DE962279C - Process for the creation of areas of different conductivity on the surface of germanium - Google Patents
Process for the creation of areas of different conductivity on the surface of germaniumInfo
- Publication number
- DE962279C DE962279C DE1951L0011023 DEL0011023A DE962279C DE 962279 C DE962279 C DE 962279C DE 1951L0011023 DE1951L0011023 DE 1951L0011023 DE L0011023 A DEL0011023 A DE L0011023A DE 962279 C DE962279 C DE 962279C
- Authority
- DE
- Germany
- Prior art keywords
- germanium
- areas
- creation
- melting
- conductivity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000000034 method Methods 0.000 title claims description 11
- 229910052732 germanium Inorganic materials 0.000 title claims description 6
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 title claims description 6
- 238000002844 melting Methods 0.000 claims description 8
- 230000008018 melting Effects 0.000 claims description 8
- 238000010894 electron beam technology Methods 0.000 claims description 3
- YZCKVEUIGOORGS-UHFFFAOYSA-N Hydrogen atom Chemical compound [H] YZCKVEUIGOORGS-UHFFFAOYSA-N 0.000 claims description 2
- 239000013078 crystal Substances 0.000 claims description 2
- 150000002431 hydrogen Chemical class 0.000 claims description 2
- 229910052739 hydrogen Inorganic materials 0.000 claims description 2
- 239000001257 hydrogen Substances 0.000 claims description 2
- 230000002452 interceptive effect Effects 0.000 claims description 2
- 239000000463 material Substances 0.000 description 3
- 239000004020 conductor Substances 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 238000010309 melting process Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 206010034719 Personality change Diseases 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/24—Alloying of impurity materials, e.g. doping materials, electrode materials, with a semiconductor body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/324—Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Thyristors (AREA)
Description
(WiGBl. S. 175)(WiGBl. P. 175)
AUSGEGEBEN AM 18. APRIL 1957ISSUED APRIL 18, 1957
L 11023 VIIIc/21gL 11023 VIIIc / 21g
ist als Erfinder genannt wordenhas been named as the inventor
In der Technik haben die Grenzflächen von defekt- und Überschuß leitenden Bereichen von Halbleitern (p-n- j unction) sowohl für Gleichrichter als auch für Steuerzwecke steigende Bedeutung gewonnen. Es war bisher bekannt, Gebiete unterschiedlicher S törleitfähigkeit an der Oberfläche von Germanium durch eine Wärmebehandlung in einem Temperaturbereich zwischen 400 und 9000 zu erzeugen. Dies hat jedoch zur Folge, daß sich keine scharfe Grenze zwischen den Gebieten unterschiedlicher Störleitfähigkeit ausbildet, weil sich eine stetige Verteilung der Leitfähigkeitseigenschaften ergibt.In technology, the interfaces between defective and excess conductive areas of semiconductors (pn junction) have become increasingly important both for rectifiers and for control purposes. It has hitherto been known, areas of different S törleitfähigkeit on the surface of germanium by a heat treatment in a temperature range between 400 and 900 0 to produce. However, this has the consequence that there is no sharp boundary between the areas of different interfering conductivity, because there is a steady distribution of the conductivity properties.
Die vorliegende Erfindung bezieht sich auf ein Verfahren zur Erzeugung von Gebieten unterschiedlicher Störleitfähigkeit an der Oberfläche von Germanium, das sich von den bisher bekannten dadurch unterscheidet, daß die Oberfläche von Überschuß leitendem Germanium ganz oder teilweise geschmolzen wird. Auf diese Weise entsteht auf der Oberfläche des in der Tiefe überschußleitenden Materials eine Schicht mit Defektleitungscharakter, die sich entweder über die ganze Oberfläche erstreckt oder über einen mehr oder weniger großen Teil derselben. Dies hat gegenüber dem vorbekannten Verfahren den Vorteil, daß der angeschmolzene Teil der Oberfläche seinen Leitfähigkeitscharakter ändert, während das verbleibende Halbleitermaterial seinen Leitfähigkeitscharakter beibehält. Es kommt somit zur Bildung einer schärferen Grenze zwischen den Gebieten unterschiedlichen Leitfähigkeitscharakters als bei den vorbekannten Verfahren und somit zur Ausbildung einer wirksamen Sperrschicht.The present invention relates to a method for creating areas of different Interference conductivity on the surface of germanium, which differs from the previously known differs in that the surface of excess conductive germanium wholly or partially is melted. In this way, excess-conductive material arises on the surface of the deeply conductive material Materials a layer with the character of a defect conduction, which either extends over the entire surface or over a more or less large part of them. This has compared to the previously known Method has the advantage that the fused part of the surface has its conductivity character changes while the remaining semiconductor material retains its conductivity character. This creates a sharper border between the different areas Conductivity character than in the previously known methods and thus for the formation of an effective Barrier.
Das oberflächliche Schmelzen kann z. B. mit einem oder mehreren Elektronenstrahlen vorgenommen werden. Bei der Anwendung dieses Verfahrens wird erreicht, daß nur eine Oberflächenschicht verhältnismäßig geringer Dicke von dem Schmelzvorgang erfaßt wird und sofort anschließend an den Schmelzvorgang' durch das darauf befindliche, kalt gebliebene Kristallmaterial schnell abgekühlt wird. Man erhält auf diese WeiseThe superficial melting can e.g. B. made with one or more electron beams will. When using this method it is achieved that only one surface layer relatively small thickness is detected by the melting process and immediately thereafter to the melting process' through the remaining cold crystal material on it is cooled quickly. One gets in this way
ίο eine ziemlich scharfe Grenze zwischen einem Überschuß- und einem defektleitenden Bereich. Selbstverständlich können an Stelle der Energiezufuhr mit Elektronenstrahlen alle übrigen Erhitzungsverfahren Anwendung finden, bei denen die Energiezufuhr ebenfalls auf eine Schicht geringer Dicke beschränkt bleibt.ίο a fairly sharp line between an excess and a defect-conducting area. Of course, instead of the energy supply with electron beams all other heating processes are used in which the supply of energy also remains limited to a layer of small thickness.
Als besonders zweckmäßig sind noch zu nennen das oberflächliche Schmelzen mittels Hochfrequenz in einer neutralen Atmosphäre und das Anschmel-Superficial melting by means of high frequency should also be mentioned as particularly expedient in a neutral atmosphere and the melting
ao zen der Oberfläche mit Hilfe eines Lichtbogens, der in Wasserstoff, insbesondere in atomarem Wasserstoff (z. B. Arcatombogen), brennt.ao zen the surface with the help of an electric arc generated in hydrogen, especially in atomic Hydrogen (e.g. Arcatombogen) burns.
Ein weiterer besonderer Vorteil dieses Verfahrens ist, daß mit seiner Hilfe die Fläche der Schmelzstelle sehr klein gehalten werden kann, und zwar in dem Sinne, daß sie gegenüber der gesamten Oberfläche klein ist. Auf diese Weise ist es z. B. möglich, Dioden herzustellen mit einer sehr definierten Kontaktfläche zwischen defekt- und überschußleitendem Bereich, die vor allem keinen zeitlichen Schwankungen unterworfen sind, wie sie z. B. bei der Verwendung von Spitzenelektroden (Whiskern) nur schwer zu vermeiden sind.Another particular advantage of this method is that with its help the area of the Melting point can be kept very small, in the sense that it is compared to the entire Surface is small. In this way it is e.g. B. possible to manufacture diodes with a very defined Contact area between the defective and excess conductive area, which above all does not have a temporal effect Are subject to fluctuations, as z. B. when using tip electrodes (Whiskers) are difficult to avoid.
Claims (5)
Deutsche Patentanmeldung ρ 51789 VIIIc/21 gD.Considered publications:
German patent application ρ 51789 VIIIc / 21 gD.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE1951L0011023 DE962279C (en) | 1951-12-10 | 1951-12-10 | Process for the creation of areas of different conductivity on the surface of germanium |
FR1067565D FR1067565A (en) | 1951-12-10 | 1952-12-10 | Process for the creation of zones with different asymmetric conductivity characteristics on the surface of germanium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE1951L0011023 DE962279C (en) | 1951-12-10 | 1951-12-10 | Process for the creation of areas of different conductivity on the surface of germanium |
Publications (1)
Publication Number | Publication Date |
---|---|
DE962279C true DE962279C (en) | 1957-04-18 |
Family
ID=7258664
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE1951L0011023 Expired DE962279C (en) | 1951-12-10 | 1951-12-10 | Process for the creation of areas of different conductivity on the surface of germanium |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE962279C (en) |
FR (1) | FR1067565A (en) |
-
1951
- 1951-12-10 DE DE1951L0011023 patent/DE962279C/en not_active Expired
-
1952
- 1952-12-10 FR FR1067565D patent/FR1067565A/en not_active Expired
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
FR1067565A (en) | 1954-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE1806643C3 (en) | Process for doping semiconductor material by ion implantation with subsequent annealing treatment | |
DE1005646B (en) | Process for the production of large-area, crack-free semiconductor p-n connections | |
DE1246890B (en) | Diffusion process for manufacturing a semiconductor component | |
DE1771169A1 (en) | Graphite susceptor | |
DE1794113A1 (en) | Process for the diffusion of foreign atoms into silicon carbide | |
DE1540991A1 (en) | Method for producing a body with a transition between two different materials, in particular semiconductor materials and bodies produced by this method | |
DE1696075C3 (en) | Process for the partial electroplating of a semiconductor layer | |
DE1544190C3 (en) | Method for introducing imperfections in diamond | |
DE3108146A1 (en) | METHOD FOR HEATING SEMICONDUCTOR MATERIAL | |
DE1042133B (en) | Process for the manufacture of titanium oxide rectifiers | |
DE974364C (en) | Process for the production of P-N layers in semiconductor bodies by immersion in a melt | |
DE962279C (en) | Process for the creation of areas of different conductivity on the surface of germanium | |
DE1648614C2 (en) | Method of manufacturing a mechanoelectric converter | |
DE262775C (en) | ||
DE1619973B2 (en) | METHOD FOR MANUFACTURING SEMICONDUCTOR MATERIAL BY SEPARATING FROM THE GAS PHASE | |
DE915961C (en) | Process for producing controllable, electrically asymmetrically conductive systems | |
DE971095C (en) | Process for the production of unipolar conductors with selenium or selenium compounds as semiconductors and particularly high voltage load capacity in the reverse direction | |
AT136250B (en) | Process for metallization by cathodic sputtering. | |
DE975679C (en) | Process for the manufacture of selenium rectifiers | |
DE875968C (en) | Electrically asymmetrical conductive system | |
DE908043C (en) | Process for the production of selenium rectifiers, preferably those with light metal carrier electrodes | |
DE1097571B (en) | Flat transistor with three zones of alternating conductivity type | |
DE1107343B (en) | Method for manufacturing electrical semiconductor devices | |
DE891300C (en) | Electrically asymmetrical conductive system | |
AT95478B (en) | Process for the production of metal threads or wires. |