DK151342B - PROCEDURE FOR REMOVAL OF RESIDUAL VINYL CHLORIDE MONOMER FROM A VINYL CHLORIDE POLYMER - Google Patents

PROCEDURE FOR REMOVAL OF RESIDUAL VINYL CHLORIDE MONOMER FROM A VINYL CHLORIDE POLYMER Download PDF

Info

Publication number
DK151342B
DK151342B DK366375AA DK366375A DK151342B DK 151342 B DK151342 B DK 151342B DK 366375A A DK366375A A DK 366375AA DK 366375 A DK366375 A DK 366375A DK 151342 B DK151342 B DK 151342B
Authority
DK
Denmark
Prior art keywords
vinyl chloride
temperature
polymer
aqueous
dispersion
Prior art date
Application number
DK366375AA
Other languages
Danish (da)
Other versions
DK366375A (en
DK151342C (en
Inventor
Stephane Noel
Jean Golstein
Guillaume Coppens
Jean Claude Davoine
Original Assignee
Solvay
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from LU70739A external-priority patent/LU70739A1/xx
Priority claimed from LU72112A external-priority patent/LU72112A1/xx
Application filed by Solvay filed Critical Solvay
Publication of DK366375A publication Critical patent/DK366375A/en
Publication of DK151342B publication Critical patent/DK151342B/en
Application granted granted Critical
Publication of DK151342C publication Critical patent/DK151342C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/14Treatment of polymer emulsions
    • C08F6/16Purification

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

1 1513421 151342

Den foreliggende opfindelse angår en fremgangsmåde af den i krav l's indledning angivne art til fjernelse af residual vinylchlorid-monomer fra en vinylchlorid-polymer, der er opnået ved polymerisation i vandig suspension eller emulsion, og fremgangsmåden ifølge opfindelsen er ejendommelig ved det i krav l's kendetegnende del anførte.The present invention relates to a process of the kind set forth in the preamble of claim 1 for removing residual vinyl chloride monomer from a vinyl chloride polymer obtained by polymerization in aqueous suspension or emulsion, and the process of the invention is characterized by the characterization of claim 1. part stated.

Polymerisation i suspension eller i vandig emulsion er en hyppigt anvendt teknik til fremstilling af vinylchlorid-polymerer. Det er sædvanlig praksis ved denne teknik, at man standser polymerisationen, efter at man har opnået en omdannelsesgrad af størrelsesordenen 90-95%. En opnåelse af højere omdannelsesgrader nær ved 100% indebærer en betydelig forlængelse af polymerisationsprocessens varighed og medfører i øvrigt en vis fare for nedbrydning af polymeren.Polymerization in suspension or in aqueous emulsion is a frequently used technique for preparing vinyl chloride polymers. It is common practice in this technique to stop polymerization after achieving a conversion rate of the order of 90-95%. Obtaining higher conversion rates close to 100% implies a significant extension of the duration of the polymerization process and, moreover, causes a certain risk of degradation of the polymer.

På trods af den afgasning ved polymerisationens afslutning, som sædvanligvis foretages for at fordampe uomsat vinylchlorid, indeholder de således opnåede vandige dispersioner af vinylchlorid-polymerer endnu betydelige mængder ikke-polymeriseret monomer.Despite the degassing at the end of polymerization, which is usually done to evaporate unreacted vinyl chloride, the aqueous dispersions of vinyl chloride polymers thus obtained still contain significant amounts of unpolymerized monomer.

Man foretager sædvanligvis en frasugning af polymeren efterfulgt af en tørring af de frasugede kager, og man eliminerer således yderligere en del af den residuale monomer. De således opnåede tørre vinylchlorid-polymerer indeholder imidlertid ikke desto mindre relativt store mængder residual vinylchlorid-monomer.Usually the suction of the polymer is followed by drying of the suctioned cakes, thus further eliminating some of the residual monomer. However, the dry vinyl chloride polymers thus obtained contain relatively large amounts of residual vinyl chloride monomer.

Man har allerede foreslået forskellige midler til at reducere indholdet af residual monomer i vinylpolymerer, men disse midler har vist sig lidet effektive.Various means have been proposed to reduce the residual monomer content in vinyl polymers, but these agents have proved to be poorly effective.

I belgisk patentskrift nr. 793 503 er der dog beskrevet en effektiv fremgangsmåde til fjernelse af det residuale vinylchlorid, der er tilstede i faste vinylchlorid-polymerer, hvorved man opvarmer den faste polymer til en temperatur mellem dens glasovergangstemperatur og temperaturen for begyndende nedbrydning ved direkte at kondensere vanddamp på polymeren, og man holder polymeren ved denne temperatur i en tilstrækkelig lang tid til at eliminere størstedelen af den eller de tilstedeværende monomerer i polymeren, hvorpå man afkøler denne til en temperatur under glasover- 2 151342 gangstemperaturen ved at afdampe den kondenserede vanddamp på polymeren, således at man udvinder en tør polymer, der er fri for residual monomer.However, Belgian Patent No. 793,503 discloses an effective method of removing the residual vinyl chloride present in solid vinyl chloride polymers, thereby heating the solid polymer to a temperature between its glass transition temperature and the temperature of initial decomposition by condense water vapor on the polymer and keep the polymer at this temperature for a sufficient period of time to eliminate most of the monomer (s) present in the polymer, and then cool it to a temperature below the glass transition temperature by evaporating the condensed water vapor at polymer to recover a dry polymer free of residual monomer.

I dette patentskrift har man imidlertid ikke nævnt muligheden for at anvende den ovenfor beskrevne behandling på en polymer, der foreligger i form af en vandig dispersion, navnlig en vandig dispersion, der stammer direkte fra polymerisationen.However, this patent does not mention the possibility of applying the above-described treatment to a polymer present in the form of an aqueous dispersion, in particular an aqueous dispersion derived directly from the polymerization.

Man har nu fundet en effektiv fremgangsmåde til at eliminere re-sidualt vinylchlorid fra vinylchlorid-polymerer, der befinder sig i vandig dispersion, hvilken fremgangsmåde muliggør en behandling af de vandige dispersioner stammende direkte fra polymerisationen, og hvormed man undgår enhver afgivelse af vinylchlorid til omgivelserne.An effective method has now been found to eliminate residual vinyl chloride from vinyl chloride polymers present in aqueous dispersion, which allows treatment of the aqueous dispersions derived directly from the polymerization, thereby avoiding any release of vinyl chloride into the environment. .

Opfindelsen angår således en fremgangsmåde til fjernelse af residual vinylchlorid-monomer fra en vinylchlorid-polymer, som indeholder mere end 50 mol-% monomerenheder, der stammer fra vinylchlorid, ved opvarmning til en temperatur, som mindst er lig med polymerens glasovergangstemperatur, og behandling med damp ved denne temperatur.The invention thus relates to a method for removing residual vinyl chloride monomer from a vinyl chloride polymer containing more than 50 mole% of monomer units derived from vinyl chloride by heating to a temperature at least equal to the glass transition temperature of the polymer and treating with steam at this temperature.

Fremgangsmåden ifølge opfindelsen er ejendommelig ved, at man opvarmer den vandige polymerdispersion, som opnås ved polymerisationen, direkte til en temperatur, som mindst er lig med polymerens glasovergangstemperatur, og underkaster den en medrivning med damp, medens den holdes ved en temperatur, der mindst er lig med polymerens glasovergangstemperatur.The process of the invention is characterized by heating the aqueous polymer dispersion obtained by the polymerization directly to a temperature at least equal to the glass transition temperature of the polymer and subjecting it to entrapment with steam while maintaining a temperature which is at least equal to the glass transition temperature of the polymer.

Fremgangsmåden ifølge opfindelsen kan anvendes på alle vandige dispersioner af vinylchlorid-polymerer, der stammer direkte fra polymerisationen, der f.eks. kan gennemføres ved suspensions- eller emulsionsprocesser. I så tilfælde kan den vandige dispersion, hvorpå man anvender fremgangsmåden ifølge opfindelsen, uden ulemper indeholde de sædvanligvis tilstedeværende additiver ved polymerisationen, såsom initiatorrester (organiske eller uorganiske peroxider eller azo-derivater), emulgeringsmidler (ved polymerisation i emulsion), dispergeringsmidler (ved polymerisation i suspension) etc. Disse dispersioner indeholder sædvanligvis ca. 5-10 vægtdele 3 151342 vinylchlorid pr. 100 dele polymer. Fremgangsmåden ifølge opfindelsen egner sig særlig godt til behandling af vandige dispersioner, som opnås ved suspensionspolymerisation. Ved vandige dispersioner, der opnås ved emulsionspolymerisation, kan partiklernes finhed og tilstedeværelsen af emulgeringsmidler fremkalde skumningsfænomener og medrivning af partikler, hvilket gør fremgangsmådens anvendelse mere vanskelig.The process of the invention can be applied to all aqueous dispersions of vinyl chloride polymers which originate directly from the polymerization, e.g. can be carried out by suspension or emulsion processes. In that case, the aqueous dispersion using the process of the invention can contain, without disadvantage, the usually-present additives in the polymerization, such as initiator residues (organic or inorganic peroxides or azo derivatives), emulsifiers (by polymerization in emulsion), dispersants (by polymerization). in suspension) etc. These dispersions usually contain approx. 5-10 parts by weight 3 vinyl chloride per 100 parts polymer. The process according to the invention is particularly well suited for the treatment of aqueous dispersions obtained by suspension polymerization. In aqueous dispersions obtained by emulsion polymerization, the fineness of the particles and the presence of emulsifiers can induce foaming phenomena and entrapment of particles, making the application of the process more difficult.

Eftersom fremgangsmåden ifølge opfindelsen anvendes på vandige dispersioner, der stammer direkte fra polymerisationen, kan man eventuelt forinden modificere faststofindholdet i dispersionen ved at fortynde eller koncentrere denne, eller man kan modificere dispersionens fysiske tilstand, f.eks. ved at koagulere den. Man kan ligeledes foretage en forudgående afgasningsbehandling for på forhånd at fjerne en væsentlig del af det tilstedeværende vinylchlorid.Since the process of the invention is applied to aqueous dispersions derived directly from the polymerization, it is possible to pre-modify the solids content of the dispersion by diluting or concentrating it, or to modify the physical state of the dispersion, e.g. by coagulating it. A pre-degassing treatment may also be performed to remove a substantial portion of the vinyl chloride present in advance.

Denne afgasning foretages på i sig selv kendt måde ved polymerisationens afslutning og før behandlingen ifølge opfindelsen ved at sænke trykket, f.eks. til atmosfæretryk, og derpå underkaste den vandige polymerdispersion et partielt vacuum. Disse operationer ledsages generelt af en afkøling af dispersionen af størrelsesordenen 5 - 15° C, som primært skyldes fordampning af en del af det residuale vinylchlorid.This degassing is carried out in a manner known per se at the end of the polymerization and before the treatment according to the invention by lowering the pressure, e.g. to atmospheric pressure, and then subject the aqueous polymer dispersion to a partial vacuum. These operations are generally accompanied by cooling of the dispersion on the order of 5 - 15 ° C, which is primarily due to the evaporation of part of the residual vinyl chloride.

Fremgangsmåden ifølge opfindelsen kan som nævnt anvendes på alle vinylchlorid-polymerer, som indeholder mere end 50 mol-% monomerenheder, som stammer fra vinylchlorid, og fortrinsvis sådanne, som indeholder mere end 70 mol-% af sådanne enheder. Fremgangsmåden kan således anvendes på vinylchlorid-homopolymerer, statistiske copolymerer, podede copolymerer og faste produkter, der indeholder sådanne polymere. Det siger sig selv, at fremgangsmåden ifølge opfindelsen ligeledes er effektiv til at eliminere rester af flygtige comonomerer, der eventuelt er tilstede i de vandige dispersioner.The process of the invention can, as mentioned, be applied to all vinyl chloride polymers containing more than 50 mole percent of monomer units derived from vinyl chloride, and preferably those containing more than 70 mole percent of such units. Thus, the process can be applied to vinyl chloride homopolymers, statistical copolymers, graft copolymers and solid products containing such polymers. It goes without saying that the process of the invention is also effective in eliminating the residues of volatile comonomers that may be present in the aqueous dispersions.

Til bestemmelse af polymerens temperatur for overgang til glastilstanden anvender man med fordel en differential termisk analyse, der giver en tilstrækkelig præcis måling af glasovergangstemperaturen.To determine the polymer temperature for transition to the glass state, a differential thermal analysis is advantageously used which provides a sufficiently accurate measurement of the glass transition temperature.

4 1513424 151342

De anvendte midler til gennemførelse af første trin ved fremgangsmåden ifølge opfindelsen, der består i at bringe den vandige polymerdispersion op til en temperatur, der er højere end glasover-gangstemperaturen, kan være vilkårlige: Man kan f.eks. opvarme den vandige dispersion ved cirkulation af et varmt fluidum igennem den dobbelte kappe til den beholder, hvori dispersionen befinder sig, og/eller direkte indblæse et inert varmt fluidum, såsom luft, nitrogen eller vanddamp. Det foretrækkes imidlertid at indføre vanddamp for at foropvarme den vandige dispersion. Anvendelsen af vanddamp muliggør således, at man når den ønskede temperatur i løbet af meget korte tidsrum.The means used for carrying out the first step of the process according to the invention, which consists in bringing the aqueous polymer dispersion up to a temperature higher than the glass transition temperature, may be arbitrary. heat the aqueous dispersion by circulating a hot fluid through the dual jacket to the container in which the dispersion is located, and / or directly inject an inert hot fluid such as air, nitrogen or water vapor. However, it is preferred to introduce water vapor to preheat the aqueous dispersion. The use of water vapor thus enables one to reach the desired temperature in a very short period of time.

Det andet trin ved fremgangsmåden ifølge opfindelsen består i at medrive den residuale monomer ved hjælp af et inert fluidum, mens den vandige dispersion holdes ved en temperatur, der mindst er lig med glasovergangstemperaturen.The second step of the process according to the invention consists in entraining the residual monomer by an inert fluid while maintaining the aqueous dispersion at a temperature at least equal to the glass transition temperature.

Eftersom medrivningen foretages ved hjælp af damp, forenkles den efterfølgende separation af vinylchloridet fra dette medrivningsfluidum. Til dette formål kan man indføre vanddamp i den .vandige dispersion, f.eks. overophedet vanddamp, som man gennemblæser i en tilstrækkelig mængde til at sikre medrivning af frigjort vinyl-chlorid, opretholdelse af den ønskede temperatur og omrøring af mediet. Man kan også danne den nødvendige vanddamp til medrivningen ved at opvarme den vandige dispersion i tilstrækkelig grad til at bringe den til kogning. Denne opvarmning kan ske gennem væggene i den beholder, hvori man arbejder eller på anden måde.Since the entrainment is carried out by steam, the subsequent separation of the vinyl chloride from this entrainment fluid is simplified. For this purpose, water vapor may be introduced into the aqueous dispersion, e.g. superheated water vapor, which is blown in sufficient quantity to ensure entrainment of released vinyl chloride, maintaining the desired temperature and stirring the medium. It is also possible to generate the necessary water vapor for entrainment by heating the aqueous dispersion sufficiently to bring it to a boil. This heating can be done through the walls of the container in which you are working or otherwise.

Under dette andet trin kan. man også fortsætte med helt eller delvis at tilføre de nødvendige kalorier gennem den dobbelte beholderkappe eller på anden måde.During this second step can. one also continues to supply the necessary calories in whole or in part through the double container sheath or otherwise.

Hvad angår temperaturen af den vandige dispersion under medrivningstrinet, er det essentielt at holde denne på en værdi, der mindst er lig med polymerens glasovergangstemperatur. Den øvre grænse for temperaturen hvorved medrivningen kan gennemføres, er afhængig af polymerens nedbrydningstemperatur. Man kan eventuelt tilsætte et termisk stabiliseringsmiddel.As for the temperature of the aqueous dispersion during the entrainment step, it is essential to keep it at a value at least equal to the glass transition temperature of the polymer. The upper limit of the temperature at which the entrainment can be effected depends on the decomposition temperature of the polymer. Optionally, a thermal stabilizer may be added.

5 1513425 151342

Det skal imidlertid bemærkes, at en opvarmning til høje temperaturer, der ligger væsentligt over 100° C, repræsenterer et unødigt energiforbrug. I øvrigt skal den vandige dispersion, der behandles ved en høj temperatur, senere afkøles for at kunne underkastes en frasugning, hvilket forøger varigheden af afkølingen og/eller det nødvendige volumen af kølemidlet.However, it should be noted that heating to high temperatures substantially above 100 ° C represents an unnecessary energy consumption. Moreover, the aqueous dispersion treated at a high temperature must later be cooled in order to be subjected to suction, which increases the duration of the cooling and / or the required volume of the refrigerant.

Af disse årsager foretrækkes det at opvarme den vandige dispersion til en temperatur, der ikke overskrider 140° C, og fortrinsvis ikke overskrider 120° C.For these reasons, it is preferable to heat the aqueous dispersion to a temperature not exceeding 140 ° C and preferably not exceeding 120 ° C.

Trykket, der hersker i beholderen, hvori fjernelsen af den resi-duale monomer foregår, reguleres som funktion af den valgte temperatur.The pressure prevailing in the container in which the removal of the residual monomer takes place is controlled as a function of the selected temperature.

Man arbejder fortrinsvis med mættet vanddamps tryk under arbejdsbetingelserne, fordi man anvender vanddamp som medrivningsfluidum. Man disponerer således over en bekvem metode til at regulere temperaturen i den vandige dispersion.Preferably, saturated water vapor pressure is used under the working conditions because water vapor is used as the entraining fluid. Thus, a convenient method is provided for controlling the temperature of the aqueous dispersion.

Varigheden af medrivningen udgør heller ikke en kritisk parameter ved fremgangsmåden ifølge opfindelsen. Den er en funktion ikke blot af den temperatur, som den vandige dispersion er opvarmet til, men ligeledes af dennes oprindelige indhold af residual monomer, af den ønskede fjernelsesgrad samt af polymerens porøsitet.Nor does the duration of entrainment constitute a critical parameter in the method of the invention. It is a function not only of the temperature to which the aqueous dispersion is heated, but also of its original residual monomer content, the desired degree of removal, and the porosity of the polymer.

Som følge heraf kan varigheden af medrivningen let fastlægges ad eksperimentel vej i hvert enkelt tilfælde. Som vejledende angivelse vil fra nogle minutter til ca. 2 timer, især 5-45 minutter, i regelen være tilstrækkelig tid til at reducere indholdet af residual monomer i de vandige vinylchlorid-polymerdispersioner til nogle få tiendedele ppm. udtrykt som vægten i forhold til polymeren.As a result, the duration of entrainment can be easily determined experimentally in each case. As a guide, from a few minutes to approx. 2 hours, especially 5-45 minutes, will generally be sufficient time to reduce the residual monomer content in the aqueous vinyl chloride polymer dispersions to a few tenths of ppm. expressed as the weight relative to the polymer.

Mængden af medrivningsfluidum bestemmes også med fordel ad eksperimentel vej i hvert enkelt tilfælde. Det siger sig selv, at effektiviteten af medrivningen stiger indtil en vis grænse, samtidig med, at man forøger mængden af inert fluidum, der forlader den vandige dispersion. Denne effektivitet stiger ligeledes med temperaturen, hvilket når man arbejder ved en relativt høj temperatur 6 151342 muliggør en formindskelse af medrivningstiden. I denne henseende er et temperaturområde, der giver særligt gode resultater, området fra 90 til 110° C. Når man arbejder i dette område, kan man reducere medrivningstiden til under 15 minutter, og samtidig kan man næsten fuldstændigt eliminere det resterende vinylchlorid.The amount of entrainment fluid is also advantageously determined experimentally in each case. It goes without saying that the efficiency of entrainment increases up to a certain limit, while increasing the amount of inert fluid leaving the aqueous dispersion. This efficiency also increases with temperature, which, when operated at a relatively high temperature, allows a reduction in entrainment time. In this regard, a temperature range that gives particularly good results is in the range of 90 to 110 ° C. Working in this area can reduce the entrainment time to less than 15 minutes, while eliminating the remaining vinyl chloride almost completely.

Det har endvidere vist sig, at man yderligere på signifikant måde kan forbedre effektiviteten af fremgangsmåden ifølge opfindelsen.Furthermore, it has been found that one can further significantly improve the efficiency of the method according to the invention.

Til dette formål fortsætter man behandlingen efter at have opvarmet den vandige polymerdispersion til en temperatur, der mindst er lig med polymerens glasovergangsovergangstemperatur, og derefter at have underkastet den en medrivning med et inert fluidum, mens den holdes ved en temperatur, der mindst er lig med glasovergangstemperaturen, idet man ved at sænke trykket bringer den vandige dispersion til at koge.For this purpose, the treatment is continued after heating the aqueous polymer dispersion to a temperature at least equal to the glass transition temperature of the polymer and then subjecting it to entrainment with an inert fluid while maintaining a temperature at least equal to glass transition temperature, lowering the aqueous dispersion to boil.

Fremgangsmåden ifølge opfindelsen kan således omfatte et supplerende tredje trin for medrivning af vanddamp, der forløber under indvirkning af den vanddamp, der udvikles ved kogning af den vandige dispersion. Den vandige dispersion befinder sig ved begyndelsen af det tredje trin på en temperatur, der mindst er lig med polymerens glasovergangstemperatur. Trykket sænkes, således at det er lavere end mætningsdamptrykket for vanddamp ved den vandige dispersions temperatur. I løbet af dette trin fuldstændiggør man således fjernelsen af vinylchlorid. Dette tredje trin muliggør en væsentlig reduktion af varigheden af det foregående trin samt af varmeforbruget under det foregående trin. Under kogningen af den vandige dispersion kan man naturligvis fortsætte med at opvarme den vandige dispersion og lade et inert medrivningsfluidum boble igennem. Det foretrækkes imidlertid, at den vandige dispersion afkøles progressivt under dette tredje trin indtil en temperatur, der befinder sig under polymerens glasovergangstemperatur. Af denne grund foretrækker man at begrænse og endog fuldstændigt at udelade varmetilførsel udefra under det tredje trin. Efterhånden som den vandige dispersion afkøles, bør trykket derfor progressivt sænkes, således at kogningen opretholdes. Man har konstateret, at denne måde at gå frem på er særigt effektiv. Endvidere forkorter man derved den totale behandlingstid ved at accelerere afkølingen af den vandige dispersion.Thus, the process of the invention may comprise an additional third step of entraining water vapor which runs under the action of the water vapor which is developed by boiling the aqueous dispersion. The aqueous dispersion is at the beginning of the third step at a temperature at least equal to the glass transition temperature of the polymer. The pressure is lowered so that it is lower than the saturation vapor pressure of water vapor at the aqueous dispersion temperature. During this step, the removal of vinyl chloride is thus completed. This third step allows for a substantial reduction in the duration of the previous step as well as the heat consumption during the previous step. During the boiling of the aqueous dispersion, one can of course continue to heat the aqueous dispersion and allow an inert entraining fluid to bubble through. However, it is preferred that the aqueous dispersion be cooled progressively during this third step until a temperature below the glass transition temperature of the polymer. For this reason, it is preferable to limit and even completely exclude heat supply from outside during the third step. Therefore, as the aqueous dispersion cools, the pressure should be progressively lowered so that the cooking is maintained. This approach has been found to be particularly effective. Furthermore, the total treatment time is thereby shortened by accelerating the cooling of the aqueous dispersion.

7 1513427 151342

Det tidspunkt, hvor man påbegynder det tredje trin, vælges som funktion af det slutindhold af residual monomer, som man ønsker at opnå. Dette kan let bestemmes ad eksperimentel vej. Hvad angår varigheden af det tredje trin, varierer denne som funktion af operationsbetingelserne, men er i regelen 5-45 minutter.The time at which the third step begins is selected as a function of the final residual monomer content that one wishes to obtain. This can easily be determined experimentally. As for the duration of the third step, this varies as a function of the operating conditions, but is usually 5-45 minutes.

Efter behandlingen til fjernelse af residual monomer separeres polymeren fra den vandige fase. Denne separation sker i regelen i to trin: I det første trin fraseparerer man størstedelen af vandet under opnåelse af en fugtig kage, f.eks. ved filtrering eller centrifugering, hvorpå man tørrer polymeren, f.eks. ved fluidisering. Eftersom de apparater, der anvendes til at befri polymeren for en betydelig del af dispersionens vandfase (første trin), i regelen ikke er indrettet til at arbejde ved temperaturer i nærheden af glasovergangstemperaturen, afkøler man den vandige dispersion, før man eliminerer størstedelen af vandet, til en temperatur, der er lavere end polymerens glasovergangstemperatur, f.eks. til 50 - 80° C, især ca. 70° C, fortrinsvis ved at sænke trykket som beskrevet ovenfor. Eftersom polymeren skal opvarmes under tørringen, er det af økonomiske årsager ikke hensigtsmæssigt at gå under disse temperaturer.After the residual monomer removal treatment, the polymer is separated from the aqueous phase. This separation is usually done in two steps: In the first step, the majority of the water is separated to obtain a moist cake, e.g. by filtration or centrifugation on which the polymer is dried, e.g. by fluidization. Since the apparatus used to liberate the polymer from a significant portion of the water phase (first stage) is generally not adapted to operate at temperatures near the glass transition temperature, the aqueous dispersion is cooled before removing most of the water. to a temperature lower than the glass transition temperature of the polymer, e.g. to 50 - 80 ° C, in particular approx. 70 ° C, preferably by lowering the pressure as described above. Since the polymer must be heated during drying, it is not advisable to go below these temperatures for economic reasons.

Opvarmningen af den vandige dispersion og medrivningen med damp kan gennemføres i polymerisationsreaktoren eller i en speciel beholder til dette formål. Den foreløbige afgasning og den endelige kogning kan eventuelt gennemføres i samme beholder som selve den omhandlede fremgangsmåde. Man foretrækker at gennemføre fremgangsmåden i speciel beholder, der er forsynet med en dobbelt kappe, gennem hvilken man kan cirkulere et opvarmningsfluidum.The heating of the aqueous dispersion and entrainment with steam can be carried out in the polymerization reactor or in a special container for this purpose. The preliminary degassing and final boiling can optionally be carried out in the same container as the process itself. It is preferred to carry out the method in a special container provided with a double jacket through which a heating fluid can be circulated.

Det er ligeledes fordelagtigt at forsyne denne beholder med et omrøringsorgan, f.eks. en skovlomrører.It is also advantageous to provide this container with a stirring means, e.g. a bucket stirrer.

Uafhængigt af den valgte beholder til gennemførelse af medrivningen af residual monomer med damp, d.v.s. selve polymerisationsreaktionen eller en speciel udformet beholder til dette formål, er det særligt fordelagtigt at indføre dampen ved bunden af behandlingsbeholderen, f.eks. ved hjælp af et indløbsrør, der stikker ned i den vandige dispersion, eller gennem B 151342 en bandventil. På denne måde sikrer man en effektiv gennembobling af damp gennem den vandige dispersion.Independent of the selected container for carrying out entrainment of residual monomer with vapor, i.e. the polymerization reaction itself or a specially designed container for this purpose, it is particularly advantageous to introduce the steam at the bottom of the treatment vessel, e.g. by means of an inlet pipe protruding into the aqueous dispersion, or through B 151342 a belt valve. In this way, an efficient flow of steam through the aqueous dispersion is ensured.

Fremgangsmåden kan gennemføres kontinuerligt eller diskontinuerligt. Da polymerisationen i regelen gennemføres diskontinuerligt, foretrækkes det ligeledes at gennemføre fremgangsmåden ifølge opfindelsen diskontinuerligt.The process can be carried out continuously or discontinuously. As the polymerization is generally carried out discontinuously, it is also preferred to carry out the process according to the invention discontinuously.

Ved en foretrukken udførelsesform for fremgangsmåden ifølge opfindelsen kondenserer man de kondenserbare forbindelser, især vanddamp, som findes i den gasformige effluent, der forlader den vandige dispersion i løbet af fremgangsmådens forløb, ved hjælp af et organ, der er anbragt forud for evakueringssystemet for den gasformige effluent. Til dette formål kan man indskyde en kondensator mellem beholderen, hvori behandlingen foregår, og det organ, der opretholder det ønskede tryk i beholderen. I praksis fungerer kondensatoren, bortset fra tryktabene, ved samme tryk som beholderen. Man kan imidlertid bringe den til at fungere ved et lavere tryk ved at indskyde en ventil mellem beholderen og kondensatoren.In a preferred embodiment of the process according to the invention, the condensable compounds, in particular water vapor contained in the gaseous effluent leaving the aqueous dispersion during the process, are condensed by means arranged prior to the gaseous evacuation system. effluent. For this purpose, a capacitor may be inserted between the container in which the treatment is taking place and the means which maintain the desired pressure in the container. In practice, apart from the pressure losses, the capacitor operates at the same pressure as the container. However, it can be made to operate at a lower pressure by inserting a valve between the container and the capacitor.

Når behandlingen ikke omfatter anvendelse af temperaturer over 100° C er trykket i beholderen højst lig med atmosfæretryk. Man anvender i så fald en vacuumpumpe for at opretholde det ønskede tryk i beholderen.When the treatment does not involve the use of temperatures above 100 ° C, the pressure in the container is at most equal to atmospheric pressure. In this case, a vacuum pump is used to maintain the desired pressure in the container.

Når behandlingen omfatter faser, der gennemføres ved en temperatur højere end 100° C, bør disse gennemføres under tryk. Ikke desto mindre er det ønskeligt at disponere over et udstyr til at etablere et vacuum i beholderen, især når man gør brug af den foretrukne variant for fremgangsmåden ifølge opfindelsen, der består i at afslutte behandlingen med en kogning af den vandige dispersion fremkaldt ved hjælp af en tryksænkning.When the treatment comprises phases carried out at a temperature higher than 100 ° C, these should be carried out under pressure. Nevertheless, it is desirable to have an apparatus for establishing a vacuum in the container, especially when employing the preferred variant of the process of the invention, which consists in terminating the treatment with a boiling of the aqueous dispersion induced by a pressure drop.

Man kan anvende alle de sædvanlige typer af vacuumpumper. Således kan man f.eks. anvende ejektorpumper. Eftersom ejektorpumper imidlertid forbruger en stor mængde energi, foretrækkes det at anvende rotationspumper, såsom væskeringspumper.You can use all the usual types of vacuum pumps. Thus, e.g. use ejector pumps. However, since ejector pumps consume a large amount of energy, it is preferred to use rotary pumps, such as liquid ring pumps.

Det siger sig selv, at behandlingen ifølge opfindelsen kan gennemføres i installationer, hvor en vacuumpumpe er direkte forbundet 9 151342 til behandlingsbeholderen. I så tilfælde kan man anbringe en kondensator efter vacuumpumpen. Imidlertid har dette arrangement vist sig at have alvorlige ulemper. Hvis man således anvender en ejektorpumpe som vacuumpumpe, er dennes forbrug af vanddamp absolut prohibitivt på grund af det store volumen af dampene, der dannes ved behandlingen. Yderligere kræver den totale dampmængde, der er ekstremt stor, at der anvendes en kondensator med meget stort volumen. Hvis man anvender en rotationspumpe som vacuumpumpe, observerer man hyppigt afbrydelser og en hurtig ødelæggelse af pumpen, der kan skyldes de høje temperaturer af de evakuerede dampe og deres kemiske natur.It goes without saying that the treatment according to the invention can be carried out in installations where a vacuum pump is directly connected to the treatment vessel. In this case, a capacitor can be placed after the vacuum pump. However, this arrangement has been found to have serious drawbacks. Thus, if an ejector pump is used as a vacuum pump, its consumption of water vapor is absolutely prohibitive because of the large volume of vapors produced during the treatment. Furthermore, the total vapor volume, which is extremely large, requires the use of a very large volume capacitor. If a rotary pump is used as a vacuum pump, frequent interruptions and rapid destruction of the pump can be observed due to the high temperatures of the evaporated vapors and their chemical nature.

Det har vist sig, at disse problemer let kan løses, hvis man anvender en kondensator placeret mellem behandlingsbeholderen og vacuumpumpen. Man anvender fortrinsvis en kondensator af udvekslingstypen, der er dimensioneret således, at man under behandlingen kan kondensere en meget væsentlig del af den vanddamp, der forlader behandlingsbeholderen.It has been found that these problems can be easily solved by using a capacitor located between the treatment vessel and the vacuum pump. Preferably, an exchange type condenser is used which is dimensioned so that during treatment, a very substantial portion of the water vapor leaving the treatment vessel can be condensed.

For at undgå, at polymerpartiklerne medrives til kondensatoren, kan man mellem behandlingsbeholderen og kondensatoren anbringe et skumsepareringsorgan, f.eks. en hydrocyklon, der standser de medrivende partikler,som eventuelt ved hjælp af en vandstrøm kan recirkuleres til behandlingsbeholderen.In order to prevent the polymer particles from being entrained to the capacitor, a foam separator may be placed between the treatment vessel and the capacitor, e.g. a hydrocyclone which stops the entraining particles which may be recycled to the treatment vessel by means of a stream of water.

Det kondenserede vand kan helt eller delvis genindføres i den vandige dispersion.The condensed water can be fully or partially reintroduced into the aqueous dispersion.

Kondensationen af den gasformige effluent før vacuums ystemet muliggør anvendelse af vacuumpumper med en lav kapacitet og almindelig konstruktion, uden at afbrydelser er hyppige.The condensation of the gaseous effluent prior to the vacuum system allows the use of low capacity vacuum pumps and ordinary construction, without interruptions being frequent.

Endelig undgår man ved recirkulering af den kondenserede vanddamp til den vandige dispersion enhver risiko for at bortlede vand, der endnu indeholder spor af vinylchlorid.Finally, by recycling the condensed water vapor to the aqueous dispersion, any risk of draining water containing traces of vinyl chloride is avoided.

De vandige polymer dispersioner opnået efter behandlingen indeholder praktisk talt ikke residualt vinylchlorid. løvrigt kan den fjernede monomer fra de vandige dispersioner let genvindes ved en simpel kondensation af vanddampen.The aqueous polymer dispersions obtained after the treatment contain practically no residual vinyl chloride. leafy, the removed monomer from the aqueous dispersions can be easily recovered by a simple condensation of the water vapor.

10 15134210 151342

Fremgangsmåden ifølge opfindelsen medfører således adskillige betydelige fordele, nemlig opnåelse af vinylchlorid-polymerer med et meget lavt indhold af residual monomer, en simpel og økonomisk udvinding af fjernet residual monomer og en meget betydelig reduktion af de mængder monomer, der udsendes i atmosfæren eller i overfladevandet.Thus, the process of the invention provides several significant advantages, namely obtaining vinyl chloride polymers with a very low residual monomer content, a simple and economical recovery of removed residual monomer, and a very significant reduction in the amount of monomer emitted in the atmosphere or in the surface water. .

Det har endvidere vist sig, i modsætning til hvad man kunne frygte, at behandlingen af de vandige suspensioner af vinylchlorid-polymerer ved fremgangsmåden ifølge opfindelsen ikke medfører nogen nedbrydning af de nævnte polymerer. Tværtimod har de behandlede vinylchlorid-polymerer efter behandlingen en termisk stabilitet, der er betragteligt forbedret, og deres termiske stabilitet over længere tid påvirkes på ingen måde af behandlingen ved fremgangsmåden ifølge opfindelsen.It has further been found, contrary to what might be feared, that the treatment of the aqueous suspensions of vinyl chloride polymers by the process of the invention does not cause any degradation of the said polymers. On the contrary, the treated vinyl chloride polymers after the treatment have a considerably improved thermal stability and their thermal stability over a long period of time is in no way affected by the treatment according to the process according to the invention.

Kort sagt muliggør fremgangsmåden ifølge opfindelsen ikke blot en fjernelse af det vinylchlorid, der befinder sig uden på polymer-partiklerne, med godt udbytte, men også en fjernelse af det vinylchlorid, der er opsamlet i partiklernes indre. Ved velvalgte operationsbetingelser indeholder den tørrede polymer under 2 ppm residual vinylchlorid-monomer, hvilket gør den egnet til anvendelse ved fabrikation af næringsmiddelemballager, såsom flasker.In short, the process of the invention not only allows for the removal of the vinyl chloride located on the polymer particles in good yield, but also for the removal of the vinyl chloride collected in the interior of the particles. Under well-chosen operating conditions, the dried polymer contains less than 2 ppm residual vinyl chloride monomer, making it suitable for use in the manufacture of food packaging such as bottles.

Opfindelsen illustreres nærmere ved de nedenstående eksempler.The invention is further illustrated by the following examples.

4 I eksemplerne 1, 2,R , R og 7 anvendte man en vandig polyvinyl-chlorid-dispersion opnået ved polymerisation af vinylchlorid i vandig suspension ved 70°C med afgasning ved 60°C under delvis vacuum (absolut residualtryk 350 mmHg).4 In Examples 1, 2, R, R and 7, an aqueous polyvinyl chloride dispersion obtained by polymerizing vinyl chloride in aqueous suspension at 70 ° C with degassing at 60 ° C under partial vacuum (absolute residual pressure 350 mmHg) was used.

Detts polyvinylchlorid har følgende karakteristika:Its polyvinyl chloride has the following characteristics:

- glasovergangstemperatur: 88,5°C- glass transition temperature: 88.5 ° C

- porøsitet (ved absorption af dioctylphthalat): 11 % - tilsyneladende massefylde (ved sammenpresning): 0,66 kg/dm^- porosity (by absorption of dioctyl phthalate): 11% - apparent density (by compression): 0.66 kg / dm

CC

I éksemplerne 5cgR° anvendte man en vandig polyvinylchlorid-disper-sion opnået ved polymerisation af vinylchlorid i vandig suspension ved 60°C med afgasning ved 55°C under partielt vacuum (absolut 11 151342' residualtryk 350 mmHg).In Examples 5cgR °, an aqueous polyvinyl chloride dispersion obtained by polymerizing vinyl chloride in aqueous suspension at 60 ° C was used with degassing at 55 ° C under partial vacuum (absolute residual pressure 350 mmHg).

Denne polyvinylchlorid har følgende karakteristika:This polyvinyl chloride has the following characteristics:

- glasovergangstemperatur: 89°C- glass transition temperature: 89 ° C

- porøsitet (ved absorption af dioctylphthalat): 21 % - tilsyneladende massefylde (ved sammenpresning): 0,55kg/dm3.- porosity (by absorption of dioctyl phthalate): 21% - apparent density (by compression): 0.55kg / dm3.

EKSEMPEL 1 I en 16 1 beholder, der er forbundet til en vacuumpumpe og forsynet med en dobbeltkappe, en omrører og et damptilledningsrør, der stikker ned i beholderen, indfører man under omrøring 10 1 vandig suspension, Efter at have etableret et absolut residualt tryk på 526 mmHg, indføres overophedet vanddamp ved 152°C i den vandige dispersion gennem tilledningsrøret (mængde 4kg/H). Den vandige dispersion, der til at begynde med befinder sig ved ca. 60°C, opvarmes hurtigt i kontakt med vanddampen, der kondenserer. Når den vandige dispersion har nået en temperatur på 90°C, d.v.s. temperaturen svarende til vanddampens dugpunkt ved operationstrykket, kondenserer vanddampen praktisk talt ikke mere og elimineres direkte gennem vacuumsystemet under medrivning af residualt vinyl-chlorid. Man fortsætter med at indblæse overophedet vanddamp i den vandige dispersion, således at man opretholder temperaturen på 90°C i 30 minutter (mængde 1 kg/h). Efter dette tidsrum afbryder man tilledningen af vanddamp samt vacuumpumpen og tilfører koldt vand til cirkulation i den dobbelte kappe, hvorpå suspensionen afkøles til 70° C.EXAMPLE 1 In a 16 1 container connected to a vacuum pump and fitted with a double jacket, a stirrer and a steam supply tube which protrudes into the container, with stirring 10 1 aqueous suspension is introduced, after establishing an absolute residual pressure of 526 mmHg, superheated water vapor at 152 ° C is introduced into the aqueous dispersion through the feed tube (amount of 4kg / H). The aqueous dispersion, which initially is at ca. 60 ° C, is rapidly heated in contact with the condensing water vapor. When the aqueous dispersion has reached a temperature of 90 ° C, i.e. the temperature corresponding to the dew point of the water vapor at the operating pressure, the water vapor practically no longer condenses and is eliminated directly through the vacuum system while entrapping residual vinyl chloride. The superheated water vapor is continued to be injected into the aqueous dispersion, maintaining the temperature of 90 ° C for 30 minutes (amount of 1 kg / h). After this time, the steam vapor and the vacuum pump are disconnected and cold water is circulated for circulation in the double jacket, whereupon the suspension is cooled to 70 ° C.

Vanddamp og medrevet vinylchlorid separeres ved kondensation af vanddampen.Water vapor and entrained vinyl chloride are separated by condensation of the water vapor.

Begyndelsesindholdet og slutindholdet af vinylchlorid i den vandige suspension fremgår af nedenstående tabel.The initial content and final content of vinyl chloride in the aqueous suspension are shown in the table below.

Den afkølede vandige suspension suges fra, og kagen tørres i 2 timer ved 65°C. Indholdet af vinylchlorid i det tørre polyvinylchlorid fremgår ligeledes af tabellen.The cooled aqueous suspension is aspirated and the cake is dried for 2 hours at 65 ° C. The content of vinyl chloride in the dry polyvinyl chloride is also shown in the table.

i2 151342i2 151342

Den termiske stabilitet vurderes på et produkt fremstillet som følger: I 100 g tørt formstof inkorporeres 20 g dioctylphthalat, 1,2 g af et barium-cadmium-stabiliseringsmiddel og 1 g stearinsyre.The thermal stability is assessed on a product prepared as follows: Incorporate 20 g of dry resin, 20 g of dioctyl phthalate, 1.2 g of a barium-cadmium stabilizer and 1 g of stearic acid.

Efter blanding af produktet i en cylinderælter i 2 minutter ved 175° c opnår man et crepe-agtigt næsten ufarvet produkt (meget bleg rosa).After mixing the product in a cylinder tent for 2 minutes at 175 ° C, a crepe-like, almost unstained product (very pale pink) is obtained.

EKSEMPEL 2EXAMPLE 2

Dette eksempel er identisk med det foregående, bortset fra, at vanddampmedrivningen gennemføres ved 100° C i 15 minutter.This example is identical to the above except that the water vapor drive is carried out at 100 ° C for 15 minutes.

Også i dette tilfælde var den begyndende farvning af det crepe-agtigt produkt meget bleg-rosa.In this case too, the initial coloring of the crepe-like product was very pale pink.

Operationsbetingelserne og resultaterne fremgår af nedenstående tabel.The operating conditions and results are shown in the table below.

Samenligningseksempel_R_Samenligningseksempel_R_

Dette eksempel angår behandling af en vandig polyvinylchlorid-suspension identisk med den i eksempel 1 anvendte, idet behandlingen dog gennemføres ved 80°C, d.v.s. under polymerens glasovergangstemperatur.This example relates to treatment of an aqueous polyvinyl chloride suspension identical to that used in Example 1, however, the treatment is carried out at 80 ° C, i.e. below the glass transition temperature of the polymer.

Forsøgsbetingelser og resultater fremgår af tabellen.Experimental conditions and results are shown in the table.

AA

S ammeniignings eksempel_R_ I dette eksempel foretages den klassiske behandling af en vandig suspension af polyvinylchlorid identisk med den i eksempel 1 anvendte, d.v.s. afgasning, frasugning og tørring ved 65°C i 2 timer.Example Example_R_ In this example, the classical treatment of an aqueous suspension of polyvinyl chloride is identical to the one used in Example 1, i.e. degassing, suction and drying at 65 ° C for 2 hours.

Betingelserne og resultaterne fremgår af tabellen.The conditions and results are shown in the table.

I dette tilfælde var den begyndende farvning af et crepe-agtigt produkt, fremstillet under de samme betingelser som i eksempel 1, udtalt rosa.In this case, the initial staining of a crepe-like product prepared under the same conditions as in Example 1 was pronounced pink.

i3 151342 EKSEMPEL 5EXAMPLE 5

Dette eksempel er identisk med eksempel 1, men dog kun med en varighed på 15 minutter. Endvidere tørres kagen ved 70°C i 2 timer.This example is identical to Example 1, but only for a duration of 15 minutes. Further, the cake is dried at 70 ° C for 2 hours.

Betingelserne og resultaterne fremgår af tabellen.The conditions and results are shown in the table.

Den begyndende farvning af et produkt fremstillet som i eksempel 1 er meget bleg-rosa.The initial staining of a product prepared as in Example 1 is very pale pink.

cc

Samenligningseksemgel__R_ I dette eksempel foretages den klassiske behandling af en vandig polyvinylchlorid-suspension som i eksempel 5. Dog frasuges den afgassede suspension og tørres i 2 timer ved 70°C.Comparative Example In this example, the classical treatment of an aqueous polyvinyl chloride suspension is carried out as in Example 5. However, the degassed suspension is suctioned off and dried for 2 hours at 70 ° C.

Den begyndende farvning af et produkt fremstillet som i eksempel 1 var udtalt rosa.The initial staining of a product prepared as in Example 1 was pronounced pink.

EKSEMPEL 7EXAMPLE 7

Dette eksempel illustrerer fuldførelsen af medrivningen af residual monomer med vanddamp udelukkende er frembragt ved kogning af den vandige suspension, samt anvendelsen af kondensator. 1 2 3 4 en 16 1 beholder, der gennem en vandafkølet kondensator af udvekslingstypen med en udvekslingsoverflade på 400 cm er 2 forbundet med en vacuumpumpe og forsynet med en omrører og et damptilførselsrør, der er ført ned i beholderen, indføres under omrøring og efter etablering af et absolut residualt tryk på 526 mmHg 10 1 afgasset vandig suspension. Man indfører derpå 3 gennem tilførselsrøret overophedet vanddamp ved 152° c (mængde: 4 kg/h). Dispersionen, der til at begynde med befinder sig ved ca. 60°C, opvarmes hurtigt i kontakt med vanddampen, der kondense rer. Under dette opvarmningstrin cirkulerer kølevandet ikke i kondensatoren. Når den vandige dispersion har nået en temperatur på 90°C, d.v.s. en temperatur svarende til dugpunktet af dampen ved operationstrykket, kondenserer vanddampen praktisk talt ikke længere, og medrivningen med vanddampen begynder. Fra dette 14 151342 tidspunkt reducerer man mængden af tilledt vanddamp til 1 kg/time og sætter kondensatoren igang, alt imens man regulerer mængden af gasformig effluent, der udsuges, således at temperaturen holdes konstant i 20 minutter. Efter dette tidsforløb, og efter at have udtaget en prøve af den vandige suspension, afbryder man tilledningen af overophedet vanddamp og holder vacuumpumpen igang, alt imens man lader kondensatoren fungere ved maksimal kapacitet. Den vandige dispersion holdes således under kogning med faldende temperatur i 10 minutter. Efter dette tidsforløb er temperaturen 70°C. På dette tidspunkt udtages en anden prøve af den vandige suspension.This example illustrates the completion of entrainment of residual water vapor monomer produced solely by boiling the aqueous suspension, as well as the use of condenser. 1 2 3 4 a 16 1 container which, through an exchange-cooled condenser of the exchange type with a exchange surface of 400 cm, is connected to a vacuum pump and provided with a stirrer and a steam supply pipe which is introduced into the container, during stirring and after establishment of an absolute residual pressure of 526 mmHg 10 l degassed aqueous suspension. Subsequently, 3 through the feed tube superheated water vapor is introduced at 152 ° C (quantity: 4 kg / h). The dispersion, which initially is at approx. 60 ° C, is quickly heated in contact with the condensing water vapor. During this heating step, the cooling water does not circulate in the condenser. When the aqueous dispersion has reached a temperature of 90 ° C, i.e. at a temperature corresponding to the dew point of the steam at the operating pressure, the water vapor practically no longer condenses and entrainment with the water vapor begins. From this point on, the amount of water vapor is reduced to 1 kg / hour and the condenser started, while regulating the amount of gaseous effluent that is extracted so that the temperature is kept constant for 20 minutes. After this time, and after taking a sample of the aqueous suspension, the supply of superheated water vapor is discontinued and the vacuum pump is kept running while allowing the capacitor to operate at maximum capacity. The aqueous dispersion is thus kept under boiling with decreasing temperature for 10 minutes. After this time, the temperature is 70 ° C. At this time, another sample of the aqueous suspension is taken.

En analyse af den udtagne prøve ved afslutningen af dampmedriv-ninesoperationen ved konstant temperatur (90° C) viser, at den vandige suspension på dette tidspunkt indeholdt endnu 250 mg vinyl-chlorid pr. kg polyvinylchlorid.An analysis of the sample taken at the end of the vapor drive operation at constant temperature (90 ° C) shows that at this point the aqueous suspension contained an additional 250 mg of vinyl chloride per ml. kg of polyvinyl chloride.

En analyse af den anden prøve udtaget efter medrivningen med vanddamp i 20 minutter ved faldende temperatur viser, at indholdet af vinylchlorid var reduceret til 90 mg/kg polyvinylchlorid.An analysis of the second sample, taken after 20 minutes at the drop in water vapor at decreasing temperature, shows that the vinyl chloride content was reduced to 90 mg / kg polyvinyl chloride.

Den begyndende farvning af et crepe-agtigt produkt fremstillet under de i eksempel 1 beskrevne betingelser er meget bleg-rosa.The initial staining of a crepe-like product prepared under the conditions described in Example 1 is very pale pink.

En sammenligning af eksemplerne 1, 2 og 5 med sammenligningseksemplerne R1, R2 og R6 viser i tilstrækkelig grad effektiviteten af den opnåede fjernelse af residualt vinylchlorid ved fremgangsmåden ifølge opfindelsen, både fra den vandige dispersion og fra den tørre polymer.A comparison of Examples 1, 2 and 5 with Comparative Examples R1, R2 and R6 sufficiently demonstrates the efficiency of the residual vinyl chloride removal achieved in the process of the invention, both from the aqueous dispersion and from the dry polymer.

En sammenligning af eksemplerne 1 og 7 viser, at afslutningen af behandlingen af den vandige suspension med en medrivning med vanddamp, der kun frembringes in situ, muliggør, at man opnår fremragende resultater ved et mindre vanddampforbrug og en total produktivitetsgevinst .A comparison of Examples 1 and 7 shows that the completion of the treatment of the aqueous suspension with an in situ water vapor entrainment only allows excellent results to be achieved with less water vapor consumption and a total productivity gain.

EKSEMPEL 8EXAMPLE 8

Dette eksempel angår behandling af en vandig emulsion indeholdende et ammoniumsalt af en fedtsyre som emulgeringsmiddel.This example relates to the treatment of an aqueous emulsion containing an ammonium salt of a fatty acid as an emulsifier.

2 15 1513422 151342

Den vandige emulsion opnås ved polymerisation af vinylchlorid i vandig emulsion ved 70°C i nærvær af ammoniumstearat ved af-gasning ved 60°C under partielt vacuum (absolut residualt tryk på 350 mmHg). Den har form af en stabil emulsion med elementærpartikler på 0,1 yum.The aqueous emulsion is obtained by polymerization of vinyl chloride in aqueous emulsion at 70 ° C in the presence of ammonium stearate by degassing at 60 ° C under partial vacuum (absolute residual pressure of 350 mmHg). It is in the form of a stable emulsion with elemental particles of 0.1 µm.

Det oprindelige indhold af vinylchlorid i den afgassede vandige emulsion er 7 g/kg PVC. Polyvinylchloridet har en glasovergangstemperatur på 88,5°C.The initial content of vinyl chloride in the degassed aqueous emulsion is 7 g / kg PVC. The polyvinyl chloride has a glass transition temperature of 88.5 ° C.

Den afgassede vandige emulsion behandles som i eksempel 1, bortset fra, at man foretager medrivningen ved 95°C under et residual-tryk på 634 mmHg i løbet af 15 minutter, og at man i emulsionen indfører ammoniak (10% vandig opløsning) i en tilstrækkelig mængde til at holde den vandige emulsions pH konstant på sin oprindelige værdi. På denne måde undgår man destruktion af emulgeringsmidlet .The degassed aqueous emulsion is treated as in Example 1 except that the entrainment is carried out at 95 ° C under a residual pressure of 634 mmHg over 15 minutes and that ammonia (10% aqueous solution) is introduced into an emulsion. sufficient quantity to keep the pH of the aqueous emulsion constant at its original value. In this way, destruction of the emulsifier is avoided.

Efter 15 minutters behandling er indholdet af vinylchlorid i den vandige emulsion lavere end 2 mg/kg polyvinylchlorid, og emulsionen har bevaret sin stabilitet.After 15 minutes of treatment, the content of vinyl chloride in the aqueous emulsion is lower than 2 mg / kg polyvinyl chloride and the emulsion has maintained its stability.

is 151342is 151342

TABELTABLE

Oprinde- Betingelser for varmebehand- Slutind- siutind-Eks. ligt ind- lingen af den vandige sus- hold af hold af VCOrigin- Conditions for heat treatment- End-of-life-Ex. is the division of the watery suspension of teams of VC

hold af VC? pension VC i sus- iden tørre i suspen- ---— pensionen polymer sionen Tempera Tempera- Tryk Varighed** tur af tur af dampen suspensionen g/kg PVC °C °C mmHg min. mg/kg PVC mg/kg 1 6,1 152 90 526 30 70 ±2 2 6,1 152 100 760 15 25 ±2 R3 6,1 152 80 355 30 780 200 R4 6,1 - 790 5 13,2 152 90 526 15 _2 <2 R6 13,2 - - -" - - 200 * VC : vinylchlorid PVC : polyvinylchlorid ** varighed: beregnet fra det tidspunkt, hvor suspensionen har nået den valgte temperatur.team of VC? pension VC in the suspension dry in the suspension --- the pension polymer sion Tempera Tempera- Pressure Duration ** turn of turn of the vapor suspension g / kg PVC ° C ° C mmHg min. mg / kg PVC mg / kg 1 6.1 152 90 526 30 70 ± 2 2 6.1 152 100 760 15 25 ± 2 R3 6.1 152 80 355 30 780 200 R4 6.1 - 790 5 13.2 152 90 526 15 _2 <2 R6 13.2 - - - "- - 200 * VC: vinyl chloride PVC: polyvinyl chloride ** Duration: calculated from the time the suspension has reached the selected temperature.

Claims (5)

1. Fremgangsmåde til fjernelse af residual vinylchlorid-monomer fra en vinylchlorid-polymer, som indeholder mere end 50 mol-% monomer-enheder, der stammer fra vinylchlorid, ved opvarmning til en temperatur, som mindst er lig med polymerens glasovergangstemperatur, og behandling med damp ved denne temperatur, kendetegnet ved, at man opvarmer den vandige polymerdispersion, som opnås ved polymerisationen, direkte til en temperatur, som mindst er lig med polymerens glasovergangstemperatur, og underkaster den en medrivning med damp, medens den holdes ved en temperatur, der mindst er lig med polymerens glasovergangstemperatur.A process for removing residual vinyl chloride monomer from a vinyl chloride polymer containing more than 50 mole% of monomer units derived from vinyl chloride by heating to a temperature at least equal to the glass transition temperature of the polymer and treating with steam at this temperature, characterized by heating the aqueous polymer dispersion obtained by the polymerization directly to a temperature at least equal to the glass transition temperature of the polymer and subjecting it to entrapment with steam while maintaining a temperature which is at least is equal to the glass transition temperature of the polymer. 2. Fremgangsmåde ifølge krav 1, kendetegnet ved, at man opvarmer den vandige polymerdispersion til en temperatur under 140° C, fortrinsvis under 120° C.Process according to claim 1, characterized in that the aqueous polymer dispersion is heated to a temperature below 140 ° C, preferably below 120 ° C. 3. Fremgangsmåde ifølge krav 1, kendetegnet ved, at man ved progressivt at sænke trykket fremkalder en kogning i den vandige dispersion, efter at denne er underkastet en medrivning med damp, idet man sænker trykket gradvist, således at man opretholder kogningen uden varmetilførsel udefra, efterhånden som temperaturen af den vandige dispersion aftager.Process according to claim 1, characterized in that, by progressively lowering the pressure, a boiling in the aqueous dispersion is induced after it is subjected to vapor entrainment, gradually lowering the pressure, so as to maintain the boiling without heat supply from outside, as the temperature of the aqueous dispersion decreases. 4. Fremgangsmåde ifølge krav 3, kendetegnet ved, at man afslutter kogningen under progressivt reduceret tryk, når dispersionens temperatur har nået en værdi, der ligger under polymerens glasovergangstemperatur, fortrinsvis en værdi på mellem 50 og 80° C.Process according to claim 3, characterized in that the cooking is terminated under progressively reduced pressure when the temperature of the dispersion has reached a value below the glass transition temperature of the polymer, preferably a value between 50 and 80 ° C. 5. Fremgangsmåde ifølge ethvert af kravene 1-4 til fjernelse af residual vinylchlorid-monomer, kendetegnet ved, at monomeren fjernes fra en vinylchloridpolymer, som er opnået ved polymerisation i vandig suspension.Process according to any one of claims 1-4 for removal of residual vinyl chloride monomer, characterized in that the monomer is removed from a vinyl chloride polymer obtained by polymerization in aqueous suspension.
DK366375A 1974-08-14 1975-08-13 PROCEDURE FOR REMOVAL OF RESIDUAL VINYL CHLORIDE MONOMER FROM A VINYL CHLORIDE POLYMER DK151342C (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
LU70739A LU70739A1 (en) 1974-08-14 1974-08-14
LU70739 1974-08-14
LU72112A LU72112A1 (en) 1975-03-21 1975-03-21
LU72112 1975-03-21

Publications (3)

Publication Number Publication Date
DK366375A DK366375A (en) 1976-02-15
DK151342B true DK151342B (en) 1987-11-23
DK151342C DK151342C (en) 1988-04-25

Family

ID=26640162

Family Applications (1)

Application Number Title Priority Date Filing Date
DK366375A DK151342C (en) 1974-08-14 1975-08-13 PROCEDURE FOR REMOVAL OF RESIDUAL VINYL CHLORIDE MONOMER FROM A VINYL CHLORIDE POLYMER

Country Status (17)

Country Link
JP (1) JPS605605B2 (en)
AR (1) AR203694A1 (en)
AT (1) AT339599B (en)
BR (1) BR7505165A (en)
CA (1) CA1271587A (en)
CH (1) CH606130A5 (en)
DE (1) DE2531111C2 (en)
DK (1) DK151342C (en)
ES (1) ES438975A1 (en)
FI (1) FI60880C (en)
FR (1) FR2281939A1 (en)
GB (1) GB1487876A (en)
IT (1) IT1039836B (en)
NL (1) NL183584B (en)
NO (1) NO146989C (en)
SE (1) SE420316B (en)
SU (1) SU622412A3 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5126988A (en) * 1974-08-30 1976-03-05 Sumitomo Chemical Co ENKABINIRUKEIJUGOTAICHUNIZANZONSURU ENKABINIRUTANRYOTAI NO JOKYOHOHO
JPS5128890A (en) * 1974-09-04 1976-03-11 Mitsui Toatsu Chemicals MIHANNOENKABINIRUMONOMAA NO JOKYOHOHO
JPS51127187A (en) * 1975-04-26 1976-11-05 Kureha Chem Ind Co Ltd A process and an apparatus for recovering monomers
IL50060A (en) * 1975-08-13 1979-09-30 Tenneco Chem Process for the removal of vinyl chloride from polyvinyl chloride latexes and slurries
JPS5283405A (en) * 1975-12-29 1977-07-12 Mitsubishi Monsanto Chem Co Elimination of monomers
JPS5283404A (en) * 1975-12-29 1977-07-12 Mitsubishi Monsanto Chem Co Elimination of monomers
US4220754A (en) * 1976-05-25 1980-09-02 Tenneco Chemicals, Inc. Process for the purification of polyvinyl chloride with oxidizing agents
DE2744462C2 (en) * 1977-10-03 1982-09-16 Wacker-Chemie GmbH, 8000 München Process for preventing foam formation during the removal of residual monomers from aqueous polymer dispersions
US4130527A (en) * 1977-12-29 1978-12-19 Stauffer Chemical Company Method of treating a polymer latex to remove unreacted monomer by treatment in a column
DE2759097A1 (en) * 1977-12-30 1979-07-12 Norsk Hydro As METHOD FOR REMOVING VINYL CHLORIDE FROM POLYVINYL CHLORIDE DISPERSIONS AND A COLUMN FOR CARRYING OUT THE METHOD
JPS6042804B2 (en) * 1979-08-09 1985-09-25 信越化学工業株式会社 Polymerization method of vinyl chloride monomer
DE3038287A1 (en) * 1980-10-10 1982-05-19 Deutsche Solvay-Werke Gmbh, 5650 Solingen METHOD AND DEVICE FOR REMOVING REMAINING VINYL CHLORIDE FROM VINYL CHLORIDE POLYMERS
JPH02169603A (en) * 1988-12-23 1990-06-29 Toyo Eng Corp Purification of polymer dispersion
DE4024100A1 (en) * 1990-07-30 1992-02-06 Hans Georg Dr Tilgner METHOD FOR TREATING WASTE
DE4430763A1 (en) * 1994-08-30 1996-03-07 Basf Ag Device and method for intensive degassing of PVC suspensions and dispersions

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1248943B (en) * 1965-07-20 1967-08-31 Basf Ag Process and device for the discontinuous removal of odorous substances from aqueous polymer dispersions
DE2331895A1 (en) * 1972-07-19 1974-01-31 Solvay METHOD OF REMOVING RESIDUAL VINYL CHLORIDE IN THE POLYMERIZATE

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2429776C3 (en) * 1974-06-21 1981-12-24 Hoechst Ag, 6000 Frankfurt Process for removing residual vinyl chloride from aqueous polyvinyl chloride dispersions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1248943B (en) * 1965-07-20 1967-08-31 Basf Ag Process and device for the discontinuous removal of odorous substances from aqueous polymer dispersions
DE2331895A1 (en) * 1972-07-19 1974-01-31 Solvay METHOD OF REMOVING RESIDUAL VINYL CHLORIDE IN THE POLYMERIZATE

Also Published As

Publication number Publication date
CH606130A5 (en) 1978-10-31
FI60880B (en) 1981-12-31
NO146989C (en) 1986-06-12
CA1271587A (en) 1990-07-10
BR7505165A (en) 1976-08-03
IT1039836B (en) 1979-12-10
FR2281939A1 (en) 1976-03-12
NO146989B (en) 1982-10-04
DK366375A (en) 1976-02-15
NO752819L (en) 1976-02-17
ES438975A1 (en) 1977-02-16
AR203694A1 (en) 1975-09-30
FI752304A (en) 1976-02-15
DE2531111A1 (en) 1976-02-26
DK151342C (en) 1988-04-25
FR2281939B1 (en) 1977-12-16
SE420316B (en) 1981-09-28
JPS5145190A (en) 1976-04-17
GB1487876A (en) 1977-10-05
FI60880C (en) 1982-04-13
JPS605605B2 (en) 1985-02-13
NL7509700A (en) 1976-02-17
ATA629575A (en) 1977-02-15
SE7509078L (en) 1976-02-15
AT339599B (en) 1977-10-25
SU622412A3 (en) 1978-08-30
DE2531111C2 (en) 1982-09-02
AU8310575A (en) 1977-01-20
NL183584B (en) 1988-07-01

Similar Documents

Publication Publication Date Title
DK151342B (en) PROCEDURE FOR REMOVAL OF RESIDUAL VINYL CHLORIDE MONOMER FROM A VINYL CHLORIDE POLYMER
US4197399A (en) Process for removing residual vinyl chloride from vinyl chloride polymers in aqueous dispersion
NL8003748A (en) METHOD FOR REMOVING VOLATILE SUBSTANCES FROM POWDER
JP2005205242A5 (en)
RU2005111921A (en) METHOD AND INSTALLATION FOR DRY CHEMICAL CLEANING OF PRODUCTS USING A SILOXANE SOLVENT
KR101233473B1 (en) Method for drying a wet polymer
CA1089146A (en) Monomer removal from the slurry of vinyl chloride resin with steam by using improved plate tower
GB2106368A (en) Process and apparatus for sterilising microbe-containing liquid
NO146284B (en) PROCEDURE FOR REMOVING MONOMERS FROM Aqueous DISPERSIONS OF POLYMERS
US4009048A (en) Solvent cleaning and recovery process
FI59604B (en) SAETT ATT GENOM UPPHETTNING RESISTANT RESTMONOMER FRAON ACRYLIC NITRILE POLYMER
US4373093A (en) Recovery of chlorinated poly(vinyl chloride)
SU512715A3 (en) The method of purification of polyvinyl chloride or copolymers of vinyl chloride
NO773106L (en) PROCEDURE FOR CONTINUOUS REMOVAL OF MONOMERS FROM DIFFICULT DISTRIBUTIONS OF POLYMERS
NO146639B (en) PROCEDURE FOR THE REMOVAL OF VINYL CHLORIDE FROM POLYVINYL CHLORIDE CONTAINING LATECES
US5929206A (en) Continuous process for removing the residual monomer or monomers from an aqueous latex of a synthetic polymer and device for carrying it out
US4315843A (en) Thin film monomer removal from polyvinyl chloride latexes
US4283526A (en) Method of treating polymerlatices
US4151141A (en) Process for continuously removing volatile organic material from aqueous dispersions of synthetic polymers
JP2003137924A (en) Method for removing and recovering unreacted monomer from vinylidene chloride resin slurry
NO146988B (en) PROCEDURE FOR AA PREVENTING PROPOSAL IN A REACTOR UNDER FRERADICAL POLYMERIZATION OF ETHYLENIC Saturated MONOMERS
JP3901885B2 (en) Method of defoaming vinyl chloride paste resin latex
SU704096A1 (en) Process for producing (co)polymers of vinyl chloride
NO753372L (en)
US3969305A (en) Method of making an acrylic spinning solution

Legal Events

Date Code Title Description
PBP Patent lapsed