JPH0148288B2 - - Google Patents

Info

Publication number
JPH0148288B2
JPH0148288B2 JP56019138A JP1913881A JPH0148288B2 JP H0148288 B2 JPH0148288 B2 JP H0148288B2 JP 56019138 A JP56019138 A JP 56019138A JP 1913881 A JP1913881 A JP 1913881A JP H0148288 B2 JPH0148288 B2 JP H0148288B2
Authority
JP
Japan
Prior art keywords
alkanolamine
polyol
isocyanate
polymer
reacting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56019138A
Other languages
Japanese (ja)
Other versions
JPS56127621A (en
Inventor
Fuiritsupu Rooranzu Jefurii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INTAAKEMU INTERN SA
Original Assignee
INTAAKEMU INTERN SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INTAAKEMU INTERN SA filed Critical INTAAKEMU INTERN SA
Publication of JPS56127621A publication Critical patent/JPS56127621A/en
Priority to AU84672/82A priority Critical patent/AU556043B2/en
Publication of JPH0148288B2 publication Critical patent/JPH0148288B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/409Dispersions of polymers of C08G in organic compounds having active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0838Manufacture of polymers in the presence of non-reactive compounds
    • C08G18/0842Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents
    • C08G18/0861Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of a dispersing phase for the polymers or a phase dispersed in the polymers
    • C08G18/0871Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of a dispersing phase for the polymers or a phase dispersed in the polymers the dispersing or dispersed phase being organic
    • C08G18/0876Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of a dispersing phase for the polymers or a phase dispersed in the polymers the dispersing or dispersed phase being organic the dispersing or dispersed phase being a polyol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3271Hydroxyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Polyurethanes Or Polyureas (AREA)

Description

【発明の詳现な説明】 本発明はポリりレタンの補法に係る。[Detailed description of the invention] The present invention relates to a method for producing polyurethane.

ポリりレタンフオヌムは、発泡剀及び通䟋は該
発泡剀以倖の皮又はそれ以䞊の添加剀の存圚に
おいおポリオヌルをポリむ゜シアネヌトず反応さ
せるこずにより補造される。
Polyurethane foams are produced by reacting polyols with polyisocyanates in the presence of a blowing agent and usually one or more additives other than the blowing agent.

埗られるフオヌム乃至発泡䜓の物理的性質を所
望の態様に改倉するために、ポリりレタン圢成反
応に、予め圢成されたポリマヌ倉性ポリオヌル即
ち远加的ポリマヌ材料を含有しおいるポリオヌル
を䜿甚するこずは公知である。埓぀お、䟋えばむ
ギリス囜特蚱第1501172号明现曞には、ポリむ゜
シアネヌトず第䞀アミン類、第二アミン類ヒドラ
ゞン類又はヒドラゞド類ずのポリ付加生成物であ
るポリオヌル分散䜓の䜿甚が蚘茉されおおり、又
むギリス囜特蚱第1482213号明现曞には、゚チレ
ン系䞍飜和モノマヌの重合に際しお埗られるポリ
マヌ物質を分散させ䞔぀又これを共重合させたポ
リオヌルの䜿甚が蚘茉されおいる。
It is known to use preformed polymer-modified polyols, ie, polyols containing additional polymeric materials, in polyurethane-forming reactions to modify the physical properties of the resulting foam in the desired manner. be. Thus, for example, GB 1501172 describes the use of polyol dispersions which are polyaddition products of polyisocyanates and primary amines, secondary amines hydrazines or hydrazides. GB 1482213 also describes the use of polyols in which polymeric substances obtained during the polymerization of ethylenically unsaturated monomers are dispersed and also copolymerized.

本発明の䞻たる目的はポリりレタン補造に有甚
ず思われる曎にポリマヌ倉性されたポリオヌルを
甚いお有意のポリりレタンの補法を提䟛するこず
である。
The primary object of the present invention is to provide a process for the production of useful polyurethanes using further polymer-modified polyols that may be useful in polyurethane production.

埓぀お、本発明によれば、ポリオヌルの存圚に
おいおアルカノヌルアミンを有機ポリむ゜シアネ
ヌトず重合させ、この堎合に該アルカノヌルアミ
ンが党郚的にではないにしおも、少なくずも優勢
的に倚官胜的にむ゜シアネヌトず反応する、ポリ
マヌ倉性ポリオヌル甚いお、有意のポリりレタン
を補造する方法が提䟛される。すなわち、これ
は、ポリオヌルの存圚䞋にアルカノヌルアミンず
む゜シアネヌトずを本明现曞が開瀺する比率で反
応させるこずにより、アルカノヌルアミンの窒玠
原子がアルカノヌルアミンをしお、む゜シアネヌ
トより反応しやすくならしめるこずによる。
According to the invention, therefore, an alkanolamine is polymerized with an organic polyisocyanate in the presence of a polyol, in which case the alkanolamine is at least predominantly, if not entirely, polyfunctionally reacted with the isocyanate. Provided are methods for producing useful polyurethanes using polymer-modified polyols. That is, this is because by reacting an alkanolamine and an isocyanate in the presence of a polyol at the ratio disclosed herein, the nitrogen atom of the alkanolamine makes the alkanolamine more reactive than the isocyanate. .

本発明方法においお、アルカノヌルアミン〔こ
れは個又はそれ以䞊のヒドロキシ基―OH
ず第䞀、第二又は第䞉アミンの䜕れでもよいが
個又はそれ以䞊のアミン基―NH2、NH、≡
を有する有機化合物を意味する〕は倚官胜性
反応干䞎䜓ずしおの機胜を果たし、ポリ付加生成
物は該アルカノヌルアミンずポリむ゜シアネヌト
これは個又はそれ以䞊のむ゜シアネヌト基を
有する化合物を意味するずにより圢成される。
アルカノヌルアミンが第䞀又は第二アミンである
堎合には、これはむ゜シアネヌトに関しおすべお
が反応掻性である氎玠を持぀たアミン基ずアルコ
ヌル基ずを有する。アルカノヌルアミンが第䞉ア
ミンである堎合には、これはむ゜シアネヌトに関
しおすべおが反応掻性である氎玠を持぀た耇数の
アルコヌル基を有する。䞊蚘の䜕れの堎合にも、
掻性氎玠の党郚又はその郚は実際に反応するこ
ずができる。ポリ付加反応は適宜、む゜シアネヌ
トずヒドロキシ基ずの組合せによりりレタン結合
―NH―CO――を圢成し、又む゜シアネヌ
トずアミン基ずの組合せにより尿玠結合―NH
―CO―NH―又は―CO―NH―を圢成す
るこずにより盎鎖及び又は枝鎖をもたらすも
のず考えられる。䞊蚘ポリ付加生成物はポリオヌ
ルず混合され䞔぀又は該ポリオヌルず化孊的
に結合䟋えば共重合によりせしめられるこず
ができる。本明现曞で䜿甚される甚語「ポリマヌ
倉性ポリオヌル」ずは、本発明方法では通垞の堎
合には物理的組合せが優勢ではあるが、物理的組
合せ及び化孊的組合せの䞡者䞊びに䞡組合せの䜵
存を包含せしめるこずを䌁図するものであるこず
に留意され床い。このような物理的組合せずは、
䜿甚される出発物質に䟝存しおポリ付加生成物の
ポリオヌル溶液又は安定なポリオヌル分散䜓の圢
態であるこずができる。殊に、アルカノヌルアミ
ンを適宜遞択するこずにより及び堎合によ぀おは
ポリオヌルを適宜遞択するこずにより、ポリマヌ
倉性ポリオヌルの物理的状態を決定するこずがで
きる。
In the process of the invention, an alkanolamine [which has one or more hydroxy groups (-OH)]
and primary, secondary or tertiary amines may be used, but 1
one or more amine groups (-NH 2 , =NH, ≡
N)] acts as a polyfunctional reactive agent, and the polyaddition product combines the alkanolamine with a polyisocyanate (which refers to a compound with two or more isocyanate groups). meaning).
If the alkanolamine is a primary or secondary amine, it has an amine group and an alcohol group, all with hydrogens that are reactive with respect to isocyanates. If the alkanolamine is a tertiary amine, it has multiple alcohol groups with hydrogens all reactive with respect to isocyanates. In any of the above cases,
All or part of the active hydrogen can actually react. In the polyaddition reaction, a combination of an isocyanate and a hydroxyl group forms a urethane bond (-NH-CO-O-), and a combination of an isocyanate and an amine group forms a urea bond (-NH
-CO-NH- or =N-CO-NH-) is thought to lead to linear and/or branched chains. The polyadduct can be mixed with and/or chemically combined (eg, by copolymerization) with a polyol. The term "polymer-modified polyol" as used herein includes both physical and chemical combinations, as well as the coexistence of both, although physical combinations are usually predominant in the method of the present invention. Please keep in mind that this is intended to encourage people. Such a physical combination is
Depending on the starting materials used, the polyaddition product can be in the form of a polyol solution or a stable polyol dispersion. In particular, the physical state of the polymer-modified polyol can be determined by a suitable selection of the alkanolamine and, if appropriate, a suitable selection of the polyol.

本発明方法の実斜に際しおは、分子量が200乃
至10000殊に2800乃至7000の範囲内にあるポリ
゚ヌテルポリオヌルの存圚においお、アルカノヌ
ルアミンずむ゜シアネヌトずが玄1.0察0.5乃至1.0
察1.6のモル比で混合され、反応したアルカノヌ
ルアミンずポリむ゜シアネヌトずが䞡者合せお、
ポリオヌルの重量基準で乃至35重量であるの
が最も有利である。
In carrying out the process of the invention, in the presence of a polyether polyol with a molecular weight in the range from 200 to 10,000 (in particular from 2,800 to 7,000), the ratio of alkanolamine to isocyanate is approximately 1.0 to 0.5 to 1.0.
The alkanolamine and polyisocyanate that were mixed at a molar ratio of 1.6 and reacted together,
Most advantageously 1 to 35% by weight, based on the weight of the polyol.

アルカノヌルアミン又はアルカノヌルアミン混
合物を本発明方法によるアルカノヌルアミンずし
お適宜䜿甚するこずができ、これらアルカノヌル
アミン類ずしおは限定を䌁図するものではないが
䟋えばモノ゚タノヌルアミン、ゞ゚タノヌルアミ
ン、トリ゚タノヌルアミン、―メチル゚タノヌ
ルアミン、―゚チル゚タノヌルアミン、―ブ
チル゚タノヌルアミン、―メチルゞ゚タノヌル
アミン、―゚チルゞ゚タノヌルアミン、―ブ
チルゞ゚タノヌルアミン、モノむ゜プロパノヌル
アミン、ゞむ゜プロパノヌルアミン、トリむ゜プ
ロパノヌルアミン、―メチルむ゜プロパノヌル
アミン、―゚チルむ゜プロパノヌルアミン、
―プロピルむ゜プロパノヌルアミンの劂き第䞀、
第二及び第䞉アルカノヌルアミンを包含する。本
明现曞においお䜿甚される甚語「アルカノヌルア
ミン」は眮換アルカノヌルアミンをも包含しおお
り、䟋えば窒玠原子郚分でハロゲン眮換された第
䞀又は第二アルカノヌルアミン類を䜿甚するこず
も、或いはアルキル基郚分でハロゲン眮換された
即ちアルコヌル基がハロゲン原子で眮換された第
二又は第䞉アルカノヌルアミン類を䜿甚するこず
も可胜である。殊に奜たしい実斜圢では、アルカ
ノヌルアミンずしおトリ゚タノヌルアミンが䜿甚
される。
Alkanolamines or mixtures of alkanolamines may suitably be used as alkanolamines according to the process of the present invention; these alkanolamines include, but are not limited to, monoethanolamine, diethanolamine, triethanolamine, N-methylethanol. Amine, N-ethylethanolamine, N-butylethanolamine, N-methyldiethanolamine, N-ethyldiethanolamine, N-butyldiethanolamine, monoisopropanolamine, diisopropanolamine, triisopropanolamine, N-methylisopropanolamine, N-ethyl Isopropanolamine, N
-The first, such as propylisopropanolamine,
Includes secondary and tertiary alkanolamines. The term "alkanolamine" as used herein also includes substituted alkanolamines; for example, primary or secondary alkanolamines substituted with halogen at the nitrogen atom moiety or alkyl group moieties may be used. It is also possible to use secondary or tertiary alkanolamines which are halogen-substituted, ie the alcohol group is replaced by a halogen atom. In a particularly preferred embodiment, triethanolamine is used as alkanolamine.

本発明方法はアルカノヌルアミン殊に開鎖状の
脂肪族アルカノヌルアミンを利甚しお実斜される
が、他のアルカノヌルアミン化合物䟋えば炭玠環
栞、芳銙族又は耇玠環栞に又は耇数のこれら栞に
及び又はこれら栞ず開鎖状脂肪族栞ずに結合
したヒドロキシ基及びアミン基を有するアルカノ
ヌルアミン化合物を䜿甚するこずも可胜である。
The process according to the invention is carried out using alkanolamines, in particular open-chain aliphatic alkanolamines, but also other alkanolamine compounds, such as those which contain carbocyclic, aromatic or heterocyclic nuclei or a plurality of these nuclei (or ) It is also possible to use alkanolamine compounds having hydroxy groups and amine groups bonded to these nuclei and to open-chain aliphatic nuclei.

有機ポリむ゜シアネヌトずしおは適宜のものを
䜿甚するこずができ、これにはポリむ゜シアネヌ
トずポリオヌルによるポリりレタン圢成反応甚ず
しお知られおいるような脂肪族系、脂環系、芳銙
脂肪族系、芳銙族系及び耇玠環系のポリむ゜シア
ネヌト類を䜿甚するこずができる䟋えばむギリ
ス囜特蚱第1453258号明现曞参照。
Appropriate organic polyisocyanates can be used, including aliphatic, alicyclic, araliphatic, and aromatic polyisocyanates known for polyurethane formation reactions between polyisocyanates and polyols. and heterocyclic polyisocyanates (see, for example, GB 1453258).

垂堎で容易に入手可胜である適圓なポリむ゜シ
アネヌトずしおは、及び―トリレン
ゞむ゜シアネヌト及びこれら異性䜓の混合物䞀
般にTDIず称される、アニリンをホルムアルデ
ヒドにお瞮合せしめ、次いでホスゲン凊理するこ
ずにより埗られる型匏のポリプニルポリメチレ
ンポリむ゜シアネヌト類䞀般に粗補MDIず称
される䞊びにカルボゞむミド基、りレタン基、
アロホネヌト基、む゜シアネヌト基、尿玠基又は
ビりレツト基を含有するポリむ゜シアネヌト類
䞀般にポリむ゜シアネヌトず称されるがある。
Suitable polyisocyanates that are readily available on the market include 2,4 and 2,6-tolylene diisocyanate and mixtures of these isomers (commonly referred to as TDI), prepared by condensing aniline with formaldehyde and then Polyphenylpolymethylene polyisocyanates of the type obtained by phosgene treatment (commonly referred to as crude MDI) as well as carbodiimide groups, urethane groups,
There are polyisocyanates (commonly referred to as polyisocyanates) containing allophonate, isocyanate, urea or biuret groups.

ポリオヌルずしおは適宜のものを䜿甚するこず
ができ、これらポリオヌルは分子量が200乃至
10000の範囲内であ぀おポリむ゜シアネヌトずポ
リオヌルずによるポリりレタン圢成反応甚ずしお
知られおおり䟋えばむギリス囜特蚱第1482213号
明现曞に蚘茉されおいるようなポリ゚ヌテルポリ
オヌルを包含しおいる。このような公知ポリオヌ
ルはアルキレンオキシド類ず掻性氎玠含有化合物
ずの反応により埗るこずができ、この堎合の反応
生成物の分子量は反応せしめられるアルキレンオ
キシドの分子量に䟝存する。
Any suitable polyol can be used, and these polyols have a molecular weight of 200 to 200.
10,000 and which are known for the reaction of polyisocyanates and polyols to form polyurethanes, such as those described in GB 1,482,213. Such known polyols can be obtained by reacting alkylene oxides with active hydrogen-containing compounds, the molecular weight of the reaction product depending on the molecular weight of the alkylene oxide with which the reaction is caused.

本発明方法の実斜に際しお埗られるポリ付加生
成物は単官胜性む゜シアネヌト類、アミン類又は
―ゞアルキルアルカノヌルアミン類を比䟋的量
で䜿甚しお倉性されるこずができる。䟋えば、ポ
リ付加生成物の平均分子量はアルカノヌルアミン
成分基準で䞊蚘型匏の単官胜性化合物を25モル
迄の割合で合䜓せしめるこずにより調節するこず
ができる。
The polyaddition products obtained in carrying out the process of the invention can be modified using proportional amounts of monofunctional isocyanates, amines or N-dialkylalkanolamines. For example, the average molecular weight of the polyaddition product is 25 mol% of the above type of monofunctional compound based on the alkanolamine component.
It can be adjusted by combining the ratios up to this point.

適圓な単官胜性む゜シアネヌト類ずは、メチル
む゜シアネヌト、む゜プロピルむ゜シアネヌト、
む゜ブチルむ゜シアネヌト、ヘキシルむ゜シアネ
ヌト、ラりリルむ゜シアネヌト、ステアリルむ゜
シアネヌト、シクロヘキシルむ゜シアネヌト、フ
゚ニルむ゜シアネヌト、トリルむ゜シアネヌト、
―クロルプニルむ゜シアネヌト及びゞむ゜プ
ロピルプニルむ゜シアネヌト類を包含するむ゜
シアネヌトである。
Suitable monofunctional isocyanates include methyl isocyanate, isopropylisocyanate,
Isobutyl isocyanate, hexyl isocyanate, lauryl isocyanate, stearyl isocyanate, cyclohexyl isocyanate, phenyl isocyanate, tolyl isocyanate,
The isocyanates include 4-chlorophenyl isocyanate and diisopropylphenyl isocyanate.

適圓な単官胜性アミン類ずは、ゞアルキルアミ
ン類䟋えばゞメチルアミン、ゞ゚チルアミン、ゞ
ブチルアミン及びシクロヘキシルアミンを包含す
るゞアルキルアミンであり、又適圓な―ゞアル
キルアルカノヌルアミン類ずはゞメチル゚タノヌ
ルアミン及びゞ゚チル゚タノヌルアミンを包含す
るゞアルキルアルカノヌルアミン類である。
Suitable monofunctional amines are dialkylamines, including dialkylamines such as dimethylamine, diethylamine, dibutylamine and cyclohexylamine, and suitable N-dialkylalkanolamines are dimethylethanolamine and diethylethanolamine. dialkylalkanolamines including

本発明のポリ付加反応に䜿甚されるアルカノヌ
ルアミンのアルコヌル及び又はアミン基のす
べおがあらゆる条件においおむ゜シアネヌトず反
応する必芁性はなく、埓぀お或る堎合にはアルカ
ノヌルアミンが単官胜的に反応しお自䜓䞻鎖延長
反応終結剀ずしお䜜甚するこずもできる。
It is not necessary that all of the alcohol and/or amine groups of the alkanolamine used in the polyaddition reaction of the present invention react with the isocyanate under all conditions, and therefore in some cases the alkanolamine may react monofunctionally. It can also itself act as a main chain extension reaction terminator.

必芁であれば、ポリむ゜シアネヌトずポリオヌ
ルずによるポリりレタン圢成反応甚觊媒ずしお慣
甚的に䜿甚されるような物質を添加するこずによ
り、本発明によるポリ付加反応を促進せしめるこ
ずができる。この目的で、錫オクト゚ヌト、ゞブ
チル―錫―ゞラりレヌト及び又はアミン類䟋
えばトリ゚チレンゞアミンを䜿甚するこずができ
る。䜿甚される觊媒の量は、ポリりレタン圢成反
応に通䟋䜿甚される量ず比范しお少量であるこず
ができ、䟋えばポリオヌル総重量の0.2皋床ず
謂うよりもむしろ0.02皋床の量で䜿甚されるこ
ずができる。しかしながら、必芁であれば、添加
量を倚くなすこずもできる。
If necessary, the polyaddition reaction according to the invention can be accelerated by the addition of materials such as those conventionally used as catalysts for polyurethane-forming reactions of polyisocyanates and polyols. For this purpose, tin octoate, dibutyl-tin dilaurate and/or amines such as triethylenediamine can be used. The amount of catalyst used can be small compared to the amounts typically used in polyurethane forming reactions, for example in amounts as low as 0.02% of the total weight of the polyol, rather than as high as 0.2%. be able to. However, if necessary, the amount added can be increased.

第䞀又は第二アルカノヌルアミンを䜿甚する反
応は觊媒を必芁ずしない堎合があるが、トリ゚タ
ノヌルアミンの劂き第䞉アルカノヌルアミンを䜿
甚する際には觊媒䜿甚が有利な堎合がある。
Although reactions using primary or secondary alkanolamines may not require a catalyst, the use of a catalyst may be advantageous when using a tertiary alkanolamine such as triethanolamine.

ポリ付加生成物の分子量は、䞀方におけるアル
カノヌルアミンず他方におけるポリむ゜シアネヌ
トずの量比を倉えるこずにより、又単官胜性成分
を䜿甚する堎合にはその量を倉えるこずにより調
敎するこずができる。埓぀お、䟋えばアルカノヌ
ルアミン察ポリむ゜シアネヌトのモル比は1.0察
0.5乃至1.0察1.6が奜たしく、略々等モル量である
のが殊に奜たしいが、粘床が高くなるのやむ゜シ
アネヌトの量割合が高い堎合に生ずる傟向のある
迅速ゲル化すら適圓に蚱容されるならばむ゜シア
ネヌトをも぀ず高い量割合で䜿甚するこずも可胜
である。この点を考慮に入れれば、䟋えば1.0察
1.55乃至1.0察1.6が䞊限モル比ずしお可胜である。
む゜シアネヌトの量割合が䜎䞋すれば、ポリ付加
生成物の分子量が䜎䞋し粘床も䜎くなる。䞀般
に、アルカノヌルアミン察有機ポリむ゜シアネヌ
トのモル比は1.0察0.8乃至1.0察1.1であるのが奜
たしい。
The molecular weight of the polyaddition product can be adjusted by varying the quantitative ratio of alkanolamine on the one hand to polyisocyanate on the other hand, and also by varying the amount of monofunctional components, if used. Thus, for example, the molar ratio of alkanolamine to polyisocyanate is 1.0 to
A ratio of 0.5 to 1.0 to 1.6 is preferred, and approximately equimolar amounts are particularly preferred, provided that high viscosities and rapid gelation, which tends to occur with high isocyanate proportions, are suitably tolerated. It is also possible to use higher proportions of isocyanates. Taking this into account, for example 1.0 vs.
1.55 to 1.0 to 1.6 are possible as upper molar ratios.
The lower the proportion of isocyanate, the lower the molecular weight and the lower the viscosity of the polyaddition product. Generally, it is preferred that the molar ratio of alkanolamine to organic polyisocyanate is from 1.0:0.8 to 1.0:1.1.

架橋反応を制限し埓぀おゲル化を抑制する架橋
反応抑制剀を添加すれば䞊蚘䞊限モル比である
1.0察1.6を実際䞊越えるこずすら可胜である。埓
぀おむ゜シアネヌトずアルカノヌルアミンの二官
胜性反応を生ずる反応条件を利甚するのが通垞の
堎合合有利であるが、若干の堎合には䞔぀若干の
アルカノヌルアミン類殊にトリ゚タノヌルアミン
を䜿甚する堎合には、む゜シアネヌトずアルカノ
ヌルアミンの䞉官胜性反応をもたらす反応条件を
採甚しお、ポリマヌ倉性ポリオヌルを䜿甚する埌
続のポリりレタン圢成反応に望たしからぬ劚害を
生ずる遊離のヒドロキシ基を実際䞊存しないよう
になすのが奜たしい。この埌者の堎合には、アル
カノヌルアミン察む゜シアネヌトのモル比は䟋え
ば1.0察2.1迄又はそれ以䞊ずなすのが望たしい堎
合があり、架橋反応抑制剀䟋えば―ゞメチル
゚タノヌルアミンを添加しお䟋えばアルカノ
ヌルアミン察架橋反応抑制剀比が1.0察1.2の量
で架橋化を制限するこずができる。
If a crosslinking reaction inhibitor is added that limits the crosslinking reaction and therefore suppresses gelation, the above upper limit molar ratio is achieved.
It is even possible to actually exceed 1.0 vs. 1.6. Therefore, although it is usually advantageous to use reaction conditions that give rise to a difunctional reaction of isocyanate and alkanolamine, in some cases and when some alkanolamines, especially triethanolamine, are used, employed reaction conditions that resulted in a trifunctional reaction of the isocyanate and the alkanolamine so that there were virtually no free hydroxy groups that would undesirably interfere with the subsequent polyurethane-forming reaction using the polymer-modified polyol. Eggplant is preferred. In this latter case, it may be desirable to have a molar ratio of alkanolamine to isocyanate of up to, for example, 1.0 to 2.1 or more, and a crosslinking inhibitor (e.g. N-dimethylethanolamine) may be added (e.g. Crosslinking can be limited (with an alkanolamine to crosslinking inhibitor ratio of 1.0 to 1.2).

ポリ゚ヌテルポリオヌル䞭の既反応アルカノヌ
ルアミンずむ゜シアネヌトの濃床埓぀おポリ付加
生成物の濃床は汎い範囲内で倉化するこずができ
るが、䞀般的には乃至35重量、奜たしくは
乃至30重量であるべきである。ポリ付加生成物
の濃床を特定の倀にするこずが芁求される堎合に
は䟋えば或る最適諞性質を有するポリりレタン
フオヌムの補造に䜿甚する堎合には、玄10重量
の濃床ずなすこずが必芁ずされる、反応干䞎䜓
を適宜遞択しお盎接的に所望濃床のものずなす
か、さもなくば圢成されたポリ付加生成物を次い
で適宜の远加的ポリ゚ヌテルポリオヌルにお皀釈
しお所望濃床のものずなすこずができる。
The concentration of reacted alkanolamine and isocyanate in the polyether polyol and thus of the polyaddition product can vary within a wide range, but is generally between 1 and 35% by weight, preferably 3% by weight.
It should be between 30% and 30% by weight. If a specific concentration of the polyaddition product is required (e.g. for use in the production of polyurethane foams with certain optimum properties, approximately 10% by weight)
(required to achieve the desired concentration), the reactant may be suitably selected directly to the desired concentration, or the polyadduct formed may then be treated with additional polyether as appropriate. It can be diluted with polyol to achieve the desired concentration.

䞀般に、反応干䞎䜓の混合は℃から150℃迄
のその融点よりも高い又は䜎い枩床で行なうこず
ができる。反応干䞎䜓の混合は宀枩で、又は70℃
迄のその䞁床融点枩床又はこれよりも䜎い枩床で
行なうのが奜たしい。反応干䞎䜓をそれらの融点
以䞋の枩床で混合するこずも可胜である。
Generally, the mixing of the reactants can be carried out at temperatures above or below their melting points from 0°C to 150°C. Mixing of reactants at room temperature or at 70°C
Preferably, it is carried out at or below its melting point temperature. It is also possible to mix the reaction bodies at temperatures below their melting points.

発熱反応であり、ポリ゚ヌテルポリオヌルの重
量基準でポリ付加生成物の圢成された量割合に応
じお枩床の䞊昇するのが芳枬される。
The reaction is exothermic and an increase in temperature is observed depending on the proportion of polyaddition product formed based on the weight of the polyether polyol.

反応干䞎䜓の混合に際しおは、被分散物の粒床
が现かく分散䜓の調補の堎合䞔぀粘床が䜎い
方がより有効に混合を行なうこずができる。単玔
なバツチ法を䜿甚し、䞡反応干䞎䜓であるアルカ
ノヌルアミンずポリむ゜シアネヌトずの䞀方をポ
リ゚ヌテルポリオヌル䞭に先ず党郚溶解又は分散
せしめ、次いで最高の撹拌状態にある垯域に反応
干䞎䜓の他方を添加するこずもできるが、これら
諞材料の配管内混合法も䜿甚するこずができる。
この埌者即ち配管内混合の堎合には、党反応干䞎
䜓が制埡された割合でポンプ凊理され、同時的に
混合されるこずができ、或は又䞀方の反応干䞎䜓
を先ずポリ゚ヌテルポリオヌルず混合し然る埌に
他方の反応干䞎䜓を添加しお混合するこずができ
る。
When mixing the reactive materials, mixing can be carried out more effectively if the particle size of the material to be dispersed is fine (in the case of preparing a dispersion) and the viscosity is low. Using a simple batch process, both reactants, the alkanolamine and one of the polyisocyanates, are first completely dissolved or dispersed in the polyether polyol, and then the reactants are added to a zone under maximum agitation. Although the other can be added, an in-pipe mixing method of these materials can also be used.
In this latter case, i.e., in-line mixing, all of the reactants can be pumped in controlled proportions and mixed simultaneously, or one reactant can be mixed first with the polyether polyol. After mixing, the other reaction donor can be added and mixed.

ポリ゚ヌテルポリオヌル䞭にポリ付加生成物の
分散された分散䜓は反応完了埌盎ちに䜿甚するこ
ずも、或は又反応完了埌或る時間経過した埌に䜿
甚するこずもできる。䟋えば、ポリ付加生成物の
ポリ゚ヌテルポリオヌル分散䜓はポリ付加反応の
生起する配管匏混合装眮から公知型匏のポリりレ
タン補造装眮の混合ヘツドに盎接的に蚈量攟出さ
れるこずができる。ポリむ゜シアネヌトずアルカ
ノヌルアミンの反応が比范的遅い堎合には、配管
匏混合装眮ずポリりレタン補造装眮の混合ヘツド
ずの間に䞭間貯留タンクを配蚭しお反応完結迄の
远加的時間を䞎えるこずができる。
The dispersion of the polyaddition product in the polyether polyol can be used immediately after the reaction is completed, or alternatively it can be used some time after the reaction is completed. For example, the polyether polyol dispersion of the polyaddition product can be metered directly from the pipe mixer in which the polyaddition reaction takes place to the mixing head of a known type of polyurethane production equipment. If the reaction between the polyisocyanate and the alkanolamine is relatively slow, an intermediate storage tank can be placed between the pipe mixer and the mixing head of the polyurethane production equipment to provide additional time for the reaction to complete. .

本発明のポリマヌ倉性ポリオヌルにはその反応
䞭又は反応完了埌に、添加剀、䟋えば掻性化剀、
安定剀、架橋剀、氎、発泡剀、耐炎剀及び顔料ペ
ヌストを添加するこずができる。
The polymer-modified polyols of the present invention may contain additives, such as activators, during or after the reaction is complete.
Stabilizers, crosslinkers, water, blowing agents, flame retardants and pigment pastes can be added.

本発明のポリ付加生成物はポリりレタンフオヌ
ムの補造に䜿甚するこずができる。生成物が安定
なポリオヌル分散䜓の堎合即ち被分散物の沈降を
生起せず或は少なくずもフオヌムを圢成する他の
諞成分ずの混合䞭に分散状態を維持しおいる分散
䜓の堎合には、被分散物であるポリ付加生成物は
高い匟力性を有し適切に凊理可胜なフオヌムの補
造に際しおのポリマヌ性充填材ずしお殊に有効で
あり、匷床に寄䞎する䞀方で同時にセル壁を砎壊
する䜜甚を果たす。
The polyaddition products of the invention can be used in the production of polyurethane foams. If the product is a stable polyol dispersion, that is, a dispersion in which the dispersed material does not settle or at least remains dispersed during mixing with other foam-forming components, The polyaddition products to be dispersed are particularly effective as polymeric fillers in the production of highly elastic, well-processable foams, contributing to strength while simultaneously disrupting the cell walls. fulfill.

生成物がポリオヌル溶液の圢態の堎合には、ポ
リオヌル分散䜓を䜿甚しお埗られるものずは異な
る諞性質を有するポリマヌ物質の圢成に䜿甚する
のが適圓な堎合がある。
When the product is in the form of a polyol solution, it may be suitable for use in forming polymeric materials that have different properties than those obtained using polyol dispersions.

ポリ付加生成物が安定な分散䜓の圢態の堎合に
は、䞀般に、軟質ポリりレタン、半硬質ポリりレ
タン及び硬床増加の劂き諞性質の改善された硬質
ポリりレタンに凊理するのに適圓であり、ポリオ
ヌルに分散されたポリ付加生成物はセルを連続気
泡になす効果を有しおいるので圓該工業においお
呚知の高匟性型の非収瞮性フオヌムを補造するこ
ずができる。曎に、これら分散䜓は、䟋えばポリ
りレタンをベヌスずする゚ラストマヌ、被芆材及
びコヌテむング剀の補造甚にも適する。
When the polyaddition product is in the form of a stable dispersion, it is generally suitable for processing into flexible polyurethanes, semi-rigid polyurethanes and rigid polyurethanes with improved properties such as increased hardness and is dispersed in polyols. The polyaddition products have the effect of making the cells open-celled so that the high modulus, non-shrinkable foams known in the industry can be produced. Furthermore, these dispersions are suitable, for example, for the production of polyurethane-based elastomers, dressings and coatings.

分散䜓をポリりレタン補造に䜿甚する堎合に、
通䟋ではポリりレタン発泡凊理は分散䜓のポリオ
ヌルを利甚し、埓぀お分散䜓のポリオヌルの諞性
質殊にそのヒドロキシ数及び官胜性が補造される
ポリりレタンの型匏に䟝存しお公知態様にお遞択
される。䟋えば、゚ラストマヌ補造甚には、線状
が優勢を占めおいるもの即ち二官胜性のものであ
぀お、ヒドロキシ数が30乃至170の範囲内のポリ
゚ヌテルポリオヌルが奜たしい。フオヌムの補造
甚には、軟質、半硬質又は硬質のフオヌムをもた
らすポリ゚ヌテルポリオヌルが公知態様にお遞択
される。埓぀お、軟質フオヌム補造甚には、ヒド
ロキシ数が20乃至80の範囲内であ぀お分子圓り
乃至個のヒドロキシ基を有しおいるポリ゚ヌテ
ルポルオヌル䟋えばICIポリオヌルPBA1233商
品名が奜たしい。必芁であれば、ポリ゚ヌテル
ポリオヌルの混合物を䜿甚するこずができる。
When using the dispersion in polyurethane production,
Typically, polyurethane foaming processes utilize dispersion polyols, whose properties, in particular their hydroxyl number and functionality, are selected in a known manner depending on the type of polyurethane being produced. For example, for the production of elastomers, polyether polyols that are predominantly linear or difunctional and have a hydroxyl number in the range of 30 to 170 are preferred. For the production of foams, polyether polyols are selected in a known manner that give soft, semi-rigid or rigid foams. Therefore, for the production of flexible foams, the hydroxyl number should be in the range of 20 to 80 and 2 per molecule.
Polyether polyols having 4 to 4 hydroxy groups, such as ICI polyol PBA1233 (trade name), are preferred. Mixtures of polyether polyols can be used if desired.

ポリりレタン補造に䜿甚可胜な有機ポリむ゜シ
アネヌトは公知文献に蚘述されおおり、アルカノ
ヌルアミンずの反応に関しお既述した有機ポリむ
゜シアネヌトず同じものであるこずができる。
The organic polyisocyanates that can be used for polyurethane production are described in the known literature and can be the same organic polyisocyanates already mentioned for reaction with alkanolamines.

ポリりレタン発泡反応甚混合物も又補造される
ポリりレタンの型匏に応じお䞊蚘反応混合物以倖
の慣甚の諞成分を含有しおいるこずができる。埓
぀お、反応混合物党䜓ずしおは、觊媒䟋えば第䞉
アミン類及び有機錫化合物、架橋剀乃至長鎖化剀
䟋えばゞ゚タノヌルアミン、トリ゚タノヌルアミ
ン、゚チレングリコヌル、グリセロヌル、ゞプロ
ピレングリコヌル及びプニレンゞアミン、耐炎
剀䟋えばハロゲン化アルキルホスプヌト類䞊び
に充填材䟋えば硫酞バリりムを含有しおいるこず
ができる。
The polyurethane foaming reaction mixture can also contain customary components other than the reaction mixture described above, depending on the type of polyurethane being produced. The reaction mixture as a whole therefore contains catalysts such as tertiary amines and organotin compounds, crosslinkers or chain lengthening agents such as diethanolamine, triethanolamine, ethylene glycol, glycerol, dipropylene glycol and phenylene diamine, flame retardants such as It may contain halogenated alkyl phosphates as well as fillers such as barium sulfate.

フオヌム補造のためには反応混合物䞭に発泡剀
が包含せしめられる。適圓な発泡剀の䟋ずしお
は、ポリむ゜シアネヌトず反応しお二酞化炭玠を
発生する氎䞊びに発熱反応の圱響䞋に蒞発する、
又は機械的起泡凊理法を甚いる堎合には圧力の釈
攟により蒞発する䞍掻性な揮発性液䜓を包含する
発泡剀である。埌者の発泡剀であるこの皮液䜓の
䟋は倧気圧で沞点が100℃を越えない奜たしくは
50℃を越えないハロゲン化炭化氎玠類であり、殊
にトリクロロフルオロメタン及びゞクロロゞフル
オロメタンの劂き塩北化炭化氎玠類及びゞクロロ
メタンの劂き塩玠化炭化氎玠類である。発泡剀の
量は所望密床のフオヌムをもたらすように公知態
様で遞定される。䞀般には、反応混合物100圓
り0.005乃至0.3モルのガスをもたらすような量が
適圓である。必芁であれば、過剰充填により即ち
反応混合物が拘束されるこずなしに自由に発泡せ
しめられる堎合に埗られるフオヌムが占める容積
よりも狭い容積の閉鎖モヌルド内で反応混合物を
発泡せしめるこずにより、補造されるフオヌムの
密床を倉ずるこずができる。
For foam production, a blowing agent is included in the reaction mixture. Examples of suitable blowing agents include water, which reacts with the polyisocyanate to generate carbon dioxide, as well as water, which evaporates under the influence of an exothermic reaction.
or, when using a mechanical foaming process, a blowing agent that includes an inert volatile liquid that evaporates upon release of pressure. An example of this type of liquid, which is the latter blowing agent, is preferably a liquid with a boiling point not exceeding 100°C at atmospheric pressure.
Halogenated hydrocarbons, in particular chlorinated hydrocarbons such as trichlorofluoromethane and dichlorodifluoromethane, and chlorinated hydrocarbons such as dichloromethane. The amount of blowing agent is selected in known manner to provide a foam of the desired density. In general, amounts providing 0.005 to 0.3 moles of gas per 100 g of reaction mixture will be suitable. If necessary, it can be produced by overfilling, i.e. by foaming the reaction mixture in a closed mold with a volume smaller than the volume that would be occupied by the foam obtained if the reaction mixture were allowed to foam freely without restraint. The density of the foam can be varied.

䞀般に、ポリりレタン圢成甚反応混合物の組成
はむ゜シアネヌト基察掻性氎玠原子の比が0.9察
乃至1.2察の範囲内に実質䞊存するようにな
されるべきであるが、必芁であれば曎に高い比ず
なすこずもできる。
Generally, the composition of the polyurethane-forming reaction mixture should be such that the ratio of isocyanate groups to active hydrogen atoms is substantially within the range of 0.9:1 to 1.2:1, although higher ratios may be used if necessary. You can also do it.

ポリりレタンフオヌムを補造する堎合には、有
機ナニツトずポリシロキサンナニツトずの間に炭
玠―硅玠又は炭玠―酞玠―硅玠の盎接結合を堎合
により包含するポリシロキサン―ポリアルキレン
オキシドブロツクコポリマヌの劂き発泡安定化剀
又はセル調敎剀の添加により圢成されるセルを安
定化又は調敎するこずが通䟋必芁である。「高匟
性」ポリりレタンを補造しようずする堎合には、
ゞメチルシリコヌン油又はこれを含有する䜎分子
量化剀䟋えばテオドヌレ・ゎヌルドシナミツト瀟
Theodore Goldschmidt AG補のシリコヌン
B8616商品名を添加するのが適圓である。
When producing polyurethane foams, foam stabilizers such as polysiloxane-polyalkylene oxide block copolymers optionally including direct carbon-silicon or carbon-oxygen-silicon bonds between the organic unit and the polysiloxane unit are used. Alternatively, it is usually necessary to stabilize or condition the cells formed by the addition of cell conditioners. When attempting to produce "high modulus" polyurethane,
Dimethyl silicone oil or a low molecular weight agent containing it, such as silicone manufactured by Theodore Goldschmidt AG.
It is appropriate to add B8616 (trade name).

補造される特定のポリりレタン型匏にず぀お適
圓ずされるワンシペツトone shot法、プレ
ポリマヌprepolymer法又は準プレポリマヌ
quasi prepolymer法を採甚するこずができ
る。
One shot, prepolymer or quasi prepolymer methods may be employed as appropriate for the particular type of polyurethane being produced.

ポリりレタン圢成甚反応混合物の諞成分は慣甚
の劂䜕なる態様でも䟋えば埓来技術文献に蚘茉さ
れおいるこの目的甚の劂䜕なる混合装眮を䜿甚し
おも互いに混合するこずができる。必芁であれ
ば、個々の成分の内で若干の成分を予備混合しお
おき、最終混合工皋で䞀緒になすこずが必芁ずさ
れる成分流の数を枛ずるこずができる。䞀方の流
れがポリむ゜シアネヌト又はプレポリマヌ流であ
り䞔぀第の流れが他の反応混合物党郚を包含し
おいる、぀の流れを有するシステムずするのが
屡々奜郜合である。
The components of the polyurethane-forming reaction mixture can be mixed together in any conventional manner, for example using any mixing equipment for this purpose described in the prior art literature. If desired, some of the individual components can be premixed to reduce the number of component streams that need to be brought together in the final mixing step. It is often advantageous to have a two stream system, one stream being the polyisocyanate or prepolymer stream and the second stream containing all the other reaction mixtures.

限定の目的ではないが、次の諞䟋により本発明
を曎に説明する。䟋䞭で䜿甚されおいる郚及び
はすべお重量郚及び重量である。
The invention is further illustrated, but by no means by way of limitation, by the following examples. Parts and percentages used in examples
All are parts and percentages by weight.

各䟋䞭に斌おポリ゚ヌテルに関しお䜿甚されお
いる略語の意味は次の通りである。
The meanings of the abbreviations used with respect to polyether in each example are as follows.

ポリ゚ヌテル グリセロヌルから出発し、15゚チレンオキシ
ドにお凊理しおヒドロキシ数を35に䞔぀䞀次ヒド
ロキシ基含量を玄75になしたプロピレンオキシ
ドのポリ゚ヌテル。
Polyether A A polyether of propylene oxide starting from glycerol and treated with 15% ethylene oxide to give a hydroxyl number of 35 and a primary hydroxy group content of about 75%.

ポリ゚ヌテル トリメチロヌルプロパンから出発し、゚チレン
オキシドにお凊理しおOH数を34に䞔぀䞀次OH
基含量を玄80になしたプロピレンオキシドのポ
リ゚ヌテル。
Polyether B Starting from trimethylolpropane, it is treated with ethylene oxide to reduce the OH number to 34 and to primary OH
Polyether of propylene oxide with a group content of approximately 80%.

ポリ゚ヌテル グリセロヌルから出発し、゚チレンオキシドに
おOH数を47に䞔぀䞀次OH基含量を以䞋に
なしたプロピレンオキシドのポリ゚ヌテル。
Polyether C A polyether of propylene oxide starting from glycerol and increasing the OH number to 47 and the primary OH group content to 5% or less using ethylene oxide.

ポリ゚ヌテル 二次ヒドロキシ基を含有しOH数56の線状ポリ
プロピレングリコヌル。
Polyether D A linear polypropylene glycol containing secondary hydroxyl groups and having an OH number of 56.

䟋  枩床20℃のポリ゚ヌテルA900が高速混合条
件䞋に枩床20℃のトリ゚タノヌルアミン48.7ず
混和され、次いで80の―トリレンゞむ゜
シアネヌトず20の―トリレンゞむ゜シア
ネヌトずの混合物51.2が分間かけお添加され
た。次いで、ゞブチル―錫―ゞラりレヌト觊媒
0.3が添加されるず、迅速な反応が生起し、觊
媒添加完了埌分間の期間に混合物の枩床が20℃
から37℃に䞊昇した。
Example 1 900 g of polyether A at a temperature of 20 °C are mixed with 48.7 g of triethanolamine at a temperature of 20 °C under high-speed mixing conditions, followed by 80% of 2,4-tolylene diisocyanate and 20% of 2,6-tolylene diisocyanate. 51.2 g of the mixture was added over 5 minutes. Then dibutyl-tin-dilaurate catalyst
When 0.3 g was added, a rapid reaction occurred and the temperature of the mixture increased to 20 °C within a period of 3 minutes after the catalyst addition was complete.
The temperature rose from 37℃ to 37℃.

冷华するこずにより埗られ固䜓分10の安定な
分散䜓は25℃においお1600センチポむズの粘床を
有しおいた。
A stable dispersion of 10% solids obtained upon cooling had a viscosity of 1600 centipoise at 25°C.

䞊蚘生成物300をビヌカヌに投入し、次いで
æ°Ž7.8ず、ゞ゚タノヌルアミンず、ビス
―ゞメチルアミノ゚チル゚ヌテル0.21ず、
ゎヌルドシナミツト瀟補「シリコヌンB8616」
商品名1.5ずを入れ、枩床を22℃に調節しお
撹拌した。次に、ゞブチル―錫―ゞラりレヌト
0.75が添加された埌に80―トリレンゞ
む゜シアネヌトず20―トリレンゞむ゜シ
アネヌトずの混合物117が添加され10秒間撹拌
された。曎に秒間経た埌に、混合物がボツクス
内に泚入され発泡が開始された。
Pour 300 g of the above product into a beaker, then add 7.8 g of water, 3 g of diethanolamine, and 0.21 g of bis(2-dimethylaminoethyl) ether.
"Silicone B8616" manufactured by Goldschmidt
(trade name) was added, the temperature was adjusted to 22°C, and the mixture was stirred. Next, dibutyl-tin-dilaurate
After 0.75 g was added, 117 g of a mixture of 80% 2,4-tolylene diisocyanate and 20% 2,6-tolylene diisocyanate was added and stirred for 10 seconds. After an additional 5 seconds, the mixture was poured into the box and foaming began.

混合終了の時点から曎に105秒経過埌に、次の
諞性質を有する非収瞮性の「高匟性」フオヌムが
補造された。
After an additional 105 seconds from the end of mixing, a non-shrinkable "high modulus" foam was produced with the following properties:

密 床Kgm3 34 CLDcm2(1) 28 反撥匟性(2) 63 (1)歪み率40の圧瞮に察する抵抗 (2)ボヌル反撥 䟋  20℃のポリ゚ヌテルA920がビヌカヌに添加
され、次いで30℃のゞ゚タノヌルアミン32.1が
機械的に撹拌し぀぀宀枩で添加された。80の
―トリレンゞむ゜シアネヌトず20の
―トリレンゞむ゜シアネヌトずの混合物47.9
が䞊蚘混合物の撹拌枊流䞭に30秒間をかけお添加
された。癜色の安定な分散䜓が圢成され、枩床は
む゜シアネヌトの添加完了埌30秒以内に20℃から
37℃に䞊昇した。このポリ付加生成物はむ゜シア
ネヌトずアルカノヌルアミンずを0.9察1.0のモル
比にお含有しおおり、最終生成物はポリ゚ヌテル
ポリオヌル䞭にポリ付加生成物を8.0含有しお
おり、呚囲枩床においお受容可胜な粘床を有しお
いた。
Density Kg/m 3 34 CLDg/cm 2 (1) 28 Repulsion % (2) 63 (1): Resistance to compression at strain rate of 40% (2): Ball repulsion example 2 920 g of polyether A at 20°C is placed in a beaker and then 32.1 g of diethanolamine at 30° C. was added at room temperature with mechanical stirring. 80% 2,4-tolylene diisocyanate and 20% 2,
47.9g mixture with 6-tolylene diisocyanate
was added over a period of 30 seconds into the stirring vortex of the above mixture. A white stable dispersion is formed and the temperature decreases from 20°C within 30 seconds after the isocyanate addition is complete.
The temperature rose to 37℃. The polyadduct contains isocyanate and alkanolamine in a molar ratio of 0.9 to 1.0, and the final product contains 8.0% polyadduct in polyether polyol and is acceptable at ambient temperature. It had a reasonable viscosity.

䞊蚘生成物300をビヌカヌ内に採取し、次い
で氎7.8ず、ゞ゚タノヌルアミンず、ビス
―ゞメチルアミノ゚チル゚ヌテル0.21ず、
ゎヌルドシナミツト瀟補「シリコヌンB8616」
商品名1.5ずを添加し、枩床を22℃に調節し
お撹拌した。次にゞブチル―錫―ゞラりレヌト
0.75が添加され、10秒間撹拌され、次いで80
―トリレンゞむ゜シアネヌトず20
―トリレンゞむ゜シアネヌトずの混合物117が
添加された。曎に秒間経過した埌に、混合物は
ボツクス内に泚入され発泡が開始された。混合の
終了時点から曎に105秒間経過埌に、䟋におけ
るず同様な諞性質を有する非収瞮性の「高匟性」
フオヌムが補造された。
Collect 300 g of the above product into a beaker, then add 7.8 g of water, 3 g of diethanolamine, and 0.21 g of bis(2-dimethylaminoethyl) ether.
“Silicone B8616” manufactured by Goldschmidt
(trade name) was added thereto, the temperature was adjusted to 22°C, and the mixture was stirred. Next, dibutyl-tin-dilaurate
0.75g was added, stirred for 10 seconds, then 80%
2,4-tolylene diisocyanate and 20% 2,6
-117 g of a mixture with tolylene diisocyanate were added. After an additional 5 seconds, the mixture was poured into the box and foaming began. After a further 105 seconds from the end of mixing, a non-shrinkable "high elastic" product with similar properties to those in Example 1 is produced.
form was manufactured.

䟋  ポリ付加生成物を含有するポリ゚ヌテルポリオ
ヌル300がポリ゚ヌテルポリオヌル300に眮換
えられ䞔぀む゜シアネヌトが100のみ䜿甚され
た点を陀き、䟋に蚘茉の方法に埓぀おフオヌム
が補造された。フオヌムを補造するための発泡は
䟋における劂く生起せしめられたが埗られたフ
オヌムは収瞮し、その諞性質は枬定䞍可胜であ぀
た。
Example 3 A foam was prepared according to the method described in Example 2, except that 300 g of polyether polyol containing polyaddition product was replaced by 300 g of polyether polyol and only 100 g of isocyanate was used. Foaming to produce the foam occurred as in Example 2, but the resulting foam shrank and its properties were not measurable.

䟋  䟋蚘茉の方法によりポリ゚ヌテルを䜿甚し
おポリ゚ヌテルポリオヌル䞭にポリ付加生成物を
含有する分散䜓が補造され、この分散䜓は、ゞブ
チル―錫―ゞラりレヌトの代りに錫オクト゚ヌト
0.6が䜿甚された以倖は䟋蚘茉の方法に埓぀
お発泡凊理に付された。䟋蚘茉の方法により埗
たるものず同様の性質を有する高匟性型の非収瞮
性フオヌムが埗られた。
Example 4 A dispersion containing a polyaddition product in a polyether polyol is prepared using polyether A according to the method described in Example 2, which dispersion contains tin octoate instead of dibutyl-tin-dilaurate.
The foaming process was carried out according to the method described in Example 2, except that 0.6 g was used. A highly elastic, non-shrinkable foam with properties similar to those obtained by the method described in Example 1 was obtained.

䟋  ポリ゚ヌテルがポリ゚ヌテルに眮換えられ
た以倖は䟋に蚘茉の方法でポリ付加生成物が補
造され䞔぀発泡凊理に付された。ポリ゚ヌテルポ
リオヌル䞭の安定な分散䜓はの固䜓分含量を
有し䞔぀呚囲枩床においお受容可胜な粘床を有し
おいた。埗たるフオヌムは非収瞮性のものであり
䞔぀䟋のフオヌムず同様の諞性質を有しおい
た。
Example 5 A polyaddition product was prepared and subjected to a foaming process as described in Example 2, except that polyether A was replaced by polyether B. The stable dispersion in polyether polyol had a solids content of 8% and an acceptable viscosity at ambient temperature. The resulting foam was non-shrinkable and had properties similar to the foam of Example 1.

䟋  む゜シアネヌト察アルカノヌルアミンのモル比
が1.1察1.0である点を陀き、䟋蚘茉の方法によ
りポリ゚ヌテル䞭にポリ付加生成物を含有する分
散䜓を補造した凊、その固䜓分含量はを維持
しおいた。埗られる生成物は25℃においお2500セ
ンチポむズ以䞊の高い粘床を有しおいたが䜿甚可
胜であ぀た。䟋蚘茉の方法により発泡凊理した
ずころ、高匟性非収瞮性フオヌムが埗られた。
Example 6 A dispersion containing the polyaddition product in polyether was prepared by the method described in Example 2, with the exception that the molar ratio of isocyanate to alkanolamine was 1.1 to 1.0, the solids content being 8%. was maintained. The resulting product had a high viscosity of over 2500 centipoise at 25°C, but was usable. When foamed according to the method described in Example 2, a highly elastic, non-shrinkable foam was obtained.

䟋  む゜シアネヌト察アルカノヌルアミンのモル比
が0.45察1.0であり䞔぀総固䜓分含量がであ
぀た以倖は䟋蚘茉の方法によりポリ゚ヌテル
䞭にポリ付加生成物を含有する分散䜓が補造され
た。䟋蚘茉の方法により発泡凊理したずころ、
収瞮性フオヌムが埗られた。このフオヌムの諞性
質は枬定できなか぀た。
Example 7 Polyether A was prepared by the method described in Example 2 except that the molar ratio of isocyanate to alkanolamine was 0.45 to 1.0 and the total solids content was 8%.
A dispersion containing the polyaddition product therein was produced. When foaming was performed by the method described in Example 2,
A contractile foam was obtained. Properties of this form could not be measured.

䟋  枩床20℃のポリ゚ヌテルA920を採取し、枩
床30℃のゞ゚タノヌルアミン24.5ず混合し、そ
の埌激しく撹拌し぀぀粗補MDI55.5ず混合し
た。ポリ゚ヌテルポリオヌル䞭にポリ付加生成物
を含有する分散䜓が埗られ、この分散䜓の固䜓分
含量はであり、䜿甚可胜であ぀たが、25℃に
おいお3000センチポむズを越える高粘床を有しお
いた。
Example 8 920g of polyether A at a temperature of 20°C was taken and mixed with 24.5g of diethanolamine at a temperature of 30°C, and then mixed with 55.5g of crude MDI with vigorous stirring. A dispersion containing the polyaddition product in a polyether polyol was obtained, which had a solids content of 8% and was usable, but had a high viscosity of over 3000 centipoise at 25°C. was.

本生成物は䟋蚘茉の方法により発泡凊理され
高匟性型の非収瞮性フオヌムをもたらした。
This product was foamed according to the method described in Example 2 to yield a highly elastic, non-shrinkable foam.

䟋  ポリ゚ヌテルC800を採取し、枩床30℃でゞ
゚タノヌルアミン80.24を添加し、これを高速
混合し䞔぀混合しながら80―トリレンゞ
む゜シアネヌトず20―トリレンゞむ゜シ
アネヌトずの混合物119.75を分間の期間で添
加するこずにより、ポリ゚ヌテルを基䜓ずする
枩床20℃の安定な分散䜓が補造された。29℃ぞの
枩床䞊昇が芳枬され、冷华埌にこの生成物は呚囲
枩床においお受容可胜な粘床を有し䞔぀20の固
䜓分含量を有しおいた。
Example 9 800 g of polyether C was collected, 80.24 g of diethanolamine was added at a temperature of 30°C, and while mixing, 80% 2,4-tolylene diisocyanate and 20% 2,6-tolylene diisocyanate were mixed. A stable dispersion based on polyether C at a temperature of 20° C. was produced by adding 119.75 g of the mixture over a period of 1 minute. A temperature increase to 29° C. was observed and after cooling the product had an acceptable viscosity at ambient temperature and a solids content of 20%.

䟋 10 ポリ゚ヌテルがポリ゚ヌテルに眮換えられ
た以倖は、䟋に蚘茉の方法により安定な分散䜓
が補造された。ポリ゚ヌテルを基䜓ずする埗ら
れたポリ付加化合物は20の固䜓分含量ず呚囲枩
床においお受容可胜な粘床ずを有しおいた。
Example 10 A stable dispersion was prepared by the method described in Example 9, except that Polyether C was replaced by Polyether D. The resulting polyaddition compound based on polyether D had a solids content of 20% and an acceptable viscosity at ambient temperature.

䟋䞊びに乃至10に蚘茉の方法により補
造された安定分散䜓は非むオン性のものであ぀
た。即ち、これら分散䜓はむオン性基を欠いおい
る共有ポリマヌ性物質を含有しおいる。曎に、分
散䜓の補造に際しお、氎又は他のむオン性媒䜓は
実際䞊䜿甚されず、該分散䜓に存圚もしない。こ
の埌者の点即ち分散䜓に氎又は他のむオン性媒䜓
が存圚しないこずに関連しお蚀及するに、商業的
に入手可胜なポリオヌルや他の出発物質に痕跡量
の氎分が含有されおいる傟向があるが、この皋床
の氎分は受容可胜である、しかしながら䞀般に氎
の存圚は奜たしくないので氎分含量はでき埗る限
り䜎いレベルに維持されねばならない。氎分含量
は重量以䞊でないのが望たしく、曎に奜たし
くはこの倀以䞋であり䟋えば0.1重量以䞋であ
るが、本発明方法は若干の堎合には、氎分含量が
重量以䞊であ぀おも実斜可胜であるこずに留
意され床い。
The stable dispersions prepared by the methods described in Examples 1, 2 and 5-10 were nonionic. That is, these dispersions contain covalent polymeric materials devoid of ionic groups. Furthermore, virtually no water or other ionic medium is used or present in the dispersion during the preparation of the dispersion. In connection with this latter point, namely the absence of water or other ionic media in the dispersion, there is a tendency for commercially available polyols and other starting materials to contain trace amounts of water. Although this level of moisture is acceptable, the presence of water is generally undesirable and the moisture content must be maintained at the lowest possible level. The moisture content is desirably not more than 1% by weight, more preferably not more than this value, for example 0.1% by weight or less, but the method of the present invention can be used in some cases even if the moisture content is more than 1% by weight. Please note that this is possible.

本発明方法の実斜に䜿甚されるポリオヌルは、
殊にポリりレタンフオヌム圢成甚の出発物質ずし
お䜿甚する堎合には䞻ずしお䞀次ヒドロキシ基を
含有しおいるトリオヌル皮のものであるこずがで
きる。しかしながら、本発明方法によるポリマヌ
倉性ポリオヌルの補造、殊に䞊蚘諞䟋に蚘茉の劂
き分散䜓の補造に際しおは、む゜シアネヌトの党
郚又は倧郚分がオラミンず反応し、ポリオヌルは
その党郚又は倧郚分が反応しない担䜓ずしお䜜甚
するので、ポリマヌ倉性ポリオヌルの䜿甚される
埌続のポリりレタン圢成反応の芁件に応じお殊に
遞定される適宜ポリオヌルの䜿甚が可胜なこずが
理解されよう。埓぀お、䟋えばトリオヌル及び
又はゞオヌルであ぀お䞀次及び又は二次
ヒドロキシ基を有するポリオヌルや他の適宜構造
を有するポリオヌルを䜿甚するこずができる。
The polyols used in carrying out the method of the invention are:
In particular when used as starting materials for the formation of polyurethane foams, they can be of the triol type containing predominantly primary hydroxyl groups. However, in the production of polymer-modified polyols by the process of the invention, in particular in the production of dispersions such as those described in the examples above, all or most of the isocyanate reacts with the olamine and all or most of the polyol remains unreacted. It will be appreciated that it is possible to use any suitable polyol, which acts as a carrier and is specifically chosen depending on the requirements of the subsequent polyurethane-forming reaction in which the polymer-modified polyol is used. Thus, for example, polyols which are triols and/or diols having primary and/or secondary hydroxyl groups or polyols having other suitable structures can be used.

Claims (1)

【特蚱請求の範囲】  ポリオヌル存圚䞋、アルカノヌルアミンず有
機ポリむ゜シアネヌトずの重合によ぀お予め補造
されたポリマヌ倉性ポリオヌルずむ゜シアネヌト
ずを反応させるこずからなるポリりレタンの補造
方法においお、前蚘アルカノヌルアミンを前蚘む
゜シアネヌトず1.00.5乃至1.01.6のモル比で
反応させるこずにより、アルカノヌルアミンが少
なくずも優勢的に倚官胜的にむ゜シアネヌトず反
応し、か぀前蚘ポリオヌルが前蚘ポリマヌ倉性ポ
リオヌルの予備補造の際に、未反応担䜓ずしお少
なくずも優勢的に䜜甚するこずを特城ずする方
法。  分子量が200乃至10000の範囲内であるポリ゚
ヌテルポリオヌルの存圚䞋においお、アルカノヌ
ルアミンずむ゜シアネヌトが玄1.00.5乃至1.0
1.6のモル比で混合され、反応したアルカノヌル
アミンずポリむ゜シアネヌトずが䞡者を合わせお
ポリオヌルの重量基準で乃至35重量であるこ
ずを特城ずする、特蚱請求の範囲第項に蚘茉の
補法。  アルカノヌルアミンをむ゜シアネヌトず
0.8乃至1.1のモル比で反応させるこずを特城
ずする、特蚱請求の範囲第項蚘茉の方法。  アルカノヌルアミンがトリ゚タノヌルアミン
であるこずを特城ずする、特蚱請求の範囲第項
乃至項の䜕れか぀に蚘茉の補法。  ポリオヌル存圚䞋、アルカノヌルアミンず有
機ポリむ゜シアネヌトずの重合によ぀お予め補造
されたポリマヌ倉性ポリオヌルずむ゜シアネヌト
ずを反応させるこずからなるポリりレタンの補造
方法においお、架橋反応抑制剀の存圚䞋、前蚘ア
ルカノヌルアミンを前蚘む゜シアネヌトず1.0
1.6を越えるモル比で反応させるこずにより、ア
ルカノヌルアミンが少なくずも優勢的に倚官胜的
にむ゜シアネヌトず反応し、か぀前蚘ポリオヌル
が前蚘ポリマヌ倉性ポリオヌルの予備補造の際
に、未反応担䜓ずしお少なくずも優勢的に䜜甚す
るこずを特城ずする方法。  アルカノヌルアミンがトリ゚タノヌルアミン
であるこずを特城ずする、特蚱請求の範囲第項
に蚘茉の補法。  ポリオヌル存圚䞋、アルカノヌルアミンず有
機ポリむ゜シアネヌトずの重合によ぀お予め補造
されたポリマヌ倉性ポリオヌルずむ゜シアネヌト
ずを反応させるこずからなるポリりレタンの補造
方法においお、前蚘アルカノヌルアミンを前蚘む
゜シアネヌトず1.00.5乃至1.01.6のモル比で
反応させるこずにより、アルカノヌルアミンが少
なくずも優勢的に倚官胜的にむ゜シアネヌトず反
応し、か぀あらかじめ、ポリオヌルの重量基準
で、アルカノヌルアミンずポリむ゜シアネヌトず
の合蚈量がポリオヌルの重量基準で10重量以䞊
であり、む゜シアネヌトずアルカノヌルアミンず
の重合埌に曎にポリオヌルを添加しおポリマヌ倉
性ポリオヌルを補造する際に、前蚘ポリオヌルが
未反応担䜓ずしお少なくずも優勢的に䜜甚するこ
ずを特城ずする方法。  アルカノヌルアミンがトリ゚タノヌルアミン
であるこずを特城ずする、特蚱請求の範囲第項
に蚘茉の補法。  ポリオヌル存圚䞋、アルカノヌルアミンず有
機ポリむ゜シアネヌトずの重合によ぀お予め補造
されたポリマヌ倉性ポリオヌルずむ゜シアネヌト
ずを反応させるこずからなるポリりレタンの補造
方法においお、アルカノヌルアミンずポリむ゜シ
アネヌトずの重合反応を促進する觊媒を混合せし
め、前蚘アルカノヌルアミンを前蚘む゜シアネヌ
トず1.00.5乃至1.01.6のモル比で反応させる
こずにより、アルカノヌルアミンが少なくずも優
勢的に倚官胜的にむ゜シアネヌトず反応し、か぀
前蚘ポリオヌルが前蚘ポリマヌ倉性ポリオヌルの
予備補造の際に、未反応担䜓ずしお少なくずも優
勢的に䜜甚するこずを特城ずする方法。  前蚘觊媒が有機金属化合物類及びアミン類
から遞択されるこずを特城ずする、特蚱請求の範
囲第項に蚘茉の補法。  ポリオヌル存圚䞋、アルカノヌルアミンず
有機ポリむ゜シアネヌトずの重合によ぀お予め補
造されたポリマヌ倉性ポリオヌルずむ゜シアネヌ
トずを反応させるこずからなるポリりレタンの補
造方法においお、アルカノヌルアミンずポリむ゜
シアネヌトずの重合反応を調敎する添加剀を混合
せしめ、前蚘アルカノヌルアミンを前蚘む゜シア
ネヌトず1.00.5乃至1.01.6のモル比で反応さ
せるこずにより、アルカノヌルアミンが少なくず
も優勢的に倚官胜的にむ゜シアネヌトず反応し、
か぀前蚘ポリオヌルが前蚘ポリマヌ倉性ポリオヌ
ルの予備補造の際に、未反応担䜓ずしお少なくず
も優勢的に䜜甚するこずを特城ずする方法。  反応調敎添加剀が単官胜性む゜シアネヌト
類、単官胜性アミン類及びゞアルキルアルカノヌ
ルアミン類から遞択されるこずを特城ずする、特
蚱請求の範囲第項に蚘茉の補法。  ポリオヌルず反応するむ゜シアネヌトがポ
リマヌ倉性ポリオヌルの補造に䜿甚されたむ゜シ
アネヌトず同じものであるこずを特城ずする、特
蚱請求の範囲第項に蚘茉の補法。  ポリオヌル存圚䞋、アルカノヌルアミンず
有機ポリむ゜シアネヌトずの重合によ぀お予め補
造されたポリマヌ倉性ポリオヌルずむ゜シアネヌ
トずを反応させるこずからなるポリりレタンの補
造方法においお、前蚘アルカノヌルアミンを前蚘
む゜シアネヌトず1.00.5乃至1.01.6のモル比
で反応させるこずにより、アルカノヌルアミンが
少なくずも優勢的に倚官胜的にむ゜シアネヌトず
反応し、か぀前蚘ポリオヌルが前蚘ポリマヌ倉性
ポリオヌルの予備補造の際に、未反応担䜓ずしお
少なくずも優勢的に䜜甚し、か぀、発泡剀、觊
媒、安定剀、架橋剀、耐炎剀、顔料、充填剀から
遞択された添加剀の存圚においお、ポリオヌルが
む゜シアネヌトず反応しおポリりレタンを補造す
るこずを特城ずする方法。
[Scope of Claims] 1. A method for producing polyurethane comprising reacting a polymer-modified polyol previously produced by polymerization of an alkanolamine and an organic polyisocyanate with an isocyanate in the presence of a polyol, wherein the alkanolamine is By reacting with the isocyanate in a molar ratio of 1.0/0.5 to 1.0/1.6, the alkanolamine is at least predominantly polyfunctionally reacted with the isocyanate and the polyol is free from any unused substances during the pre-production of the polymer-modified polyol. A method characterized in that it acts at least predominantly as a reaction carrier. 2. In the presence of a polyether polyol with a molecular weight in the range of 200 to 10,000, the alkanolamine and isocyanate are mixed in a ratio of about 1.0/0.5 to 1.0/
Process according to claim 1, characterized in that the reacted alkanolamine and polyisocyanate are mixed in a molar ratio of 1.6 and together account for 1 to 35% by weight based on the weight of the polyol. . 3 Alkanolamine with isocyanate 1/
The method according to claim 1, characterized in that the reaction is carried out in a molar ratio of 0.8 to 1/1.1. 4. The production method according to any one of claims 1 to 3, wherein the alkanolamine is triethanolamine. 5. A method for producing polyurethane comprising reacting a polymer-modified polyol previously produced by polymerization of an alkanolamine and an organic polyisocyanate with an isocyanate in the presence of a polyol, wherein the alkanolamine is reacted with an isocyanate in the presence of a crosslinking reaction inhibitor. with the isocyanate and 1.0/
By reacting at a molar ratio greater than 1.6, the alkanolamine reacts at least predominantly polyfunctionally with the isocyanate and the polyol is at least predominantly present as an unreacted carrier during the pre-production of the polymer-modified polyol. A method characterized by acting. 6. The production method according to claim 5, wherein the alkanolamine is triethanolamine. 7. A method for producing polyurethane comprising reacting an isocyanate with a polymer-modified polyol previously produced by polymerization of an alkanolamine and an organic polyisocyanate in the presence of a polyol, wherein the alkanolamine is reacted with the isocyanate in a ratio of 1.0/0.5 to By reacting in a molar ratio of 1.0/1.6, the alkanolamine is at least predominantly polyfunctionally reacted with the isocyanate, and the total amount of alkanolamine and polyisocyanate is equal to or less than the weight of the polyol, based on the weight of the polyol. The amount is 10% by weight or more on a standard basis, and the polyol acts at least predominantly as an unreacted carrier when a polyol is further added after the polymerization of the isocyanate and the alkanolamine to produce a polymer-modified polyol. Method. 8. The production method according to claim 7, wherein the alkanolamine is triethanolamine. 9. A method for producing polyurethane comprising reacting an isocyanate with a polymer-modified polyol previously produced by polymerization of an alkanolamine and an organic polyisocyanate in the presence of a polyol, in which the polymerization reaction between the alkanolamine and the polyisocyanate is promoted. and reacting the alkanolamine with the isocyanate in a molar ratio of 1.0/0.5 to 1.0/1.6, such that the alkanolamine is at least predominantly polyfunctionally reacted with the isocyanate and the polyol is A process characterized in that it acts at least predominantly as an unreacted carrier during the preproduction of polymer-modified polyols. 10. Process according to claim 9, characterized in that the catalyst is selected from organometallic compounds and amines. 11. A method for producing polyurethane comprising reacting an isocyanate with a polymer-modified polyol previously produced by polymerizing an alkanolamine and an organic polyisocyanate in the presence of a polyol, in which the polymerization reaction between the alkanolamine and the polyisocyanate is adjusted. and reacting the alkanolamine with the isocyanate in a molar ratio of 1.0/0.5 to 1.0/1.6, so that the alkanolamine reacts at least predominantly polyfunctionally with the isocyanate;
and the polyol acts at least predominantly as an unreacted carrier during the preproduction of the polymer-modified polyol. 12. Process according to claim 11, characterized in that the reaction regulating additive is selected from monofunctional isocyanates, monofunctional amines and dialkylalkanolamines. 13. Process according to claim 1, characterized in that the isocyanate reacting with the polyol is the same as the isocyanate used in the production of the polymer-modified polyol. 14. A method for producing polyurethane comprising reacting an isocyanate with a polymer-modified polyol previously produced by polymerization of an alkanolamine and an organic polyisocyanate in the presence of a polyol, wherein the alkanolamine is mixed with the isocyanate in a ratio of 1.0/0.5 to By reacting in a molar ratio of 1.0/1.6, the alkanolamine is at least predominantly polyfunctionally reacted with the isocyanate and the polyol is at least predominantly as an unreacted carrier during the pre-production of the polymer-modified polyol. and in the presence of additives selected from blowing agents, catalysts, stabilizers, crosslinking agents, flame retardants, pigments, fillers, the polyol reacts with isocyanates to produce polyurethanes. Method.
JP1913881A 1980-02-14 1981-02-13 Polymer denatured polyol, its manufacture and manufacture of polyurethane using said polymer denatured polyol Granted JPS56127621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU84672/82A AU556043B2 (en) 1981-02-13 1982-06-08 Continuous suspension polymerisation process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB8005111 1980-02-14

Publications (2)

Publication Number Publication Date
JPS56127621A JPS56127621A (en) 1981-10-06
JPH0148288B2 true JPH0148288B2 (en) 1989-10-18

Family

ID=10511375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1913881A Granted JPS56127621A (en) 1980-02-14 1981-02-13 Polymer denatured polyol, its manufacture and manufacture of polyurethane using said polymer denatured polyol

Country Status (3)

Country Link
JP (1) JPS56127621A (en)
BE (1) BE887514A (en)
ZA (1) ZA81709B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2016002966A (en) * 2013-09-13 2016-06-10 Dow Global Technologies Llc Pipa polyol based conventional flexible foam.
PL3044245T3 (en) * 2013-09-13 2020-04-30 Dow Global Technologies Llc Pipa polyol based viscoelastic foams

Also Published As

Publication number Publication date
JPS56127621A (en) 1981-10-06
BE887514A (en) 1981-06-01
ZA81709B (en) 1982-02-24

Similar Documents

Publication Publication Date Title
US4374209A (en) Polymer-modified polyols useful in polyurethane manufacture
US5292778A (en) Polymer-modified polyol dispersions and processes for production and use thereof
GB2072204A (en) Polymer-modified polyols useful in polyurethane manufacture
FI68407C (en) FOERFARANDE FOER FRAMSTAELLNING AV POLYURETAN GENOM ANVAENDNING AV POLYMERMODIFIERADE POLYOLER SAMT FRAMSTAELLNING AV POLYMERMODIFIERADE POLYOLER
KR100563173B1 (en) Process for Preparing a Flexible Polyurethane Foam
JP5367674B2 (en) Method for producing free rise or slabstock flexible polyurethane foam
US4452923A (en) Polymer-modified polyols
US6130267A (en) Fire retardant compositions
JPH04300913A (en) Isocyanato-terminated prepolymer and polyurethane foam made therefrom
KR20010005629A (en) Process for Preparing Flexible Polyurethane Foam
JP2003501501A (en) Polymer-modified polyols, their use in the production of polyurethane products
US3655588A (en) Urethane-containing aminic polyols and foams derived therefrom
JPH01259021A (en) Production of soft polyurethane foam using hexahydro-s-triazine catalyst
US8901187B1 (en) High resilience flexible polyurethane foam using MDI
GB2102825A (en) Polymer-modified polyols
JPH07165862A (en) Production of flexible polyurethane foam
JPH0148288B2 (en)
GB2102822A (en) Polymer-modified polyols
EP1254187B1 (en) Low monomer foam
JP4495296B2 (en) Polyurethane foam
JP5133486B2 (en) Isocyanate compositions and their use for the production of flame-resistant polyurethane foam materials
JPH0572402B2 (en)
PT95761B (en) METHOD FOR PREPARING POLYURETHANE AND / OR POLYURIDE DISPERSIONS IN ACTIVE COMPOSITIONS CONTAINING HYDROGEN, AND ITS POLY-ISOCYANATE REACTION PRODUCTS