DE69214890T2 - Verfahren zur Herstellung von Allophanat- und Isocyanuratgruppen enthaltenden Polyisocyanaten - Google Patents

Verfahren zur Herstellung von Allophanat- und Isocyanuratgruppen enthaltenden Polyisocyanaten

Info

Publication number
DE69214890T2
DE69214890T2 DE1992614890 DE69214890T DE69214890T2 DE 69214890 T2 DE69214890 T2 DE 69214890T2 DE 1992614890 DE1992614890 DE 1992614890 DE 69214890 T DE69214890 T DE 69214890T DE 69214890 T2 DE69214890 T2 DE 69214890T2
Authority
DE
Germany
Prior art keywords
groups
carbon atoms
catalyst
trimerization
diisocyanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
DE1992614890
Other languages
English (en)
Other versions
DE69214890D1 (de
DE69214890T3 (de
Inventor
Terry A Potter
William A Slack
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=24948083&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=DE69214890(T2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Bayer AG filed Critical Bayer AG
Publication of DE69214890D1 publication Critical patent/DE69214890D1/de
Application granted granted Critical
Publication of DE69214890T2 publication Critical patent/DE69214890T2/de
Publication of DE69214890T3 publication Critical patent/DE69214890T3/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/791Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
    • C08G18/792Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aliphatic and/or cycloaliphatic isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/26Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with only hetero atoms directly attached to ring carbon atoms
    • C07D251/30Only oxygen atoms
    • C07D251/34Cyanuric or isocyanuric esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/02Polymeric products of isocyanates or isothiocyanates of isocyanates or isothiocyanates only
    • C08G18/022Polymeric products of isocyanates or isothiocyanates of isocyanates or isothiocyanates only the polymeric products containing isocyanurate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/7806Nitrogen containing -N-C=0 groups
    • C08G18/7818Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups
    • C08G18/7837Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups containing allophanate groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

    Hintergrund der Erfindung Gebiet der Erfindung
  • Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Polyisocyanaten, die Allophanatgruppen und Isocyanuratgruppen enthalten und eine niedrige Viskosität und verbesserte Kompatibilität mit polaren und schwach polaren Lösungsmitteln und Isocyanat-reaktiven Komponenten haben.
  • Beschreibung des Standes der Technik
  • Isocyanuratgruppen enthaltende Polyisocyanate sind bekannt und in den US-Patenten 3,487,080, 3,996,223, 4,324,879 und 4,412,073 offenbart. Während diese Polyisocyanate viele hervorragende Eigenschaften besitzen, erfordern sie eine Verbesserung auf zwei Gebieten. Zum einen muß die Viskosität der im Handel erhältlichen, Isocyanuratgruppen enthaltenden Polyisocyanate reduziert werden, um die Menge an Lösungsmittel zu reduzieren, die zur Erlangung einer geeigneten Verarbeitungsviskosität nötig ist. Gegenwärtig gibt es eine wachsende Zahl regierungsseitiger Vorschriften, die die Menge an flüchtigen Lösungsmitteln beschränken, die in Beschichtungssystemen vorliegen dürfen. Daher werden Isocyanuratgruppen enthaltende Polyisocyanate möglicherweise von bestimmten Anwendungen ausgeschlossen, weil es nicht möglich ist, ohne eine Verwendung hoher Mengen Lösungsmittel die Viskosität dieser Polyisocyanate auf eine geeignete Verarbeitungsviskosität zu reduzieren. Zum anderen besitzen die Isocyanuratgruppen enthaltenden Polyisocyanate nicht genügend Kompatibilität mit stark verzweigten Polyester-Coreaktanten, wie durch den Glanz und die Deutlichkeit der Bildablesungen bewiesen wird, die aus Beschichtungen erhalten werden, die aus diesen Reaktanten hergestellt sind.
  • Im US-Patent 4,801,663 wurde vorgeschlagen, die Viskosität von Isocyanuratgruppen enthaltenden Polyisocyanaten, die aus 1,6-Hexamethylendiisocyanat (HDI) hergestellt sind, zu reduzieren. Durch Beenden der Reaktion bei einem sehr niedrigen Grad der Trimerisierung werden höhere Gehalte des Monoisocyanurats von HDI erhalten, und die Menge der mehr als einen Isocyanuratring enthaltenden Polyisocyanate wird reduziert. Da diese letzteren Polyisocyanate eine viel höhere Viskosität als das Monoisocyanurat haben, besitzen die resultierenden Polyisocyanate eine reduzierte Viskosität. Da die Reaktion bei einem sehr niedrigen Grad der Trimerisierung beendet wird, ist jedoch ein erheblicher Nachteil dieses Systems, daß die Gesamtausbeute sehr niedrig ist und die Menge HDI, die von dem Produkt abgetrennt werden muß, beträchtlich erhöht ist. Mit anderen Worten: Die geringfügige Erniedrigung der Viskosität wird durch eine erhebliche Steigerung der Produktionskosten des Produktes erkauft. Weiterhin besitzt das resultierende Produkt keine optimale Kompatibilität mit stark verzweigten Polyesterharzen.
  • Dementsprechend ist es eine Aufgabe der vorliegenden Erfindung, Polyisocyanate verfügbar zu machen, die eine reduzierte Viskosität und eine verbesserte Kompatibilität mit vernetzten Polyester-Coreaktanten haben, während sie die erwünschten Eigenschaften bekannter, Isocyanuratgruppen enthaltender Polyisocyanate besitzen. Es ist eine zusätzliche Aufgabe der vorliegenden Erfindung, Polyisocyanate bereitzustellen, die zu vernünftigen Produktionskosten erzeugt werden können und die in hohen Ausbeuten erhalten werden. Überraschenderweise können diese Aufgaben gemäß der vorliegenden Erfindung, wie im folgenden beschrieben, durch Einarbeiten spezieller Monoalkohole vor oder während des Verfahrens der Trimerisierung gelöst werden, wodurch ein Polyisocyanat hergestellt wird, das Isocyanurat- und Allophanatgruppen enthält.
  • Die US-Patente 4,582,888, 4,604,418, 4,647,623, 4,789,705 betreffen die Einarbeitung verschiedener Diole, um die Kompatibilität der resultierenden Polyisocyanate mit bestimmten Lösungsmitteln und Coreaktanten zu verbessern. Während die Verwendung von Diolen die Kompatibilität der Polyisocyanate verbessern kann, reduzieren die Diole die Viskosität der Polyisocyanurate bei einer gegebenen Ausbeute nicht.
  • Die Herstellung von Polyisocyanaten, die Isocyanurat- und Allophanatgruppen enthalten, in Gegenwart von Katalysatoren ist z.B. aus FR-A 1304301, EP-A 416338,FR-A 1215428, JP-A 61161179, EP-A 57653 bekannt.
  • Viele dieser Literaturangaben, ebenso wie die oben mitgeteilten, offenbaren die Verwendung von Monoalkoholen oder Glycolen als Cokatalysatoren für die Trimerisierungsreaktion. Keine dieser Literaturstellen schlägt jedoch die Einarbeitung von Allophanatgruppen zur Reduzierung der Viskosität von Polyisocyanaten vor, die Isocyanuratgruppen enthalten. Weiterhin lehren diese Literaturstellen, daß die Verwendung dieser Cokatalysatoren auf einem Minimum gehalten werden sollte, da die resultierenden Urethangruppen die Trocknungszeit der aus den Polyisocyanaten hergestellten Beschichtungen reduzieren. Insbesondere das US-Patent 4,582,888 warnt vor der Verwendung einer Menge Monoalkohol, die diejenige überschreitet, die zum Auflösen des Katalysators benötigt wird.
  • Die Japanische Veröffentlichung 61-151179 offenbart die Verwendung von Monoalkoholen, die 6 bis 9 Kohlenstoffatome enthalten, als Cokatalysatoren für Trimerisierungskatalysatoren, die in Abwesenheit eines Cokatalysators HDI nicht trimerisieren. Diese Literaturstelle schlägt nicht die Verwendung dieser Monoalkohole in Kombination mit Trimerisierungskatalysatoren vor, die eine Trimerisierungsreaktion in Abwesenheit von Cokatalysatoren bewirken.
  • Kurzbeschreibung der Erfindung
  • Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung einer Polyisocyanatzusammensetzung mit einem NCO-Gehalt von 10 bis 47 Gew.-% und einer Viskosität von weniger als 1300 mPa s (25ºC), wobei die Viskosität an einem Gemisch bestimmt wird, das weniger als 1 Gew.-% des anfangs eingesetzten organischen Diisocyanats enthält, das Isocyanurat- und Allophanatgruppen in einem Stoffmengenverhältnis von Monoisocyanuraten zu Monoallophanaten von 10:1 bis 1:5 enthält, umfassend
  • a) das katalytische Trimerisieren eines Teils der Isocyanatgruppen von Hexamethylendiisocyanat in Gegenwart von Trimethylbenzylammoniumhydroxid oder eines Trimerisierungskatalysators der Formel
  • wobei R&sub1; bis R&sub4; gleiche oder verschiedene Alkylgruppen mit 1 bis 20 Kohlenstoffatomen darstellen, die mit Hydroxygruppen substituiert sein können, mit der Maßgabe, daß zwei der Reste R&sub1; bis R&sub4; zusammen mit dem Stickstoffatom und gegebenenfalls einem weiteren Stickstoffatom oder einem Sauerstoffatom einen heterocyclischen Ring mit 3 bis 4 Kohlenstoffatomen bilden können, oder wobei die Reste R&sub1; bis R&sub3; jeweils Ethylenreste darstellen können, die zusammen mit dem quartären Stickstoffatom und einem weiteren tertiären Stickstoffatom eine bicyclische Triethylendiaminstruktur bilden, mit der Maßgabe, daß der Rest R&sub4; dann eine Hydroxyalkylgruppe mit 2 bis 4 Kohlenstoffatomen darstellt,
  • b) das Hinzufügen von 0,01 bis 0,5 mol eines Monoalkohols, der 6 bis 9 Kohlenstoffatome enthält, pro Mol des organischen Diisocyanats zu dem organischen Diisocyanat vor oder während der Trimerisierungsreaktion von Schritt a)
  • c) das Beenden der Trimerisierungsreaktion bei dem gewünschten Trimerisierungsgrad durch Hinzufügen eines Katalysatorgiffes und/oder durch thermisches Desaktivieren des Katalysators und
  • d) Entfernen von nicht umgesetztem Hexamethylendiisocyanat durch Destillation bis zu einem Gehalt des Produkts an Hexamethylendiisocyanat von weniger als 1 Gew.-%.
  • Ausführliche Beschreibung der Erfindung
  • Gemäß der vorliegenden Erfindung bedeutet der Ausdruck "Monoisocyanurat" ein Polyisocyanat, das eine Isocyanuratgruppe enthält und aus drei Diisocyanatmolekülen gebildet ist, und der Ausdruck "Polyisocyanurat" bedeutet ein Polyisocyanat, das mehr als eine Isocyanuratgruppe enthält. Der Ausdruck "Monoallophanat" bedeutet ein Polyisocyanat, das eine Allophanatgruppe enthält und aus zwei Diisocyanatmolekülen und einem Monoalkoholmolekül gebildet ist, und der Ausdruck "Polyallophanat" bedeutet ein Polyisocyanat, das mehr als eine Allophanatgruppe enthält. Der Ausdruck "(cyclo)aliphatisch gebundene Isocyanatgruppen" bedeutet aliphatisch und/oder cycloaliphatisch gebundene Isocyanatgruppen.
  • Beispiele für geeignete Diisocyanate, die als Ausgangsstoffe zur Herstellung der Polyisocyanate gemäß der vorliegenden Erfindung verwendet werden können, sind organische Diisocyanate, die durch die Formel
  • R (NCO)&sub2;
  • dargestellt werden, wobei R eine organische Gruppe darstellt, die durch Entfernen der Isocyanatgruppen von einem organischen Diisocyanat mit (cyclo)aliphatisch gebundenen Isocyanatgruppen und einem Molekulargewicht von 112 bis 1000, vorzugsweise 140 bis 400, erhalten wird. Für das erfindungsgemäße Verfahren bevorzugte Diisocyanate sind die durch die obige Formel dargestellten, wobei R eine zweiwertige aliphatische Kohlenwasserstoffgruppe mit 4 bis 18 Kohlenstoffatomen, eine zweiwertige cycloaliphatische Kohlenwasserstoffgruppe mit 5 bis 15 Kohlenstoffatomen oder eine zweiwertige araliphatische Kohlenwasserstoffgruppe mit 7 bis 15 Kohlenstoffatomen darstellt. Beispiele für die organischen Diisocyanate, die für das Verfahren besonders geeignet sind, sind 1,4-Tetramethylendiisocyanat, 1,6-Hexamethylendiisocyanat, 2,2,4- Trimethyl-1,6-hexamethylendiisocyanat,1,12-Dodecamethylendiisocyanat, Cyclohexan-1,3- und -1,4-diisocyanat, 1-Isocyanato-2- isocyanatomethylcyclopentan, 1-Isocyanato-3-isocyanatomethyl-3,5,5-trimethylcyclohexan (Isophorondiisocyanat oder IPDI), Bis(4-isocyanatocyclohexyl)methan, 1,3- und 1,4-Bis(isocyanatomethyl)cyclohexan, Bis(4-isocyanato-3-methylcyclohexyl)methan, α,α,α',α'-Tetramethyl-1,3- und/oder -1,4-xylylendiisocyanat, 1-Isocyanato-1-methyl-4(3)-isocyanatomethylcyclohexan und 2,4- und/oder 2,6-Hexahydrotoluylendiisocyanat. Gemische von Diisocyanaten können ebenfalls verwendet werden. Bevorzugte Diisocyanate sind 1,6-Hexamethylendiisocyanat, Isophorondiisocyanat und Bis(4-isocyanatocyclohexyl)methan. 1,6-Hexamethylendiisocyanat (HDI) wird besonders bevorzugt.
  • Gemäß der vorliegenden Erfindung ist es auch möglich, Gemische der vorerwähnten Diisocyanate mit Monoisocyanaten oder Polyisocyanaten mit 3 oder mehr Isocyanatgruppen einzusetzen, vorausgesetzt, daß die Isocyanatgruppen (cyclo)aliphatisch gebunden sind.
  • Gemäß der vorliegenden Erfindung werden die Ausgangs-Diisocyanate vorzugsweise behandelt, indem man ein Inertgas wie Stickstoff durch das Ausgangs-Diisocyanat hindurchbläst, um den Gehalt an Kohlenstoffdioxid zu reduzieren. Dieses Verfahren wird in der Deutschen Offenlegungsschrift 3,806,276 (US-Anmeldung, Serial No. 07/311,920) diskutiert.
  • Zu den Trimerisierungskatalysatoren, die für das erfindungsgemäße Verfahren geeignet sind, gehören Aminosilylgruppen enthaltende Verbindungen und solche, die in Abwesenheit eines Urethangruppen enthaltenden Cokatalysators eine Trimerisierung von Polyisocyanaten bewirken, mit der Ausnahme von Phosphinen, z.B. die in DE-OS 1,935,763 beschriebenen, und Mannich-Basen, zum Beispiel solche des in den US-Patenten 3,996,223 und 4,115,373 beschriebenen Typs, die auf Nonylphenol, Formaldehyd und Dimethylamin beruhen. Neben der Trimerisierungsreaktion begünstigen die Phosphine auch die Dimerisierung von Diisocyanaten. Die Mannich-Basen werden im allgemeinen für die Trimerisierung aromatischer Polyisocyanate verwendet und sind bei der Trimerisierung (cyclo)aliphatischer Diisocyanate viel weniger effektiv oder überhaupt nicht effektiv. Daher sind diese Katalysatoren zur Herstellung der Produkte der vorliegenden Erfindung nicht geeignet. Die Trimerisierungskatalysatoren sollten auch die Bildung von Allophanatgruppen aus Urethangruppen katalysieren.
  • Katalysatoren, die in Abwesenheit eines Cokatalysators eine Trimerisierung von Diisocyanaten bewirken, können als solche definiert werden, die in der Lage sind, den Isocyanatgehalt eines Gemischs, das aus 1,6-Hexamethylendiisocyanat, das weniger als 10 ppm Kohlendioxid enthält, und dem Trimerisierungskatalysator besteht, bei einer Katalysatorkonzentration von 500 ppm, bezogen auf das Gewicht von 1,6-Hexamethylendiisocyanat, und einer Temperatur von 80ºC innerhalb von 4 Stunden von 50 Gew.-% auf 45 Gew.-% oder weniger zu reduzieren.
  • Besonders geeignete Katalysatoren, die in Abwesenheit eines Cokatalysators eine Trimerisierung von Diisocyanaten bewirken, sind quartäre Ammoniumhydroxide entsprechend der Formel
  • wie sie im US-Patent 4,324,879 und in den Deutschen Offenlegungsschriften 2,806,731 und 2,901,479 beschrieben sind. Bevorzugte quartäre Ammoniumhydroxide sind diejenigen, bei denen die Reste R&sub1; bis R&sub4; gleiche oder unterschiedliche Alkylgruppen mit 1 bis 20, vorzugsweise 1 bis 4, Kohlenstoffatomen darstellen, die gegebenenfalls durch Hydroxylgruppen substituiert sind. Zwei der Reste R&sub1; bis R&sub4; können zusammen mit dem Stickstoffatom und gegebenenfalls einem weiteren Stickstoff- oder Sauerstoffatom einen heterocyclischen Ring mit 3 bis 5 Kohlenstoffatomen bilden. Die Reste R&sub1; bis R&sub3; können in jedem Falle auch Ethylenreste darstellen, die zusammen mit dem quartären Stickstoffatom und einem weiteren tertiären Stickstoffatom eine bicyclische Triethylendiamin-Struktur bilden, vorausgesetzt, daß der Rest R&sub4; dann eine Hydroxyalkylgruppe mit 2 bis 4 Kohlenstoffatomen darstellt, bei der die Hydroxylgruppe vorzugsweise in der 2-Stellung zu dem quartären Stickstoffatom angeordnet ist. Der hydroxy-substituierte Rest oder die hydroxy-substituierten Reste können auch andere Substituenten enthalten, insbesondere C&sub1;- bis C&sub4;-Alkoxy-Substituenten.
  • Die Herstellung dieser quartären Ammoniumkatalysatoren erfolgt in bekannter Weise durch Umsetzen eines tertiären Amins mit einem Alkylenoxid in einem wäßrig-alkoholischen Medium (vgl. US-Patent 3,995,997, Spalte 2, Zeilen 19-44). Beispiele für geeignete tertiäre Amine sind Trimethylamin, Tributylamin, 2-Dimethylaminoethanol, Triethanolamin, Dodecyldimethylamin, N,N-Dimethylcyclohexylamin, N-Methylpyrrolidin, N-Methylmorpholin und 1,4-Diazabicyclo[2.2.2]octan. Beispiele für geeignete Alkylenoxide sind Ethylenoxid, Propylenoxid, 1,2-Butylenoxid, Styroloxid und Methoxy-, Ethoxy- oder Phenoxypropylenoxid. Die meistbevorzugten Katalysatoren aus dieser Gruppe sind N,N,N-Trimethyl-N-(2- hydroxyethyl) ammoniumhydroxid und N,N,N-Trimethyl-N-(2-hydroxypropyl)ammoniumhydroxid. Ein anderer meistbevorzugter Katalysator ist N,N,N-Trimethyl-N-benzylammoniumhydroxid.
  • Die Trimerisierung der Ausgangs-Diisocyanate kann in Abwesenheit oder Anwesenheit von Lösungsmitteln durchgeführt werden, die gegenüber Isocyanatgruppen inert sind. Je nach dem Anwendungsgebiet der erfindungsgemäßen Produkte können niedrig- bis mittelsiedende Lösungsmittel oder hochsiedende Lösungsmittel verwendet werden. Zu den geeigneten Lösungsmitteln zählen Ester, wie Ethylacetat oder Butylacetat; Ketone, wie Aceton oder Butanon; aromatische Verbindungen, wie Toluol oder Xylol; halogenierte Kohlenwasserstoffe, wie Methylenchlorid und Trichlorethylen; Ether, wie Dusopropylether; und Alkane, wie Cyclohexan, Petrolether oder Ligroin.
  • Die Trimerisierungskatalysatoren werden im allgemeinen in Mengen von etwa 0,0005 bis 5 Gew.-%, vorzugsweise etwa 0,002 bis 2 Gew.-%, bezogen auf das eingesetzte Diisocyanat, verwendet. Wenn beispielsweise ein bevorzugter Katalysator, wie N,N,N-Trimethyl-N-(2-hydroxypropyl)ammoniumhydroxid, eingesetzt wird, sind Mengen von etwa 0,0005 bis 1 Gew.-%, vorzugsweise etwa 0,001 bis 0,02 Gew.-% bezogen auf das Ausgangs-Diisocyanat, im allgemeinen ausreichend. Die Katalysatoren können in reiner Form oder in Lösung verwendet werden. Die zuvor genannten Lösungsmittel, die gegenüber Isocyanatgruppen inert sind, sind als Lösungsmittel geeignet, je nach dem Typ des Katalysators. Dimethylformamid oder Dimethylsulfoxid können ebenfalls als Lösungsmittel für die Katalysatoren verwendet werden.
  • Die gleichzeitige Verwendung von Cokatalysatoren ist in dem erfindungsgemäßen Verfahren möglich, jedoch nicht notwendig. Alle Substanzen, für die eine polymerisierende Wirkung auf Isocyanate bekannt ist, sind als Cokatalysatoren geeignet, wie die in DE-OS 2,806,731 beschriebenen. Die Cokatalysatoren werden wahlweise in einer geringeren Menge, gewichtsbezogen, relativ zu der Menge des Trimerisierungskatalysators, verwendet.
  • Gemäß der vorliegenden Erfindung werden Urethangruppen und anschließend Allophanatgruppen unter Verwendung von Monoalkoholen in die Polyisocyanate eingebaut. Die Monoalkohole können linear, verzweigt oder cyclisch sein und 6 bis 9, vorzugsweise 6 bis 8, Kohlenstoffatome enthalten. Die Monoalkohole können gegebenenfalls Ethergruppen enthalten. Beispiele für geeignete Monoalkohole sind n-Hexanol, n-Heptanol, n-Octanol, n-Nonanol, 2-Ethylhexanol, Trimethylhexanol, Cyclohexanol und Benzylalkohol. Das Stoffmengenverhältnis von Monoalkohol zu Diisocyanat beträgt etwa 0,01 bis 0,5, vorzugsweise etwa 0,04 bis 0,2.
  • Die Reaktionstemperatur für die Isocyanurat- und Allophanat- Bildung gemäß der vorliegenden Erfindung beträgt etwa 10 bis 160º0, vorzugsweise etwa 50 bis 150ºC und noch mehr bevorzugt etwa 90 bis 120ºC.
  • Das erfindungsgemäße Verfahren kann entweder chargenweise oder kontinuierlich stattfinden, beispielsweise, wie es unten beschrieben ist. Das Ausgangs-Diisocyanat wird unter Ausschluß von Feuchtigkeit und gegebenenfalls mit einem Inertgas in ein geeignetes Rührgefäß oder Rohr eingeführt und gegebenenfalls mit einem Lösungsmittel vermischt, das gegenüber Isocyanatgruppen inert ist, wie Toluol, Butylacetat, Dusopropylether oder Cyclohexan. Der zuvor beschriebene Monoalkohol kann gemäß mehreren Ausführungsformen in das Reaktionsgefäß eingeführt werden. Der Monoalkohol kann zuerst unter Bildung von Urethangruppen mit dem Diisocyanat umgesetzt werden, bevor das Diisocyanat in das Reaktionsgefäß eingebracht wird; der Monoalkohol kann mit dem Diisocyanat vermischt und dann in das Reaktionsgefäß eingebracht werden; der Monoalkohol kann getrennt dem Reaktionsgefäß zugegeben werden, entweder bevor oder nachdem, vorzugsweise nachdem das Diisocyanat zugegeben wird; oder der Katalyator kann vor dem Einführen der Lösung in das Reaktionsgefäß in dem Monoalkohol aufgelöst werden.
  • Die erfindungsgemäßen Polyisocyanate können auch durch Vermischen von Polyisocyanaten, die Isocyanuratgruppen enthalten, mit Monoallophanaten hergestellt werden.
  • Bei einer Temperatur von etwa 60ºC und in Gegenwart des erforderlichen Katalysators oder der erforderlichen Katalysatorlösung beginnt die Trimerisierung und wird durch eine exotherme Reaktion angezeigt. Mit steigender Reaktionstemperatur nimmt die Umwandlungsrate der Urethangruppen in Allophanatgruppen schneller zu als die Bildung der Isocyanuratgruppen. Bei Temperaturen oberhalb von 85ºC, wenn der gewünschte Grad der Trimerisierung erreicht ist, werden die Urethangruppen im allgemeinen vollständig in Allophanatgruppen umgewandelt, und das Produkt hat nach dem Entfernen des nicht umgesetzten Monomers und des etwa anwesenden Lösungsmittels relativ zu der erhaltenen Ausbeute eine niedrige Viskosität. Bei Temperaturen unterhalb von 85ºC bleiben bei dem gleichen Grad des Verbrauchs an Isocyanatgruppen einige Urethangruppen unumgewandelt, und das Produkt hat eine geringfügig höhere, jedoch immer noch niedrige Viskosität relativ zu der erhaltenen Ausbeute. Das Fortschreiten der Reaktion wird anhand der Bestimmung des NCO-Gehalts mittels einer geeigneten Methode, wie Titration, Bestimmung des Brechungsindex oder IR-Analyse, verfolgt. Somit kann die Reaktion bei dem gewünschten Grad der Trimerisierung beendet werden. Die Beendigung der Trimerisierungsreaktion kann beispielsweise bei einem NCO-Gehalt von etwa 15% bis 47%, vorzugsweise etwa 20 bis 40%, stattfinden.
  • Die Beendigung der Trimerisierungsreaktion kann beispielsweise durch die Zugabe eines Katalysatorgiftes des Typs vorgenommen werden, wie er beispielhaft in den oben erwähnten Literaturstellen genannt ist. Wenn beispielsweise basische Katalysatoren eingesetzt werden, wird die Reaktion durch Zusatz eines Säurechlorids, wie Benzoylchlorid, in einer Menge, die wenigstens der Menge des Katalysators äquivalent ist, beendet. Wenn hitzelabile Katalysatoren verwendet werden, beispielsweise die oben beschriebenen quartären Ammoniumhydroxide, kann die Vergiftung des Katalysators durch Zugabe eines Katalysatorgiftes entfallen, da sich diese Katalysatoren im Laufe der Reaktion zersetzen. Bei Verwendung solcher Katalysatoren werden die Menge des Katalysators und die Reaktionstemperatur vorzugsweise so gewählt, daß der Katalysator, der sich kontinuierlich zersetzt, vollständig zersetzt ist, wenn der gewünschte Grad der Trimerisierung erreicht ist. Die Menge des Katalysators oder die Reaktionstemperatur, die nötig sind, um diese Zersetzung zu erzielen, können in einem Vorversuch bestimmt werden. Es ist auch möglich, zu Anfang eine kleinere Menge eines wärmeempfindlichen Katalysators einzusetzen, als zur Erzielung des gewünschten Grades der Trimerisierung nötig ist, und anschließend die Reaktion durch weitere portionsweise Zugabe des Katalysators zu katalysieren, wobei die Menge des später zugesetzten Katalysators so berechnet wird, daß die Gesamtmenge des Katalysators verbraucht ist, wenn der gewünschte Grad der Trimerisierung erreicht ist. Die Verwendung suspendierter Katalysatoren ist ebenfalls möglich. Diese Katalysatoren werden nach dem Erreichen des gewünschten Grades der Trimerisierung durch Filtrieren des Reaktionsgemischs entfernt.
  • Die Aufarbeitung des Reaktionsgemischs, gegebenenfalls nach vorheriger Abtrennung unlöslicher Katalysatorbestandteile, kann auf verschiedene Weise stattfinden, je nach der Art und Weise der Durchführung der Reaktion und dem Anwendungsgebiet der Isocyanate. Es ist möglich, die erfindungsgemäßen Polyisocyanate, die in Lösung hergestellt wurden, direkt ohne eine Reinigungsstufe als Lackrohstoff zu verwenden, sofern es nicht nötig ist, den Gehalt an freien Monomeren zu reduzieren. Während der Trimerisierungsreaktion verwendetes Lösungsmittel und in dem Polyisocyanat-Produkt anwesendes, nicht umgesetztes Monomer können ebenfalls durch Destillation in bekannter Weise entfernt werden. Das Produkt enthält im allgemeinen insgesamt weniger als 2%, vorzugsweise weniger als 1%, freie (nicht umgesetzte) monomere Diisocyanate. Die erfindungsgemäßen Produkte haben eine Viskosität von weniger als 10 000 mPa s, vorzugsweise weniger als 2000 mPa s und noch mehr bevorzugt weniger als 1300 mPa s.
  • Die Produkte gemäß der vorliegenden Erfindung sind Polyisocyanate, die Iscyanuratgruppen und Allophanatgruppen enthalten. Die Produkte können auch restliche Urethangruppen enthalten, die nicht in Allophanatgruppen umgewandelt wurden, abhängig von der während der Reaktion eingehaltenen Temperatur und dem Grad des Verbrauchs an Isocyanatgruppen. Das Verhältnis der Monoisocyanuratgruppen zu den Monoallophanatgruppen, die in den erfindungsgemäßen Polyisocyanaten vorliegen, beträgt etwa 10:1 bis 1:5, vorzugsweise etwa 5:1 bis 1:2.
  • Die Produkte gemäß der Erfindung sind wertvolle Ausgangsstoffe für die Herstellung von Polyisocyanat-Polyadditionsprodukten durch Reaktion mit Verbindungen, die wenigstens zwei isocyanatreaktive Gruppen enthalten. Bevorzugte Produkte sind am meisten bevorzugt Ein- oder Zwei-Komponenten-Polyurethan-Beschichtungen.
  • Bevorzugte Reaktionspartner für die erfindungsgemäßen Produkte, die gegebenenfalls in blockierter Form vorliegen können, sind die Polyhydroxypolyester, Polyhydroxypolyether, Polyhydroxypolyacrylate und gegebenenfalls niedermolekulare mehrwertige Alkohole, wie sie aus der Technologie der Polyurethan-Beschichtungen bekannt sind. Polyamine, insbesondere in blockierter Form, beispielsweise als Polyketimine oder Oxazolidine, sind ebenfalls geeignete Reaktionspartner für die erfindungsgemäßen Produkte. Die Mengen der erfindungsgemäßen Polyisocyanate und ihrer Reaktionspartner werden so gewählt, daß man ein Äquivalentverhältnis der Isocyanatgruppen (ob sie in blockierter oder nicht-blockierter Form vorliegen) zu den isocyanatreaktiven Gruppen von etwa 0,8 bis 3, vorzugsweise etwa 0,9 bis 1,1, erhält.
  • Zur Beschleunigung des Härtens können die Beschichtungsmassen bekannte Polyurethan-Katalysatoren enthalten, z.B. tertiäre Amine, wie Triethylamin, Pyridin, Methylpyridin, Benzyldimethylamin, N,N-Dimethylaminocyclohexan, N-Methylpiperidin, Pentamethyldiethylentriamin, 1,4-Diazabicyclo[2,2,2]octan und N,N'-Dimethylpiperazin; oder Metallsalze, wie Eisen(III)chlorid, Zinkchlorid, Zink-2-ethylcaproat, Zinn (II)-ethylcaproat, Dibutylzinn(IV)-dilaurat und Molybdänglycolat.
  • Die Produkte gemäß der Erfindung sind auch wertvolle Ausgangsstoffe für ofenhärtende Zwei-Komponenten-Polyurethan-Lacke, bei denen die Isocyanatgruppen in einer Form eingesetzt werden, in der sie durch bekannte Blockierungsmittel blockiert sind. Die Blockierungsreaktion wird in bekannter Weise durchgeführt, indem die Isocyanatgruppen mit geeigneten Blockierungsmitteln umgesetzt werden, vorzugsweise bei einer höheren Temperatur (z.B. etwa 40 bis 160ºC) und gegebenenfalls in Gegenwart eines geeigneten Katalysators, beispielsweise den zuvor beschriebenen tertiären Ammen oder Metallsalzen.
  • Zu den geeigneten Blockierungsmitteln gehören Monophenole, wie Phenol, die Kresole, die Trimethylphenole und die tert.-Butylphenole; tertiäre Alkohole, wie tert.-Butanol, tert.-Amylalkohol und Dimethylphenylcarbinol; Verbindungen, die leicht Enole bilden, wie Acetessigester, Acetylaceton und Malonsäurederivate, z.B. Malonsäurediethylester; sekundäre aromatische Amine, wie N-Methylanilin, N-Methyltoluidin, N-Phenyltoluidin und N-Phenylxylidin; Imide, wie Succinimid; Lactame, wie ε-Caprolactam und δ-Valerolactam; Oxime, wie Butanonoxim und Cyclohexanonoxim; Mercaptane, wie Methylmercaptan, Ethylmercaptan, Butylmercaptan, 2-Mercaptobenzthiazol, α-Naphthylmercaptan und Dodecylmercaptan; sowie Triazole, wie 1H-1,2,4-Triazol.
  • Die Beschichtungsmassen können auch andere Additive enthalten, wie Pigmente, Farbstoffe, Füllstoffe, Verlaufmittel und Lösungsmittel. Die Beschichtungsmassen können auf das zu beschichtende Substrat in Lösung oder aus der Schmelze mittels herkömmlicher Verfahren, wie Streichen, Rollen, Gießen oder Spritzen, aufgetragen werden.
  • Die Beschichtungsmassen, die die erfindungsgemäßen Polyisocyanate enthalten, ergeben Überzüge, die überraschend gut an einer metallischen Grundlage haften und besonders lichtecht, farbstabil in Anwesenheit von Wärme und sehr abriebbeständig sind. Weiterhin sind sie durch hohe Härte, Elastizität, sehr gute Beständigkeit gegen Chemikalien, hohen Glanz, ausgezeichnete Wetterbeständigkeit und gute Pigmentierungseigenschaften gekennzeichnet. Die Polyisocyanate gemäß der vorliegenden Erfindung besitzen auch gute Kompatibilität mit stark verzweigten Polyesterharzen.
  • Die Erfindung wird durch die folgenden Beispiele, in denen alle Teile und Prozentsätze gewichtsbezogen sind, wenn nichts anderes angegeben ist, näher erläutert, soll jedoch nicht durch diese eingeschränkt sein. Die Verwendung von ppm in den Tabellen bezieht sich auf die Menge des Katalysators ausschließlich des Lösungsmittels
  • Beispiele Beispiel 1
  • In einen 500-ml-Dreihalskolben, der mit einem Gaseinleitungsrohr, einem mechanischen Rührer, einem Thermometer und einem Kühler ausgestattet war, wurden 300 g Hexamethylendiisocyanat und 23,1 g 2-Octanol gefüllt. Trockener Stickstoff wurde durch das gerührte Reaktionsgemisch geblasen, während es auf 60ºC erhitzt wurde. Als die Urethanreaktion beendet war (etwa 1 Stunde), wurde die Temperatur auf 90ºC erhöht. Zu dem Reaktionsgemisch wurden bei 90ºC 0,294 g einer 4, 4%igen Lösung von Trimethylbenzylammoniumhydroxid in 2-Butanol gegeben. Die Reaktionstemperatur wurde zwischen 90 und 100ºC gehalten. Als das Reaktionsgemisch einen NCO-Gehalt von 34,2% erreichte, wurde die Reaktion abgebrochen, indem man 0,294 g Bis(2-ethylhexyl)phosphat hinzugab. Das überschüssige Monomer wurde durch Dünnschichtverdampfung entfernt, wobei man eine nahezu farblose, klare Flüssigkeit mit einer Viskosität von 720 mPa s (25ºC), einem NCO-Gehalt von 19,0% und einem Gehalt an freiem Monomer (HDI) von 0,2% erhielt. Die Ausbeute, die durch Bestimmen des Prozentgehalts des Produkts an freiem HDI vor der Destillation berechnet wurde, betrug 49,1%.
  • Beispiele 2 bis 6
  • In die oben beschriebenen Geräte wurde das in Tabelle 1 angegebene Verhältnis von Alkohol zu Hexamethylendiisocyanat gegeben. Das gerührte Gemisch wurde 1 bis 2 Stunden lang auf die angegebene Reaktionstemperatur erhitzt, während trockener Stickstoff durch das Reaktionsgemisch geblasen wurde. Die Katalysatorlösung (Trimethylbenzylammoniumhydroxid) wurde zu dem Reaktionsgemisch gegeben, und das Gemisch wurde auf der angegebenen Temperatur gehalten, bis der mit "Roh-NCO" bezeichnete NCO-Gehalt erreicht war. Die Reaktion wurde abgebrochen, indem man eine in bezug auf den Katalysator äquimolare Menge Bis(2-ethylhexyl)phosphat hinzufügte. Das überschüssige Monomer wurde durch Dünnschichtverdampfung entfernt, wobei man klare Produkte mit den in Tabelle 1 angegebenen Eigenschaften erhielt. Tabelle 1
  • * Gewicht des Alkohls pro Teile HDI
  • Beispiel 7
  • In einen 500-ml-Dreihalskolben, der mit einem Gaseinleitungsrohr, einem mechanischen Rührer, einem Thermometer und einem Kühler ausgestattet war, wurden 334 g Hexamethylendiisocyanat und 21,0 g Benzylalkohol gefüllt. Trockener Stickstoff wurde durch das gerührte Reaktionsgemisch geblasen, während es auf 60ºC erhitzt wurde. Als die Urethanreaktion beendet war (etwa 1 Stunde) , wurde die Temperatur auf 90ºC erhöht. Zu dem Reaktionsgemisch wurden bei 90ºC 0,24 g einer 4,4%igen Lösung von Trimethylbenzylammoniumhydroxid in 1-Butanol gegeben. Die Reaktionstemperatur wurde zwischen 90 und 100ºC gehalten. Als das Reaktionsgemisch einen NCO-Gehalt von 35,0% erreichte, wurde die Reaktion abgebrochen, indem man 0,24 g Bis(2-ethylhexyl)phosphat hinzugab. Das überschüssige Monomer wurde durch Dünnschichtverdampfung entfernt, wobei man eine nahezu farblose, klare Flüssigkeit mit einer Viskosität von 610 mPa s (25ºC), einem NCO-Gehalt von 18,6% und einem Gehalt an freiem Monomer (HDI) von 0,1% erhielt. Die Ausbeute, die durch Bestimmen des Prozentgehalts des Produkts an freiem HDI vor der Destillation berechnet wurde, betrug 34,4%.

Claims (3)

1. Verfahren zur Herstellung einer Polyisocyanatzusammensetzung mit einem NCO-Gehalt von 10 bis 47 Gew.-% und einer Viskosität von weniger als 1300 mPa s (25ºC), wobei die Viskosität an einem Gemisch bestimmt wird, das weniger als 1 Gew.-% des anfangs eingesetzten organischen Diisocyanats enthält, das Isocyanurat- und Allophanatgruppen in einem Stoffmengenverhältnis von Monoisocyanuraten zu Monoallophanaten von 10:1 bis 1:5 enthält, umfassend
a) das katalytische Trimerisieren eines Teils der Isocyanatgruppen von Hexamethylendiisocyanat in Gegenwart von Trimethylbenzylammoniumhydroxid oder eines Trimerisierungskatalysators der Formel
wobei R&sub1; bis R&sub4; gleiche oder verschiedene Alkylgruppen mit 1 bis 20 Kohlenstoffatomen darstellen, die mit Hydroxygruppen substituiert sein können, mit der Maßgabe, daß zwei der Reste R&sub1; bis R&sub4; zusammen mit dem Stickstoffatom und gegebenenfalls einem weiteren Stickstoffatom oder einem Sauerstoffatom einen heterocyclischen Ring mit 3 bis 4 Kohlenstoffatomen bilden können, oder wobei die Reste R&sub1; bis R&sub3; jeweils Ethylenreste darstellen können, die zusammen mit dem quartären Stickstoffatom und einem weiteren tertiären Stickstoffatom eine bicyclische Triethylendiaminstruktur bilden, mit der Maßgabe, daß der Rest R&sub4; dann eine Hydroxyalkylgruppe mit 2 bis 4 Kohlenstoffatomen darstellt,
b) das Hinzufügen von 0,01 bis 0,5 mol eines Monoalkohols, der 6 bis 9 Kohlenstoffatome enthält, pro Mol des organischen Diisocyanats zu dem organischen Diisocyanat vor oder während der Trimerisierungsreaktion von Schritt a)
c) das Beenden der Trimerisierungsreaktion bei dem gewünschten Trimerisierungsgrad durch Hinzufügen eines Katalysatorgiftes und/oder durch thermisches Desaktivieren des Katalysators und
d) Entfernen von nicht umgesetztem Hexamethylendiisocyanat durch Destillation bis zu einem Gehalt des Produkts an Hexamethylendiisocyanat von weniger als 1 Gew.-%.
2. Verfahren gemäß Anspruch 1, wobei der Monoalkohol 6 oder 8 Kohlenstoffatome enthält.
3. Verfahren gemäß Anspruch 1 oder 2, wobei der Monoalkohol 2-Ethylhexanol umfaßt.
DE1992614890 1991-07-22 1992-07-09 Verfahren zur Herstellung von Allophanat- und Isocyanuratgruppen enthaltenden Polyisocyanaten Expired - Lifetime DE69214890T3 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US73354991A 1991-07-22 1991-07-22
US733549 1991-07-22

Publications (3)

Publication Number Publication Date
DE69214890D1 DE69214890D1 (de) 1996-12-05
DE69214890T2 true DE69214890T2 (de) 1997-02-27
DE69214890T3 DE69214890T3 (de) 2006-03-23

Family

ID=24948083

Family Applications (1)

Application Number Title Priority Date Filing Date
DE1992614890 Expired - Lifetime DE69214890T3 (de) 1991-07-22 1992-07-09 Verfahren zur Herstellung von Allophanat- und Isocyanuratgruppen enthaltenden Polyisocyanaten

Country Status (5)

Country Link
EP (1) EP0524501B2 (de)
JP (1) JPH05222007A (de)
CA (1) CA2072916C (de)
DE (1) DE69214890T3 (de)
ES (1) ES2093742T5 (de)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0566037A2 (de) * 1992-04-14 1993-10-20 Takeda Chemical Industries, Ltd. Polyisocyanate, ihre Herstellung und Verwendung
DE4335796A1 (de) * 1993-10-20 1995-04-27 Bayer Ag Lackpolyisocyanate und ihre Verwendung
DE4426131A1 (de) 1994-07-22 1996-01-25 Bayer Ag Lichtechte, lösemittelfreie Polyurethan-Beschichtungsmittel und ihre Verwendung
DE4432647A1 (de) 1994-09-14 1996-03-21 Bayer Ag 1,3-Dioxan-2-on-Gruppen enthaltende Oligourethane
AU2001235565A1 (en) 2000-01-20 2001-07-31 Rhodia Chimie Method for obtaining slightly coloured branched polyisocyanate(s), and resultingcomposition
ATE420910T1 (de) 2000-02-05 2009-01-15 Basf Se Lagerstabile polyisocyante
DE10005228A1 (de) 2000-02-05 2001-08-09 Basf Ag Polyisocyanate mit Allophanatgruppen abgeleitet von alicyclischen Alkandiolen
DE10033099A1 (de) 2000-07-07 2002-01-17 Degussa Verfahren zur Herstellung von geruchsarmen und lagerstabilen monomerhaltigen Polyisocyanuraten aus Isophorondiisocyanat
DE10131525A1 (de) 2001-07-02 2003-01-16 Degussa Verfahren zur Herstellung von geruchsarmen und lagerstabilen monomerhaltigen Polyisocyanuraten aus Isophorondiisocyanat
CN1300209C (zh) 2001-09-20 2007-02-14 旭化成化学株式会社 含脲基甲酸酯基团的聚异氰酸酯组合物和高固含量涂料
DE102005020269A1 (de) 2005-04-30 2006-11-09 Bayer Materialscience Ag Bindemittelgemische aus Polyasparaginsäureestern und sulfonatmodifizierten Polyisocyanaten
KR100948527B1 (ko) * 2005-09-22 2010-03-23 아사히 가세이 케미칼즈 가부시키가이샤 폴리이소시아네이트 조성물 및 이를 포함한 코팅 조성물
BRPI0617366B1 (pt) 2005-10-21 2018-01-23 Asahi Kasei Chemicals Corporation Composição de poliisocianato, e, composição de revestimento
CN101528871B (zh) 2006-10-16 2011-11-30 旭化成化学株式会社 氟涂料组合物
EP2215156B1 (de) 2007-11-28 2013-01-09 Basf Se Flüssige stabilisatormischung
CN102216363A (zh) * 2008-03-14 2011-10-12 日本聚氨酯工业株式会社 多异氰酸酯组合物和使用其的双液型涂料组合物
JP2010053238A (ja) * 2008-08-28 2010-03-11 Nippon Polyurethane Ind Co Ltd ポリイソシアネート組成物およびそれを用いた2液型塗料組成物
FR2939433B1 (fr) 2008-12-08 2012-03-16 Perstorp Tolonates France Procede de preparation d'allophanate, allophanate et composition de faible viscosite comprenant l'allophanate
DE102009005712A1 (de) 2009-01-22 2010-07-29 Bayer Materialscience Ag Polyurethanvergussmassen
DE102009027395A1 (de) 2009-07-01 2011-01-05 Evonik Degussa Gmbh Reaktive Derivate auf Basis Dianhydrohexitol basierender Isocyanate
JP5542011B2 (ja) * 2010-09-01 2014-07-09 旭化成ケミカルズ株式会社 ウレタン基含有(メタ)アクリレート樹脂組成物
JP6153293B2 (ja) * 2012-05-11 2017-06-28 旭化成株式会社 ブロックポリイソシアネート組成物
EP2700665B1 (de) * 2012-08-23 2018-12-05 Covestro Deutschland AG Verfahren zur Trimerisierung cycloaliphatischer Diisocyanate
CN106604944B (zh) * 2014-09-04 2019-03-15 旭化成株式会社 多异氰酸酯组合物、涂料组合物、涂膜及其制造方法、以及潮湿稳定化方法
US20180079852A1 (en) 2015-03-16 2018-03-22 Covestro Deutschland Ag Polyisocyanate composition based on 1,5-pentamethylene diisocyanate
US10590226B2 (en) * 2015-04-21 2020-03-17 Covestro Deutschland Ag Solids based on polyisocyanurate polymers produced under adiabatic conditions
CN114213625B (zh) 2016-10-14 2024-02-06 旭化成株式会社 多异氰酸酯混合物、涂料组合物和涂膜
JP6626985B2 (ja) 2016-10-14 2019-12-25 旭化成株式会社 イソシアネート組成物、イソシアネート組成物の水分散体、およびその製造方法、塗料組成物、並びに塗膜
EP4122967A1 (de) 2016-10-14 2023-01-25 Asahi Kasei Kabushiki Kaisha Polyisocyanatzusammensetzung, geblockte polyisocyanatzusammensetzung, hydrophile polyisocyanatzusammensetzung, beschichtungsmaterialzusammensetzung und beschichtungsfilm
EP3401344B1 (de) 2017-05-09 2020-04-08 Evonik Operations GmbH Verfahren zur herstellung von trimeren und/oder oligomeren von diisocyanaten
CN110128624B (zh) 2018-02-08 2021-06-18 旭化成株式会社 多异氰酸酯组合物、涂料组合物、涂膜的制造方法及涂膜
JP7305366B2 (ja) 2018-02-15 2023-07-10 旭化成株式会社 ポリイソシアネート組成物、塗料組成物、塗膜の製造方法及び塗膜
WO2021004842A1 (de) * 2019-07-08 2021-01-14 Covestro Intellectual Property Gmbh & Co. Kg Polymerisierbare zusammensetzungen zur herstellung von polyisocyanuratkunststoffen mit verlängerter topfzeit

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3115479A (en) * 1955-12-08 1963-12-24 R oconr
DE1132331B (de) * 1957-12-11 1962-06-28 Basf Ag Verfahren zur Herstellung von geschmeidigen, elastischen haertbaren Kunstharzen
FR1304301A (fr) * 1960-10-20 1962-09-21 Ici Ltd Procédé de fabrication de polymères d'isocyanates organiques
GB994890A (en) * 1961-12-18 1965-06-10 Ici Ltd New organic polyisocyanates and their manufacture
DE2806731A1 (de) * 1978-02-17 1979-08-23 Bayer Ag Verfahren zur herstellung von isocyanuratgruppen aufweisenden polyisocyanaten
CA1112243A (en) 1978-09-08 1981-11-10 Manfred Bock Process for the preparation of polyisocyanates containing isocyanurate groups and the use thereof
NO158877C (no) * 1981-02-03 1988-11-09 Rhone Poulenc Spec Chim Fremgangsmaate for fremstilling av monomere eller polymereforbindelser med isocyanursyregrupper.
GB2203159B (en) 1987-04-03 1990-12-12 Asahi Chemical Ind An isocyanurate polyisocyanate and its use as a curing agent for a two-component polyurethane composition
US4810820A (en) 1987-08-12 1989-03-07 Mobay Corporation Process for the production of polyisocyanates containing allophanate groups
DE3928503A1 (de) * 1989-08-29 1991-03-07 Bayer Ag Verfahren zur herstellung von loesungen von isocyanuratgruppen aufweisenden polyisocyanaten in lackloesungsmitteln und ihre verwendung

Also Published As

Publication number Publication date
DE69214890D1 (de) 1996-12-05
JPH05222007A (ja) 1993-08-31
ES2093742T5 (es) 2006-02-16
CA2072916A1 (en) 1993-01-23
ES2093742T3 (es) 1997-01-01
EP0524501A1 (de) 1993-01-27
CA2072916C (en) 2003-02-11
DE69214890T3 (de) 2006-03-23
EP0524501B2 (de) 2005-08-31
EP0524501B1 (de) 1996-10-30

Similar Documents

Publication Publication Date Title
DE69214890T2 (de) Verfahren zur Herstellung von Allophanat- und Isocyanuratgruppen enthaltenden Polyisocyanaten
DE69215152T2 (de) Allophanat- und Isocyanuratgruppen enthaltende Polyisocyanate, Verfahren zu deren Herstellung sowie Beschichtungszusammensetzungen mit zwei Komponenten
DE69214848T2 (de) Polyisocyanate mit Allophanat- und Isocyanuratgruppen, Verfahren zu ihrer Herstellung und ihre Verwendung in Zweikomponentenüberzugmassen
EP0078991B1 (de) Verfahren zur Herstellung von Mischtrimerisaten organischer Isocyanate, die nach dem Verfahren erhaltenen Mischtrimerisate, sowie ihre Verwendung zur Herstellung von Polyurethanen
EP0010589B1 (de) Verfahren zur Herstellung von Isocyanuratgruppen aufweisenden Polyisocyanaten und ihre Verwendung als Isocyanatkomponente in Polyurethanlacken
EP0003765B1 (de) Verfahren zur Herstellung von Isocyanuratgruppen aufweisenden Polyisocyanaten auf Basis von 1-Isocyanato-3,3,5-trimethyl-5-isocyanatomethylcyclohexan und ihre Verwendung als Isocyanatkomponente in Polyurethanlacken
US5208334A (en) Process for the production of polyisocyanates containing allophanate and isocyanurate groups
EP0798299B1 (de) Isocyanattrimerisate und Isocyanattrimerisatmischungen, deren Herstellung und Verwendung
CA2148783C (en) Process for the production of light-stable polyisocyanates containing allophanate groups
EP0478990B1 (de) Polyisocyanatgemisch, ein Verfahren zu seiner Herstellung und seine Verwendung in Polyurethanlacken
DE4335796A1 (de) Lackpolyisocyanate und ihre Verwendung
EP2700665B1 (de) Verfahren zur Trimerisierung cycloaliphatischer Diisocyanate
EP0481318B1 (de) Verfahren zur Herstellung von Uretdion- und/oder Isocyanuratgruppen aufweisenden Polyisocyanaten
US5444146A (en) Polyisocyanates containing allophanate and isocyanurate groups, a process for their production and their use in two-component coating compositions
EP0896009A1 (de) Verfahren zur Herstellung von Polyisocyanaten, damit hergestellte Polyisocyanate und deren Verwendung
DE4405054A1 (de) Modifizierte (cyclo)aliphatische Polyisocyanatmischungen, Verfahren zu ihrer Herstellung und ihre Verwendung
EP0456062A2 (de) Verfahren zur Herstellung von Isocyanuratpolyisocyanaten, die nach diesem Verfahren erhaltenen Verbindungen und ihre Verwendung
EP0193828B1 (de) Isocyanuratgruppen aufweisende Polyisocyanate, ein Verfahren zu ihrer Herstellung und ihre Verwendung als Isocyanatkomponente in Polyurethanlacken
DE19603245A1 (de) Dünnschichtdestillation von Uretdiondiisocyanaten
EP0224165B1 (de) Verfahren zur Herstellung von Isocyanuratgruppen aufweisenden Polyisocyanaten und ihre Verwendung als Isocyanatkomponente in Polyurethanlacken
DE69727741T2 (de) Niedrigviskose Polyisocyanate hergestellt aus monomeren Triisocyanaten
EP0703230A1 (de) 1,3-Dioxan-2-on-Gruppen enthaltende Oligourethane
DE69210932T2 (de) Allophanat- und Isocyanuratgruppen enthaltende Polyisocyanate, Verfahren zu ihrer Herstellung und Verwendung in Zweikomponent-Beschichtungszusammensetzungen
EP0849268B1 (de) Polycyclische Iminooxadiazindione aus (cyclo)aliphatischen 1,4-Diisocyanaten
EP0727453B1 (de) Isocyanurat-Polyisocyanate auf Basis von 1,3-Diisocyanatocycloalkanen

Legal Events

Date Code Title Description
8363 Opposition against the patent
8366 Restricted maintained after opposition proceedings