DK141101B - Process for Continuous Polymerization of Ethylene. - Google Patents

Process for Continuous Polymerization of Ethylene. Download PDF

Info

Publication number
DK141101B
DK141101B DK386673AA DK386673A DK141101B DK 141101 B DK141101 B DK 141101B DK 386673A A DK386673A A DK 386673AA DK 386673 A DK386673 A DK 386673A DK 141101 B DK141101 B DK 141101B
Authority
DK
Denmark
Prior art keywords
hydrogen
ethylene
catalyst
rate
mfi
Prior art date
Application number
DK386673AA
Other languages
Danish (da)
Other versions
DK141101C (en
Inventor
John Walker
Denis George Harold Ballard
Peter Anthony Robinson
Eric Jones
Alexander Joseph Peter Pioli
Ronald John Wyatt
Original Assignee
Ici Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ici Ltd filed Critical Ici Ltd
Publication of DK141101B publication Critical patent/DK141101B/en
Application granted granted Critical
Publication of DK141101C publication Critical patent/DK141101C/da

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/28Titanium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Polymerisation Methods In General (AREA)
  • Polymerization Catalysts (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

U1101U1101

Den foreliigende opfindelse angår en fremgangsmåde til kontinuerlig polymerisation af ethylen, ved hvilken en gasblanding af ethylen og hy— drogen ved et totaltryk på højst 40 kg/cm i en polymerisationSreak-tor bringes i kontakt med et katalysatortnateriale, som er omsætningsproduktet af et overgangsmetalkompleks med den almene formel MR^· med , findelt aluminiumoxid eller siliciumocid, som er fri for adsorberet -vand/ hvor M er et overgangsmetal fra grupperne IVA i det periodiske system, vanadin eller chrom, R er en hydrocarbongruppe eller substitueret hydrocarbongruppe, og m er et helt tal med en værdi lig med valensen af metallet M.The present invention relates to a process for the continuous polymerization of ethylene, in which a gas mixture of ethylene and the hydrogen at a total pressure of not more than 40 kg / cm in a polymerization reactor is contacted with a catalyst material which is the reaction product of a transition metal complex with the general formula MRI with finely divided alumina or silicon oxide which is free of adsorbed water / where M is a transition metal from the groups IVA of the periodic table, vanadium or chromium, R is a hydrocarbon group or substituted hydrocarbon group, and m is a integer with a value equal to the valence of the metal M.

I britisk patentskrift nr. 1.314.828 beskrives en fremgangsmåde til polymerisation eller copolymerisation af olefinisk umættede monomere, ved hvilken monomeren bringes i kontakt med en initiator, som omfatter et . overgangsmetalmateriale, der er reaktionsproduktet af omsætning af et overgangsmetalkompleks med den almene fomel R MX m p med et i alt væsentligt indifferent matrixmateriale med en hydroxyl-holdig overflade, som er fri for adsorberet vand, hvori M er et over- -gangsmetal fra grupperne IVA - VIA i det periodiske system, fortrins- _ vis gruppen IVA, R er en hydrocarbongruppe eller substitueret hydrocarbongruppe, X er en monovalent ligand, og m og p er hele tal, idet, m har en værdi fra 2 til metallet M's største valens,og p har en vær-, di fra 0 indtil 2 mindre end valensen af metallet M. Hidtil ukendte overgangsmetalforbindelser, som anvendes ved denne fremgangsmåde, er også omhandlet i nævnte britiske patentskrift. 1 denne forbindelse anvendes betegnelsen "hydroxylholdig overflade" til at betegne et stort antal -OH-grupper, der er knyttet til matrix-materialets overflade, idet hydrogenatomet i OH-gruppen er i stand til at virke som en protonkilde, d.v.s., at det har en sur funktion.British Patent Specification No. 1,314,828 discloses a process for polymerization or copolymerization of olefinically unsaturated monomers in which the monomer is contacted with an initiator comprising one. transition metal material, which is the reaction product of reacting a transition metal complex with the general fomel R MX mp with a substantially inert matrix material with a hydroxyl-containing surface free of adsorbed water, wherein M is a transition metal of the groups IVA - VIA of the periodic system, preferably group IVA, R is a hydrocarbon group or substituted hydrocarbon group, X is a monovalent ligand, and m and p are integers, m having a value of 2 to the metal's largest valence, and p has a value di from 0 to 2 less than the valence of the metal M. New transient metal compounds used in this process are also disclosed in said British patent. In this connection, the term "hydroxyl-containing surface" is used to denote a large number of -OH groups attached to the surface of the matrix material, the hydrogen atom of the OH group being able to act as a proton source, i.e., having an acidic feature.

Et sådant materiale vil være "i alt væsentligt, indifferent", idet hovedmassen af matrixmaterlalet, skønt nævnte -OH-grupper er i stand til at rea- , 2Such a material will be "substantially inert," in that the bulk of the matrix material, although said -OH groups are capable of reacting,

Ut101 gere med f.eks. overgangsmetalhydrocarbylkonplekset,er kemisk indifferent. Særlig gode eksempler på sådanne materialer er siliciumdioxid og aluminiumoxid eller blandinger deraf. Disse omfatter en matrix af silicium eller aluminium og oxygenatomer, til hvis overflade -OH-grupperne er knyttet, idet hydrogenatomerne i nævnte grupper har en sur funktion.Ut101 tools with e.g. the transition metal hydrocarbyl complex is chemically inert. Particularly good examples of such materials are silica and alumina or mixtures thereof. These comprise a matrix of silicon or aluminum and oxygen atoms to which the surface -OH groups are attached, the hydrogen atoms of said groups having an acidic function.

Bortset fra tilstedeværelsen af disse -OH-grupper, anses silicium= dioxid Og aluminiumoxid imidlertid i almindelighed for kemisk-indifferente. , Når den ovenfor nævnte fremgangsmåde anvendes til at polymerisere ethylen, er produktet almindeligvis en polyethylen med meget høj molekylvægt, som nødvendiggør anvendelsen af kædeoverføringsmidler, hvis der skal fremstilles polymere med kcranercielt attraktive smeltestrømningsindekser (MFI), d.v.s. fra 0,005 - 10. Et foretrukket kædeoverføringsmiddel er hydrogen, således scm beskrevet og eksemplificeret i ovennævnte britiske patentskrift nr. 1.314.828.However, apart from the presence of these -OH groups, silicon = dioxide and alumina are generally considered chemically inert. When the above method is used to polymerize ethylene, the product is generally a very high molecular weight polyethylene which requires the use of chain transfer agents to produce polymers with cranercially attractive melt flow indices (MFIs), i.e. from 0.005 to 10. A preferred chain transfer agent is hydrogen, as described and exemplified in the aforementioned British Patent Specification No. 1,314,828.

Når der anvendes hydrogenmodifikation ved sådanne polymerisationer, vil MFI af den fremstillede polyethylen for en given polymerisationshastighed afhænge af hydrogen/ethylenforholdet i reaktoren. Det har hidtil været almindelig I praksis at arbejde under betingelser med maksimal mulig katalysatoraktivitet (med henblik på at holde katalysatorrester på et minimum) og at regulere MFI af produktet ved kontinuerligt at indstille ethylen/hydrogenforholdet til en værdi passende til den for tiden herskende polymerisationshastighed. Denne metode kan imidlertid forårsage kompliceret processtyring.When hydrogen modification is used in such polymerizations, the MFI of the polyethylene produced for a given polymerization rate will depend on the hydrogen / ethylene ratio in the reactor. So far, it has been common practice to operate under conditions of maximum possible catalyst activity (to minimize catalyst residues) and to regulate the MFI of the product by continuously adjusting the ethylene / hydrogen ratio to a value appropriate to the currently prevailing polymerization rate. However, this method can cause complicated process control.

Det har nu vist sig, at kombinationen af høj katalysatoraktivitet og stor tolerance for resulterende katalysatorrester ved anvendelse af visse af nærværende katalysatorer i hydrogenmodificerede ethylen= polymerisationsmetoder, gør det muligt at holde ethylen/hydrogenforholdet konstant på en forudbestemt værdi og at regulere tilførselshastigheden for katalysator til styring af polymerisationshastigheden. Under disse betingelser er MFI af produktet overvejende en funktion af hydrogen/ethylenforholdet og holdes således på en konstant værdi. Dette resulterer i en forenkling af styringen af fremgangsmåden, hvad enten den sker manuelt eller automatisk.It has now been found that the combination of high catalyst activity and high tolerance of resulting catalyst residues using certain of these catalysts in hydrogen-modified ethylene polymerization methods allows the ethylene / hydrogen ratio to be kept constant at a predetermined value and to adjust the catalyst feed rate to controlling the rate of polymerization. Under these conditions, the MFI of the product is predominantly a function of the hydrogen / ethylene ratio and thus is kept at a constant value. This results in a simplification of the control of the method, either manually or automatically.

3 U11013 U1101

Ifølge den foreliggende opfindelse angives en fremgangsmåde til kontinuerlig polymerisation af ethylen, ved hvilken en gasblanding af 2 ethylen og hydrogen ved et totaltryk på højst 40 kg/cm i en polymerisationsreaktor bringes i kontakt med et katalysatormateriale, son er reaktionsproduktet fra omsætning af et overgangsmetalkompleks med den almene formel MR^ med findelt aluminiumoxid eller siliciumdioxid, som er fri for adsorberet vand, hvor M er et overgangsmetal fra ' gruppe IVA i det periodiske system, vanadium eller chrom, R er en hydrocarbongruppe eller substitueret hydrocarbongruppe, og m er et helt tal med en værdi lig med valensen af metallet M, hvilken fremgangsmåde er ejendommelig ved, at hydrogen/ethylenforholdet i gas*1 fasen i reaktoren måles kontinuerligt og holdes ved" en forudbestemt vær4* di i anrådet 10/1 til 0,1A, fortrinsvis 5A til 0,5/1, og at tilførelshastighe-den for katalysatormaterialet til polymerisationsreaktoren reguleres således, at polymerisationshastigheden holdes konstant.According to the present invention there is disclosed a process for continuous polymerization of ethylene in which a gas mixture of 2 ethylene and hydrogen is contacted with a catalyst material at a total pressure of not more than 40 kg / cm, which is the reaction product from reaction of a transition metal complex with the general formula MRI with finely divided alumina or silica free of adsorbed water, where M is a transition metal from Group IVA of the Periodic Table, vanadium or chromium, R is a hydrocarbon group or substituted hydrocarbon group, and m is an integer having a value equal to the valence of the metal M, characterized in that the hydrogen / ethylene ratio in the gas * 1 phase of the reactor is continuously measured and maintained at "a predetermined value 4 * di in the range 10/1 to 0.1A, preferably 5A to 0.5 / 1 and that the feed rate of the catalyst material to the polymerization reactor is controlled so that the polymerization rate one is held constant.

(Alle henvisninger til det periodiske system refererer til den version af det periodiske system, som er trykt på indersiden af bagomslaget af "Advanced Inorganic Chemistry" af F A Cotton og G Wilkinson, 2. Edition, Interscience Publishers, 1966).(All references to the Periodic Table refer to the version of the Periodic Table which is printed on the inside cover of "Advanced Inorganic Chemistry" by F A Cotton and G Wilkinson, 2nd Edition, Interscience Publishers, 1966).

Velegnede hydrocarbongrupper R, som kan være ens eller forskellige, omfatter alkyl-, alkenylgrupper (omfattende ττ-alkenylgrupper, såsom ττ-allyl) og cyclopentadienylgrupper eller substituerede derivater deraf. En foretrukken klasse hydrocarbongrupper er imidlertid substitueret methyl med den almene formel -CHL/Y, hvor Y kan være en aromatisk eller polyaromatisk gruppe, såsom phenyl eller naphthyl eller et ringsubstitueret derivat, såsom p-methylphenyl. Y kan endvidere omfatte en gruppe med den almene formel ZfR1),, hvor Z an- 1 > giver silicium, germanium, tin eller bly, og R angiver en hydrocar= bongruppe eller hydrogen. Z er fortrinsvis silicium.Suitable hydrocarbon groups R, which may be the same or different, include alkyl, alkenyl groups (comprising ττ-alkenyl groups such as ττ-allyl) and cyclopentadienyl groups or substituted derivatives thereof. However, a preferred class of hydrocarbon groups is substituted methyl of the general formula -CHL / Y, where Y may be an aromatic or polyaromatic group such as phenyl or naphthyl or a ring-substituted derivative such as p-methylphenyl. Y may further comprise a group of the general formula ZfR1, where Z denotes silicon, germanium, tin or lead, and R denotes a hydrocarbon group or hydrogen. Z is preferably silicon.

Selvom egnede overgangsmetaller omfatter titan, zircon, hafnium, chrom og vanadin, foretrækkes forbindelserne af metallerne i gruppe IVA. Det gælder især zirconiumtetrabenzyl, der har en meget høj katalytisk aktivitet, idet den rest, som forbindelsen danner, er farveløs 4 U1101 og har en overordentlig lav toksicitet. Det vil fremgå, at alle de ovenfor definerede overgangsmetalkomplekser er halogenidfri, og at katalysatorresterne, som de danner, saledes er ikke-korroderende.Although suitable transition metals include titanium, zircon, hafnium, chromium and vanadium, the compounds of the Group IVA metals are preferred. This is especially true for zirconium tetrabenzyl, which has a very high catalytic activity, the residue which the compound forms is colorless 4 U1101 and has an extremely low toxicity. It will be appreciated that all the transition metal complexes defined above are halide free and that the catalyst residues they form are thus non-corrosive.

Eksempler på velegnede overgangsmetalkomplekser er zircontetra-(benzyl), zircontetrakis(trimethylsilylmethylen), titantetra(benzyl), zircon- og titantetrakis(l-methylen-l-naphthyl) og chromtris(tri= methylsilylmethylen).Examples of suitable transition metal complexes are zircon tetra (benzyl), zircon tetrakis (trimethylsilylmethylene), titanium tetra (benzyl), zircon and titanium tetrakis (1-methylene-1-naphthyl) and chromis (tri = methylsilylmethylene).

Fra tysk offentliggørelsesskrift nr. 2.040.353 kendes en fremgangsmåde til kontinuerlig polymerisation af ethylen af den indledningsvis angivne art, ved hvilken fremgangsmåde det forholder sig således, at uanset om ethylen/hydrogenforholdet ville være konstant under stationære betingelser, ville man ikke have mulighed for at styre størrelsen af det nævnte forhold under de i praksis forekommende ikke-sta-tionære betingelser. Ved den kendte fremgangsmåde er det ikke forudsat, at hydrogen/ethylenforholdet skal forudbestemmes, og i mangel af en sådan forudbestemmelse er det ikke muligt at regulere katalysator-tilførslen med henblik på at holde polymerisationshastigheden konstant ved det pågældende hydrogen/ethylenforhold.German Patent Publication No. 2,040,353 discloses a process for continuous polymerization of ethylene of the type mentioned in the preamble, wherein the process is such that regardless of the ethylene / hydrogen ratio being constant under stationary conditions, it would not be possible to control the magnitude of said ratio under the non-stationary conditions that occur in practice. The known process does not presuppose that the hydrogen / ethylene ratio is to be predetermined and, in the absence of such predetermination, it is not possible to control the catalyst feed in order to keep the rate of polymerization constant at that hydrogen / ethylene ratio.

Fra U.S.A. patentskrift nr. 3.551.403 kendes en fremgangsmåde til regulering af polymerisationen af olefiner, ved hvilken fremgangsmåde hydrogen/ethylenforholdet og reaktionstemperaturen, der påvirker polymerens smelteflydeindeks, hovedsagelig styres ved regulering af olefins trømmen, idet der intermitterende foretages bestemmelse af hydrogen/ethylenforholdet i reaktorens væskefase, og olefinstrømmen indstilles i overensstemmelse hermed, hvorpå katalysatorstrømmen langsomt indstilles til genoprettelse af reaktionsbetingelserne. En sådan arbejdsmåde er imidlertid ifølge patentskriftet problematisk, hvortil kommer, at anvendelsen af katalysatortilførsel som et primært styringsmiddel ikke antages at være velegnet. Det skønnes, at årsagen hertil er, at målingerne af hydrogen/ethylenforholdet i væskefasen foretages intermitterende, således at forholdet på det tidspunkt, hvor nogen ændring er mærkbar, er drevet så langt fra målet, at betydelige korrektioner må foretages.From usa. U.S. Patent No. 3,551,403 discloses a method for controlling the polymerization of olefins, wherein the hydrogen / ethylene ratio and reaction temperature affecting the polymer melt flow index are mainly controlled by regulating the olefin flow, intermittently determining the hydrogen / ethylene ratio in the liquid phase of the reactor. and the olefin stream is adjusted accordingly, whereupon the catalyst stream is slowly adjusted to restore the reaction conditions. However, such a method is problematic according to the patent, in addition to the fact that the use of catalyst feed as a primary control agent is not considered to be suitable. It is believed that the reason for this is that the measurements of the hydrogen / ethylene ratio in the liquid phase are made intermittently, so that the ratio at the time of any change is noticeable is driven so far from the target that significant corrections must be made.

Ved fremgangsmåden ifølge opfindelsen måles hydrogen/ethylenforholdet ved hjælp af kontinuerlig analyse af reaktorens gasfase. Herved opnås svar eller information meget hurtigere, og kun små korrektioner af hydrogen/ethylenforholdet skal foretages, hvilke korrektioner i modsæt- 5 U1101 ninq til korrektionerne ved fremgangsmåden ifølge nævnte U.S.A. patentskrift kan udføres næsten udelukkende ved regulering af hydrogenstrømmen og derfor formindsker omfanget af ledsagende indstillinger af katalysatorstrøinmen.In the process of the invention, the hydrogen / ethylene ratio is measured by continuous analysis of the gas phase of the reactor. Hereby, answers or information are obtained much more quickly and only small corrections of the hydrogen / ethylene ratio have to be made, which corrections in contrast to the corrections of the method of said U.S.A. Patent writing can be performed almost exclusively by regulating the hydrogen flow and therefore decreases the extent of accompanying settings of the catalyst stream.

Katalysatormaterialerne til trug ved udøvelsen af nærværende opfindelse kan let fremstilles ved at omsætte det passende kompleks med findelt aluminiumoxid eller siliciumdioxid ved hjælp af en af fremgangsmåderne , som er angivet i detaljer i ovennævnte britiske patentskrift. Aluminiumoxidet er fortrinsvis et γ-aluminiumoxid med en partikel-størrelse i området 20-150 pm, mere foretrukket i området 50-100 pm og med i alt væsentligt sfæriske partikler, som angivet i britisk patentskrift nr. 1.430.073.The catalyst materials for troughing in the practice of the present invention can be readily prepared by reacting the appropriate complex with comminuted alumina or silica by one of the methods set forth in detail in the aforementioned British patent. The alumina is preferably a γ-alumina having a particle size in the range of 20-150 µm, more preferably in the range 50-100 µm, and having substantially spherical particles, as disclosed in British Patent Specification No. 1,430,073.

Polymerisationer ifølge nærværende opfindelse kan udføres under anvendelse af en lang række betingelser, som nævnt i britisk patentskrift nr. 1.314.828. De gennemføres imidlertid mest bekvemt ved at indføre katalysatormaterialet som en opslemning i et passende hydro= carbonfortyndingsmiddel, i en omrørt reaktionsbeholder, hvortil ethylen og hydrogen tilføres kontinuerligt. Det vil fremgå, at beholderen, gasserne og fortyndingsmidlet må renses omhyggeligt og befries for oxygen, vand, carbonmonoxid, carbondioxid, acetylen og oxygenholdige urenheder, som kan reagere med og ødelægge organo-metalkomponenten i katalysatoren.Polymerizations of the present invention can be carried out using a variety of conditions as mentioned in British Patent Specification No. 1,314,828. However, they are most conveniently carried out by introducing the catalyst material as a slurry into a suitable hydrocarbon diluent, in a stirred reaction vessel to which ethylene and hydrogen are continuously supplied. It will be appreciated that the container, gases and diluent must be carefully cleaned and freed of oxygen, water, carbon monoxide, carbon dioxide, acetylene and oxygen-containing impurities which can react with and destroy the organometallic component of the catalyst.

Skønt der kan anvendes reaktionstryk op til 40 kg/cm , foretrækkesAlthough reaction pressures up to 40 kg / cm can be used, it is preferred

OISLAND

det at arbejde med et totaltryk i området 1-30 kg/cm , fortrinsvis 2 2 4-15 kg/cm og et ethylenpartialtryk i området 1-20 kg/cm , fortrins- vis 1-10 kg/cm . Polymerisationstemperaturen vil afhænge af mange' faktorer, f.eks. valget af katalysator og fortyndingsmiddel, men er i almindelighed i området 70 til 100°C. Da polymerisationsreaktionen imidlertid er eksotherm, er det i almindelighed nødvendigt at fjerne varme fra reaktionsbeholderen, f.eks. ved hjælp af luft- eller vandkøling for at regulere temperaturen.working with a total pressure in the range 1-30 kg / cm, preferably 2 2 4-15 kg / cm and an ethylene partial pressure in the range 1-20 kg / cm, preferably 1-10 kg / cm. The polymerization temperature will depend on many factors, e.g. the choice of catalyst and diluent, but is generally in the range of 70 to 100 ° C. However, since the polymerization reaction is exothermic, it is generally necessary to remove heat from the reaction vessel, e.g. using air or water cooling to control the temperature.

Valget af hydrogen/ethylenforhold i det beskrevne område vil afhænge af det ønskede MFI af den dannede polyethylen og kan let fastslås ved hjælp af en passende forsøgsrække. Det påtænkte katalysatorma- U1101 6 teriale kan f.eks. anvendes til at polymerisere en række hydrogen/ ethylenblandinger med forskellige hydrogen/ethylenforhold og sammenknytte MFI af de dannede polyethylener med nævnte forhold. Det vil fremgå, at andre forsøgsbetingelser, f.eks. temperatur, tryk og koncentration og aktivitet af katalysator må holdes konstant i forsøgsrækken.The choice of hydrogen / ethylene ratio in the described range will depend on the desired MFI of the polyethylene formed and can be readily ascertained by a suitable test series. The envisaged catalyst material may e.g. are used to polymerize a variety of hydrogen / ethylene mixtures with different hydrogen / ethylene ratios and link the MFI of the formed polyethylenes to said ratio. It will be seen that other experimental conditions, e.g. catalyst temperature, pressure and concentration and activity must be kept constant in the test series.

I eh række polymerisationer, hvori ethylen blev polymeriseret under anvendelse af en katalysator omfattende zircontetrabenzyl omsat med aluminiumoxid i nærværelse af hydrogen, blev der f.eks. fastslået følgende relation mellem hydrogen/ethylenforholdet og MFI af den dannede polyethylen.In a variety of polymerizations in which ethylene was polymerized using a catalyst comprising zirconetetrabenzyl reacted with alumina in the presence of hydrogen, e.g. established the following relationship between the hydrogen / ethylene ratio and the MFI of the polyethylene formed.

Hydrogen/ethylenforhold MFI af polyethylen 0,9/1 0,005 1,1/1 0,01 1,8/1 0,05 2,7/1 0,20 4,1/1 1,00Hydrogen / Ethylene Ratio MFI of Polyethylene 0.9 / 1 0.005 1.1 / 1 0.01 1.8 / 1 0.05 2.7 / 1 0.20 4.1 / 1 1.00

Ved at vælge et passende hydrogen/ethylenforhold for et givet sæt arbejdsbetingelser, kan det ønskede MFI af produktet polyethylen således opnås indenfor rimeligt præcise grænser. Det ønskede MFI kan derefter opretholdes ved at styre tilførselshastigheden for katalysator til polymerisationsbeholderen, således at polymerisationshastigheden holdes ved en forudbestemt værdi ved at kompensere for ændringer i katalysatoraktivitet.Thus, by selecting an appropriate hydrogen / ethylene ratio for a given set of working conditions, the desired MFI of the product polyethylene can be obtained within reasonably precise limits. The desired MFI can then be maintained by controlling the catalyst feed rate to the polymerization vessel so that the polymerization rate is kept at a predetermined value by compensating for changes in catalyst activity.

Hydrogen/ethylenforholdet kan undersøges ved hjælp af en hvilken som helst bekvem metode, f.eks. ved at måle hydrogenkoncentrationen ved hjælp af et catharometer. Det er imidlertid mest bekvemt at analysere gasblandingen kontinuerligt ved hjælp af en on-line gas-væske-kromatograf (GLC). Et sådant instrument kan let forbindes med en skriver eller lignende til frembringelse af en kurve, hvori hydro= gen og ethylenkoncentrationerne kan sammenknyttes med toppe af varierende højder. Disse tophøjder kan derefter holdes på forudbestemte værdier, enten ved at styre de respektive gasstrømme eller U11Q1 7 fortrinsvis ved at holde ethylenstrømmen konstant og variere hydrogen-strømmen. Regulering af gasstrømmene kan ske manuelt eller ved anvendelse af automatiske styringsventiler kohiet med uddata fra GLC-apparatet.The hydrogen / ethylene ratio can be investigated by any convenient method, e.g. by measuring the hydrogen concentration using a catharometer. However, it is most convenient to continuously analyze the gas mixture using an on-line gas-liquid chromatograph (GLC). Such an instrument can be easily connected to a printer or the like to produce a curve in which hydrogen and ethylene concentrations can be linked to peaks of varying heights. These peak heights can then be maintained at predetermined values, either by controlling the respective gas streams or preferably by keeping the ethylene stream constant and varying the hydrogen stream. The flow of gas can be controlled manually or by using automatic control valves coupled with the output of the GLC apparatus.

Som tidligere nævnt reguleres tilførselen af katalysator til reak-, toren, således at polymerisationshastigheden holdes på en konstant værdi. Polymerisationshastigheden kan mest bekvemt undersøges ved at iagttage totaltrykket i reaktoren, da et fald i reaktionshastighed forårsager en reduktion i mængden af polymeriseret ethylen og en tilsvarende forøgelse i samlet tryk og tlse versa. En alternativ parameter, som kan anvendes på denne måde, er temperaturen af det udstrømmende materiale fra reaktorafkølingssystemet. Reaktortrykket giver imidlertid en mere hurtig reaktion på ændringer i reaktions-* hastigheden end afkølingsmidlets temperatur.As previously mentioned, the feed of catalyst to the reactor is regulated so that the rate of polymerization is kept at a constant value. The rate of polymerization can most conveniently be investigated by observing the total pressure in the reactor as a decrease in reaction rate causes a reduction in the amount of polymerized ethylene and a corresponding increase in total pressure and counting versa. An alternative parameter that can be used in this way is the temperature of the effluent material from the reactor cooling system. However, the reactor pressure gives a faster reaction to changes in the reaction rate than the coolant temperature.

Katalysatoropslemningen kan pumpes til reaktoren i en kontinuerlig strøm, idet strømningshastigheden reguleres, alternativt kan diskrete standardmængder katalysator slippes ind i reaktoren med mellemrum, idet intervallet mellem efter hinanden følgende tilsætninger varieres.The catalyst slurry can be pumped to the reactor in a continuous stream, controlling the flow rate, or alternatively discrete standard amounts of catalyst may be released into the reactor at intervals, varying the interval between successive additions.

Opfindelsen vil nu blive belyst ved hjælp af de følgende eksempler.The invention will now be illustrated by the following examples.

Generelt.In general.

Nitrogen og ethylen blev deoxygeneret og tørret ved at lede dem gennem to 2 m søjler pakket med nyligt fremstillet, findelt kobber båret på aluminiumoxid (B.T.S-katalysator) og en molekylsigte af type 5A.Nitrogen and ethylene were deoxygenated and dried by passing them through two 2 m columns packed with freshly prepared, alumina (B.T.S catalyst) comminuted copper and a Type 5A molecular sieve.

Hydrogen blev ført gennem en molekylsigtetørrer.Hydrogen was passed through a molecular sieve dryer.

Opløsningsmidler og fortyndingsmidler blev deoxygeneret og tørret ved at føre dem gennem to 1,5 m søjler pakket med B.T.S.-katalysator og 5A molekylsigte.Solvents and diluents were deoxygenated and dried by passing them through two 1.5 m columns packed with B.T.S. catalyst and 5A molecular sieve.

- . 8 141101-. 8 141101

Fremstilling af zircontetrabenzyl/aluminiumoxidkatalysatorPreparation of zirconetetrabenzyl / alumina catalyst

Benzylmagnesiumchlorid (2,78 kg) som en opløsning i 25 1 diethyl= ether blev under nitrogen overført til en reaktionsbeholder ved 0°C. Zircontetrachlorid (1,2 kg) blev tilsat mod en nitrogenrensestrøm i portioner.på 300 g i løbet af et tidsrum på 45 minutter. Blandingen blev omrørt i 2 timer,i løbet af hvilket tidsrum temperaturen fik lov til at stige til stuetemperatur. Decalin (65 1) blev tilsat og blandingen blev omrørt i yderligere 1 time.Benzyl magnesium chloride (2.78 kg) as a solution in 25 L of diethyl ether was transferred under nitrogen to a reaction vessel at 0 ° C. Zirconium tetrachloride (1.2 kg) was added against a nitrogen purge stream in 300 g portions over a 45 minute period. The mixture was stirred for 2 hours during which time the temperature was allowed to rise to room temperature. Decalin (65 L) was added and the mixture was stirred for an additional 1 hour.

Den resulterende opslemning fik lov til at sætte sig, og den ovenstående væske blev omstukket til et rustfrit stålfilter og filtreret under et svagt positivt nitrogentryk.The resulting slurry was allowed to settle, and the above liquid was recirculated to a stainless steel filter and filtered under a slight positive nitrogen pressure.

Ether blev fjernet fra decalinopløsningen ved at lede den over varmeudvekslingsslanger ved en temperatur på ca. 50°C samtidig med, at nitrogen blev ledt gennem væsken i modstrøm.Ether was removed from the decalin solution by passing it over heat exchange tubes at a temperature of ca. 50 ° C at the same time as nitrogen was passed through the liquid in a countercurrent.

Decalinopløsningen fra varmeveksleren blev.filtreret under nitrogen. Det'gennemsnitlige udbytte af zircontetrabenzyl var 6l%.The decalin solution from the heat exchanger was filtered under nitrogen. The average yield of zircon tetrabenzyl was 6%.

Aluminiumoxid af Ketjen kvalitet B blev sigtet til 53-99 pm og tørret i en roterende rørovn ved 500°C i 2 timer. Nitrogen blev ført forbi rørenes åbninger, når ovnen først var blevet bragt til arbejdstem-peratur.Ketjen grade B alumina was sieved to 53-99 µm and dried in a rotary tube oven at 500 ° C for 2 hours. Nitrogen was passed past the openings of the tubes once the furnace had been brought to operating temperature.

Aluminiumoxidet blev afkølet under nitrogen,og portioner (10 kg) blev opslemmet med hexan (50 1), En zircontetrabenzylopløsning (fremstillet som beskrevet ovenfor) blev tilsat, og blandingen blev omrørt. Ορε lemningen fik lov til at sætte sig, og den ovenstående væske blev omstukket. Yderligere zircontetrabenzylopløsning blev tilsat, indtil mængden, af zirconet på aluminiumoxidet var ca. 0,5 m atomer/g alu= miniumoxid.The alumina was cooled under nitrogen and portions (10 kg) were slurried with hexane (50 L), a zirconium tetrabenzylo solution (prepared as described above) was added and the mixture was stirred. The Ορε paralysis was allowed to settle and the above fluid was circumscribed. Additional zircon tetrabenzylo solution was added until the amount of the zircon on the alumina was approx. 0.5 m atoms / g alu = minium oxide.

Det overtrukne aluminiumoxid blev vasket gentagne gange med hexan og færdiggjort som en 10-20% (vægt/rumfang) opslemning i hexan.The coated alumina was washed repeatedly with hexane and finalized as a 10-20% (w / v) slurry in hexane.

9 U11019 U1101

Polymerisationsmetodepolymerization

En omrørt reaktionsbeholder (4,0 nr5) blev fyldt med hexan (2,0 m^) og bragt under tryk med ethylen og hydrogen. Gasserne blev tilført gennem en åbning under væskehøjden. Reaktionen blev startet ved at J indsprøjte katalysatoropslemningen. Reaktorens temperatur blev indstillet på den angivne værdi ved hjælp af vandkøling.A stirred reaction vessel (4.0 no. 5) was charged with hexane (2.0 m 2) and pressurized with ethylene and hydrogen. The gases were supplied through an opening below the liquid height. The reaction was started by injecting J the catalyst slurry. The temperature of the reactor was adjusted to the specified value by water cooling.

Ethylen, hydrogen og hexan blev tilført til reaktoren i passende hastigheder, og katalysatoropslemningen blev indsprøjtet ved diskrete intervaller. Gassammensætningen ud over fortyndingsmidlet blev analyseret ved hjælp af on-line gas-væskekromatografi,og hydrogenstrømmen blev styret automatisk således, at man opretholdt det nødvendige hydrogen/ethylenforhold. Polyethylen blev dannet som en opslemning af partikler. Denne opslemning blev udtaget kontinuerligt eller med mellemrum gennem et dypperør, ført til en afspændingsbeholder og derefter centrifugeret.Ethylene, hydrogen and hexane were fed to the reactor at appropriate rates and the catalyst slurry was injected at discrete intervals. The gas composition in addition to the diluent was analyzed by on-line gas-liquid chromatography and the hydrogen flow was controlled automatically to maintain the required hydrogen / ethylene ratio. Polyethylene was formed as a slurry of particles. This slurry was taken continuously or at intervals through a dipping tube, fed to a strainer and then centrifuged.

Det granulære polymerprodukt blev ført gennem en tørrer med fluidi-seret leje.The granular polymer product was passed through a fluid bed dryer.

Eksempel 1.Example 1.

Ethylen blev ført til reaktoren med en hastighed på 140 kg/timé, og hydrogen blev tilført med en hastighed passende til at holde hydro=Ethylene was fed to the reactor at a rate of 140 kg / hour, and hydrogen was supplied at a rate suitable to maintain hydroxide.

OISLAND

gen/ethylenforholdet på 1,03. Det totale arbejdstryk var 5 kg/cm .the gene / ethylene ratio of 1.03. The total working pressure was 5 kg / cm.

Hexan blev tilsat med en hastighed på 0,6 m^/time, og katalysatoropslemningen blev tilført med mellemrum med en hastighed ca. lig med 42 m atomer Zr/time, idet den nøjagtige hastighed blev styret således, o at man opretholdt arbejdstrykket 5 kg/cm'1 og temperaturen ved 80°C.Hexane was added at a rate of 0.6 m 2 / hr, and the catalyst slurry was fed at intervals at a rate of approx. equal to 42 m atoms Zr / hour, the precise speed being controlled so as to maintain the working pressure of 5 kg / cm -1 and the temperature at 80 ° C.

MFI af produktet var 0,008. Efter at have arbejdet med reaktoren under disse betingelser i det ønskede tidsrum, blev hydrogenstrømmen mindsket, således at man fik et hydrogen/ethylenforhold på 0,90, idet katalysatortilførselshastigheden blev holdt på den samme gennemsnitlige værdi. Når der var nået konstante tilstandsbetingelser, havde produktet en MFI på 0,005.The MFI of the product was 0.008. After working with the reactor under these conditions for the desired time period, the hydrogen flow was reduced to give a hydrogen / ethylene ratio of 0.90, keeping the catalyst feed rate at the same average value. When constant state conditions were reached, the product had an MFI of 0.005.

1*11*1 101 * 11 * 1 10

Eksempel 2.Example 2.

Den almindelige fremgangsmåde fra eksempel 1 blev fulgt med et hydrogen/ethylenforhold på 2,0 og en gennemsnitlig katalysator-tilførselshastighed på 54 m atomer Zr/time, idet den nøjagtigeThe general procedure of Example 1 was followed with a hydrogen / ethylene ratio of 2.0 and an average catalyst feed rate of 54 m atoms Zr / hr, with the exact

' Q'Q

værdi blev styret, således at man holdt arbej dstrykket ved 7 kg/cm . MFI af produktet var 0,07.value was controlled so that the working pressure was kept at 7 kg / cm. The MFI of the product was 0.07.

Hydrogehstrømningshastigheden blev derefter mindsket, således at man fik et hydrogen/ethylenforhold på 1,55, og katalysatortilf ørselshastigheden blev holdt på den samme gennemsnitlige værdi- Da der var nået konstante tilstandsbetingelser, var arbejdstrykket 6 kg/cm .The hydrocarbon flow rate was then reduced to give a hydrogen / ethylene ratio of 1.55 and the catalyst feed rate was kept at the same average value. When constant state conditions were reached, the working pressure was 6 kg / cm.

MFI af produktet var så 0,02.The MFI of the product was then 0.02.

Eksempel 5.Example 5

Man fulgte den almene fremgangsmåde fra eksempel 1, idet hydrogen/ ethylenforholdet var 2,84. Hexan blev tilsat med en hastighed på 0,62 m^/time, og katalysatoropslemningen blev tilsat med mellemrum med en gennemsnitlig hastighed på 48 m atomer Zr/time, idet den nøjagtige værdi.blev reguleret, således at reaktortrykket blev holdt ved 5,7 kg/cm^ ved 80°C. MFI af produkt-polyethylenen var 0,18.The general procedure of Example 1 was followed, with the hydrogen / ethylene ratio being 2.84. Hexane was added at a rate of 0.62 m 2 / hr, and the catalyst slurry was added at intervals at an average rate of 48 m atoms Zr / hr, maintaining the exact value so that the reactor pressure was maintained at 5.7 kg / cm 2 at 80 ° C. The MFI of the product polyethylene was 0.18.

For at bringe MFI til området 0,2 - 0,25, blev katalysatortilførselshastigheden øget til 52 m atomer/time, idet alle andre tilførselshastigheder forblev konstante. Der blev opnået en polymer med MFI 0,22 under konstante tilstandsbetingelser.To bring the MFI to the range 0.2 - 0.25, the catalyst feed rate was increased to 52 m atoms / hour, with all other feed rates remaining constant. A polymer with MFI 0.22 was obtained under constant state conditions.

Eksempel 4.Example 4

Man fulgte fremgangsmåden fra eksempel 1, idet hydrogen/ethylenfor=The procedure of Example 1 was followed, with hydrogen / ethylene feed

--- ‘Z--- 'Z

holdene var 1,53, hexantilførselshastigheden 0,6 nr/time, og idet katalys atorop slemningen blev tilsat med mellemrum med en gennemsnitlig hastighed på 60 m atomer Zr/time. Den nøjagtige katalysatortilførselshastighed blev reguleret således, at reaktortrykket blev holdt ved 4,1 kg/cm^. ved 80°G. MFI af produktet var 0,023.the holdings were 1.53, the hexane feed rate was 0.6 no / h, and the catalyst atorop the slurry was added at intervals with an average velocity of 60 m atoms Zr / hr. The exact catalyst feed rate was controlled such that the reactor pressure was maintained at 4.1 kg / cm 2. at 80 ° G. The MFI of the product was 0.023.

Forøgelse af hydrogentilførselshastigheden, således at man fik et hydrogen/ethylenforhold på 3,3 med den samme gennemsnitlige kataly- 2 satorstrøm, gjorde det muligt at holde reaktortrykket på 6,7 kg/cm H1101 ved 80°C og gav et produkt med MFI 0,24.Increasing the hydrogen supply rate to give a hydrogen / ethylene ratio of 3.3 with the same average catalyst stream allowed the reactor pressure of 6.7 kg / cm H1101 to be maintained at 80 ° C to give a product with MFI 0 , 24th

Hydrogen/ethylenforholdene blev øget til 4,1, og den gennemsnitlige katalysatortilførselshastighed blev øget til 70 m atomer Zr/time, idet den nøjagtige hastighed blev reguleret således, at reaktqrtryk-ket blev holdt på 7,4 kg/cnr véd 80°C. Under konstante tilstandsbetingelser blev der opnået et smeltestrømningsindeks 1,0.The hydrogen / ethylene ratios were increased to 4.1, and the average catalyst feed rate was increased to 70 m atoms Zr / hr, the precise rate being regulated so that the reactor pressure was maintained at 7.4 kg / cm @ 80 ° C. Under constant state conditions, a melt flow index 1.0 was obtained.

Eksempel 5.Example 5

Den almene fremgangsmåde fra eksempel 1 blev fulgt ved en reaktionstemperatur på 90°C med den samme tilførselshastighed for ethylen og for hexan. Hydrogen tilførtes i en hastighed, der opretholdt et hydrogen/ethylenforhold på 2,2, og katalysatoropslemningen blev tilført med en gennemsnitlig hastighed på 72 m atomer Zr/time, idet tilsætningen blev reguleret således, at reaktortrykket holdtes på 6,3 kg/cm2 ved 90°C. Der blev fremstillet en polymer med MFI=0,20 under konstante tilstandsbetingelser.The general procedure of Example 1 was followed at a reaction temperature of 90 ° C with the same feed rate for ethylene and for hexane. Hydrogen was supplied at a rate maintaining a hydrogen / ethylene ratio of 2.2, and the catalyst slurry was fed at an average velocity of 72 m atoms Zr / hr, the addition being controlled so that the reactor pressure was maintained at 6.3 kg / cm 90 ° C. A polymer with MFI = 0.20 was prepared under constant state conditions.

Ved at øge hydrogentilsætningshastigheden til et hydrogen/ethylen= forhold på 3,10 med den samme gennemsnitlige katalysatorstrøm, blev det muligt at holde et reaktortryk på 7,24 kg/cm2 ved 90°C, hvilket gav en polymer med MFI=0,90 under konstante tilstandsbetingelser.By increasing the hydrogen addition rate to a hydrogen / ethylene = ratio of 3.10 with the same average catalyst flow, it became possible to maintain a reactor pressure of 7.24 kg / cm 2 at 90 ° C, giving a polymer with MFI = 0.90 under constant state conditions.

Ved at holde de samme tilførselshastigheder for ethylen og hydrogen og ved at øge den gennemsnitlige katalysatortilførselshastighed lidt til 74,8 m atomer Zr/time, forårsagede man, at polymerisationshastigheden øgedes, og at hydrogen/ethylenforholdet i reaktoren øgedes til '3,16. Trykket kunne så holdes under konstante tilstands-betingelser på 7,19 kg/cm2, 90°C, hvilket gav et polymerprodukt med MFI=1,0.Keeping the same ethylene and hydrogen feed rates and increasing the average catalyst feed rate slightly to 74.8 m atoms Zr / hr caused the polymerization rate to increase and the hydrogen / ethylene ratio in the reactor to be increased to 3.16. The pressure could then be maintained under constant state conditions of 7.19 kg / cm 2, 90 ° C, giving a polymer product with MFI = 1.0.

Eksempel 6.Example 6

Den almene fremgangsmåde fra eksempel 1 blev.fulgt ved 75°C med den samme tilførselshastighed for ethylen og for hexan. Hydrogen blev tilført med en hastighed, således at hydrogen/ethylenforholdet blev holdt på 3,2, og katalysatoropslemningen blev tilsat med en gennemsnitlig hastighed på 42 m atomer Zr/time, idet tilførselen blev re-The general procedure of Example 1 was followed at 75 ° C with the same feed rate for ethylene and for hexane. Hydrogen was supplied at a rate such that the hydrogen / ethylene ratio was maintained at 3.2 and the catalyst slurry was added at an average rate of 42 m atoms Zr / hr, with the feed being refluxed.

DK386673AA 1972-07-13 1973-07-12 Process for Continuous Polymerization of Ethylene. DK141101B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB3280972 1972-07-13
GB3280972A GB1430072A (en) 1972-07-13 1972-07-13 Polymerisation process

Publications (2)

Publication Number Publication Date
DK141101B true DK141101B (en) 1980-01-14
DK141101C DK141101C (en) 1980-07-14

Family

ID=10344319

Family Applications (1)

Application Number Title Priority Date Filing Date
DK386673AA DK141101B (en) 1972-07-13 1973-07-12 Process for Continuous Polymerization of Ethylene.

Country Status (10)

Country Link
JP (1) JPS4953272A (en)
AU (1) AU467696B2 (en)
BE (1) BE802280A (en)
DE (1) DE2335536A1 (en)
DK (1) DK141101B (en)
FR (1) FR2193039B2 (en)
GB (1) GB1430072A (en)
LU (1) LU68012A1 (en)
NL (1) NL7309727A (en)
ZA (1) ZA734749B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3950269A (en) * 1974-05-20 1976-04-13 E. I. Du Pont De Nemours & Co. Olefin polymerization catalyst system and process for polymerization of olefins

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE559774A (en) * 1956-08-03
SE391932B (en) * 1969-08-13 1977-03-07 Ici Ltd METHOD OF POLYMERIZING OR COPOLYMERIZING ETHEN, PROPENE, 4-METHYLPENTENE-1 AND / OR BUTADIAN BY A TRANSITIONAL METAL INITIATOR COMPOSITION

Also Published As

Publication number Publication date
DE2335536A1 (en) 1974-04-18
GB1430072A (en) 1976-03-31
LU68012A1 (en) 1973-09-26
FR2193039B2 (en) 1977-05-13
BE802280A (en) 1974-01-14
AU467696B2 (en) 1975-12-11
FR2193039A2 (en) 1974-02-15
ZA734749B (en) 1975-02-26
NL7309727A (en) 1974-01-15
AU5805673A (en) 1975-01-16
DK141101C (en) 1980-07-14
JPS4953272A (en) 1974-05-23

Similar Documents

Publication Publication Date Title
CA1236820A (en) CATALYST COMPOSITION FOR POLYMERIZING .alpha.-OLEFINS
CA1104117A (en) Catalysts for polymerizing ethylene
JP2557054B2 (en) Alpha-olefin polymerization catalyst composition
US3984351A (en) Olefin polymerization catalyst
US4048412A (en) Dry polymerization of olefins in reaction vessels arranged in series
US3969332A (en) Polymerization of ethylene
DK147763B (en) PROCEDURE FOR POLYMERIZATION OR COPOLYMERIZATION OF ALFA OLEFINES AND CATALYSTS FOR USING THE PROCEDURE
JPS6118921B2 (en)
US3108094A (en) Olefin polymerization
US3220998A (en) Control of exothermic process carried out in series of reactors
CA1199450A (en) Ethylene copolymerisation process
US2936291A (en) Catalysts and catalytic preparations
US5104841A (en) Olefin polymerization catalysts and processes
US4892914A (en) Catalysts prepared from tetrakis(dialkylamide or diarylamide) derivatives of titanium and polymerization of olefins therewith
DK141101B (en) Process for Continuous Polymerization of Ethylene.
CA1253844A (en) PROCESS FOR PREPARING AN .alpha.-OLEFIN POLYMERIZATION CATALYST
US4675369A (en) Catalyst composition for polymerizing alpha-olefins at low reactants partial pressures
US5137997A (en) Olefin polymerization catalysts and processes
GB2104083A (en) Method of deactivating polymerization catalysts
GB1577512A (en) Olefin polymerization
US4392983A (en) Transition metal composition, production and use
US4956323A (en) Catalysts prepared from tetrakis(dialkylamide or diarylamide) derivatives of titanium and polymerization of olefins therewith
US4892852A (en) Transition metal composition
McCarty et al. Polymerization of vinylcyclohexane with TiCl3–Al (C2H5) 3 catalysts
US3707530A (en) Method for producing polymers of ethylene