DK145183B - PROCEDURE FOR THE PREPARATION OF POLYMERS OR COPOLYMERS OF VINYL CHLORIDE IN INSULATED MICROSUSPENSION - Google Patents

PROCEDURE FOR THE PREPARATION OF POLYMERS OR COPOLYMERS OF VINYL CHLORIDE IN INSULATED MICROSUSPENSION Download PDF

Info

Publication number
DK145183B
DK145183B DK302574AA DK302574A DK145183B DK 145183 B DK145183 B DK 145183B DK 302574A A DK302574A A DK 302574AA DK 302574 A DK302574 A DK 302574A DK 145183 B DK145183 B DK 145183B
Authority
DK
Denmark
Prior art keywords
polymerization
vinyl chloride
acid
weight
microsuspension
Prior art date
Application number
DK302574AA
Other languages
Danish (da)
Other versions
DK145183C (en
DK302574A (en
Inventor
N Fischer
J Boissel
T Kemp
H Eyer
Original Assignee
Chloe Chemie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chloe Chemie filed Critical Chloe Chemie
Publication of DK302574A publication Critical patent/DK302574A/da
Publication of DK145183B publication Critical patent/DK145183B/en
Application granted granted Critical
Publication of DK145183C publication Critical patent/DK145183C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/02Monomers containing chlorine
    • C08F14/04Monomers containing two carbon atoms
    • C08F14/06Vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F259/00Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00
    • C08F259/02Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00 on to polymers containing chlorine
    • C08F259/04Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00 on to polymers containing chlorine on to polymers of vinyl chloride

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Graft Or Block Polymers (AREA)

Description

(19) DANMARK(19) DENMARK

Ip in) FREMLÆGGELSESSKRIFT αυ 11+51 83 BIp in) PUBLISHING WRITING αυ 11 + 51 83 B

DIREKTORATET FOR PATENT- OG VAREMÆRKEVÆSENETDIRECTORATE OF THE PATENT AND TRADEMARKET SYSTEM

(21) Ansøgning nr. 3025/74 (51) IntCI.3 C 08 F U/06 (22) Indleveringsdag 6. Jun. 1974 C 08 F 2/18 (24) Løbedag 6. Jun. 197-4 (41) Aim. tilgængelig 9. dec. 1974 (44) Fremlagt 27· s ep. 1982 (86) International ansøgning nr.(21) Application No. 3025/74 (51) IntCI.3 C 08 F U / 06 (22) Filing date 6 Jun. 1974 C 08 F 2/18 (24) Race day 6 Jun. 197-4 (41) Aim. available Dec. 9; 1974 (44) Presented 27 · s ep. 1982 (86) International application no.

(86) International indleveringsdag (85) Videreførelsesdag - (62) Stamansøgning nr. -(86) International filing day (85) Continuation day - (62) Master application no. -

(30) Prioritet 8. Jun. 1973, 7320882, FR(30) Priority 8 Jun. 1973, 7320882, FR

(71) Ansøger CELOE CHIMIE, 92800 Puteaux, ER.(71) Applicant CELOE CHIMIE, 92800 Puteaux, ER.

(72) Opfinder Nicolas Fischer, FR: Jacques Boissel, ER: Thomas Kemp, FR: Henri Eyer, FR.(72) Inventor Nicolas Fischer, FR: Jacques Boissel, ER: Thomas Kemp, FR: Henri Eyer, FR.

(74) Fuldmægtig Ingeniørfirmaet Hofman-Bang & Boutard.(74) Associate Engineer Hofman-Bang & Boutard.

(54) Fremgangsmåde til fremstilling af polymere eller copolymere af vinylchlorid i podet microsus» pension.(54) Process for the preparation of polymers or copolymers of vinyl chloride in grafted microsus' pension.

Den foreliggende opfindelse angår en fremgangsmåde til fremstilling af polymere eller copolymere af vinylchlorid i podet microsuspension.The present invention relates to a process for preparing polymers or copolymers of vinyl chloride in grafted microsuspension.

Ved polymerisation i microsuspension forstår man en poly- ® merisation i nærvær af organoopløselige initiatorer afBy polymerization in microsuspension is understood a polymerization in the presence of organo-soluble initiators of

OISLAND

O mindst en monomer, der er dispergeret ved hjælp af meka- “ niske midler i et vandigt medium, der indeholder et emul- t geringsmiddel eller en stor mængde beskyttelseskolloid ~ som stabiliseringsmiddel, således at man opnår en disper- £ sion af partikler, hvis diameter er mindre end 5 /um 3 7 U5183 2O at least one monomer dispersed by mechanical means in an aqueous medium containing an emulsifier or a large amount of protective colloid as a stabilizing agent to obtain a dispersion of particles if diameter is less than 5 µm 3 7 U5183 2

Det er kendt, at de klassiske initiatorer til polymerisation af vinylchlorid ved de normale polymerisationstemperaturer giver polymerisations- eller copolymerisa-tionsreaktioner en reaktionskinetik med et auto-accelereret forløb, der for det første giver vanskeligheder ved afkølingen og som følge deraf en dårlig udnyttelse af reaktoren, og for det andet giver en ufuldstændig udnyttelse af disse initiatorer, eftersom en relativ betydelig mængde initiator skal anvendes, for at polymerisationshastigheden er acceptabel i industriel målestok.It is known that the classic initiators for polymerization of vinyl chloride at the normal polymerization temperatures give polymerization or copolymerization reactions a reaction kinetics with an auto-accelerated process which, firstly, cause difficulties in cooling and consequently poor utilization of the reactor. and secondly, incomplete utilization of these initiators, since a relatively significant amount of initiator must be used for the polymerization rate to be acceptable on an industrial scale.

For at råde bod på disse ulemper har man foreslået at anvende initiatorer med en hurtigere dekomponering, men man har konstateret, at disse initiatorer ikke giver gode resultater ved polymerisation i microsuspension.To overcome these drawbacks, it has been proposed to use initiators with a faster decomposition, but it has been found that these initiators do not yield good results in polymerization in microsuspension.

Man har ligeledes foreslået at accelerere dekomponeringen af initiatoren ved tilstedeværelse af overgangsmetal-salte, især ved polymerisation ved lav temperatur, som fører til vinylchlorid-polymere med en meget høj molekylvægt og/eller en krystallinsk struktur, men reaktionskinetikken forbliver imidlertid auto-accelereret.It has also been proposed to accelerate the decomposition of the initiator in the presence of transition metal salts, especially in low temperature polymerization leading to very high molecular weight vinyl chloride polymers and / or a crystalline structure, however the reaction kinetics remain auto-accelerated.

Det er i øvrigt kendt ved polymerisation i microsuspen-sion, at anvendelsen af et podningsprodukt, der indeholder den nødvendige initiator til polymerisationen, praktisk talt muliggør en undertrykkelse af skorpedannelsen i reaktoren og en delvis moderering af reaktionens auto-acceleration, især når podningsgraden for produktet er høj, men denne forbedring er alligevel begrænset.Moreover, it is known by polymerization in microsuspension that the use of a grafting product containing the necessary initiator for the polymerization practically allows a suppression of the crust formation in the reactor and a partial moderation of the reaction's auto-acceleration, especially when the grafting rate of the product is high, but this improvement is limited nonetheless.

Formålet med fremgangsmåden ifølge opfindelsen er at undgå auto-accelerationsfænomenet samt de deraf afledte ulemper, således at man kan gennemføre polymerisationen eller copolymerisationen af vinylchlorid i microsuspen-sion ved de sædvanlige temperaturer med en højere reak- 3 145183 tionshastighed for et givet apparat og opnå en bedre udnyttelse af initiatoren og dermed anvende mindre mængder af denne med en meget lav skorpedannelse og som følge heraf en optimal udnyttelse af reaktoren.The object of the process according to the invention is to avoid the phenomenon of auto-acceleration and its disadvantages, so that the polymerization or copolymerization of vinyl chloride in microsuspension can be carried out at the usual temperatures with a higher reaction rate for a given apparatus and better utilization of the initiator and thus using smaller amounts of this with a very low crust formation and as a result optimal utilization of the reactor.

Fremgangsmåden ifølge opfindelsen, der er af den i krav l*s indledning anførte art, er ejendommelig ved det i krav l's kendetegnende del anførte. De opløselige salte anvendes i sådanne mængder, at det molære forhold metalsalt:initiator er 0,1 - 10, fortrinsvis 0,1 - 2.The process according to the invention, which is of the kind set out in the preamble of claim 1, is characterized by the characterizing part of claim 1. The soluble salts are used in such amounts that the molar ratio of metal salt: initiator is 0.1 - 10, preferably 0.1 - 2.

Disse salte kan indføres i reaktionsmediet før eller under polymerisationen.These salts can be introduced into the reaction medium before or during polymerization.

De anvendelige komplexdannende midler er forbindelser, der er i stand til at bringe metallet fra sin vandopløselige form til en form, der er opløselig i vinylchlo-rid, og som ikke har nogen inhiberende virkning på polymerisationen og på aktiveringen af initiatoren ved hjælp af metallet. Forbindelser, der opfylder disse betingelser, er monocarboxylsyrer, der er tungt opløselige i vand, såsom perfluorsmørsyre, oc-bromlau-rinsyre, sulfosalicylsyre, naphthensyre og octancarbo-xylsyre, polycarboxylsyrer, såsom ravsyre, vinsyre, ma-leinsyre, dihydroxymaleinsyre og de korresponderende anhydrider, alkylphosphorsyrer, såsom bis-(2-ethyl)-hexylphosphorsyre, lactoner, såsom ascorbinsyre og e-stere deraf samt β-butyrolaceton, ketoner med carbonyl-gruppeaktiverende grupper i a- eller β-stillingen, såsom acetylacetone, 1,3-dihydroxyacetone, benzoin, samt car-bazoner, såsom diphenylthiocarbazon.The useful complexing agents are compounds capable of bringing the metal from its water-soluble form to a form that is soluble in vinyl chloride and which has no inhibitory effect on the polymerization and on activation of the initiator by the metal. Compounds which fulfill these conditions are monocarboxylic acids which are heavily soluble in water, such as perfluorobutyric acid, o-bromochloroacetic acid, sulfosalicylic acid, naphthenic acid and octanecarboxylic acid, polycarboxylic acid such as succinic acid, tartaric acid, tartaric acid, tartaric acid, tartaric acid, tartaric acid, tartaric acid, tartaric acid, tartaric acid, tartaric acid, tartaric acid, tartaric acid, tartaric acid, tartaric acid and tartaric acid. , alkylphosphoric acids such as bis (2-ethyl) -hexylphosphoric acid, lactones such as ascorbic acid and their ester, and β-butyrol acetone, ketones with carbonyl group activating groups at the α or β position, such as acetylacetone, 1,3-dihydroxyacetone , benzoin, and carbazones such as diphenylthiocarbazone.

De mængder komplexdannende middel, der skal anvendes, er en funktion af polymerisationstemperaturen, reaktorens afkølingskapacitet og renheden af reaktanterne. Mængderne kan nå op på de molære støkiometriske mængder i forhold til metalsaltet.The amounts of complexing agent to be used are a function of the polymerization temperature, the cooling capacity of the reactor and the purity of the reactants. The amounts can reach the molar stoichiometric amounts relative to the metal salt.

4 1451834 145183

Dette komplexdannende middel giver i nærværelse af metalsaltet et organo-opløseligt komplex, der medriver metallet i den organiske fase, hvor det udøver en aktiverende virkning på initiatoren. Man kan således opnå en vilkårlig aktivering af initiatoren, idet man varierer mængden og indføringstidspunktet for det komplexdannende middel i reaktionsmediet, således at man på ethvert tidspunkt kan regulere polymerisationens kinetik. Polymerisationen, der i fravær af aktivator i begyndelsen er langsom, er ved fremgangsmåden ifølge opfindelsen stærkt aktiveret, og derpå mindre og mindre efterhånden som reaktionen skrider frem. Således kan man takket være en optimal udnyttelse af reaktorens afkølingskapacitet gennemføre polymerisationen på den minimale tid.This complexing agent, in the presence of the metal salt, provides an organo-soluble complex which entrains the metal in the organic phase where it exerts an activating effect on the initiator. Thus, any activation of the initiator can be achieved by varying the amount and timing of the complexing agent in the reaction medium so that the kinetics of polymerization can be regulated at any time. The polymerization, which is initially slow in the absence of activator, is strongly activated in the process of the invention, and then less and less as the reaction proceeds. Thus, thanks to an optimal utilization of the cooling capacity of the reactor, the polymerization can be carried out in the minimum time.

Dette formål nås ikke, hvis den totale mængde komplexdannende middel indføres fra begyndelsen. I dette tilfælde er aktiveringen af initiatoren for hurtig ved polymerisationens begyndelse, og initiatoren dekomponeres derfor for hurtigt, og reaktionen kan ikke forløbe til ende af mangel på initiator.This purpose is not achieved if the total amount of complexing agent is introduced from the beginning. In this case, the activation of the initiator is too rapid at the beginning of the polymerization, and therefore the initiator is decomposed too quickly and the reaction cannot proceed to the end of initiator deficiency.

Som nævnt aktiveres initiatoren derfor ved progressiv indføring af et organo-opløseligt metalkomplex, der er forud fremstillet ved omsætning af de ovennævnte metalsalte og komplexdannende midler, eller som dannes under polymerisationen.Therefore, as mentioned, the initiator is activated by the progressive introduction of an organo-soluble metal complex which is pre-prepared by reaction of the above metal salts and complexing agents, or which is formed during the polymerization.

Disse komplexer tages i anvendelse i sådanne mængder, at det molære forhold metalkomplex:initiator er 0,1 - 10. Aktiveringen af initiatoren med komplexet kan afbrydes på ethvert tidspunkt ved standsning af indføringen af komplexdannende middel eller komplex og/ eller ved at lade metalionen overgå fra organoopløselig form til vandopløselig form ved til reaktionsmediet at sætte et sequestreringsmiddel valgt blandt alkalimetalsalte af syrer fra ethylendiamintetraeddikesyre-gruppen, der ud over ethylen-diamintetraeddikesyre er repræsenteret af nitrilotrieddikesyre, diethylentriaminpentaeddikesyre og N-(2-hydroxyethyl)-ethylendiamin- ' trieddikesyre. Sequestreringsmidlet anvendes i mængder op til den molære støkiometriske mængde i forhold til metalsaltet.These complexes are used in amounts such that the molar ratio metal complex: initiator is 0.1 - 10. The activation of the initiator with the complex can be interrupted at any time by stopping the introduction of complexing agent or complex and / or by passing the metal ion from organo-insoluble form to water-soluble form by adding to the reaction medium a sequestering agent selected from the alkali metal salts of acids from the ethylenediaminetetraacetic acid group which, in addition to ethylene-diametetetraacetic acid, is represented by nitrilotriacetic acid, diethylenetriamine pentaacetic acid and N- (2-hydroxyethyl) The sequestering agent is used in amounts up to the molar stoichiometric amount relative to the metal salt.

Det til polymerisationen nødvendige podningsprodukt fremstilles efter de klassiske polymerisationsmetoder i microsuspension. F. eks anvender man vand, vinylchlorid med eller uden comonomer, et anionisk emulgeringsmiddel og en organoopløselig initiator. Den eller de monomere fordeles fint dispergeret i vandet ved hjælp U5183 5 af mekaniske midler, som f.eks. en kolloidmølle, en hurtig yumpe, en vibrationsomrører eller et ultralydapparat. Den opnåede micro-suspension opvarmes derpå under autogent tryk og moderat omrøring til en temperatur, der er fastlagt som funktion af den ønskede molekylvægt for produktet.The grafting product required for the polymerization is prepared according to the classical polymerization methods in microsuspension. For example, water, vinyl chloride with or without comonomer, an anionic emulsifier and an organo-soluble initiator are used. The monomer (s) is dispersed finely dispersed in the water by mechanical means such as e.g. a colloid mill, a quick gump, a vibration stirrer, or an ultrasonic device. The obtained micro-suspension is then heated under autogenous pressure and moderately stirred to a temperature determined as a function of the desired molecular weight of the product.

Podningsproduktet foreligger i form af en dispersion af polymereller co-polymerpartikler med en diameter på 0,05 - 2 ^um.The grafting product is in the form of a dispersion of polymer or copolymer particles having a diameter of 0.05 - 2 µm.

Til gennemførelse af fremgangsmåden ifølge opfindelsen skal partiklerne af podningsproduktet indeholde den totale nødvendige mængde initiator til polymerisationen. Denne mængde er o,l - 5 vægtprocent i forhold til det polymere podningsprodukt og indføres før polymerisationen af produktet.For carrying out the process of the invention, the particles of the graft product must contain the total amount of initiator required for the polymerization. This amount is about 1 to 5% by weight relative to the polymeric graft product and is introduced prior to polymerization of the product.

Initiatorerne, der er opløselige i de monomere er repræsenteret af organiske peroxider, såsom diacylperoxider, blandt hvilke man kan nævne lauroylperoxid, decanoylperoxid og caproylperoxid.The initiators soluble in the monomers are represented by organic peroxides such as diacyl peroxides, among which may be mentioned lauroyl peroxide, decanoyl peroxide and caproyl peroxide.

Ved polymerisationen ved fremgangsmåden ifølge opfindelsen skal den anvendte mængde podningsprodukt være af en størrelsesorden, således at den polymere, som indeholder det, udgør 0,5 - 10 vægtprocent i forhold til summen af monomer eller monomere, der skal polymeriseres, samt podningspolymer.In the polymerization of the process according to the invention, the amount of grafting product used must be of an order of magnitude such that the polymer containing it constitutes 0.5 to 10% by weight relative to the sum of monomer or monomers to be polymerized and grafting polymer.

Den tilstedeværende mængde initiator i forhold til den tilstedeværende mængde monomer, der skal polymefiseres, er således meget lav sammenlignet med de kendte metoder.Thus, the amount of initiator present relative to the amount of monomer to be polymerized is very low compared to the known methods.

En større mængde podningsprodukt, der giver polymermængder på over 109é kan ligeledes anvendes, men dette har dog kun ringe inter-resse, eftersom mængden af polymer så er meget betydelig i forhold til den eller de monomere, og de ved fremgangsmåden opnåede fordele således minimeres. Det tilstedeværende podningsprodukt i polymerisationsmediet er tilstrækkelig til at sikre en dispersion af den monomere uden, at det er nødvendigt at foretage en ny energikrævende dispersion åf mediet.A greater amount of grafting product which gives polymer quantities in excess of 109e can also be used, but this is of little interest since the amount of polymer is then very significant in relation to the monomer (s) and thus the advantages obtained by the process are minimized. The grafting product present in the polymerization medium is sufficient to ensure dispersion of the monomer without the need for a new energy-consuming dispersion on the medium.

De monomere, der kan copolymeriseres med vinylchlorid, er sådanne, som generelt anvendes ved de klassiske copolymerisationsmetoder 145183 6 for vinylchlorid. Man kan nævne vinylestere af mono- og poly-carboxylsyrer, såsom vinylacetat, -propionat og -benzoat, ali-phatiske, cycloaliphatiske og aromatiske estere samt amider og nitriler af umættede mono- eller polycarboxylsyrer, såsom acryl-syre., methacrylsyre, maleinsyre og fumarsyre, allyl-, vinyl- og vinylidenhalogenider, alkylvinylethere og olefiner. Mængden af comonomer kan udgøre op til 25% af den copolymere.The monomers which can be copolymerized with vinyl chloride are those which are generally used in the classical copolymerization methods for vinyl chloride. Mention may be made of vinyl esters of mono- and poly-carboxylic acids such as vinyl acetate, propionate and benzoate, aliphatic, cycloaliphatic and aromatic esters as well as amides and nitriles of unsaturated mono- or polycarboxylic acids such as acrylic acid, methacrylic acid, maleic acid, maleic acid fumaric acid, allyl, vinyl and vinylidene halides, alkyl vinyl ethers and olefins. The amount of comonomer can make up to 25% of the copolymer.

For at forbedre microsuspensionens stabilitet kan det være en fordel før og/eller i løbet polymerisationen at tilsætte et anio-nisk emulgeringsmiddel i mængder på indtil 2 vægtprocent i forhold til den eller de monomere. Dette emulgeringsmiddel kan være det eller de samme, som anvendes ved fremstillingen af podningsproduktet. Det vælges blandt de klassiske produkter, såsom sæber af fedtsyrer, alkylsulfater, alkylsulfonater, alkylarylsulfonater, alkylsulfosuccinater og alkylphosphater.To improve the stability of the microsuspension, adding an anionic emulsifier in amounts of up to 2% by weight to the monomer (s) may be advantageous before and / or during polymerization. This emulsifier may be the same or the same as used in the preparation of the graft product. It is selected from the classic products such as fatty acid soaps, alkyl sulfates, alkyl sulfonates, alkylarylsulfonates, alkylsulfosuccinates and alkylphosphates.

Dette emulgeringsmiddel kan eventuelt være kombineret med et ikke-ionisk overfladeaktivt middel, som f.eks. kondensater af ethylen-eller propylenoxid med forskellige organiske hydroxylgruppeholdige forbindelser.This emulsifier may optionally be combined with a nonionic surfactant such as e.g. condensates of ethylene or propylene oxide with various organic hydroxyl group-containing compounds.

Den mængde vand, der anvendes ved fremgangsmåden ifølge opfindelsen, bør være en sådan, at vægtforholdet monomer + podningspolymer: vand (indbefattet vand fra podningen) er 0,3 - 1,5.The amount of water used in the process of the invention should be such that the weight ratio of monomer + graft polymer: water (including graft water) is 0.3 - 1.5.

Polymerisationstemperaturen, der er en funktion af kvaliteten af den polymer, som man ønsker at opnå, er i reglen 30 - 70°C.The polymerization temperature, which is a function of the quality of the polymer one wishes to obtain, is usually 30 - 70 ° C.

Fremgangsmåden ifølge opfindelsen er særligt egnet til anvendelse ved kontinuerlig polymerisation som beskrevet i dansk patentskrift nr. 128.499. I dette tilfælde muliggør indførelsen af det komplexdannende middel eller komplexet, at man opretholder en optimal reaktionskinetik, idet man sikrer en konstant høj omdannelsesgrad.The process of the invention is particularly suitable for use in continuous polymerization as described in Danish Patent Specification No. 128,499. In this case, the introduction of the complexing agent or complex allows to maintain optimal reaction kinetics, ensuring a consistently high degree of conversion.

De ved fremgangsmåden ifølge opfindelsen opnåede vinylchlorid-polymere og -copolymere separeres fra polymerisationsmediet på kendt måde, f.eks. ved filtrering, coagulering og frasugning, afskrabning, dekantering efter centrifugering samt forstøvning.The vinyl chloride polymers and copolymers obtained by the process of the invention are separated from the polymerization medium in known manner, e.g. by filtration, coagulation and suction, scraping, decanting after centrifugation and atomization.

145183 7145183 7

De opnåede polymere og copolymere er anvendelige til fremstilling af folier, film, tråde, hule legemer, cellulære materialer, genstande, der er forarbejdede ved kalandrering, extrudering, extras ionsblæsning, sprøjtestøbning og formstøbning samt til opnåelse af overtræk, cellulære materialer samt genstande, der er formgivet ved de kendte metoder under anvendelse af plastisoler, såsom overtrækning, rotationsstøbning og neddypning.The obtained polymers and copolymers are useful for the production of films, films, threads, hollow bodies, cellular materials, articles processed by calendering, extrusion, extrusion blowing, injection molding and molding, and to obtain coatings, cellular materials and articles which is designed by the known methods using plastisols, such as coating, rotational molding and dipping.

Opfindelsen illustreres nærmere ved nedenstående eksempler.The invention is further illustrated by the following examples.

EKSEMPEL 1 I en 25 m^ reaktor, der er forsynet med omrører, indføres 12 000 kg vand, 1200 kg af et podningsprodukt fremstillet ved polymerisation i microsuspension, der har en koncentration på svarende til 400 kg polyvinylchlorid indeholdende 6 kg lauroylperoxid, og hvis middelpartikeldiameter er 0,4 /um, 60 kg natriumdodecylbenzen-sulfonat, o, 5 kg kobbersulfat og 10 000 kg vinylchlorid.Example 1 Into a 25 m 2 reactor equipped with a stirrer is introduced 12,000 kg of water, 1200 kg of a grafting product prepared by microsuspension polymerization having a concentration of 400 kg of polyvinyl chloride containing 6 kg of lauroyl peroxide, and whose mean particle diameter is 0.4 µm, 60 kg sodium dodecylbenzene sulfonate, 0.5 kg copper sulfate and 10,000 kg vinyl chloride.

Blandingen opvarmes til 52°C under autogent tryk, og denne temperatur holdes under hele reaktionstiden.The mixture is heated to 52 ° C under autogenous pressure, and this temperature is maintained throughout the reaction time.

Når mediet har nået 52°C, begynder man tilledningen af en 4 g/liter vandig ascorbinsyre-opløsning. Den tilledte mængde syre er 65 g/time i 5 timer, derpå 45 g/time i 3 timer og endelig 20 g/time til reaktionen er til ende.When the medium has reached 52 ° C, the addition of a 4 g / liter aqueous ascorbic acid solution is started. The amount of acid allowed is 65 g / hr for 5 hours, then 45 g / hr for 3 hours and finally 20 g / hr for the reaction to end.

Efter 9 timer observerer man det trykfald, der er karakteristisk for reaktionsafslutning. Man standser tilledningen af ascorbin-syre og afgasser uomsat monomer.After 9 hours, the pressure drop characteristic of reaction termination is observed. The supply of ascorbic acid and exhaust gas of unreacted monomer is stopped.

Man opnår 22.200 kg af en polymerdispersion, hvis koncentration er 42,2 vægtprocent, svarende til en reel omdannelsesgrad på 89,7 vægtprocent i forhold til den anvendte mængde vinylchlorid.22,200 kg of a polymer dispersion is obtained, the concentration of which is 42.2% by weight, corresponding to a real degree of conversion of 89.7% by weight compared to the amount of vinyl chloride used.

Den tynde polymerhinde på reaktorvæggene udgør kun 0,1 vægtprocent i forhold til den anvendte mængde vinylchlorid.The thin polymer film on the reactor walls is only 0.1% by weight relative to the amount of vinyl chloride used.

145183 8145183 8

De opnåede partiklers middeldiameter er 1,1 ^um. Efter pulverisering og knusning udviser den opnåede polymer et viskositetsindex på 130 bestemt efter den franske norm T 51-013·The mean diameter of the particles obtained is 1.1 µm. After pulverization and crushing, the obtained polymer exhibits a viscosity index of 130 as determined by French standard T 51-013 ·

En plastisol fremstillet ved blanding af 100 vægtdele af den opnåede polyvinylchlorid og 60 vægtdele dioctylphthalat har en viskositet bestemt på Brookfield-viskosimeter type RTV (nål nr. 7-20 o/min) på 20 poise.A plastisol prepared by mixing 100 parts by weight of the obtained polyvinyl chloride and 60 parts by weight of dioctyl phthalate has a viscosity determined on Brookfield viscometer type RTV (needle # 7-20 rpm) of 20 poise.

Til sammenligning har man foretaget forskellige forsøg efter den kendte teknik : A)Polymerisation i ikke-podet og ikke-aktiveret microsusnension.In comparison, various prior art experiments have been performed: A) Polymerization in non-seeded and non-activated microsuspension.

I den samme reaktor som i eksempel 1 indfører man : 12.000 kg vand, 8 kg lauroylperoxid, 100 kg natriumdodecylbenzensulfonat og 10.000 kg vinylchloridoInto the same reactor as in Example 1 are introduced: 12,000 kg of water, 8 kg of lauroyl peroxide, 100 kg of sodium dodecylbenzenesulfonate and 10,000 kg of vinyl chlorido

Blandingen homogeniseres, således at man opnår en microsuspension, hvoraf den organiske fase har en middelgranulometri på 1 /Um. Blandingen opvarmes derpå til 52 C under autogent tryk, og denne temperatur holdes under hele reaktionstiden.The mixture is homogenized to obtain a microsuspension, the organic phase having a mean granulometry of 1 µm. The mixture is then heated to 52 ° C under autogenous pressure, and this temperature is maintained throughout the reaction time.

Reaktionshastigheden er uregelmæssig, meget langsom i begyndelsen, hvorpå den accelererer og i de to sidste timer kræver en maximal afkøling af reaktoren. Efter 18 timer er reaktionen til ende.The reaction rate is irregular, very slow at the beginning, at which it accelerates and during the last two hours requires a maximum cooling of the reactor. After 18 hours, the reaction is over.

Man afgasser uomsat monomer og opnår 20.300 kg af en dispersion med en koncentration på 41 vægtprocent, hvilket svarer til en omdannelsesgrad på 83 vægtprocent i forhold til anvendt vinylchlorid.Unreacted monomer is degassed to obtain 20,300 kg of a dispersion with a concentration of 41% by weight, which corresponds to a degree of conversion of 83% by weight to the vinyl chloride used.

De skorper, der dannes på reaktorvæggene, udgør 1 vægtprocent i forhold til den anvendte mængde vinylchlorid.The crusts formed on the reactor walls constitute 1% by weight of the amount of vinyl chloride used.

Nedenstående diagram viser polymerisationshastighedens udvikling i eksempel 1 (kurve 1) og i forsøg A (kurve 2).The diagram below shows the evolution of polymerization rate in Example 1 (curve 1) and in experiment A (curve 2).

145183 9145183 9

Polymerisations* /Sk hastighed ^ i y> / ' ; / * / « ! TidPolymerisations * / Sk velocity ^ i y> / '; / * / «! Time

Man konstaterer, at selv om den anvendte mængde initiator ved sammenligningsforsøget er højere, så er reaktionstiden dobbelt så lang, omdannelsesgraden lavere og den dannede mængde skorpe ti gange så stor i forhold til fremgangsmåden ifølge opfindelsen.It is found that, although the amount of initiator used in the comparison experiment is higher, the reaction time is twice as long, the degree of conversion lower and the amount of crust formed ten times that of the process of the invention.

B) Polymerisation 1 podet, ikke-aktiveret microsuspension.B) Polymerization 1 grafted, non-activated microsuspension.

Man gentager eksempel 1, idet man dog ikke tilleder kobbersulfat og ascorbinsyre.Example 1 is repeated except that copper sulphate and ascorbic acid are not allowed.

Efter 15 timers reaktion opnår man 22.000 kg af en dispersion med en koncentration på 40,5 vægtprocent, d.v.s. en omdannelsesgrad på 85j1 vægtprocent i forhold til anvendt mængde vinylchlorid.After 15 hours of reaction, 22,000 kg of a dispersion having a concentration of 40.5% by weight, i.e. a degree of conversion of 85 µl by weight compared to the amount of vinyl chloride used.

På reaktorvæggene opsamler man skorper svarende til 0,6 vægtprocent af den anvendte mængde vinylchlorid.Crusts corresponding to 0.6% by weight of the amount of vinyl chloride used are collected on the reactor walls.

De opnåede partiklers middeldiameter er 1,08 yum.The average diameter of the particles obtained is 1.08 µm.

Ved sammenligning med eksempel 1 konstaterer man, at aktiveringen af initiatoren ved fremgangsmåden ifølge opfindelsen muliggør en gennemførelse af reaktionen på 9 timer i stedet for 15 timer, en hævning af omdannelsesgraden med 4% og en 6 gange så lille skorpedannelse .By comparison with Example 1, it is found that the activation of the initiator by the process of the invention allows for the reaction of 9 hours instead of 15 hours, an increase of the conversion rate by 4% and a 6 times less crust formation.

C) Polymerisation i ikke-podet og ikke-aktiveret microsuspension i nærværelse af initiatorer med hurtig dekomponering.C) Polymerization in non-seeded and non-activated microsuspension in the presence of fast decomposition initiators.

145183 10 I en 120 liters autoklav forsynet med omrører fyldes: 60 kg vand, 0,l60 kg lauroylperoxid, 0,120 kg isopropylpercarbonat, 0,4 kg natriumdodecylbenzensulfonat og 40 kg vinylchlorid.Into a 120 liter autoclave equipped with stirrer is charged: 60 kg of water, 0.1 kg of lauroyl peroxide, 0.120 kg of isopropyl percarbonate, 0.4 kg of sodium dodecylbenzenesulfonate and 40 kg of vinyl chloride.

Man homogeniserer blandingen til opnåelse af en microsuspension, hvor den organiske fase har en middelgranulometri på 1 ^um.The mixture is homogenized to obtain a microsuspension where the organic phase has an average granulometry of 1 µm.

Blandingen opvarmes derpå til 52°C under autogent tryk, og denne temperatur holdes under hele reaktionstiden.The mixture is then heated to 52 ° C under autogenous pressure, and this temperature is maintained throughout the reaction time.

Efter 12 timers reaktion opnår man en grov dispersion indeholdende store mængder koagulat. Yderligere udgør de dannede skorper på reaktorvæggene 30% af den anvendte mængde monomer.After 12 hours of reaction, a coarse dispersion containing large amounts of coagulate is obtained. Further, the formed crusts on the reactor walls make up 30% of the amount of monomer used.

EKSEMPEL 2EXAMPLE 2

Man gentager eks. 1 med et podningsprodukt, hvori partiklerne har en middeldiameter på 0,25 yUm, og man polymeriserer ved 42° C.Example 1 is repeated with a grafting product in which the particles have a mean diameter of 0.25 µm and polymerized at 42 ° C.

Efter 12 timer opnår man 22.100 kg af en polymer dispersion med en koncentration på 42,4 vægt-%, svarende til en reel omdannelsesgrad på 89,7 vægt-% i forhold til den anvendte mængde vinylchlorid.After 12 hours, 22,100 kg of polymer dispersion is obtained with a concentration of 42.4% by weight, corresponding to a real degree of conversion of 89.7% by weight with respect to the amount of vinyl chloride used.

De opnåede partiklers middeldiameter er 0,6 jam.The mean diameter of the particles obtained is 0.6 µm.

Den polymere har et viskositetsindex på 180.The polymer has a viscosity index of 180.

En plastisol fremstillet ved blanding af 100 vægtdele af den opnåede polyvinylchlorid og 60 vægtdele dioctylphthalat har en viskositet på 75 poise.A plastisol made by mixing 100 parts by weight of the polyvinyl chloride obtained and 60 parts by weight of dioctyl phthalate has a viscosity of 75 poise.

EKSEMPEL 3EXAMPLE 3

Man går frem som i eks. 1, idet man erstatter de 10.000 kg vinylchlorid med 9-300 kg vinylchlorid og 700 kg vinylacetat.Proceed as in Example 1, replacing the 10,000 kg vinyl chloride with 9-300 kg vinyl chloride and 700 kg vinyl acetate.

145183 11145183 11

Efter ni en halv times reaktion opnår man 22.400 kg af en copolymer-dispersion indeholdende 4,9% vinylacetat, hvis koncentration er 42,6 vægt-%, svarende til en reel omdannelsesgrad på 91,4 vægt-% i forhold til de anvendte mængder monomere.After nine and a half hours of reaction, 22,400 kg of a copolymer dispersion containing 4.9% vinyl acetate, the concentration of which is 42.6% by weight, is obtained, corresponding to a real degree of conversion of 91.4% by weight with respect to the quantities used. monomers.

De opnåede partiklers middeldiameter er l,lyum.The mean diameter of the particles obtained is l, lyum.

Den copolymere har et viskositetsindex på 130. En plastisol fremstillet ved hlanding af 100 vægtdele af den opnåede copolymer og 60 vægtdele dioctylphthalat har en viskositet på 30 poise og en geleringstemperatur på 144° C, bestemt efter metoden beskrevet af Heinrichs i Modern Plastics - april ig64 - side 165.The copolymer has a viscosity index of 130. A plastisol made by mixing 100 parts by weight of the copolymer obtained and 60 parts by weight of dioctyl phthalate has a viscosity of 30 poise and a gelation temperature of 144 ° C, determined by the method described by Heinrichs in Modern Plastics - April ig64 - page 165.

EKSEMPEL 4 I den samme reaktor som i eks. 1 indføres 12.600 kg vand, 1.070 kg af et podningsprodukt med en koncentration på 39%, svarende til 417,3 kg polyvinylchlorid indeholdende 6,3 kg lauroylperoxid, og hvis middelpartikeldiameter er 0,4yUm, 84 kg natriumdodecylbenzen-sulfonat, 8.400 kg vinylchlorid og 0,42 kg kobbersulfat.EXAMPLE 4 In the same reactor as in Example 1, 12,600 kg of water, 1,070 kg of a grafting product having a concentration of 39%, corresponding to 417.3 kg of polyvinyl chloride containing 6.3 kg of lauroyl peroxide and whose average particle diameter is 0.4 µm, are introduced. 84 kg of sodium dodecylbenzene sulfonate, 8,400 kg of vinyl chloride and 0.42 kg of copper sulfate.

Man opvarmer blandingen til 52° C og indfører progressivt 840 g dihydroxymaleinsyre i løbet af 12 timer i mængder på 105 g/time i 4 timer, derpå 65 g/time i 4 timer og endelig 40 g/time i 4 timer.The mixture is heated to 52 ° C and progressively introduced 840 g of dihydroxymaleic acid over 12 h at 105 g / h for 4 h, then 65 g / h for 4 h and finally 40 g / h for 4 h.

Man opnår 20.970 kg af en polymerdispersion med en koncentration på 36,9%, svarende til en omdannelsesgrad på 87,1 vægt-% i forhold til den anvendte mængde monomer. På reaktorvæggene opsamler man en tynd hinde, der repræsenterer 0,12 vægt-% af den anvendte mængde vinylchlorid. De opnåede partiklers middeldiameter er l,lyum.20,970 kg of a polymer dispersion is obtained with a concentration of 36.9%, corresponding to a degree of conversion of 87.1% by weight to the amount of monomer used. A thin film representing 0.12% by weight of the vinyl chloride used is collected on the reactor walls. The mean diameter of the particles obtained is l, lyum.

EKSEMPEL 5EXAMPLE 5

Eksempel 4 gentages, idet man erstatter dihydroxymaleinsyre· med ravsyre. Efter 14 timers reaktion opnår man 21.070 kg af en polymerdispersion med en koncentration på 37%, svarende til en omsætningsgrad på 87,8%. Vægten af skorperae udgør kun 0,15 vægt-% af den anvendte mængde vinylchlorid.Example 4 is repeated, replacing dihydroxymaleic acid with succinic acid. After 14 hours of reaction, 21,070 kg of polymer dispersion is obtained with a concentration of 37%, corresponding to a conversion rate of 87.8%. The weight of the crust is only 0.15% by weight of the amount of vinyl chloride used.

Partiklernes middeldiameter er l,08^im.The mean diameter of the particles is 1.08 µm.

145183 12 EKSEMPEL 6EXAMPLE 6

Man går frem som i eks. 4, idet man dog erstatter kobbersulfat og dihydroxymaleinsyre med 840 g vanadium-acetylacetonat.Proceed as in Example 4, however, replacing copper sulfate and dihydroxymaleic acid with 840 g of vanadium acetylacetonate.

Dette indføres progressivt i reaktionsmediet ved 52° C i 12 1/2 time i mængder på 105 g/time i 4 timer, derpå 65 g/kg i 4 timer og endelig 40 g/kg i 4 1/2 time.This is progressively introduced into the reaction medium at 52 ° C for 12 1/2 hours at 105 g / h for 4 h, then 65 g / kg for 4 h, and finally 40 g / kg for 4 1/2 h.

Man opnår 20.870 kg af en polymerdispersion, hvis koncentration er 36,5%, svarende til en omdannelsesgrad på 85»5%. Skorperne repræsenterer 0,18 vægt-% af den anvendte monomer.20,870 kg of a polymer dispersion is obtained, the concentration of which is 36.5%, corresponding to a conversion rate of 85 »5%. The crusts represent 0.18% by weight of the monomer used.

Partiklernes middeldiameter er l,09yu.m.The mean diameter of the particles is 1, 09yu.m.

EKSEMPEL 7EXAMPLE 7

Man har gennemført adskillelige forsøg med forskellige aktiveringsmidler under følgende betingelser: I en glasflaske på 200 ml indføres, efter at man har udpumpet flasken og derpå gennemblæst den med gasformig vinylchlorid :Several tests have been carried out with various activating agents under the following conditions: Insert into a 200 ml glass bottle after pumping the bottle out and then blowing it with gaseous vinyl chloride:

Deioniseret vand 60 mlDeionized water 60 ml

Et podningsprodukt fremstillet ved polymerisation i microsuspension med . en koncentration på 3^,9%, svarende til 3 g polyvinylchlorid indeholdende 0,04 g lauroylperoxid, og hvis middelpart ikeldiamet er er 0,4yum 10,5 gA grafting product prepared by polymerization in microsuspension with. a concentration of 3%, 9%, corresponding to 3 g of polyvinyl chloride containing 0.04 g of lauroyl peroxide, and the mean part diameter of which is 0.4 µm 10.5 g

Natriumdodecylbenzensulfonat 0,18 gSodium dodecylbenzenesulfonate 0.18 g

Vinylchlorid 30 gVinyl Chloride 30 g

Et aktiveringsmiddel bestående enten_c af 10 x 10“-3 mol metalsalt og 5 x 10 5 mol komplexdannende middel eller af 10 x 10--3 mol forudfremstillet metal-komplex.An activating agent consisting either of 10 x 10 3 -3 moles of metal salt and 5 x 10 5 moles of complexing agent or of 10 x 10 3 moles of preformed metal complex.

Flasken lukkes hermetisk, placeres i et termostateret bad ved 52° C og rystes. Dette fortsætter i 5 timer, hvorpå flasken afkøles, af-gasses, vandet afdampes til opnåelse af den dannede polymer.The bottle is hermetically sealed, placed in a thermostated bath at 52 ° C and shaken. This continues for 5 hours, after which the bottle is cooled, degassed, the water evaporated to obtain the polymer formed.

De forskellige aktiveringsmidler samt de opnåede resultater er anført i nedenstående tabel.The various activating agents as well as the results obtained are listed in the table below.

t45133 13t45133 13

TABELTABLE

Forsøg Metalsalt Koraplexdannende middel Polymer vægtpct.Experiment Metal Salt Coraplexing Agent Polymer Weight Percent.

i forhold til vinylchloridrelative to vinyl chloride

A (sammen- n n RA (together n R

lignende) 0 0 °’8 B kobbersulfat sulfosalicylsyre 16 C " napht hensyre 3 D " octansyre 3 E " ravsyre 4,4 F " vinsyre 16 G " maleinsyreanhydrid 4,1 H " bis-(2-ethyl)-hexyl- 10,2 phosphorsyre I " ascorbinsyre 23 J " ^-butyrolacton 14 K " benzoin 2,8 L " diphenylthiocarbazon 3 M jernsulfat ascorbinsyre 23 N nikkelsulfat " 20 0 zinksulfat " 25 P vanadinsulfat " 59 Q mangansulfat " 12 R chromsulfat n 23 S tinchlorid ?t 33 T cobaltnitrat " 10 U sølvnitrat " 8,6 V titanacetylacetonat 1,3 W chromacetylacetonat 6,6 X nikkelacetylacetonat 6,9similar) 0 0 ° 8 B copper sulfate sulfosalicylic acid 16 C "naphthic acid 3 D" octanoic acid 3 E "succinic acid 4.4 F" tartaric acid 16 G "maleic anhydride 4.1 H" bis- (2-ethyl) -hexyl-10, 2 phosphoric acid I "ascorbic acid 23 J" -butyrolactone 14 K "benzoin 2.8 L" diphenylthiocarbazone 3 M iron sulfate ascorbic acid 23 N nickel sulphate "20 0 zinc sulphate" 25 P vanadium sulphate "59 Q manganese sulphate" 12 R chromium sulphate n 23 S tin chloride? 33 T Cobalt Nitrate "10 U Silver Nitrate" 8.6 V Titanium Acetyl Acetonate 1.3 W Chromium Acetyl Acetonate 6.6 X Nickel Acetyl Acetonate 6.9

Tabellen viser klart aktiveringsmidlernes indvirkning på igangsætningen af polymerisationen.The table clearly shows the effect of the activating agents on the initiation of the polymerization.

DK302574A 1973-06-08 1974-06-06 PROCEDURE FOR THE PREPARATION OF POLYMERS OR COPOLYMERS OF VINYL CHLORIDE IN INSULATED MICROSUSPENSION DK145183C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR7320882 1973-06-08
FR7320882A FR2234321B1 (en) 1973-06-08 1973-06-08

Publications (3)

Publication Number Publication Date
DK302574A DK302574A (en) 1975-02-03
DK145183B true DK145183B (en) 1982-09-27
DK145183C DK145183C (en) 1983-02-21

Family

ID=9120689

Family Applications (1)

Application Number Title Priority Date Filing Date
DK302574A DK145183C (en) 1973-06-08 1974-06-06 PROCEDURE FOR THE PREPARATION OF POLYMERS OR COPOLYMERS OF VINYL CHLORIDE IN INSULATED MICROSUSPENSION

Country Status (17)

Country Link
JP (1) JPS5137232B2 (en)
AT (1) AT328735B (en)
BE (1) BE815984A (en)
CA (1) CA1025149A (en)
CH (1) CH585769A5 (en)
DE (1) DE2427385B2 (en)
DK (1) DK145183C (en)
ES (1) ES427000A1 (en)
FI (1) FI57959C (en)
FR (1) FR2234321B1 (en)
GB (1) GB1435425A (en)
IE (1) IE39407B1 (en)
IT (1) IT1013397B (en)
LU (1) LU70259A1 (en)
NL (1) NL162933C (en)
NO (1) NO145661C (en)
SE (1) SE415356B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3882195A (en) * 1973-05-16 1975-05-06 Air Prod & Chem Pre-emulsification-delayed initiation suspension pearl polymerization process
FR2309569A1 (en) * 1975-04-30 1976-11-26 Rhone Poulenc Ind Microsuspension polymerisation of PVC - in presence of previously prepd. latex as mucleating agent
DE2702053A1 (en) * 1977-01-19 1978-07-20 Bayer Ag PRODUCTION OF COPOLYMERISATES FROM ACRYLIC NITRILE AND VINYL CHLORIDE
JPS5595074A (en) * 1979-01-13 1980-07-18 Kyoei Zoki Kk Crushed ice storage vessel
EP0038634B1 (en) * 1980-04-21 1984-09-12 Imperial Chemical Industries Plc Vinyl chloride microsuspension polymerisation process
EP0094160B1 (en) * 1982-05-06 1986-07-16 Imperial Chemical Industries Plc Vinyl chloride polymerisation process
SE8503507L (en) * 1985-07-17 1987-01-18 Kenobel Ab SET FOR POLYMERIZATION OF VINYL CHLORIDE
FR2607138B1 (en) * 1986-11-24 1990-05-04 Atochem PROCESS FOR THE PREPARATION OF VINYL CHLORIDE IN SOMETHING MICROSUSPENSION AND COPOLYMERS
JPS63120064U (en) * 1987-01-28 1988-08-03
ES2116404T5 (en) 1992-02-13 2002-02-01 Europ Vinyls Corp Technology A POLYMERIZATION PROCEDURE
DE19841510A1 (en) * 1998-09-11 2000-03-16 Bayer Ag Polymerization process for the production of cross-linked copolymers

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2473549A (en) * 1947-10-11 1949-06-21 Goodrich Co B F Method of polymerizing vinylidene compounds in aqueous medium in the presence of silver ion and oxalate ion
GB895153A (en) * 1957-09-26 1962-05-02 Kureha Kasei Co Ltd Process for the production of vinyl polymers
US3255164A (en) * 1961-05-25 1966-06-07 Dow Chemical Co Redox polymerization incorporating step of dissolving reducing agent in monomer
US3281497A (en) * 1962-12-05 1966-10-25 Union Oil Co Transition metal salts of complex carboxylic acids as promoters of polymerization
GB978875A (en) * 1963-03-29 Ici Ltd
DE1213119B (en) * 1963-08-01 1966-03-24 Dynamit Nobel Ag Process for the polymerization or copolymerization of vinyl chloride
FR1485547A (en) * 1966-01-19 1967-06-23 Pechiney Saint Gobain Continuous process of polymerization of vinyl chloride
FR1512417A (en) * 1966-12-22 1968-02-09 Pechiney Saint Gobain Process for the preparation in suspension of polymers and copolymers based on vinyl chloride in the presence of a titanium-based catalytic system and resulting products
US3523111A (en) * 1967-08-18 1970-08-04 Monsanto Co Emulsion polymerization of vinyl chloride with redox initiator system components and emulsifier prepared before monomer addition
FR2044364A5 (en) * 1969-05-19 1971-02-19 Pechiney Saint Gobain
DE2006966C3 (en) * 1970-02-16 1982-08-26 Wacker-Chemie GmbH, 8000 München Process for the polymerization of vinyl chloride in an aqueous emulsion
FR2086635A5 (en) * 1970-04-03 1971-12-31 Pechiney Saint Gobain Vinyl chloride polymers - by aqs emulsion polymerisation in reaction medium contg an emulsifier, org peroxide and reducing age
FR2086634A5 (en) * 1970-04-03 1971-12-31 Pechiney Saint Gobain Vinyl chloride polymers - by low temp polymerisation in aqs emulsion with redox catalyst system one component which is added
DE2335930C2 (en) * 1972-07-18 1986-05-28 Fabio Lucca Perini Winding machine for winding a paper web, e.g. toilet paper web or the like.
GB1458367A (en) * 1973-06-08 1976-12-15 Ici Ltd Vinyl chloride polymerisation process
HU173513B (en) * 1975-04-30 1979-05-28 Rhone Poulenc Ind Process for the polymerization of vinylchloride in grafted microsuspension

Also Published As

Publication number Publication date
DE2427385A1 (en) 1974-12-19
DK145183C (en) 1983-02-21
NO145661B (en) 1982-01-25
FR2234321B1 (en) 1976-06-11
BE815984A (en) 1974-12-06
FI57959B (en) 1980-07-31
JPS5137232B2 (en) 1976-10-14
FR2234321A1 (en) 1975-01-17
IT1013397B (en) 1977-03-30
NL7407592A (en) 1974-12-10
IE39407L (en) 1974-12-08
NO742045L (en) 1975-01-06
ES427000A1 (en) 1976-07-16
SE7407483L (en) 1974-12-09
DE2427385C3 (en) 1987-04-16
NO145661C (en) 1982-05-05
FI172674A (en) 1974-12-09
LU70259A1 (en) 1975-03-06
JPS5033275A (en) 1975-03-31
AT328735B (en) 1976-04-12
GB1435425A (en) 1976-05-12
NL162933C (en) 1980-07-15
FI57959C (en) 1980-11-10
ATA470474A (en) 1975-06-15
DE2427385B2 (en) 1979-06-07
DK302574A (en) 1975-02-03
IE39407B1 (en) 1978-09-27
SE415356B (en) 1980-09-29
CA1025149A (en) 1978-01-24
CH585769A5 (en) 1977-03-15

Similar Documents

Publication Publication Date Title
US4091197A (en) Process for polymerization of vinyl chloride micro-suspension with metal compounds
DK148712B (en) PROCEDURE FOR THE PREPARATION OF VINYL-CHLORIDE HOMO OR COPOLYMER INAURVES OF A MICROSUSPENSION ORGANIC PRODUCT
US4360651A (en) Process for preparing spherical and porous vinyl resin particles
US3980603A (en) Microsuspension polymerization process to yield vinyl halide polymer latex involving delayed addition of bulk monomer mix
DK145183B (en) PROCEDURE FOR THE PREPARATION OF POLYMERS OR COPOLYMERS OF VINYL CHLORIDE IN INSULATED MICROSUSPENSION
USRE25763E (en) Polymerization catalyst for vinyl chloride
US6245848B1 (en) Bipopulated latex based on vinyl chloride polymers having a high population level of fine particles, processes for the manufacture thereof and applications thereof
US3882195A (en) Pre-emulsification-delayed initiation suspension pearl polymerization process
JPS5838704A (en) Manufacture of vinyl chloride polymer and copolymer and method of decreasing viscosity of dispersion comprising pasty vinyl chloride polymer and copolymer
NO160924B (en) PROCEDURE FOR THE PREPARATION OF VINYL CHLORIDE POLYMES WHICH CAN BE DISPERSED TO PLASTISOL.
US4331788A (en) Process of polymerizing vinyl chloride in seeded microsuspension
FI61706B (en) FOERFARANDE FOER POLYMERISERING AV VINYLKLORID I MIKROSUSPENSION I VILKEN INGAOR YMPMEDEL SAMT SAO FRAMSTAELLD LATEX
US6297316B1 (en) Bipopulated latex of polymers based on vinyl chloride, processes for the production thereof and application thereof in plastisols exhibiting improved rheology
US4310649A (en) Process for production of vinyl chloride polymer using alcohols
US4098978A (en) Process for emulsion polymerization of vinylidene halides and product thereof
US6433060B1 (en) Vinyl chloride-based polymers capable of giving plastisols having specific properties, and process for obtaining them
US3917548A (en) Process for the suspension polymerization of polyvinyl chloride
US3663482A (en) Aqueous suspension polymerisation process for vinyl halides
US5872155A (en) Latex based on vinyl chloride copolymers with a specific structure, process for the manufacture thereof and applications thereof
KR930003103B1 (en) Process for the preparation of vinyl chloride homo and copolymers in seeded microsuspension
US3544539A (en) Process for the suspension polymerization of vinyl chloride
US3558566A (en) Mixed polymerizates from vinyl chloride and fumaric acid esters and process for their preparation
US3029229A (en) Suspension polymerization of vinyl chloride in the presence of higher aliphatic unsaturated alcohols
NO824034L (en) PROCEDURE FOR PREPARING AND USING POLYMERS AND COPOLYMERS OF VINYL CHLORIDE
US3480602A (en) Polymerisation process