 2 to 3.
Der Anteil an eingebautem CO2 („aus Kohlendioxid stammende Einheiten“; „C02-Gehalt“) in einem Polyethercarbonatpolyol lässt sich aus der Auswertung charakteristischer Signale im 'H-N R- Spektrum bestimmen. Das nachfolgende Beispiel illustriert die Bestimmung des Anteils an aus Kohlendioxid stammenden Einheiten in einem auf 1,8-Octandiol gestarteten CCE/Propylenoxid- Polyethercarbonatpolyol . The proportion of built-in CO2 (“units originating from carbon dioxide”; “C0 2 content”) in a polyether carbonate polyol can be determined from the evaluation of characteristic signals in the 'HN R spectrum. The example below illustrates the determination of the level of carbon dioxide derived units in a CCE/propylene oxide polyethercarbonate polyol initiated on 1,8-octanediol.
Der Anteil an eingebautem CO2 in einem Polyethercarbonatpolyol sowie das Verhältnis von cyclischen Carbonat zu Polyethercarbonatpolyol kann mittels Ή-NMR (ein geeignetes Gerät ist von der Firma Bruker, DPX 400, 400 MHz; Pulsprogramm zg30, Wartezeit dl: 10s, 64 Scans) bestimmt werden. Die Probe wird jeweils in deuteriertem Chloroform gelöst. Die relevanten Resonanzen im Ή-NIVIR (bezogen auf TMS = 0 ppm) sind wie folgt: The proportion of built-in CO2 in a polyether carbonate polyol and the ratio of cyclic carbonate to polyether carbonate polyol can be determined using Ή-NMR (a suitable device is from Bruker, DPX 400, 400 MHz; pulse program zg30, waiting time dl: 10 s, 64 scans). will. In each case, the sample is dissolved in deuterated chloroform. The relevant resonances in the Ή-NIVIR (relative to TMS = 0 ppm) are as follows:
Cyclisches Carbonat (welches als Nebenprodukt gebildet wurde) mit Resonanz bei 4,5 ppm; Carbonat, resultierend aus im Polyethercarbonatpolyol eingebautem Kohlendioxid mit Resonanzen bei 5, 1 bis 4,8 ppm; nicht abreagiertes Propylenoxid (PO) mit Resonanz bei 2,4 ppm; Polyetherpolyol (d.h. ohne eingebautes Kohlendioxid) mit Resonanzen bei 1,2 bis 1,0 ppm; das als Startermolekül (soweit vorhanden) eingebaute 1,8 Octandiol mit einer Resonanz bei 1,6 bis 1,52 ppm. Cyclic carbonate (which was formed as a by-product) resonating at 4.5 ppm; carbonate resulting from carbon dioxide incorporated in the polyethercarbonate polyol with resonances at 5.1 to 4.8 ppm; unreacted propylene oxide (PO) resonating at 2.4 ppm; polyether polyol (i.e., without incorporated carbon dioxide) with resonances at 1.2 to 1.0 ppm; the 1.8 octanediol incorporated as a starter molecule (if present) with a resonance at 1.6 to 1.52 ppm.
Der Gewichtsanteil (in Gew.-%) polymer-gebundenen Carbonats (LC’) in der Reaktionsmischung wurde nach Formel (II) berechnet, The weight fraction (in % by weight) of polymer-bound carbonate (LC') in the reaction mixture was calculated according to formula (II),
[ (5,l - 4,8) - (4,5)]* 102
Figure imgf000008_0001
wobei sich der Wert für N („Nenner“ N) nach Formel (III) berechnet:
[ (5,l - 4,8) - (4,5)]* 102
Figure imgf000008_0001
where the value for N ("denominator" N) is calculated according to formula (III):
N = [F(5,l - 4,8) - F(4,5)]* 102 + F(4,5) * 102 + F(2,4) * 58 + 0,33 * F(l,2 - 1,0) * 58 + 0,25 * F(l,6 - 1,52) * 146N = [F(5,l - 4,8) - F(4,5)]* 102 + F(4,5) * 102 + F(2,4) * 58 + 0.33 * F(l, 2 - 1.0) * 58 + 0.25 * F(l.6 - 1.52) * 146
(III) (iii)
Dabei gelten folgende Abkürzungen: The following abbreviations apply:
F(4,5) = Fläche der Resonanz bei 4,5 ppm für cyclisches Carbonat (entspricht einem H Atom)F(4.5) = area of resonance at 4.5 ppm for cyclic carbonate (corresponds to an H atom)
F(5, 1-4,8) = Fläche der Resonanz bei 5, 1-4,8 ppm für Polyethercarbonatpolyol und einem H-Atom für cyclisches Carbonat. F(5,1-4.8) = area of resonance at 5.1-4.8 ppm for polyethercarbonate polyol and one H for cyclic carbonate.
F(2,4) = Fläche der Resonanz bei 2,4 ppm für freies, nicht abreagiertes PO F( 1,2- 1,0) = Fläche der Resonanz bei 1,2- 1,0 ppm für Polyetherpolyol F(2,4) = area of resonance at 2.4 ppm for free unreacted PO F(1.2-1.0) = area of resonance at 1.2-1.0 ppm for polyether polyol
F(l,6-1,52) = Fläche der Resonanz bei 1,6 bis 1,52 ppm für 1,8 Octandiol (Starter), soweit vorhanden. F(1,6-1.52) = area of resonance at 1.6 to 1.52 ppm for 1,8 octanediol (initiator) if present.
Der Faktor 102 resultiert aus der Summe der Molmassen von CO2 (Molmasse 44 g/mol) und der von Propylenoxid (Molmasse 58 g/mol), der Faktor 58 resultiert aus der Molmasse von Propylenoxid und der Faktor 146 resultiert aus der Molmasse des eingesetzten Starters 1,8-Octandiol (soweit vorhanden). The factor 102 results from the sum of the molar masses of CO2 (molar mass 44 g/mol) and that of propylene oxide (molar mass 58 g/mol), the factor 58 results from the molar mass of propylene oxide and the factor 146 results from the molar mass of the starter used 1,8-octanediol (if available).
Der Gewichtsanteil (in Gew.-%) an cyclischem Carbonat (CC’) in der Reaktionsmischung wurde nach Formel (IV) berechnet, wobei sich der Wert für N nach Formel (III) berechnet. The weight fraction (in % by weight) of cyclic carbonate (CC') in the reaction mixture was calculated according to formula (IV), where the value for N is calculated according to formula (III).
Zusätzlich kann die Komponente Al weitere Verbindungen mit gegenüber Isocyanaten reaktionsfähigen Wasserstoffatomen enthalten. Die Komponente A1.2 umfasst Polyetherpolyole mit einer Hydroxylzahl gemäß DIN 53240-1 (Juni 2013) von 20 mg KOH/g bis 250 mg KOH/g, vorzugsweise von 20 bis 112 mg KOH/g und besonders bevorzugt 20 mg KOH/g bis 80 mg KOH/g und ist frei von Carbonateinheiten. Die Herstellung der Verbindungen gemäß A1.2 kann durch katalytische Addition von einem oder mehreren Alkylenoxiden an H-funktionelle Starterverbindungen erfolgen. In addition, component A1 can contain other compounds with hydrogen atoms that are reactive toward isocyanates. Component A1.2 comprises polyether polyols with a hydroxyl number according to DIN 53240-1 (June 2013) from 20 mg KOH/g to 250 mg KOH/g, preferably from 20 to 112 mg KOH/g and particularly preferably 20 mg KOH/g 80 mg KOH/g and is free of carbonate units. The compounds according to A1.2 can be prepared by catalytic addition of one or more alkylene oxides onto H-functional starter compounds.
Als Alkylenoxide (Epoxide) können Alkylenoxide mit 2 bis 24 Kohlenstoffatomen eingesetzt werden. Bei den Alkylenoxiden mit 2 bis 24 Kohlenstoffatomen handelt es sich beispielsweise um eine oder mehrere Verbindungen ausgewählt aus der Gruppe bestehend aus Ethylenoxid, Propylenoxid, 1-Butenoxid, 2, 3 -Butenoxid, 2-Methyl-l,2-propenoxid (Isobutenoxid), 1-Pentenoxid,Alkylene oxides having 2 to 24 carbon atoms can be used as alkylene oxides (epoxides). The alkylene oxides having 2 to 24 carbon atoms are, for example, one or more compounds selected from the group consisting of ethylene oxide, propylene oxide, 1-butene oxide, 2,3-butene oxide, 2-methyl-1,2-propene oxide (isobutene oxide), 1-pentene oxide,
2.3-Pentenoxid, 2-Methyl-l,2-butenoxid, 3 -Methyl- 1,2-butenoxid, 1-Hexenoxid, 2,3-Hexenoxid,2,3-pentene oxide, 2-methyl-1,2-butene oxide, 3-methyl-1,2-butene oxide, 1-hexene oxide, 2,3-hexene oxide,
3.4-Hexenoxid, 2-Methyl-l,2-pentenoxid, 4-Methyl-l,2-pentenoxid, 2-Ethyl- 1,2-butenoxid, 1-3,4-hexene oxide, 2-methyl-1,2-pentene oxide, 4-methyl-1,2-pentene oxide, 2-ethyl-1,2-butene oxide, 1-
Heptenoxid, 1-Octenoxid, 1 -Nonenoxid, 1-Decenoxid, 1-Undecenoxid, 1-Dodecenoxid, 4-Methyl- 1,2-pentenoxid, Butadienmonoxid, Isoprenmonoxid, Cyclopentenoxid, Cy clohexenoxid, Cycloheptenoxid, Cyclooctenoxid, Styroloxid, Methylstyroloxid, Pinenoxid, ein- oder mehrfach epoxidierte Fette als Mono-, Di- und Triglyceride, epoxidierte Fettsäuren, Ci-C24-Ester von epoxidierten Fettsäuren, Epichlorhydrin, Glycidol, und Derivate des Glycidols, wie beispielsweise Methylglycidylether, Ethylglycidylether, 2-Ethylhexylglycidylether, Allylglycidylether, Glycidylmethacrylat sowie epoxidfunktionelle Alkyoxy silane, wie beispielsweise 3- Glycidyloxypropyltrimethoxy silan, 3 -Glycidyioxypropyltriethoxy silan, 3 -Heptene oxide, 1-octene oxide, 1-nonene oxide, 1-decene oxide, 1-undecene oxide, 1-dodecene oxide, 4-methyl-1,2-pentene oxide, butadiene monoxide, isoprene monoxide, cyclopentene oxide, cyclohexene oxide, cycloheptene oxide, cyclooctene oxide, styrene oxide, methyl styrene oxide, pinene oxide , Mono- or polyepoxidized fats as mono-, di- and triglycerides, epoxidized fatty acids, Ci-C24 esters of epoxidized fatty acids, epichlorohydrin, glycidol, and derivatives of glycidol, such as methyl glycidyl ether, ethyl glycidyl ether, 2-ethylhexyl glycidyl ether, allyl glycidyl ether, glycidyl methacrylate and epoxy-functional alkoxy silanes, such as 3-glycidyloxypropyltrimethoxy silane, 3-glycidyloxypropyltriethoxy silane, 3-
Glycidyloxypropyltripropoxysilan, 3 -Glycidyloxypropyl-methyl-dimethoxysilan, 3 -glycidyloxypropyltripropoxysilane, 3 -glycidyloxypropylmethyldimethoxysilane, 3 -
Glycidyloxypropylethyldiethoxysilan, 3-Glycidyloxypropyltrlisopropoxysilan. Vorzugsweise werden als Alkylenoxide Ethylenoxid und/oder Propylenoxid und/oder 1,2 Butylenoxid eingesetzt. Die Alkylenoxide können dem Reaktionsgemisch einzeln, im Gemisch oder nacheinander zugeführt werden. Es kann sich um statistische oderum Block-Copolymere handeln. Werden die Alkylenoxide nacheinander dosiert, so enthalten die hergestellten Produkte (Polyetherpolyole) Polyetherketten mit Blockstrukturen. glycidyloxypropylethyldiethoxysilane, 3-glycidyloxypropyltriisopropoxysilane. Ethylene oxide and/or propylene oxide and/or 1,2-butylene oxide are preferably used as alkylene oxides. The alkylene oxides can be added to the reaction mixture individually, as a mixture or in succession. They can be random or block copolymers. If the alkylene oxides are metered in one after the other, the products produced (polyether polyols) contain polyether chains with block structures.
Die H-funktionellen Starterverbindungen weisen Funktionalitäten von 2 bis 6 auf und sind vorzugsweise hydroxyfunktionell (OH-funktionell). Beispiele für hydroxyfunktionelle Starterverbindungen sind Propylenglykol, Ethylenglykol, Diethylenglykol, Dipropylenglykol, 1,2- Butandiol, 1,3-Butandiol, 1,4-Butandiol, Hexandiol, Pentandiol, 3-Methyl-l,5-pentandiol, 1,12- Dodecandiol, Glycerin, Trimethylolpropan, Triethanolamin, Pentaerythrit, Sorbitol, Saccharose, Hydrochinon, Brenzcatechin, Resorcin, Bisphenol F, Bisphenol A, 1,3,5-Trihydroxybenzol, methylolgruppenhaltige Kondensate aus Formaldehyd und Phenol oder Melamin oder Harnstoff. Diese können auch in Mischung verwendet werden. Vorzugsweise wird als Starterverbindung 1,2- Propylenglykol und /oder Glycerin und/oder Trimethylolpropan und /oder Sorbitol eingesetzt. The H-functional starter compounds have functionalities from 2 to 6 and are preferably hydroxy-functional (OH-functional). Examples of hydroxy-functional starter compounds are propylene glycol, ethylene glycol, diethylene glycol, dipropylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, hexanediol, pentanediol, 3-methyl-1,5-pentanediol, 1,12- Dodecanediol, glycerin, trimethylolpropane, triethanolamine, pentaerythritol, sorbitol, sucrose, hydroquinone, catechol, resorcinol, bisphenol F, bisphenol A, 1,3,5-trihydroxybenzene, methylol-containing condensates of formaldehyde and phenol or melamine or urea. These can also be used in a mixture. 1,2-Propylene glycol and/or glycerol and/or trimethylolpropane and/or sorbitol is preferably used as the starter compound.
Die Polyetherpolyole gemäß Komponente A1.2 weisen einen Gehalt von 0 bis 60 Gew.-%, vorzugsweise von 0 bis 40 Gew.-%, besonders bevorzugt 0 bis 25 Gew.-% an Ethylenoxid auf. The polyether polyols of component A1.2 contain from 0 to 60% by weight, preferably from 0 to 40% by weight, particularly preferably from 0 to 25% by weight, of ethylene oxide.
Die Komponente A1.3 umfasst Polyetherpolyole mit einer Hydroxylzahl gemäß DIN 53240-1 (Juni 2013) von 20 mg KOH/g bis 250 mg KOH/g, vorzugsweise von 20 bis 112 mg KOH/g und besonders bevorzugt 20 mg KOH/g bis 80 mg KOH/g. Component A1.3 comprises polyether polyols with a hydroxyl number according to DIN 53240-1 (June 2013) from 20 mg KOH/g to 250 mg KOH/g, preferably from 20 to 112 mg KOH/g and particularly preferably 20 mg KOH/g 80 mg KOH/g.
Die Herstellung der Komponente Al.3 erfolgt im Prinzip analog der der Komponente Al.2, wobei jedoch ein Gehalt an Ethylenoxid im Polyetherpolyol von > 60 Gew.-%, bevorzugt > 65 Gew.-% eingestellt wird. In principle, component A1.3 is prepared analogously to component A1.2, but with an ethylene oxide content of >60% by weight, preferably >65% by weight, being set in the polyether polyol.
Als Alkylenoxide und H-funktionelle Starterverbindungen kommen die gleichen in Frage, wie für Komponente A1.2 beschrieben. Suitable alkylene oxides and H-functional starter compounds are the same as described for component A1.2.
Als H-fünktionelle Starterverbindungen kommen jedoch bevorzugt solche in Frage, die eine Funktionalität von 3 bis 6, besonders bevorzugt von 3 aufweisen, so dass Polyethertriole entstehen. Bevorzugte Starterverbindungen mit einer Funktionalität von 3 sind Glycerin und/oder Trimethylolpropan, besonders bevorzugt ist Glycerin. However, suitable H-functional starter compounds are preferably those which have a functionality of 3 to 6, particularly preferably 3, so that polyether triols are formed. Preferred starter compounds with a functionality of 3 are glycerol and/or trimethylolpropane, with glycerol being particularly preferred.
In einer bevorzugten Ausführungsform ist die Komponente Al.3 ein Glycerin-gestarteter trifunktioneller Polyether mit einem Ethylenoxidanteil von 68 bis 73 Gew.-% und einer OH-Zahl von 35 bis 40 mg KOH/g. In a preferred embodiment, component A1.3 is a glycerol-started trifunctional polyether with an ethylene oxide content of 68 to 73% by weight and an OH number of 35 to 40 mg KOH/g.
Die Komponente A1.4 umfasst Polymerpolyole, PHD-Polyole und PIPA-Polyole. Component A1.4 includes polymer polyols, PHD polyols and PIPA polyols.
Polymerpolyole sind Polyole, die Anteile von durch radikalische Polymerisation geeigneter Monomere wie Styrol oder Acrylnitril in einem Basispolyol, wie z.B. einem Polyetherpolyol und/oder Polyethercarbonatpolyol, erzeugten festen Polymeren enthalten. Polymer polyols are polyols containing proportions of solid polymers produced by free radical polymerization of suitable monomers such as styrene or acrylonitrile in a base polyol such as a polyether polyol and/or polyether carbonate polyol.
PHD (Polyhamstoffdispersion)-Polyole werden beispielsweise hergestellt durch in situ Polymerisation eines Isocyanats oder einer Isocyanat-Mischung mit einem Diamin und/oder Hydrazin in einem Polyol, vorzugsweise einem Polyetherpolyol. Vorzugsweise wird die PHD-Dispersion hergestellt durch Umsetzung einer Isocyanat-Mischung eingesetzt aus einer Mischung aus 75 bis 85 Gew.-% 2,4- Toluylendiisocyanat (2,4-TDI) und 15 bis 25 Gew.-% 2,6-Toluylendiisocyanat (2,6-TDI) mit einem Diamin und/oder Hydrazin in einem Polyetherpolyol, vorzugsweise einem Polyetherpolyol und/oder Polyethercarbonatpolyol, hergestellt durch Alkoxylierung eines trifünktionellen Starters (wie beispielsweise Glycerin und/oder Trimethylolpropan), im Falle des Polyethercarbonatpolyols in Gegenwart von Kohlendioxid. Verfahren zur Herstellung von PHD-Dispersionen sind beispielsweise beschrieben in US 4,089,835 und US 4,260,530. PHD (polyurea dispersion) polyols are prepared, for example, by in situ polymerization of an isocyanate or an isocyanate mixture with a diamine and/or hydrazine in a polyol, preferably a polyether polyol. The PHD dispersion is preferably prepared by reacting an isocyanate mixture used from a mixture of 75 to 85% by weight of 2,4-tolylene diisocyanate (2,4-TDI) and 15 to 25% by weight of 2,6-tolylene diisocyanate (2.6 TDI) with a Diamine and/or hydrazine in a polyether polyol, preferably a polyether polyol and/or polyether carbonate polyol prepared by alkoxylating a trifunctional starter (such as glycerol and/or trimethylolpropane) in the presence of carbon dioxide in the case of the polyether carbonate polyol. Processes for preparing PHD dispersions are described, for example, in US Pat. Nos. 4,089,835 and US 4,260,530.
Bei den PIPA-Polyolen handelt es sich um durch Polyisocyanat-Polyaddition mit Alkanolaminen- modifizierte, vorzugsweise Triethanolamin-modifizierte Polyetherpolyole und/oder Polyethercarbonatpolyole, wobei das Polyethercarbonatpolyol eine Funktionalität von 2,5 bis 4 und eine Hydroxylzahl von 3 mg KOH/g bis 112 mg KOH/g (Molekulargewicht 500 bis 18000) aufweist. Vorzugsweise ist das Polyetherpolyol „EO-capped“, d.h. das Polyetherpolyol besitzt terminale Ethylenoxidgruppen. PIPA -Polyole sind in GB 2 072 204 A, DE 31 03 757 Al und US 4 374 209 A eingehend beschrieben. The PIPA polyols are polyether polyols and/or polyether carbonate polyols modified by polyisocyanate polyaddition with alkanolamines, preferably triethanolamine-modified, the polyether carbonate polyol having a functionality of 2.5 to 4 and a hydroxyl number of 3 mg KOH/g to 112 mg KOH/g (molecular weight 500 to 18,000). Preferably, the polyether polyol is "EO-capped", i.e. the polyether polyol has terminal ethylene oxide groups. PIPA polyols are described in detail in GB 2 072 204 A, DE 31 03 757 A1 and US Pat. No. 4,374,209.
Als Komponente Al.5 können alle dem Fachmann bekannten Polyhydroxyverbindungen eingesetzt werden, die nicht unter die Definition der Komponenten Al.l bis A1.4 fallen, und bevorzugt eine mittlere OH-Funktionalität > 1,5 aufweisen. All polyhydroxy compounds known to those skilled in the art that do not fall under the definition of components A1.1 to A1.4 and preferably have an average OH functionality of >1.5 can be used as component A1.5.
Dies können beispielsweise niedermolekulare Diole (z.B. 1,2-Ethandiol, 1,3- bzw. 1,2-Propandiol, 1,4-Butandiol), Triole (z.B. Glycerin, Trimethylolpropan) und Tetraoie (z.B. Pentaerythrit), Polyesterpolyole, Polythioetherpolyole oder Polyacrylatpolyole, sowie Polyetherpolyole, Polyethercarbonatpolyole oder Polycarbonatpolyole, die nicht unter die Definition der Komponenten Al.l bis A1.4 fallen, sein. Es können z.B. auch Ethylendiamin und Triethanolamin gestartete Polyether eingesetzt werden. These can be, for example, low molecular weight diols (e.g. 1,2-ethanediol, 1,3- or 1,2-propanediol, 1,4-butanediol), triols (e.g. glycerol, trimethylolpropane) and tetraols (e.g. pentaerythritol), polyester polyols, polythioether polyols or Polyacrylate polyols and polyether polyols, polyether carbonate polyols or polycarbonate polyols which do not fall under the definition of components Al.1 to A1.4. For example, ethylenediamine and triethanolamine started polyethers can also be used.
Komponente A2 Component A2
Als Komponente A2 werden Treibmittel wie chemische und/oder physikalische Treibmittel eingesetzt. Blowing agents such as chemical and/or physical blowing agents are used as component A2.
Als chemisches Treibmittel A2.1 werden beispielsweise Wasser oder Carbonsäuren und deren Gemische verwendet. Diese reagieren mit Isocyanatgruppen unter Bildung des Treibgases, wie beispielsweise im Falle von Wasser entsteht dabei Kohlendioxid und im Falle von z. B. Ameisensäure entsteht dabei Kohlendioxid und Kohlenstoffmonoxid. Als Carbonsäure wird bevorzugt mindestens eine Verbindung, ausgewählt aus der Gruppe bestehend aus Ameisensäure, Essigsäure, Oxalsäure und Ricinolsäure, eingesetzt. Als chemisches Treibmittel wird besonders bevorzugt Wasser eingesetzt. Water or carboxylic acids and mixtures thereof, for example, are used as the chemical blowing agent A2.1. These react with isocyanate groups to form the propellant gas, for example in the case of water, carbon dioxide is formed and in the case of z. B. formic acid produces carbon dioxide and carbon monoxide. At least one compound selected from the group consisting of formic acid, acetic acid, oxalic acid and ricinoleic acid is preferably used as the carboxylic acid. Water is particularly preferably used as the chemical blowing agent.
Als physikalisches Treibmittel A2.2 eingesetzt werden beispielsweise niedrig siedende organische Verbindungen wie z. B. Kohlenwasserstoffe, Ether, Ketone, Carbonsäureester, Kohlensäureester, halogenierte Kohlenwasserstoffe. Geeignet sind insbesondere organische Verbindungen, welche gegenüber der Isocyanatkomponente B inert sind und Siedepunkte unter 100 °C, vorzugsweise unter 50 °C bei Atmosphärendruck aufweisen. Diese Siedepunkte haben den Vorteil, dass die organischen Verbindungen unter dem Einfluss der exothermen Polyadditionsreaktion verdampfen. Beispiele derartiger, vorzugsweise verwendeten organischen Verbindungen sind Alkane, wie Heptan, Hexan, n- und iso-Pentan, vorzugsweise technische Gemische aus n- und iso-Pentanen, n- und iso-Butan und Propan, Cycloalkane, wie Cyclopentan und/oder Cyclohexan, Ether, wie Furan, Dimethylether und Diethylether, Ketone, wie Aceton und Methylethylketon, Carbonsäurealkylester, wie Methylformiat, Dimethyloxalat und Ethylacetat und halogenierte Kohlenwasserstoffe, wie Methylenchlorid, Dichlormonofluormethan, Difluormethan, Trifluormethan, Difluorethan, Tetrafluorethan, Chlordifluorethane, 1 , 1 -Dichlor-2,2,2-trifluorethan, 2,2-Dichlor-2-fluorethan und Heptafluorpropan. Auch bevorzugt ist der Einsatz von (hydro)fluorierten Olefinen, wie z.B. HFO 1233zd(E) (Trans-1- chlor-3,3,3-trifluor-l-propen) oder HFO 1336mzz(Z) (cis-l,l,l,4,4,4-Hexafluor-2-buten) oder Additive wie FA 188 von 3M (l,l,l,2,3,4,5,5,5-Nonafluor-4-(trifluormethyl)pent-2-en). Auch Gemische zweier oder mehrerer der genannten organischen Verbindungen können verwendet werden. Die organischen Verbindungen können dabei auch in Form einer Emulsion aus kleinen Tröpfchen eingesetzt werden. For example, low-boiling organic compounds such as e.g. B. hydrocarbons, ethers, ketones, carboxylic acid esters, carbonic acid esters, halogenated hydrocarbons. Particularly suitable are organic compounds which are inert towards the isocyanate component B and have boiling points below 100° C., preferably below 50° C., at atmospheric pressure. These boiling points have the advantage that the organic compounds evaporate under the influence of the exothermic polyaddition reaction. Examples of such preferably used organic compounds are alkanes such as heptane, hexane, n- and isopentane, preferably technical mixtures of n- and isopentanes, n- and isobutane and propane, cycloalkanes such as cyclopentane and/or cyclohexane , Ethers such as furan, dimethyl ether and diethyl ether, ketones such as acetone and methyl ethyl ketone, carboxylic acid alkyl esters such as methyl formate, dimethyl oxalate and ethyl acetate and halogenated hydrocarbons such as methylene chloride, dichloromonofluoromethane, difluoromethane, trifluoromethane, difluoroethane, tetrafluoroethane, chlorodifluoroethane, 1,1-dichloro- 2,2,2-trifluoroethane, 2,2-dichloro-2-fluoroethane and heptafluoropropane. Also preferred is the use of (hydro)fluorinated olefins, such as HFO 1233zd(E) (trans-1-chloro-3,3,3-trifluoro-l-propene) or HFO 1336mzz(Z) (cis-l,l ,l,4,4,4-hexafluoro-2-butene) or additives such as FA 188 from 3M (l,l,l,2,3,4,5,5,5-nonafluoro-4-(trifluoromethyl)pent- 2-en). Mixtures of two or more of the organic compounds mentioned can also be used. The organic compounds can also be used in the form of an emulsion of small droplets.
In einer besonderen Ausführungsform enthält die Komponente A2 In a particular embodiment, the component contains A2
A2.1 0,5 bis 5 Gew. -Teile (bezogen auf A = 100 Gew. -Teile) chemische Treibmittel und/oder A2.1 0.5 to 5 parts by weight (based on A=100 parts by weight) chemical blowing agents and/or
A2.2 0 bis 15 Gew. -Teile (bezogen auf A = 100 Gew. -Teile) physikalische Treibmittel Besonders bevorzugt wird als Komponente A2 Wasser eingesetzt. A2.2 0 to 15 parts by weight (based on A=100 parts by weight) of physical blowing agents Particular preference is given to using water as component A2.
Komponente A3 Component A3
Als Komponente A3 werden Hilfs- und Zusatzstoffe verwendet wie a) Katalysatoren (Aktivatoren), b) oberflächenaktive Zusatzstoffe (Tenside), wie Emulgatoren und Schaumstabilisatoren insbesondere solche mit niedriger Emission wie beispielsweise Produkte der Tegostab® LF-Serie, c) Additive wie Reaktionsverzögerer (z.B. sauer reagierende Stoffe wie Salzsäure oder organische Säurehalogenide), Zellregler (wie beispielsweise Paraffine oder Fettalkohole oder Dimethylpolysiloxane), Pigmente, Farbstoffe, Flammschutzmittel, (wie beispielsweise Trikresylphosphat), Stabilisatoren gegen Alterungs- und Witterungseinflüsse, Weichmacher, fungistatisch und bakteriostatisch wirkende Substanzen, Füllstoffe (wie beispielsweise Bariumsulfat, Kieselgur, Ruß- oder Schlämmkreide) und Trennmittel. Als Katalysatoren werden bevorzugt aliphatische tertiäre Amine (beispielsweise Trimethylamin, Tetramethylbutandiamin), cycloaliphatische tertiäre Amine (beispielsweise 1,4- Diaza(2,2,2)bicyclooctan), aliphatische Aminoether (beispielsweise Dimethylaminoethylether und N,N,N-Trimethyl-N-hydroxyethyl-bisaminoethylether), cycloaliphatische AminoetherAuxiliaries and additives are used as component A3, such as a) catalysts (activators), b) surface-active additives (surfactants), such as emulsifiers and foam stabilizers, in particular those with low emissions such as products from the Tegostab ® LF series, c) additives such as reaction retardants ( e.g. acidic substances such as hydrochloric acid or organic acid halides), cell regulators (such as paraffins or fatty alcohols or dimethylpolysiloxanes), pigments, dyes, flame retardants (such as tricresyl phosphate), stabilizers against aging and weathering, plasticizers, fungistatic and bacteriostatic substances, fillers (such as barium sulfate, kieselguhr, soot or whiting) and release agents. Preferred catalysts are aliphatic tertiary amines (e.g. trimethylamine, tetramethylbutanediamine), cycloaliphatic tertiary amines (e.g. 1,4-diaza(2,2,2)bicyclooctane), aliphatic amino ethers (e.g. dimethylaminoethyl ether and N,N,N-trimethyl-N- hydroxyethyl bisaminoethyl ether), cycloaliphatic amino ethers
(beispielsweise N-Ethylmorpholin), aliphatische Amidine, cycloaliphatische Amidine, Harnstoff, Derivate des Harnstoffs (wie beispielsweise Aminoalkylhamstoffe), insbesondere (3- Dimethylaminopropylamin)-hamstoff) und Zinn-Katalysatoren (wie beispielsweise Dibutylzinnoxid, Dibutylzinndilaurat, Zinnoctoat). (e.g. N-ethylmorpholine), aliphatic amidines, cycloaliphatic amidines, urea, derivatives of urea (such as aminoalkylureas), in particular (3-dimethylaminopropylamine)urea) and tin catalysts (such as dibutyltin oxide, dibutyltin dilaurate, tin octoate).
Als Katalysatoren werden besonders bevorzugt (i) Harnstoff, Derivate des Harnstoffs und/oder (ii) die oben genannten Amine und Aminoether, dadurch gekennzeichnet, dass die Amine und Aminoether eine funktionelle Gruppe enthalten, die mit dem Isocyanat chemisch reagiert. Vorzugsweise ist die funktionelle Gruppe eine Hydroxyl-Gruppe, eine primäre oder sekundäre Aminogruppe. Diese besonders bevorzugten Katalysatoren haben den Vorteil, dass diese ein stark reduziertes Migrations- und Emissionsverhalten aufweisen. Als Beispiele für besonders bevorzugte Katalysatoren seien genannt: (3 -Dimethylaminopropylamin) -Harnstoff, l,l‘-((3-Particularly preferred catalysts are (i) urea, derivatives of urea and/or (ii) the abovementioned amines and amino ethers, characterized in that the amines and amino ethers contain a functional group which reacts chemically with the isocyanate. Preferably the functional group is a hydroxyl group, a primary or secondary amino group. These particularly preferred catalysts have the advantage that they have greatly reduced migration and emission behavior. Examples of particularly preferred catalysts are: (3-dimethylaminopropylamine)-urea, 1,1'-((3-
(dimethylamino)propyl)imino)bis-2-propanol, N-[2-[2-(dimethylamino)ethoxy]ethyl]-N-methyl-(dimethylamino)propyl)imino)bis-2-propanol, N-[2-[2-(dimethylamino)ethoxy]ethyl]-N-methyl-
1.3-propanediamin und 3 -Dimethylaminopropylamin. 1.3-propanediamine and 3-dimethylaminopropylamine.
Komponente B Component B
Als Komponente B werden aliphatische, cycloaliphatische, araliphatische, aromatische und heterocyclische Polyisocyanate eingesetzt, beispielsweise solche der Formel (V) Aliphatic, cycloaliphatic, araliphatic, aromatic and heterocyclic polyisocyanates are used as component B, for example those of the formula (V)
Q(NCO)„ (V) in der n für eine ganze Zahl zwischen 2 - 4, vorzugsweise 2 oder 3 steht, und Q(NCO)n (V) in which n is an integer between 2-4, preferably 2 or 3, and
Q für einen aliphatischen Kohlenwasserstoffrest mit 2 - 18, vorzugsweise 6 - 10 C-Atomen, einen cy cloaliphatischen Kohlenwasserstoffrest mit 4 - 15, vorzugsweise 6 - 13 C-Atomen oder einen araliphatischen Kohlenwasserstoffrest mit 8 - 15, vorzugsweise 8 - 13 C-Atomen steht. Q is an aliphatic hydrocarbon radical having 2-18, preferably 6-10 carbon atoms, a cycloaliphatic hydrocarbon radical having 4-15, preferably 6-13 carbon atoms or an araliphatic hydrocarbon radical having 8-15, preferably 8-13 carbon atoms stands.
Besonders bevorzugt werden in der Regel die technisch leicht zugänglichen Polyisocyanate, z.B. dasAs a rule, the technically easily accessible polyisocyanates are particularly preferred, e.g
2.4- und 2,6-Toluylendiisocyanat, sowie beliebige Gemische dieser Isomeren („TDI“); Polyphenylpolymethylenpolyisocyanate, wie sie durch Anilin-Formaldehyd-Kondensation und anschließende Phosgenierung hergestellt werden („rohes MDI“) und Carbodiimidgruppen, Urethangruppen, Allophanatgruppen, Isocyanuratgruppen, Hamstoffgruppen oder Biuretgruppen aufweisenden Polyisocyanate („modifizierte Polyisocyanate“), insbesondere solche modifizierten Polyisocyanate, die sich vom 2,4- und/oder 2,6-Toluylendiisocyanat bzw. vom 4,4’- und/oder 2,4’- Diphenylmethandiisocyanat ableiten. Vorzugsweise werden als Komponente B mindestens eine Verbindung ausgewählt aus der Gruppe bestehend aus 2,4- und 2,6-Toluylendiisocyanat, 4,4’- und 2,4’- und 2,2’-Diphenylmethandiisocyanat und Polyphenylpolymethylenpolyisocyanat („Mehrkem- MDI“) eingesetzt. 2,4- and 2,6-tolylene diisocyanate, and any mixtures of these isomers ("TDI"); Polyphenylpolymethylene polyisocyanates, such as those produced by aniline-formaldehyde condensation and subsequent phosgenation ("crude MDI") and polyisocyanates containing carbodiimide groups, urethane groups, allophanate groups, isocyanurate groups, urea groups or biuret groups ("modified polyisocyanates"), in particular those modified polyisocyanates which differ from 2,4- and/or 2,6-tolylene diisocyanate or from 4,4'- and/or 2,4'- diphenylmethane diisocyanate. Preferably, as component B at least one Compound selected from the group consisting of 2,4- and 2,6-tolylene diisocyanate, 4,4'- and 2,4'- and 2,2'-diphenylmethane diisocyanate and polyphenylpolymethylene polyisocyanate ("multi-core MDI") used.
Ganz besonders bevorzugt wird als Komponente B eine Diphenylmethandiisocyanat-Mischung eingesetzt, bestehend aus a) 45 bis 90 Gew.-% 4,4‘-Diphenylmethandiisocyanat und b) 10 bis 55 Gew.-% 2,2‘-Diphenylmethandiisocyanat und/oder 2,4‘-Diphenylmethandiiso- cyanat und c) 0 bis 45 Gew.-% Polyphenylpolymethylenpolyisocyanat („Mehrkem-MDI“) und/oder 2,2‘-, 2,4‘-, 4,4‘-Diphenylmethandiisocyanat-, und/oder pMDI-basierte Carbodiimide, Uretdione oder Uretdionimine. A diphenylmethane diisocyanate mixture is very particularly preferably used as component B, consisting of a) 45 to 90% by weight of 4,4'-diphenylmethane diisocyanate and b) 10 to 55% by weight of 2,2'-diphenylmethane diisocyanate and/or 2 ,4'-diphenylmethane diisocyanate and c) 0 to 45 wt. or pMDI-based carbodiimides, uretdiones or uretdionimines.
In einer alternativen ganz besonders bevorzugten Ausführungsform wird als Komponente B eine Diphenylmethandiisocyanat-Mischung eingesetzt, bestehend aus a) 35 bis 45 Gew.-% 4,4‘-Diphenylmethandiisocyanat und b) 1 bis 5 Gew.-% 2,2‘-Diphenylmethandiisocyanat und/oder 2,4‘-Diphenylmethandiiso- cyanat und c) 50 bis 64 Gew.-% Polyphenylpolymethylenpolyisocyanat („Mehrkem-MDI“) und/oder 2,2‘-, 2,4‘-, 4,4‘-Diphenylmethandiisocyanat-, und/oder pMDI-basierte Carbodiimide, Uretdione oder Uretdionimine. In an alternative, very particularly preferred embodiment, a diphenylmethane diisocyanate mixture is used as component B, consisting of a) 35 to 45% by weight of 4,4'-diphenylmethane diisocyanate and b) 1 to 5% by weight of 2,2'-diphenylmethane diisocyanate and/or 2,4'-diphenylmethane diisocyanate and c) 50 to 64% by weight of polyphenyl polymethylene polyisocyanate ("multi-core MDI") and/or 2,2'-, 2,4'-, 4,4'-diphenylmethane diisocyanate -, and/or pMDI-based carbodiimides, uretdione or uretdione imines.
Komponente K Component K
Es kann gegebenenfalls auch eine Komponente K eingesetzt werden, um den Anteil an cyclischen Carbonaten im Polyurethan-Schaumstoff zu reduzieren. Als Komponente K können beispielsweise eingesetzt werden: a) Ester ein- oder mehrbasiger Carbonäuren, wobei die pKs-Werte der (ersten) Dissoziation der Carbonsäuren 0,5 bis 4,0 beträgt, wie z.B. Methyl- und Ethylester der Oxalsäure und/oder Malonsäure, b) Mono-, Di- und Polysulfonate von mono- und mehrfunktionellen Alkoholen, wie z.B. para-If appropriate, a component K can also be used in order to reduce the proportion of cyclic carbonates in the polyurethane foam. Examples of components K which can be used are: a) esters of monobasic or polybasic carboxylic acids, the pKa values of the (first) dissociation of the carboxylic acids being 0.5 to 4.0, such as methyl and ethyl esters of oxalic acid and/or malonic acid , b) mono-, di- and polysulfonates of mono- and polyfunctional alcohols, such as para-
Toluolsulfonsäuremethylester und/oder Gemische von (C10-Methyl toluenesulfonate and/or mixtures of (C10-
C21 ) Alkansulfonsäurephenylestem, c) Ester der Phosphorsäure, Phosphonsäure, Phosphorigen Säure, Phosphinsäure, Phosphonigsäure und Phosphinigsäure, wie z.B. Phosphorsäuretriethylester und alkoxylierte Phosphorsäure d) oligomere Alkylphosphate. C21) Alkanesulfonic acid phenyl esters, c) esters of phosphoric acid, phosphonic acid, phosphorous acid, phosphinic acid, phosphonous acid and phosphinous acid, such as, for example, phosphoric acid triethyl ester and alkoxylated phosphoric acid d) oligomeric alkyl phosphates.
Die Komponente K wird vorzugsweise in dem erfindungsgemäßen Verfahren in einem Anteil von 0,01 bis 10,00 Gew. -Teile, bezogen auf die Summe der Gewichtsteile der Komponente Al.l + A1.2 = 100 Gewichtsteile, eingesetzt. Es ist bevorzugt, dass die Komponente K in einem Anteil von 0,01 bis 8,00 Gew. -Tie., besonders bevorzugt 0,05 bis 6,00 Gew. -Tie., insbesondere bevorzugt 0,1 bis 6,00 Gew. -Tie., jeweils bezogen auf die Summe der Gewichtsteile der Komponente Al.l + A1.2 = 100 Gewichtsteile, eingesetzt wird. Component K is preferably used in the process according to the invention in a proportion of 0.01 to 10.00 parts by weight, based on the sum of the parts by weight of component Al.1+A1.2 = 100 parts by weight used. It is preferred that component K is present in a proportion of 0.01 to 8.00 parts by weight, particularly preferably 0.05 to 6.00 parts by weight, particularly preferably 0.1 to 6.00 parts by weight -Tie., based in each case on the sum of the parts by weight of component Al.1+A1.2=100 parts by weight.
Die erfmdungsgemäß erhaltenen Polyurethan-Schaumstoffe sind bevorzugt Polyurethan- Weichschaumstoffe oder Polyurethan-Halbhartschaumstoffe. Zur Herstellung der Polyurethan- Schaumstoffe werden die Reaktionskomponenten nach dem an sich bekannten Einstufenverfahren, dem Prepolymerverfahren oder dem Semiprepolymerverfahren zur Umsetzung gebracht, wobei man sich oft maschineller Einrichtungen bedient. The polyurethane foams obtained according to the invention are preferably flexible polyurethane foams or semirigid polyurethane foams. To produce the polyurethane foams, the reaction components are reacted by the known one-step process, the prepolymer process or the semiprepolymer process, mechanical equipment often being used.
Die Polyurethan-Schaumstoffe können als Form- oder auch als Block-Schaumstoffe hergestellt werden, wobei die Form-Schaumstoffe heiß- oder auch kalthärtend hergestellt werden können. The polyurethane foams can be produced as molded foams or also as block foams, it being possible for the molded foams to be produced in a hot-curing or cold-curing manner.
Gegenstand der Erfindung sind daher ein Verfahren zur Herstellung der Polyurethan-Schaumstoffe, die nach diesem Verfahren hergestellten Polyurethan-Schaumstoffe und deren Verwendung. The invention therefore relates to a process for producing the polyurethane foams, the polyurethane foams produced by this process and their use.
Die nach der Erfindung erhältlichen Polyurethan-Schaumstoffe finden beispielsweise folgende Anwendung: Möbelpolsterungen, Textileinlagen, Matratzen, Automobilsitze, Kopfstützen, Armlehnen, Schwämme und Bauelemente, sowie Sitz- und Armaturverkleidungen, und können Kennzahlen von 60 bis 250, bevorzugt 70 bis 120, besonders bevorzugt 75 bis 120 und Rohdichten von 4 bis 600 kg/m3, bevorzugt 60 bis 120 kg/m3 (Halbhartschaumstoff) bzw. bevorzugt 15 bis 55 kg/m3 (Weichschaumstoff) aufweisen. The polyurethane foams obtainable according to the invention are used, for example, in the following areas: furniture upholstery, textile inserts, mattresses, automobile seats, headrests, armrests, sponges and components, as well as seat and instrument paneling, and can have indexes of 60 to 250, preferably 70 to 120, particularly preferably 75 to 120 and bulk densities of 4 to 600 kg/m 3 , preferably 60 to 120 kg/m 3 (semi-rigid foam) or preferably 15 to 55 kg/m 3 (flexible foam).
Unter der Isocyanat-Kennzahl (auch Kennzahl oder Isocyanat-Index genannt) wird der Quotient aus der tatsächlich eingesetzten Stoffmenge [Mol] an Isocyanatgruppen und der tatsächlich eingesetzten Stoffmenge [Mol] an Isocyanat-reaktiven Gruppen, multipliziert mit 100, verstanden: The isocyanate number (also called number or isocyanate index) is the quotient of the amount of substance [mol] of isocyanate groups actually used and the amount of substance [mol] of isocyanate-reactive groups actually used, multiplied by 100:
Kennzahl = (Mole Isocyanatgruppen / Mole Isocyanat-reaktive Gruppen) * 100 Index = (moles of isocyanate groups / moles of isocyanate-reactive groups) * 100
Der NCO-Wert (auch: NCO-Gehalt, Isocyanatgehalt) wird bestimmt mittels EN ISO 11909:2007.The NCO value (also: NCO content, isocyanate content) is determined using EN ISO 11909:2007.
Falls nicht anders angegeben, handelt es sich um die Werte bei 25°C. Unless otherwise stated, these are the values at 25°C.
Die bevorzugten Polyurethan-Weichschaumstoffe weisen vorzugsweise eine Rohdichte gemäß DIN EN ISO 3386-1-98 im Bereich von 15 bis 55 kg/nri bevorzugt 20 bis 50 kg/m3 auf. Beispiele The preferred flexible polyurethane foams preferably have a bulk density according to DIN EN ISO 3386-1-98 in the range from 15 to 55 kg/m 3 , preferably from 20 to 50 kg/m 3 . examples
Die Erfindung wird anhand der nachfolgenden Beispiele näher erläutert, ohne jedoch darauf beschränkt zu sein. The invention is explained in more detail using the examples below, but without being restricted thereto.
Prüfmethoden: Test methods:
Die Stauchhärte der Polyurethan-Schaumstoffe wurde gemäß DIN EN ISO 3386-1 in der Fassung von September 2010 in Aufschäumrichtung bestimmt und die Rohdichte gemäß DIN EN ISO 845 in der Fassung von Oktober 2009. The compressive strength of the polyurethane foams was determined according to DIN EN ISO 3386-1 in the September 2010 version in the direction of foaming and the bulk density according to DIN EN ISO 845 in the October 2009 version.
Der Druckverformungsrest (DVR) wurde gemäß DIN EN ISO 1856 in der Fassung von lanuar 2008 mit 90% Druckverformung bei 70°C für 22h gemessen. The compression set (DVR) was measured according to DIN EN ISO 1856 in the January 2008 version with 90% compression set at 70°C for 22 hours.
Die Werte für die Zugfestigkeit und Bruchdehnung wurden bei 22°C und 48% relativer Luftfeuchte gemäß DIN EN ISO 1798 in der Fassung von April 2008 ermittelt. The values for tensile strength and elongation at break were determined at 22°C and 48% relative humidity in accordance with DIN EN ISO 1798 in the April 2008 version.
Die Bestimmung der OH-Zahlen (Hydroxylzahlen) erfolgte gemäß der Vorschrift der DIN 53240-1 (Juni 2013). The OH numbers (hydroxyl numbers) were determined in accordance with the provisions of DIN 53240-1 (June 2013).
Die Bestimmung der Emissionen in den Polyurethan-Weichschaumstoffen wurde gemäß der Zertifizierung LGA-Schadstoffgeprüft durchgeführt. Die Emissionen wurden nach Konditionierung der Probe in der Prüfkammer für 7 Tage gemessen. Prüfkammerbedingungen: 23°C±1°C, flächenspezifische Luftdurchflussrate: 0,5 m3/(m2-h) ± 0,05 m3/(m2-h) und rel. Luftfeuchte 50%±3%. The emissions in the flexible polyurethane foams were determined in accordance with the LGA Pollutant Tested certification. The emissions were measured after conditioning the sample in the test chamber for 7 days. Test chamber conditions: 23°C±1°C, area-specific air flow rate: 0.5 m 3 /(m 2 -h) ± 0.05 m 3 /(m 2 -h) and rel. Humidity 50%±3%.
Rohstoffe: Raw materials:
AO-Polymer 1 Alkylenoxidpolymer auf Basis einer Propylenglykol/Glycerin-Mischung und Anlagerung von 90 Gew.-% Propylenoxid und 10 Gew.-%Ethylenoxid, jeweils bezogen auf die Gesamtmasse des eingesetzten Alkylenoxids, Funktionalität von 2,8 und Molekulargewicht von 670 g/mol, hergestellt durch DMC-KatalyseAO polymer 1 Alkylene oxide polymer based on a propylene glycol/glycerol mixture and addition of 90% by weight of propylene oxide and 10% by weight of ethylene oxide, based in each case on the total mass of the alkylene oxide used, functionality of 2.8 and molecular weight of 670 g/ mol produced by DMC catalysis
AO-Polymer 2 Alkylenoxidpolymer auf Basis einer Propylenglykol/Glycerin-Mischung und Anlagerung von 80 Gew.-% Propylenoxid und 20 Gew.-%Ethylenoxid, jeweils bezogen auf die Gesamtmasse des eingesetzten Alkylenoxids, Funktionalität von 2,8 und Molekulargewicht von 670 g/mol, hergestellt durch DMC-KatalyseAO-Polymer 2 Alkylene oxide polymer based on a propylene glycol/glycerol mixture and addition of 80% by weight of propylene oxide and 20% by weight of ethylene oxide, based in each case on the total mass of the alkylene oxide used, functionality of 2.8 and molecular weight of 670 g/ mol produced by DMC catalysis
AO-Polymer 3 Alkylenoxidpolymer auf Basis einer Propylenglykol/Glycerin-Mischung und Anlagerung von 100 Gew.-% Propylenoxid, bezogen auf die Gesamtmasse des eingesetzten Alkylenoxids, Funktionalität von 2,8 und Molekulargewicht von 670 g/mol, hergestellt durch DMC-Katalyse AO polymer 3 Alkylene oxide polymer based on a propylene glycol/glycerol mixture and addition of 100% by weight of propylene oxide, based on the total mass of the alkylene oxide used, functionality of 2.8 and molecular weight of 670 g/mol, produced by DMC catalysis
Al.1-1 Polyethercarbonatpolyol auf Basis von AO-Polymer 1 und anschließender Anlagerung von Kohlenstoffdioxid und 100 Gew.-% Propylenoxid, Funktionalität von 2,8, OH-Zahl von 55 mg KOH/g, C02-Gehalt von 14 Gew.-%, hergestellt durch DMC -Katalyse Al.1-1 polyether carbonate polyol based on AO polymer 1 and subsequent addition of carbon dioxide and 100% by weight of propylene oxide, functionality of 2.8, OH number of 55 mg KOH/g, CO 2 content of 14% by weight, produced by DMC catalysis
Al.1-2 Polyethercarbonatpolyol auf Basis von AO-Polymer 2 und anschließender Anlagerung von Kohlenstoffdioxid und 100 Gew.-% Propylenoxid, Funktionalität von 2,8, OH-Zahl von 55 mg KOH/g, CCE-Gehalt von 14 Gew.-%, hergestellt durch DMC -Katalyse Al.1-2 polyether carbonate polyol based on AO polymer 2 and subsequent addition of carbon dioxide and 100% by weight of propylene oxide, functionality of 2.8, OH number of 55 mg KOH/g, CCE content of 14% by weight % produced by DMC catalysis
Al.5-1 Polyethercarbonatpolyol auf Basis von AO-Polymer 3 und anschließender Anlagerung von Kohlenstoffdioxid und 100 Gew.-% Propylenoxid, Funktionalität von 2,8, OH-Zahl von 55 mg KOH/g, C02-Gehalt von 14 Gew.-%, hergestellt durch DMC -Katalyse Al.5-1 polyether carbonate polyol based on AO polymer 3 and subsequent addition of carbon dioxide and 100% by weight of propylene oxide, functionality of 2.8, OH number of 55 mg KOH/g, CO 2 content of 14% by weight. -%, produced by DMC catalysis
A2.1-1 Wasser A2.1-1 Water
A3-1 Silikonstabilisator (Tegostab BF2370) A3-1 silicone stabilizer (Tegostab BF2370)
A3-2 Aminkatalysator (Niax Al) A3-2 Amine Catalyst (Niax Al)
A3-3 Zinnkatalysator (DABCO T9) A3-3 Tin Catalyst (DABCO T9)
B-l Gemisch aus 2,4- und 2,6-Toluylendiisocyanat in einem Gewichtsverhältnis vonB-l Mixture of 2,4- and 2,6-tolylene diisocyanate in a weight ratio of
80:20 80:20
Herstellung von Polyurethan-Schaumstoffen: Production of polyurethane foams:
Die in der Tabelle 1 beschriebenen Polyurethan-Weichschaumstoffe wurden in einem diskontinuierlichen Verfahren hergestellt. The flexible polyurethane foams described in Table 1 were produced in a discontinuous process.
Die Komponenten Al-1 bis A3 -2 werden nach Rezeptvorgabe (siehe Tabelle 1) eingewogen und mit einem Rührwerk bei einer Drehzahl von 680 U/min 20 Sek. lang bei Raumtemperatur verrührt. Anschließend wird die notwendige Menge an Komponente A3 -3 zugegeben und die Mischung bei einer Drehzahl von 680 U/min 10 Sek. lang mit einem Rührwerk verrührt. Components A1-1 to A3-2 are weighed in according to the recipe (see Table 1) and stirred at room temperature for 20 seconds at a speed of 680 rpm. Then the necessary amount of component A3 -3 is added and the mixture is stirred at a speed of 680 rpm for 10 seconds with an agitator.
Die vorab eingewogene Menge an Komponente B-l wird zugegeben und bei einer Drehzahl von 750 U/min 10 Sek. lang mit einem Rührwerk verrührt. Anschließend wird die Masse in eine 1 m3 Form zugegeben. Die Wände der 1 m3 Form wurden zuvor auf der Innenseite mit Polyethylenfolie verkleidet. The previously weighed amount of component B1 is added and stirred with a stirrer at a speed of 750 rpm for 10 seconds. The mass is then added to a 1 m 3 mold. The walls of the 1 m 3 form were previously covered on the inside with polyethylene foil.
Die Höhe der Polyurethanweichschaumstoffblöcke betrug ca. 74-82 cm. Der fertige Polyurethan- Weichschaumstoff wurde im Nachreaktionslager ca. 20-24 Stunden gelagert, bevor dieser zur Ausprüfung in Probekörper gesägt wurde. Für die Bestimmung der mechanischen Eigenschaften der Polyurethan-Weichschaumstoffe wurden jeweils zwei Probekörper analysiert. In Tabelle 1 ist jeweils der Mittelwert der Messungen dargestellt. Tabelle 1: Formulierungen und mechanische Eigenschaften
Figure imgf000018_0001
The height of the flexible polyurethane foam blocks was about 74-82 cm. The finished flexible polyurethane foam was stored in the post-reaction store for approx. 20-24 hours before it was sawn into test specimens for testing. Two specimens were analyzed to determine the mechanical properties of the flexible polyurethane foams. Table 1 shows the mean of the measurements in each case. Table 1: Formulations and mechanical properties
Figure imgf000018_0001
* Vergleichsbeispiel In Tabelle 1 sind die mechanischen Eigenschaften der erhaltenen Polyurethan-Schaumstoffe aus den Beispielen 1 bis 3 dargestellt. Nach dem erfindungsgemäßen Verfahren wurden in den Beispielen 1 und 2 jeweils ein Polyethercarbonatpolyol Al.l eingesetzt. Die Polyurethan-Schaumstoffe aus Beispiel 1 und 2 erreichen Werte für die Zugfestigkeit von 110 kPa, bzw. 121 kPa und für die Bruchdehnung Werte von 137% bzw. 150%. Im Gegensatz dazu wurde in Beispiel 3 (Vergleich) ein Polyethercarbonatpolyol Al.5-1 auf Basis eines Alkylenoxidpolymers mit 100 Gew.-% Propylenoxid eingesetzt. Der resultierende Polyurethan-Schaumstoff aus Beispiel 3 weist nur eine Zugfestigkeit von 88 kPa und eine Bruchdehnung von 81% auf. * Comparative Example Table 1 shows the mechanical properties of the polyurethane foams obtained from Examples 1 to 3. According to the process according to the invention, a polyether carbonate polyol A1.1 was used in each of Examples 1 and 2. The polyurethane foams from Examples 1 and 2 achieve tensile strength values of 110 kPa and 121 kPa, respectively, and values of 137% and 150%, respectively, for the elongation at break. In contrast, a polyether carbonate polyol A1.5-1 based on an alkylene oxide polymer with 100% by weight of propylene oxide was used in example 3 (comparison). The resulting polyurethane foam from Example 3 has a tensile strength of only 88 kPa and an elongation at break of 81%.
Die erfindungsgemäß hergestellten Polyurethan-Weichschaumstoffe weisen ebenfalls niedrige Emissionswerte bei den Messungen gemäß LGA-Zertifizierung auf. The flexible polyurethane foams produced according to the invention also have low emission values in the measurements according to LGA certification.

Claims

Patentansprüche patent claims
1. Verfahren zur Herstellung von Polyurethan-Schaumstoffen, wobei die Komponenten A enthaltend 1. Process for the production of polyurethane foams, the components A containing
Al Verbindungen mit gegenüber Isocyanaten reaktionsfähigen Wasserstoffatomen, enthaltend A1 containing compounds with hydrogen atoms which are reactive towards isocyanates
Al.l Polyethercarbonatpolyol, Al.l polyether carbonate polyol,
A2 Treibmittel und gegebenenfalls A3 Hilfs- und Zusatzstoffe und A2 propellants and optionally A3 auxiliaries and additives and
B Di- und/oder Polyisocyanaten, miteinander umgesetzt werden, dadurch gekennzeichnet, dass die Struktur von Al.l aufgebaut ist aus einer Starterverbindung S 1 mit einem Molekulargewicht von 18 bis 200 g/mol an der ein erster, innerer Alkylenoxidblock enthaltend 0,5 bis 30 Gew.-% Ethylenoxid-Baueinheiten, bezogen auf die Gesamtmasse des eingesetzten Alkylenoxids in dem ersten Alkylenoxidblock, und ein zweiter, äußerer Block aus Kohlenstoffdioxid und Alkylenoxid angelagert ist. B di- and/or polyisocyanates, are reacted with one another, characterized in that the structure of Al.l is made up of a starter compound S 1 having a molecular weight of 18 to 200 g/mol on which a first, inner alkylene oxide block containing 0.5 up to 30 wt.
2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass Komponente Al die folgende Zusammensetzung aufweist: 2. The method according to claim 1, characterized in that component Al has the following composition:
Al.l 40 bis 100 Gew. -Teile Polyethercarbonatpolyol mit einer Hydroxylzahl gemäß DIN 53240-1 (Juni 2013) von 20 mg KOH/g bis 120 mg KOH/g, Al.l 40 to 100 parts by weight polyether carbonate polyol with a hydroxyl number according to DIN 53240-1 (June 2013) of 20 mg KOH/g to 120 mg KOH/g,
A1.2 0 bis 60 Gew. -Teile Polyetherpolyol mit einer Hydroxylzahl gemäß DIN 53240-1 (JuniA1.2 0 to 60 parts by weight of polyether polyol with a hydroxyl number in accordance with DIN 53240-1 (June
2013) von 20 mg KOH/g bis 250 mg KOH/g und einem Gehalt an Ethylenoxid von 0 bis 60 Gew.-%, wobei Polyetherpolyol A1.2 frei von Carbonateinheiten ist,2013) from 20 mg KOH/g to 250 mg KOH/g and an ethylene oxide content of 0 to 60% by weight, with polyether polyol A1.2 being free of carbonate units,
A1.3 0 bis 20 Gew. -Teile Polyetherpolyol mit einer Hydroxylzahl gemäß DIN 53240-1 (JuniA1.3 0 to 20 parts by weight of polyether polyol with a hydroxyl number in accordance with DIN 53240-1 (June
2013) von 20 mg KOH/g bis 250 mg KOH/g, und einem Gehalt an Ethylenoxid von > 60 Gew.-%, wobei Polyetherpolyol A1.3 frei von Carbonateinheiten ist,2013) from 20 mg KOH/g to 250 mg KOH/g, and an ethylene oxide content of > 60% by weight, with polyether polyol A1.3 being free of carbonate units,
A1.4 0 bis 40 Gew. -Teile Polymerpolyol, PHD-Polyol und/oder PIPA-Polyol, A1.4 0 to 40 parts by weight polymer polyol, PHD polyol and/or PIPA polyol,
A1.5 0 bis 40 Gew. -Teile eines Polyols welches nicht unter die Definition der KomponentenA1.5 0 to 40 parts by weight of a polyol which is not included in the definition of the components
Al.l bis Al.4 fällt, wobei die Angabe der Gewichtsteile jeweils bezogen sind auf die Summe der Gewichtsteile der Komponenten Al.l + Al.2 + Al.3 + Al.4 + Al.5 = 100 Gewichtsteile. Al.1 to Al.4, the parts by weight being stated in each case based on the sum of the parts by weight of the components Al.1+Al.2+Al.3+Al.4+Al.5=100 parts by weight.
3. Verfahren gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Anteil an Ethylenoxid- Baueinheiten im ersten Alkylenoxidblock von Al.l 1 bis 25 Gew.-%, bevorzugt 5 bis 22 Gew.- % beträgt. 3. The method according to claim 1 or 2, characterized in that the proportion of ethylene oxide units in the first alkylene oxide block of Al.l 1 to 25 wt .-%, preferably 5 to 22 wt .-% is.
4. Verfahren gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der erste Alkylenoxidblock nur aus Ethylenoxid- und Propylenoxid-Baueinheiten besteht. 4. The method according to any one of claims 1 to 3, characterized in that the first alkylene oxide block consists only of ethylene oxide and propylene oxide units.
5. Verfahren gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das im zweiten Block angelagerte Alkylenoxid mindesten 90 Gew.-% Propylenoxid enthält. 5. The method according to any one of claims 1 to 4, characterized in that the alkylene oxide added on in the second block contains at least 90% by weight of propylene oxide.
6. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass das Polyethercarbonatpolyol Al.l durch einen Prozess erhalten wird, umfassend die Schritte 6. The method according to claim 1, characterized in that the polyether carbonate polyol Al.I is obtained by a process comprising the steps
(i) Anlagerung von Alkylenoxid enthaltend 0,5 bis 30 Gew.-% Ethylenoxid zur Bildung eines ersten Alkylenoxidblocks an eine Starterverbindung S1 mit einem Molekulargewicht von 18 bis 200 g/mol, vorzugsweise in Anwesenheit eines DMC- Katalysators, woraus ein Alkylenoxidpolymer resultiert, (i) addition of alkylene oxide containing 0.5 to 30% by weight of ethylene oxide to form a first alkylene oxide block onto a starter compound S1 having a molecular weight of 18 to 200 g/mol, preferably in the presence of a DMC catalyst, resulting in an alkylene oxide polymer,
(ii) Anlagerung von Kohlenstoffdioxid und Alkylenoxid, vorzugsweise in Anwesenheit eines DMC-Katalysators, an das aus (i) resultierende Alkylenoxidpolymer zur Bildung eines Polyethercarbonatpolyols . (ii) Addition of carbon dioxide and alkylene oxide, preferably in the presence of a DMC catalyst, onto the alkylene oxide polymer resulting from (i) to form a polyether carbonate polyol.
7. Verfahren gemäß Anspruch 6, dadurch gekennzeichnet, dass das aus Schritt (i) resultierende Alkylenoxidpolymer ein Molekulargewicht von 250 bis 2000 g/mol aufweist, bevorzugt 400 bis 1200 g/mol. 7. The method according to claim 6, characterized in that the alkylene oxide polymer resulting from step (i) has a molecular weight of 250 to 2000 g/mol, preferably 400 to 1200 g/mol.
8. Verfahren gemäß einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass es sich bei der Starterverbindung S1 um eine oder mehrere Verbindungen ausgewählt aus der Gruppe bestehend aus Ethylenglykol, Propylenglykol, 1,3-Propandiol, 1,3-Butandiol, 1,4-Butandiol, 1,5-Pentandiol, 2-Methylpropan-l,3-diol, Neopentylglykol, 1,6-Hexandiol, 1,8-Octandiol, Diethylenglykol, Dipropylenglykol, Glycerin, Trimethylolpropan, Pentaerythrit und Sorbitol handelt. 8. The method according to any one of claims 1 to 7, characterized in that the starter compound S1 is one or more compounds selected from the group consisting of ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1, 4-butanediol, 1,5-pentanediol, 2-methylpropane-1,3-diol, neopentyl glycol, 1,6-hexanediol, 1,8-octanediol, diethylene glycol, dipropylene glycol, glycerol, trimethylolpropane, pentaerythritol and sorbitol.
9. Verfahren gemäß einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Verfahren bei einer Isocyanat-Kennzahl von 75 bis 120 durchgeführt wird. 9. The method according to any one of claims 1 to 8, characterized in that the method is carried out at an isocyanate index of 75-120.
10. Polyurethan-Schaumstoff, bevorzugt Polyurethan-Weichschaumstoff, hergestellt durch ein Verfahren gemäß einem der Ansprüche 1 bis 9. 10. polyurethane foam, preferably flexible polyurethane foam, produced by a method according to any one of claims 1 to 9.
11. Verwendung eines Polyurethan-Schaumstoffes gemäß Anspruch 10 zur Herstellung von Möbelpolsterungen, Textileinlagen, Matratzen, Automobilsitzen, Kopfstützen, Armlehnen, Schwämmen, Dachhimmeln, Türseitenverkleidungen, Sitzauflagen oder Bauelementen. 11. Use of a polyurethane foam according to claim 10 for the production of furniture upholstery, textile inserts, mattresses, automobile seats, headrests, armrests, sponges, headliners, door panels, seat covers or components.
12. Verfahren zur Herstellung von Polyethercarbonatpolyolen, umfassend die Schritte 12. A process for preparing polyethercarbonate polyols, comprising the steps
(i) Anlagerung von Alkylenoxid enthaltend 0,5 bis 30 Gew.-% Ethylenoxid zur Bildung eines ersten Alkylenoxidblocks an eine Starterverbindung S1 mit einem Molekulargewicht von 18 bis 200 g/mol, vorzugsweise in Anwesenheit eines DMC- Katalysators, woraus ein Alkylenoxidpolymer resultiert, (i) Addition of alkylene oxide containing from 0.5 to 30% by weight of ethylene oxide to form a first alkylene oxide block onto a starter compound S1 with a molecular weight of 18 to 200 g/mol, preferably in the presence of a DMC catalyst, resulting in an alkylene oxide polymer,
(ii) Anlagerung von Kohlenstoffdioxid und Alkylenoxid, vorzugsweise in Anwesenheit eines DMC-Katalysators, an das aus (i) resultierende Alkylenoxidpolymer zur Bildung eines Polyethercarbonatpolyols . (ii) Addition of carbon dioxide and alkylene oxide, preferably in the presence of a DMC catalyst, onto the alkylene oxide polymer resulting from (i) to form a polyether carbonate polyol.
13. Verfahren gemäß Anspruch 12, dadurch gekennzeichnet, dass in Schritt (ii) 13. The method according to claim 12, characterized in that in step (ii)
(a) eine Teilmenge des aus (i) resultierenden Alkylenoxidpolymers und/oder ein Suspensionsmittel, das keine H-fünktionelle Gruppen aufweist, in einem Reaktor gegebenenfalls gemeinsam mit DMC-Katalysator vorgelegt wird, (a) a portion of the alkylene oxide polymer resulting from (i) and/or a suspending agent which has no H-functional groups is initially charged in a reactor, optionally together with DMC catalyst,
(ß) gegebenenfalls zur Aktivierung eines DMC-Katalysators eine Teilmenge (bezogen auf die Gesamtmenge der bei der Aktivierung und Copolymerisation eingesetzten Menge an Alkylenoxid) von Alkylenoxid zu der aus Schritt (a) resultierenden Mischung zugesetzt wird, wobei diese Zugabe einer Teilmenge an Alkylenoxid gegebenenfalls in Gegenwart von CO2 erfolgen kann, und wobei dann die aufgrund der folgenden exothermen chemischen Reaktion auftretende Temperaturspitze („Hotspot“) und/oder ein Druckabfall im Reaktor jeweils abgewartet wird, und wobei der Schritt (ß) zur Aktivierung auch mehrfach erfolgen kann, (ß) optionally, to activate a DMC catalyst, a portion (based on the total amount of alkylene oxide used in the activation and copolymerization) of alkylene oxide is added to the mixture resulting from step (a), this addition of a portion of alkylene oxide optionally can take place in the presence of CO2, and in which case the temperature peak (“hotspot”) and/or a drop in pressure in the reactor that occurs as a result of the following exothermic chemical reaction is then awaited in each case, and in which step (ß) for activation can also take place several times,
(g) das aus (i) resultierende Alkylenoxidpolymer, Alkylenoxid und gegebenenfalls ein Suspensionsmittel, das keine H-fünktionelle Gruppen aufweist, und Kohlendioxid während der Reaktion in den Reaktor zudosiert werden. (g) the alkylene oxide polymer resulting from (i), alkylene oxide and optionally a suspending agent which does not have H-functional groups and carbon dioxide are metered into the reactor during the reaction.
14. Verfahren gemäß Anspruch 12 oder 13, dadurch gekennzeichnet, dass das aus Schritt (i) resultierende Alkylenoxidpolymer ein Molekulargewicht von 250 bis 2000 g/mol aufweist, bevorzugt 400 bis 1200 g/mol. 14. The method according to claim 12 or 13, characterized in that the alkylene oxide polymer resulting from step (i) has a molecular weight of 250 to 2000 g/mol, preferably 400 to 1200 g/mol.
15. Polyethercarbonatpolyol auf Basis einer Starterverbindung S 1 mit einem Molekulargewicht von 18 bis 200 g/mol, an der ein erster, innerer Alkylenoxidblock enthaltend 0,5 bis 30 Gew.-% Ethylenoxid-Baueinheiten, bezogen auf die Gesamtmasse des eingesetzten Alkylenoxids in dem ersten Block, und ein zweiter, äußerer Block aus Kohlenstoffdioxid und Alkylenoxid angelagert ist. 15. Polyether carbonate polyol based on a starter compound S 1 with a molecular weight of 18 to 200 g / mol, on which a first, inner alkylene oxide block containing 0.5 to 30 wt .-% ethylene oxide units, based on the total mass of the alkylene oxide used in the first block, and a second, outer block of carbon dioxide and alkylene oxide is attached.
PCT/EP2022/053554 2021-02-16 2022-02-15 Method for producing polyurethane foam WO2022175210A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP21157473.6A EP4043510A1 (en) 2021-02-16 2021-02-16 Method for producing a polyurethane foam
EP21157473.6 2021-02-16
EP21162452 2021-03-12
EP21162452.3 2021-03-12

Publications (1)

Publication Number Publication Date
WO2022175210A1 true WO2022175210A1 (en) 2022-08-25

Family

ID=80445783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/053554 WO2022175210A1 (en) 2021-02-16 2022-02-15 Method for producing polyurethane foam

Country Status (1)

Country Link
WO (1) WO2022175210A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4089835A (en) 1975-03-27 1978-05-16 Bayer Aktiengesellschaft Stable polyurethane dispersions and process for production thereof
US4260530A (en) 1976-09-01 1981-04-07 Bayer Aktiengesellschaft Process for the preparation of polyurethane resins using stable dispersions as a starting component
GB2072204A (en) 1980-02-14 1981-09-30 Rowlands J P Polymer-modified polyols useful in polyurethane manufacture
DE3103757A1 (en) 1980-02-14 1981-12-17 Jeffrey Philip Littleover Derby Rowlands Polymer-modified polyalcohols, process for their preparation, and their use for the preparation of polyurethane
US4374209A (en) 1980-10-01 1983-02-15 Interchem International S.A. Polymer-modified polyols useful in polyurethane manufacture
US7304172B2 (en) 2004-10-08 2007-12-04 Cornell Research Foundation, Inc. Polycarbonates made using highly selective catalysts
WO2008058913A1 (en) * 2006-11-15 2008-05-22 Basf Se Process for producing flexible polyurethane foams
US20120165549A1 (en) 2008-07-30 2012-06-28 Sk Energy Co., Ltd. Novel coordination complexes and process of producing polycarbonate by copolymerization of carbon dioxide and epoxide using the same as catalyst
WO2012130760A1 (en) 2011-03-28 2012-10-04 Bayer Materialscience Ag Method for producing flexible polyurethane foam materials
WO2015078801A1 (en) 2013-11-27 2015-06-04 Bayer Materialscience Ag Mixtures of polyether carbonate polyols and polyether polyols for producing polyurethane soft foams

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4089835A (en) 1975-03-27 1978-05-16 Bayer Aktiengesellschaft Stable polyurethane dispersions and process for production thereof
US4260530A (en) 1976-09-01 1981-04-07 Bayer Aktiengesellschaft Process for the preparation of polyurethane resins using stable dispersions as a starting component
GB2072204A (en) 1980-02-14 1981-09-30 Rowlands J P Polymer-modified polyols useful in polyurethane manufacture
DE3103757A1 (en) 1980-02-14 1981-12-17 Jeffrey Philip Littleover Derby Rowlands Polymer-modified polyalcohols, process for their preparation, and their use for the preparation of polyurethane
US4374209A (en) 1980-10-01 1983-02-15 Interchem International S.A. Polymer-modified polyols useful in polyurethane manufacture
US7304172B2 (en) 2004-10-08 2007-12-04 Cornell Research Foundation, Inc. Polycarbonates made using highly selective catalysts
WO2008058913A1 (en) * 2006-11-15 2008-05-22 Basf Se Process for producing flexible polyurethane foams
US20120165549A1 (en) 2008-07-30 2012-06-28 Sk Energy Co., Ltd. Novel coordination complexes and process of producing polycarbonate by copolymerization of carbon dioxide and epoxide using the same as catalyst
WO2012130760A1 (en) 2011-03-28 2012-10-04 Bayer Materialscience Ag Method for producing flexible polyurethane foam materials
WO2015078801A1 (en) 2013-11-27 2015-06-04 Bayer Materialscience Ag Mixtures of polyether carbonate polyols and polyether polyols for producing polyurethane soft foams

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
B. INOUE ET AL.: "Copolymerization of Carbon Dioxide and Epoxide with Organometallic Compounds", DIE MAKROMOLEKULARE CHEMIE, vol. 130, 1969, pages 210 - 220, XP001018750, DOI: 10.1002/macp.1969.021300112
M. H. CHISHOLM ET AL., MACROMOLECULES, vol. 35, 2002, pages 6494
M. R. KEMBER ET AL., ANGEW. CHEM., INT. ED., vol. 48, 2009, pages 931
S. D. ALLEN, J. AM. CHEM. SOC., vol. 124, 2002, pages 14284

Similar Documents

Publication Publication Date Title
EP2691434B1 (en) Method for producing flexible polyurethane foam materials
EP0805831B1 (en) Use of toluenediamine initiated propyleneoxide polyols in rigid polyurethane foams
EP3387035B1 (en) Polyurethane foams based on polyether carbonate polyols
WO2017085201A1 (en) Polyurethane foams based on polyether carbonate polyols
WO2019193101A1 (en) Polyurethane foams based on polyether carbonate polyols
EP3178858A1 (en) Polyurethane foams based on polyether carbonate polyols
EP2643379A1 (en) Method for producing flexible polyurethane foams
EP3762441B1 (en) Polyurethane foams based on polyether carbonate polyols
EP3762442B1 (en) Polyurethane foams based on polyether carbonate polyols
WO2018219893A1 (en) Polyurethane foams based on polyethercarbonate polyols
EP3533815A1 (en) Flexible polyurethane foams based on polyoxymethylene polyoxyalkylene block copolymers
EP3548532A1 (en) Use of acrylic acid esters and amides for reducing emissions of a polyurethane foam
EP3768746A1 (en) Method for producing polyurethane soft foams with high bulk density
EP3555166B1 (en) Process for the reduction of emissions in polyurethane foams
EP3543268A1 (en) Method for manufacturing soft polyurethane foams
WO2022175210A1 (en) Method for producing polyurethane foam
EP4043510A1 (en) Method for producing a polyurethane foam
EP3820922B1 (en) Method for the preparation of viscoelastic polyurethane foams
WO2021001229A1 (en) Amine-initiated polyols as non-emissive catalysts in hr foam
WO2018114830A1 (en) Use of physical blowing agents for the production of polyether carbonate polyol-based polyurethane foams with reduced emission of cyclic propylene carbonate
WO2022258503A1 (en) Use of bismuth catalysts for diminishing cyclic propylene carbonate in the production of flexible foam materials based on polyethercarbonate polyols
EP3548534B1 (en) Method for the preparation of tdi-based polyurethane foams containing organic acid anhydrides and/or organic acid chlorides
EP4001337A1 (en) Method for reducing amine traces in polyurethane foams
WO2023012023A1 (en) Process for reducing traces of amine in flexible polyurethane foams
WO2022152686A1 (en) Method for reducing polyurethane foam emissions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22703416

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22703416

Country of ref document: EP

Kind code of ref document: A1